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Abstract

Word Sense Disambiguation (WSD) is a long-

standing but open problem in Natural Lan-

guage Processing (NLP). WSD corpora are

typically small in size, owing to an expensive

annotation process. Current supervised WSD

methods treat senses as discrete labels and

also resort to predicting the Most-Frequent-

Sense (MFS) for words unseen during train-

ing. This leads to poor performance on rare

and unseen senses. To overcome this chal-

lenge, we propose Extended WSD Incorpo-

rating Sense Embeddings (EWISE), a super-

vised model to perform WSD by predicting

over a continuous sense embedding space as

opposed to a discrete label space. This allows

EWISE to generalize over both seen and un-

seen senses, thus achieving generalized zero-

shot learning. To obtain target sense em-

beddings, EWISE utilizes sense definitions.

EWISE learns a novel sentence encoder for

sense definitions by using WordNet relations

and also ConvE, a recently proposed knowl-

edge graph embedding method. We also com-

pare EWISE against other sentence encoders

pretrained on large corpora to generate defini-

tion embeddings. EWISE achieves new state-

of-the-art WSD performance.

1 Introduction

Word Sense Disambiguation (WSD) is an impor-

tant task in Natural Language Processing (NLP)

(Navigli, 2009). The task is to associate a word

in text to its correct sense, where the set of possi-

ble senses for the word is assumed to be known a

priori. Consider the noun “tie” and the following

examples of its usage (Miller, 1995).

• “he wore a vest and tie”

• “their record was 3 wins, 6 losses and a tie”

∗ Work done as a Research Assistant at Indian Institute
of Science, Bangalore.

It is clear that the implied sense of the word “tie” is

very different in the two cases. The word is associ-

ated with “neckwear consisting of a long narrow

piece of material” in the first example, and with

“the finish of a contest in which the winner is un-

decided” in the second. The goal of WSD is to

predict the right sense, given a word and its con-

text.

WSD has been shown to be useful for popu-

lar NLP tasks such as machine translation (Neale

et al., 2016; Pu et al., 2018), information extrac-

tion (Zhong and Ng, 2012; Delli Bovi et al., 2015)

and question answering (Ramakrishnan et al.,

2003). The task of WSD can also be viewed as an

intrinsic evaluation benchmark for the semantics

learned by sentence comprehension models. WSD

remains an open problem despite a long history

of research. In this work, we study the all-words

WSD task, where the goal is to disambiguate all

ambiguous words in a corpus.

Supervised (Zhong and Ng, 2010; Iacobacci

et al., 2016; Melamud et al., 2016) and semi-

supervised approaches (Taghipour and Ng, 2015;

Yuan et al., 2016) to WSD treat the target senses

as discrete labels. Treating senses as discrete la-

bels limits the generalization capability of these

models for senses which occur infrequently in

the training data. Further, for disambiguation of

words not seen during training, these methods fall

back on using a Most-Frequent-Sense (MFS) strat-

egy, obtained from an external resource such as

WordNet (Miller, 1995). To address these con-

cerns, unsupervised knowledge-based (KB) ap-

proaches have been introduced, which rely solely

on lexical resources (e.g., WordNet). KB methods

include approaches based on context-definition

overlap (Lesk, 1986; Basile et al., 2014), or on the

structural properties of the lexical resource (Moro

et al., 2014; Weissenborn et al., 2015; Chaplot

et al., 2015; Chaplot and Salakhutdinov, 2018;
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Figure 1: Overview of WSD in EWISE: A sequence of input tokens is encoded into context-aware embeddings

using a BiLSTM and a self-attention layer (⊕ indicates concatenation). The context-aware embeddings are then

projected on to the space of sense embeddings. The score for each sense in the sense inventory is obtained using a

dot product (indicated by ⊙) of the sense embedding with the projected word embedding. Please see Section 4.2

for details on the context encoding and training of the context encoder. The sense embedding for each sense in

the inventory is generated using a BiLSTM-Max definition encoder. The encoder is learnt using the training signal

present in WordNet Graph. An example signal with hypernym relation is depicted. Please see Section 4.3 for

details on learning sense embeddings.

Tripodi and Pelillo, 2017).

While knowledge-based approaches offer a way

to disambiguate rare and unseen words into po-

tentially rare senses, supervised methods consis-

tently outperform these methods in the general set-

ting where inference is to be carried over both fre-

quently occurring and rare words. Recently, Ra-

ganato et al. (2017b) posed WSD as a neural se-

quence labeling task, further improving the state-

of-the-art. Yet, owing to an expensive annota-

tion process (Lopez de Lacalle and Agirre, 2015),

there is a scarcity of sense-annotated data thereby

limiting the generalization ability of supervised

methods. While there has been recent interest

in incorporating definitions (glosses) to overcome

the supervision bottleneck for WSD (Luo et al.,

2018b,a), these methods are still limited due to

their treatment of senses as discrete labels.

Our hypothesis is that supervised methods can

leverage lexical resources to improve on WSD

for both observed and unobserved words and

senses. We propose Extended WSD Incorpo-

rating Sense Embeddings (EWISE). Instead of

learning a model to choose between discrete la-

bels, EWISE learns a continuous space of sense

embeddings as target. This enables generalized

zero-shot learning, i.e., the ability to recognize in-

stances of seen as well as unseen senses. EWISE

utilizes sense definitions and additional informa-

tion from lexical resources. We believe that nat-

ural language information manually encoded into

definitions contains a rich source of information

for representation learning of senses.

To obtain definition embeddings, we propose

a novel learning framework which leverages re-

cently successful Knowledge Graph (KG) embed-

ding methods (Bordes et al., 2013; Dettmers et al.,

2018). We also compare against sentence en-

coders pretrained on large corpora.

In summary, we make the following contribu-

tions in this work.

• We propose EWISE, a principled frame-

work to learn from a combination of sense-

annotated data, dictionary definitions and

lexical knowledge bases.

• We propose the use of sense embeddings in-

stead of discrete labels as the targets for su-

pervised WSD, enabling generalized zero-

shot learning.

• Through extensive evaluation, we demon-

strate the effectiveness of EWISE over state-

of-the-art baselines.

EWISE source code is available at https://

github.com/malllabiisc/EWISE

2 Related Work

Classical approaches to supervised WSD relied

on extracting potentially relevant features and

learning classifiers independently for each word

https://github.com/malllabiisc/EWISE
https://github.com/malllabiisc/EWISE
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(Zhong and Ng, 2010). Extensions to use dis-

tributional word representations have been pro-

posed (Iacobacci et al., 2016). Semi-supervised

approaches learn context representations from un-

labeled data, followed by a nearest neighbour clas-

sification (Melamud et al., 2016) or label prop-

agation (Yuan et al., 2016). Recently, Raganato

et al. (2017b) introduced neural sequence models

for joint disambiguation of words in a sentence.

All of these methods rely on sense-annotated data

and, optionally, additional unlabeled corpora.

Lexical resources provide an important source

of knowledge about words and their meanings.

Recent work has shown that neural networks can

extract semantic information from dictionary defi-

nitions (Bahdanau et al., 2017; Bosc and Vincent,

2018). In this work, we use dictionary definitions

to get representations of word meanings.

Dictionary definitions have been used for WSD,

motivated by the classical method of Lesk (Lesk,

1986). The original as well as subsequent modi-

fications of the algorithm (Banerjee and Pedersen,

2003), including using word embeddings (Basile

et al., 2014), operate on the hypothesis that the

definition of the correct sense has a high overlap

with the context in which a word is used. These

methods tend to rely on heuristics based on in-

sights about natural language text and their defini-

tions. More recently, gloss (definition)-augmented

neural approaches have been proposed which in-

tegrate a module to score definition-context simi-

larity (Luo et al., 2018b,a), and achieve state-of-

the-art results. We differ from these works in that

we use the embeddings of definitions as the target

space of a neural model, while learning in a super-

vised setup. Also, we don’t rely on any overlap

heuristics, and use a single definition for a given

sense as provided by WordNet.

One approach for obtaining continuous repre-

sentations for definitions is to use Universal Sen-

tence Representations, which have been explored

to allow transfer learning from large unlabeled as

well as labeled data (Conneau et al., 2017; Cer

et al., 2018). There has also been interest in learn-

ing deep contextualized word representations (Pe-

ters et al., 2018; Devlin et al., 2019). In this work,

we evaluate definition embeddings obtained using

these methods.

Structural Knowledge available in lexical re-

sources such as WordNet has motivated sev-

eral unsupervised knowledge-based approaches

for WSD. Graph based techniques have been used

to match words to the most relevant sense (Nav-

igli and Lapata, 2010; Sinha and Mihalcea, 2007;

Agirre et al., 2014; Moro et al., 2014; Chaplot and

Salakhutdinov, 2018).

Our work differs from these methods in that we

use structural knowledge to learn better represen-

tations of definitions, which are then used as tar-

gets for the WSD model. To learn a meaning-

ful encoder for definitions we rely on knowledge

graph embedding methods, where we represent an

entity by the encoding of its definition. TransE

(Bordes et al., 2013) models relations between en-

tities as translations operating on the embeddings

of the corresponding entities. ConvE (Dettmers

et al., 2018), a more recent method, utilizes a

multi-layer convolutional network, allowing it to

learn more expressive features.

Predicting in an embedding space is key to

our methods, allowing generalized zero shot learn-

ing capability, as well as incorporating definitions

and structural knowledge. The idea has been ex-

plored in the context of zero-shot learning (Xian

et al., 2018). Tying the input and output embed-

dings of language models (Press and Wolf, 2017)

resembles our approach.

3 Background

In this work, we propose to use the training signal

present in WordNet relations to learn encoders for

definitions (Section 4.3.2). To learn from WordNet

relations, we employ recently popular Knowledge

Graph (KG) Embedding learning methods. In Sec-

tion 3.1, we briefly introduce the framework for

KG Embedding learning, and present the specific

formulations for TransE and ConvE.

3.1 Knowledge Graph Embeddings

Knowledge Graphs, a set of relations defined over

a set of entities, provide an important field of re-

search for representation learning. Methods for

learning representations for both entities and rela-

tions have been explored (Wang et al., 2017) with

an aim to represent graphical knowledge. Of par-

ticular significance is the task of link prediction,

i.e., predicting missing links (edges) in the graph.

A Knowledge Graph is typically comprised of a

set K of N triples (h, l, t), where head h and tail t

are entities, and l denotes a relation.

TransE defines a scoring function for a triple

(h, l, t), as the dissimilarity between the head em-
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bedding, translated by the relation embedding, and

the tail embedding:

dh,l,t = ||eh + el − et||22, (1)

where, eh, et and el are parameters to be learnt.

A margin based criterion, with margin γ, can

then be formulated as:

LT =
∑

(h,l,t)∈K

∑

(h′,l,t′)∈K′

[γ + dh,l,t − dh′,l,t′ ]+,

(2)

where K ′ is a set of corrupted triples (Bordes

et al., 2013), and [x]+ refers to the positive part

of x.

ConvE formulates the scoring function

ψl(eh, et) for a triple (h, l, t) as:

ψl(eh, et) = f(vec(f([eh; el] ∗ w))W )et, (3)

where eh and et are entity parameters, el is a re-

lation parameter, x denotes a 2D reshaping of x,

w denotes the filters for 2D convolution, vec(x)
denotes the vectorization of x, W represents a lin-

ear transformation, and f denotes a rectified linear

unit.

For a given head entity h, the score ψl(eh, et)
is computed with each entity in the graph as a tail.

Probability estimates for the validity of a triple are

obtained by applying a logistic sigmoid function

to the scores:

p = σ(ψl(eh, et)). (4)

The model is then trained using a binary cross en-

tropy loss:

LC = − 1

N

∑

i

(ti.log(pi)+ (1− ti).log(1− pi)),

(5)

where ti is 1 when (h, l, t) ∈ K and 0, otherwise.

4 EWISE

EWISE is a general WSD framework for learning

from sense-annotated data, dictionary definitions

and lexical knowledge bases (Figure 1).

EWISE addresses a key issue with existing su-

pervised WSD systems. Existing systems use dis-

crete sense labels as targets for WSD. This limits

the generalization capability to only the set of an-

notated words in the corpus, with reliable learning

only for the word-senses which occur with high

relative frequency. In this work, we propose using

continuous space embeddings of senses as targets

for WSD, to overcome the aforementioned super-

vision bottleneck.

To ensure generalized zero-shot learning capa-

bility, it is important that the target sense embed-

dings be obtained independent of the WSD task

learning. We use definitions of senses available

in WordNet to obtain sense embeddings. Using

Dictionary Definitions to obtain the representation

for a sense enables us to benefit from the seman-

tic overlap between definitions of different senses,

while also providing a natural way to handle un-

seen senses.

In Section 4.1, we state the task of WSD

formally. We then describe the components of

EWISE in detail. Here, we briefly discuss the

components:

• Attentive Context Encoder: EWISE uses

a Bi-directional LSTM (BiLSTM) encoder

to convert the sequence of tokens in the in-

put sentence into context-aware embeddings.

Self-attention is used to enhance the con-

text for disambiguating the current word, fol-

lowed by a projection layer to produce sense

embeddings for each input token. The archi-

tecture is detailed in Section 4.2.

• Definition Encoder: In EWISE, definition

embeddings are learnt independent of the

WSD task. In Section 4.3.1, we detail the us-

age of pretrained sentence encoders as base-

line models for encoding definitions. In Sec-

tion 4.3.2, we detail our proposed method to

learn an encoder for definitions using struc-

tural knowledge in WordNet.

4.1 The WSD Task

WSD is a classification problem for a word w

(e.g., bank) in a context c, with class labels being

the word senses (e.g., financial institution).

We consider the all-words WSD task, where all

content words - nouns, verbs, adjectives, adverbs -

need to be disambiguated (Raganato et al., 2017a).

The set of all possible senses for a word is given

by a predefined sense inventory, such as WordNet.

In this work, we use sense candidates as provided

in the evaluation framework of (Raganato et al.,

2017a) which has been created using WordNet.

More precisely, given a variable-length se-

quence of words x =< x1 . . . xT >, we need

to predict a sequence of word senses y =<
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y1 . . . yT >. Output word sense yi comes from

a predefined sense inventory S. During inference,

the set of candidate senses Sw for input word w is

assumed to be known a priori.

4.2 Attentive Context Encoder

In this section, we detail how EWISE encodes the

context of a word to be disambiguated using BiL-

STMs (Hochreiter and Schmidhuber, 1997). BiL-

STMs have been shown to be successful for gener-

ating effective context dependent representations

for words. Following Raganato et al. (2017b), we

use a BiLSTM with a self-attention layer to ob-

tain sense-aware context specific representations

of words. The sense embedding for a word is ob-

tained through a projection of the context embed-

ding. We then train the model with independently

trained sense embeddings (Section 4.3) as target

embeddings.

Our model architecture is shown in Figure 1.

The model processes a sequence of tokens xi, i ∈
[T ] in a given sentence input by first representing

each token with a real-valued vector representa-

tion, ei, via an embedding matrix We ∈ R|V |∗d,

where V is the vocabulary size and d is the size

of the embeddings. The vector representations are

then input to a 2 layer bidirectional LSTM en-

coder. Each word is represented by concatenating

the forward hif and backward hib hidden state vec-

tors of the second LSTM layer.

ui = [hif , h
i
b] (6)

Following Vaswani et al. (2017), we use a scaled

dot-product attention mechanism to get context in-

formation at each timestep t. Attention queries,

keys and values are obtained using projection ma-

trices Wq, Wk and Wv respectively, while the size

of the projected key (dk) is used to scale the dot-

product between queries and values.

eit = dot(Wqu
i,Wku

t); t ∈ [1, T ]

ai = softmax(
ei√
dk

)

ci =
∑

t∈[1,T ]

ait.Wvu
t

ri = [ui, ci]

(7)

A projection layer (fully connected linear layer)

maps this context-aware word representation ri to

vi in the space of sense embeddings.

vi =Wlr
i (8)

During training, we multiply this with the sense

embeddings of all senses in the inventory, to ob-

tain a score for each output sense. A bias term is

added to this score, where the bias is obtained as

the dot product between the sense embedding and

a learned parameter b. A softmax layer then gen-

erates probability estimates for each output sense.

p̂ij = softmax(dot(vi, ρj) + dot(b, ρj));

ρj ∈ S
(9)

The cross entropy loss for annotated word xi is

given by:

Li
wsd = −

∑

j

(zij log(p̂
i
j)), (10)

where zi is the one-hot representation of the target

sense yi in the sense inventory S. The network

parameters are learnt by minimizing the average

cross entropy loss over all annotated words in a

batch.

During inference, for each word xi, we select

the candidate sense with the highest score.

ŷi = argmaxj(dot(v
i, ρj) + dot(b, ρj));

ρj ∈ Sxi

(11)

4.3 Definition Encoder

In this section, we detail how target sense embed-

dings are obtained in EWISE.

4.3.1 Pretrained Sentence Encoders

We use pretrained sentence representation mod-

els, InferSent (Conneau et al., 2017) and USE (Cer

et al., 2018) to encode definitions, producing sense

embeddings of sizes 4096 and 512, respectively.

We also experiment with deep context encoders,

ELMO (Peters et al., 2018) and BERT (Devlin

et al., 2019) to obtain embeddings for definitions.

In each case, we encode a definition using the

available pretrained models, producing a context

embedding for each word in the definition. A fixed

length representation is then obtained by averag-

ing over the context embeddings of the words in

the definition, from the final layer. This produces

sense embeddings of sizes 1024 with both ELMO

and BERT.

4.3.2 Knowledge Graph Embedding

WordNet contains a knowledge graph, where the

entities of the graph are senses (synsets), and re-
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Dev Test Datasets Concatenation of All Test Datasets
SE7 SE2 SE3 SE13 SE15 Nouns Verbs Adj. Adv. ALL

WordNet S1 55.2 66.8 66.2 63.0 67.8 67.6 50.3 74.3 80.9 65.2

Non-neural baselines

MFS (Using training data) 54.5 65.6 66.0 63.8 67.1 67.7 49.8 73.1 80.5 65.5

IMS+emb (2016)ˆ 62.6 72.2 70.4 65.9 71.5 71.9 56.6 75.9 84.7 70.1

Leskext+emb (2014)* 56.7 63.0 63.7 66.2 64.6 70.0 51.1 51.7 80.6 64.2

UKBgloss+w2w (2014)* 42.9 63.5 55.4 62.9 63.3 64.9 41.4 69.5 69.7 61.1

Babelfy (2014) 51.6 67.0 63.5 66.4 70.3 68.9 50.7 73.2 79.8 66.4

Context2Vec (2016) ˆ 61.3 71.8 69.1 65.6 71.9 71.2 57.4 75.2 82.7 69.6

WSD-TM (2018) 55.6 69.0 66.9 65.3 69.6 69.7 51.2 76.0 80.9 66.9

Neural baselines

BiLSTM+att+LEX (2017b) 63.7 72.0 69.4 66.4 70.8 71.6 57.1 75.6 83.2 69.7

BiLSTM+att+LEX+POS (2017b) 64.8 72.0 69.1 66.9 71.5 71.5 57.5 75.0 83.8 69.9

GASext (Linear) (2018b)* – 72.4 70.1 67.1 72.1 71.9 58.1 76.4 84.7 70.4

GASext (Concatenation) (2018b)* – 72.2 70.5 67.2 72.6 72.2 57.7 76.6 85.0 70.6

CANs (2018a)* – 72.2 70.2 69.1 72.2 73.5 56.5 76.6 83.3 70.9

HCAN (2018a)* – 72.8 70.3 68.5 72.8 72.7 58.2 77.4 84.1 71.1

EWISE (ConvE)* 67.3 73.8 71.1 69.4 74.5 74.0 60.2 78.0 82.1 71.8

Table 1: Comparison of F1-scores for fine-grained all-words WSD on Senseval and SemEval datasets in the frame-

work of Raganato et al. (2017a). The F1 scores on different POS tags (Nouns, Verbs, Adjectives, and Adverbs)

are also reported. WordNet S1 and MFS provide most-frequent-sense baselines. * represents models which access

definitions, while ˆ indicates models which don’t access any external knowledge. EWISE (ConvE) is the proposed

approach, where the ConvE method was used to generate the definition embeddings. Both the non-neural and neu-

ral supervised baselines presented here rely on a back-off mechanism, using WordNet S1 for words unseen during

training. For each dataset, the highest score among existing systems with a statistically significant difference (un-

paired t-test, p < 0.05) from EWISE is underlined. EWISE, which is capable of generalizing to unseen words and

senses, doesn’t use any back-off. EWISE consistently outperforms all supervised and knowledge-based systems,

except for adverbs. Please see Section 6.1 for details. While the overall performance of EWISE is comparable to

the neural baselines in terms of statistical significance, the value of EWISE lies in its ability to handle unseen and

rare words and senses (See Section 6.3). Further, among the models compared, EWISE is the only system which is

statistically significant (unpaired t-test, p < 0.01) with respect to the WordNet S1 baseline across all test datasets.

lations are defined over these senses. Example re-

lations include hypernym and part of. With each

entity (sense), there is an associated text definition.

We propose to use WordNet relations as the

training signal for learning definition encoders.

The training set K is comprised of triples (h, l, t),
where head h and tail t are senses, and l is a re-

lation. Also, gx denotes the definition of entity x,

as provided by WordNet. The dataset contains 18

WordNet relations (Bordes et al., 2013).

The goal is to learn a sentence encoder for def-

initions and we select the BiLSTM-Max encoder

architecture due to its recent success in sentence

representation (Conneau et al., 2017). The words

in the definition are encoded by a 2-layer BiL-

STM to obtain context-aware embeddings for each

word. A fixed length representation is then ob-

tained by Max Pooling, i.e., selecting the maxi-

mum over each dimension. We denote this defini-

tion encoder by q(.).

TransE We modify the dissimilarity measure in

TransE (Equation 1) to represent both head (h) and

tail (t) entities by an encoding of their definitions.

dh,l,t = −cosine(q(h) + el, q(t)) (12)

The parameters of the BiLSTM model q and the

relation embeddings el are then learnt by minimiz-

ing the loss function in Equation 2.

ConvE We modify the scoring function of

ConvE (Equation 3), to represent a head entity by

the encoding of its definition.

ψl(eh, et) = f(vec(f([q(h); el] ∗ w))W )et (13)

Note that we represent only the head entity with

an encoding of its definition while the tail entity

t is still represented by parameter et. This helps

restrict the size of the computation graph.

The parameters of the model q, el and et are

then learnt by minimizing the binary cross-entropy

loss function in Equation 5.

5 Experimental Setup

In this section, we provide details on the training

and evaluation datasets. The training details are
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captured in Appendix A.

5.1 Data

We use the English all-words WSD benchmarks

for evaluating our models:

1. SensEval-2 (Palmer et al., 2001)

2. SensEval-3 (Snyder and Palmer, 2004)

3. SemEval-2013 (Navigli et al., 2013)

4. SemEval-2015 (Moro and Navigli, 2015)

5. ALL (Raganato et al., 2017a)

Following (Raganato et al., 2017b), we use

SemEval-2007 (Pradhan et al., 2007) as our de-

velopment set. We use SemCor 3.0 (Miller et al.,

1993) as our training set. To enable a fair com-

parison, we used the dataset versions provided by

(Raganato et al., 2017a). For our experiments, we

used the definitions available in WordNet 3.0.

6 Evaluation

In this section, we aim to answer the following

questions:

• Q1: How does EWISE compare to state-

of-the-art methods on standardized test sets?

(Section 6.1)

• Q2: What is the effect of ablating key com-

ponents from EWISE? (Section 6.2)

• Q3: Does EWISE generalize to rare and un-

seen words (Section 6.3.1) and senses (Sec-

tion 6.3.2)?

• Q4: Can EWISE learn with less annotated

data? (Section 6.4)

6.1 Overall Results

In this section, we report the performance of

EWISE on the fine-grained all-words WSD task,

using the standardized benchmarks and evalua-

tion methodology introduced in Raganato et al.

(2017a). In Table 1, we report the F1 scores for

EWISE, and compare against the best reported su-

pervised and knowledge-based methods.

WordNet S1 is a strong baseline obtained by us-

ing the most frequent sense of a word as listed

in WordNet. MFS is a most-frequent-sense base-

line obtained through the sense frequencies in the

training corpus.

Context2Vec (Melamud et al., 2016), an unsu-

pervised model for learning generic context em-

beddings, enables a strong baseline for supervised

WSD while using a simplistic approach (nearest-

neighbour algorithm).

IMS+emb (Iacobacci et al., 2016) takes the clas-

sical approach of extracting relevant features and

learning an SVM for WSD. Leskext+emb (Basile

et al., 2014) relies on definition-context overlap

heuristics. UKBglossw2w (Agirre et al., 2014), Ba-

belfy (Moro et al., 2014) and WSD-TM (Chaplot

and Salakhutdinov, 2018) provide unsupervised

knowledge-based methods. Among neural base-

lines, we compare against the neural sequence

modeling approach in BiLSTM+att+LEX(+POS)

(Raganato et al., 2017b). GAS (Luo et al.,

2018b) and HCAN (Luo et al., 2018a) are re-

cent neural models which exploit sense defini-

tions. EWISE consistently outperforms all super-

vised and knowledge-based methods, improving

upon the state-of-the-art by 0.7 point in F1 on the

ALL dataset. Further, EWISE improves WSD per-

formance across all POS tags (Table 1) except ad-

verbs.

Back-off : Traditional supervised approaches

can’t handle unseen words. WordNet S1 is used as

a back-off strategy for words unseen during train-

ing. EWISE is capable of generalizing to unseen

words and senses and doesn’t use any back-off.

6.2 Ablation Study for EWISE

Ablation on ALL dataset

EWISE (ConvE) 71.8

- w/o Sense embeddings (with back-off) 69.3

- w/o Sense embeddings (w/o back-off) 61.8

WordNet S1 65.2

Table 2: Ablation study for EWISE (ConvE) on the

ALL dataset. Removal of sense embeddings (rows 2

and 3) results in significant performance degradation,

establishing their importance in WSD. Please see Sec-

tion 6.2 for details.

We provide an ablation study of EWISE on the

ALL dataset in Table 2. To investigate the ef-

fect of using definition embeddings in EWISE, we

trained a BiLSTM model without any externally

obtained sense embeddings. This model can make

predictions only on words seen during training,

and is evaluated with or without a back-off strat-

egy (WordNet S1) for unseen words (row 2 and 3).

The results demonstrate that incorporating sense
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embeddings is key to EWISE’s performance. Fur-

ther, the generalization capability of EWISE is il-

lustrated by the improvement in F1 in the absence

of a back-off strategy (10.0 points).

Test Datasets
SE2 SE3 SE13 SE15 ALL

USE 73.0 70.6 70.9 73.7 71.5

InferSent 72.7 70.2 69.9 73.7 71.2

ELMO 72.5 70.7 68.6 72.6 70.8

BERT 73.0 69.7 70.0 73.7 71.2

DeConf 71.3 67.0 67.9 73.0 69.3

TransE 72.8 71.4 70.5 73.1 71.6

ConvE 73.8 71.1 69.4 74.5 71.8

Table 3: Comparison of F1 scores with different sense

embeddings as targets for EWISE. While pre-trained

embedding methods (USE, InferSent, ELMO, BERT)

and DeConf provide impressive results, the KG embed-

ding methods (TransE and ConvE) perform competi-

tively or better by learning to encode definitions using

WordNet alone. Please see Section 6.2 for details.

Next, we investigate the impact of the choice of

sense embeddings used as the target for EWISE

(Table 3), on the ALL dataset. We compare def-

inition embeddings learnt using structural knowl-

edge (TransE, ConvE; See Section 4.3.2) against

definition embeddings obtained from pre-trained

sentence and context encoders (USE, InferSent,

ELMO, BERT; See Section 4.3.1). We also com-

pared with off-the-shelf sense embeddings (De-

Conf) (Pilehvar and Collier, 2016), where def-

initions are not used. The results justify the

choice of learning definition embeddings to rep-

resent senses.

6.3 Detailed Results

We provide detailed results for EWISE on the

ALL dataset, compared against BiLSTM-A (BiL-

STM+attention) baseline which is trained to pre-

dict in the discrete label space (Raganato et al.,

2017b). We also compare against WordNet S1

and knowledge-based methods, Leskext+emb and

Babelfy, available in the evaluation framework of

Raganato et al. (2017a).

6.3.1 WSD on Rare Words

In this section, we investigate a key claim of

EWISE - the ability to disambiguate unseen and

rare words. We evaluate WSD models based on

different frequencies of annotated words in the

training set in Figure 2. EWISE outperforms the

supervised as well as knowledge-based baselines

for rare as well as frequent words. The bar plot
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Figure 2: Comparison of F1 scores for different fre-

quencies of annotated words in the train set. EWISE

provides significant gains for unseen, rare as well as

frequently observed annotated words. Please see Sec-

tion 6.3.1 for details.

on the left (frequency=0) indicates the zero-shot

learning capability of EWISE. While traditional

supervised systems are limited to WordNet S1 per-

formance (by using it as back-off for words with

no annotations in the training set), EWISE pro-

vides a significant boost over both WordNet S1 as

well as knowledge-based systems.

6.3.2 WSD on Rare Senses

MFS LFS

WordNet S1 100.0 0.0

Lesk(ext)+emb 92.7 9.4

Babelfy 93.9 12.2

BiLSTM-A 93.4 22.9

EWISE 93.5 31.2

Table 4: Comparison of F1 scores on different sense

frequencies. EWISE outperforms baselines on infre-

quent senses, without sacrificing the performance on

the most frequent sense examples. Please see Sec-

tion 6.3.2 for details.

To investigate the ability to generalize to rare

senses, we partition the ALL test set into two parts

- the set of instances labeled with the most fre-

quent sense of the corresponding word (MFS), and

the set of remaining instances (LFS: Least Fre-

quent Senses). Postma et al. (2016) note that ex-

isting methods learn well on the MFS set, while

doing poorly (∼ 20%) on the LFS set.

In Table 4, we evaluate the performance of

EWISE and baseline models on MFS and LFS

sets. We note that EWISE provides significant

gains over a neural baseline (BiLSTM-A), as well

as knowledge based methods on the LFS set, while

maintaining high accuracy on the MFS set. The

gain obtained on the LFS set is consistent with our

hypothesis that predicting over sense embeddings

enables generalization to rare senses.
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6.4 Size of Training Data

Size of
training data

F1
Without
back-off

With
back-off

WordNet S1 65.2

EWISE
20% 66.8 67.0
50% 70.1 69.2

100% 71.8 71.0

Table 5: Performance of EWISE with varying sizes of

training data. With only 20% of training data, EWISE

is able to outperform the most-frequent-sense baseline

of WordNet S1. Please see Section 6.4 for details.

In this section, we investigate if EWISE can

learn efficiently from less training data, given its

increased supervision bandwidth (sense embed-

dings instead of sense labels). In Table 5, we

report the performance of EWISE on the ALL

dataset with varying sizes of the training data.

We note that with only 50% of training data,

EWISE already competes with several supervised

approaches (Table 1), while with just 20% of train-

ing data, EWISE is able to outperform the strong

WordNet S1 baseline. For reference, we also

present the performance of EWISE when we use

back-off (WordNet S1) for words unseen during

training.

7 Conclusion and Future Work

We have introduced EWISE, a general framework

for learning WSD from a combination of sense-

annotated data, dictionary definitions and Lexical

Knowledge Bases. EWISE uses sense embeddings

as targets instead of discrete sense labels. This

helps the model gain zero-shot learning capabil-

ities, demonstrated through ablation and detailed

analysis. EWISE improves state-of-the-art results

on standardized benchmarks for WSD. We are re-

leasing EWISE code to promote reproducible re-

search.

This paper should serve as a starting point

to better investigate WSD on out-of-vocabulary

words. Our modular architecture opens up vari-

ous avenues for improvements in few-shot learn-

ing for WSD, viz., context encoder, definition en-

coder, and leveraging structural knowledge. An-

other potential future work would be to explore

other ways of providing rich supervision from tex-

tual descriptions as targets.
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Eneko Agirre, Oier López de Lacalle, and Aitor Soroa.
2014. Random walks for knowledge-based word
sense disambiguation. Computational Linguistics,
40(1):57–84.

Dzmitry Bahdanau, Tom Bosc, Stanisaw Jastrzebski,
Edward Grefenstette, Pascal Vincent, and Yoshua
Bengio. 2017. Learning to compute word embed-
dings on the fly. arXiv preprint arXiv:1706.00286.

Satanjeev Banerjee and Ted Pedersen. 2003. Extended
gloss overlaps as a measure of semantic relatedness.
In Ijcai, volume 3, pages 805–810.

Pierpaolo Basile, Annalina Caputo, and Giovanni Se-
meraro. 2014. An enhanced Lesk word sense dis-
ambiguation algorithm through a distributional se-
mantic model. In Proceedings of COLING 2014,
the 25th International Conference on Computational
Linguistics: Technical Papers, pages 1591–1600,
Dublin, Ireland. Dublin City University and Asso-
ciation for Computational Linguistics.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Advances in neural information
processing systems, pages 2787–2795.

Tom Bosc and Pascal Vincent. 2018. Auto-encoding
dictionary definitions into consistent word embed-
dings. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Process-
ing, pages 1522–1532, Brussels, Belgium. Associ-
ation for Computational Linguistics.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St. John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
Brian Strope, and Ray Kurzweil. 2018. Universal
sentence encoder for English. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 169–174, Brussels, Belgium. Association for
Computational Linguistics.

Devendra Singh Chaplot, Pushpak Bhattacharyya, and
Ashwin Paranjape. 2015. Unsupervised word sense
disambiguation using markov random field and de-
pendency parser. In AAAI, pages 2217–2223.

https://doi.org/10.1162/COLI_a_00164
https://doi.org/10.1162/COLI_a_00164
https://www.aclweb.org/anthology/C14-1151
https://www.aclweb.org/anthology/C14-1151
https://www.aclweb.org/anthology/C14-1151
https://www.aclweb.org/anthology/D18-1181
https://www.aclweb.org/anthology/D18-1181
https://www.aclweb.org/anthology/D18-1181
https://www.aclweb.org/anthology/D18-2029
https://www.aclweb.org/anthology/D18-2029


5679

Devendra Singh Chaplot and Ruslan Salakhutdinov.
2018. Knowledge-based word sense disambiguation
using topic models. In Thirty-Second AAAI Confer-
ence on Artificial Intelligence.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loı̈c
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. In Proceedings of
the 2017 Conference on Empirical Methods in Nat-
ural Language Processing, pages 670–680, Copen-
hagen, Denmark. Association for Computational
Linguistics.

Claudio Delli Bovi, Luis Espinosa-Anke, and Roberto
Navigli. 2015. Knowledge base unification via
sense embeddings and disambiguation. In Proceed-
ings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pages 726–
736, Lisbon, Portugal. Association for Computa-
tional Linguistics.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp,
and Sebastian Riedel. 2018. Convolutional 2d
knowledge graph embeddings. In Thirty-Second
AAAI Conference on Artificial Intelligence.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Comput., 9(8):1735–
1780.

Ignacio Iacobacci, Mohammad Taher Pilehvar, and
Roberto Navigli. 2016. Embeddings for word sense
disambiguation: An evaluation study. In Proceed-
ings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 897–907, Berlin, Germany. Association
for Computational Linguistics.

Oier Lopez de Lacalle and Eneko Agirre. 2015. A
methodology for word sense disambiguation at 90%
based on large-scale CrowdSourcing. In Proceed-
ings of the Fourth Joint Conference on Lexical and
Computational Semantics, pages 61–70, Denver,
Colorado. Association for Computational Linguis-
tics.

Michael Lesk. 1986. Automatic sense disambiguation
using machine readable dictionaries: how to tell a
pine cone from an ice cream cone. In Proceedings of
the 5th annual international conference on Systems
documentation, pages 24–26. ACM.

Fuli Luo, Tianyu Liu, Zexue He, Qiaolin Xia, Zhi-
fang Sui, and Baobao Chang. 2018a. Leveraging

gloss knowledge in neural word sense disambigua-
tion by hierarchical co-attention. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1402–1411, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Fuli Luo, Tianyu Liu, Qiaolin Xia, Baobao Chang, and
Zhifang Sui. 2018b. Incorporating glosses into neu-
ral word sense disambiguation. In Proceedings of
the 56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 2473–2482, Melbourne, Australia. Associa-
tion for Computational Linguistics.

Oren Melamud, Jacob Goldberger, and Ido Dagan.
2016. context2vec: Learning generic context em-
bedding with bidirectional LSTM. In Proceedings
of The 20th SIGNLL Conference on Computational
Natural Language Learning, pages 51–61, Berlin,
Germany. Association for Computational Linguis-
tics.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–
41.

George A. Miller, Claudia Leacock, Randee Tengi, and
Ross T. Bunker. 1993. A semantic concordance.
In HUMAN LANGUAGE TECHNOLOGY: Proceed-
ings of a Workshop Held at Plainsboro, New Jersey,
March 21-24, 1993.

Andrea Moro and Roberto Navigli. 2015. SemEval-
2015 task 13: Multilingual all-words sense disam-
biguation and entity linking. In Proceedings of the
9th International Workshop on Semantic Evaluation
(SemEval 2015), pages 288–297, Denver, Colorado.
Association for Computational Linguistics.

Andrea Moro, Alessandro Raganato, and Roberto Nav-
igli. 2014. Entity linking meets word sense disam-
biguation: a unified approach. Transactions of the
Association for Computational Linguistics, 2:231–
244.

Roberto Navigli. 2009. Word sense disambiguation: A
survey. ACM Computing Surveys (CSUR), 41(2):10.

Roberto Navigli, David Jurgens, and Daniele Vannella.
2013. SemEval-2013 task 12: Multilingual word
sense disambiguation. In Second Joint Conference
on Lexical and Computational Semantics (*SEM),
Volume 2: Proceedings of the Seventh International
Workshop on Semantic Evaluation (SemEval 2013),
pages 222–231, Atlanta, Georgia, USA. Association
for Computational Linguistics.

Roberto Navigli and Mirella Lapata. 2010. An ex-
perimental study of graph connectivity for unsuper-
vised word sense disambiguation. IEEE transac-
tions on pattern analysis and machine intelligence,
32(4):678–692.

https://doi.org/10.18653/v1/D17-1070
https://doi.org/10.18653/v1/D17-1070
https://doi.org/10.18653/v1/D17-1070
https://doi.org/10.18653/v1/D15-1084
https://doi.org/10.18653/v1/D15-1084
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.18653/v1/P16-1085
https://doi.org/10.18653/v1/P16-1085
https://doi.org/10.18653/v1/S15-1007
https://doi.org/10.18653/v1/S15-1007
https://doi.org/10.18653/v1/S15-1007
https://www.aclweb.org/anthology/D18-1170
https://www.aclweb.org/anthology/D18-1170
https://www.aclweb.org/anthology/D18-1170
https://www.aclweb.org/anthology/P18-1230
https://www.aclweb.org/anthology/P18-1230
https://doi.org/10.18653/v1/K16-1006
https://doi.org/10.18653/v1/K16-1006
https://www.aclweb.org/anthology/H93-1061
https://doi.org/10.18653/v1/S15-2049
https://doi.org/10.18653/v1/S15-2049
https://doi.org/10.18653/v1/S15-2049
https://doi.org/10.1162/tacl_a_00179
https://doi.org/10.1162/tacl_a_00179
https://www.aclweb.org/anthology/S13-2040
https://www.aclweb.org/anthology/S13-2040


5680

Steven Neale, Luı́s Gomes, Eneko Agirre, Oier Lopez
de Lacalle, and António Branco. 2016. Word sense-
aware machine translation: Including senses as con-
textual features for improved translation models.
In Proceedings of the Tenth International Confer-
ence on Language Resources and Evaluation (LREC
2016), pages 2777–2783, Portorož, Slovenia. Euro-
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A Training Details

For both context and definition encoding, we used

BiLSTMs of hidden size 2048. The input embed-

dings for the BiLSTM was initialized with GloVe1

(Pennington et al., 2014) embeddings and kept

fixed during training. We used the Adam opti-

mizer for learning all our models.

WSD: We used an initial learning rate of

0.0001, a batch size of 32, and trained our mod-

els for a maximum of 200 epochs. For each run,

we select the model with the best F1 score on the

development set (SemEval-2007).

During training, we consider the entire sense

inventory (the global pool of candidate senses of

all words) for learning. During inference, for fair

1http://nlp.stanford.edu/data/glove.

840B.300d.zip

comparison with baselines, we disambiguate be-

tween candidates senses of a word as provided in

WordNet.

TransE: We use training data from Bordes et al.

(2013)2. We used an initial learning rate of 0.001,

a batch size of 32, and trained for a maximum of

1000 epochs. The embedding size was fixed to

4096.

ConvE: We use the learning framework of

Dettmers et al. (2018), and learned the model with

an inital learning rate of 0.0001, a batch size of

128, label smoothing of 0.1, and a maximum of

500 epochs. We found that the best results were

obtained by pretraining the entity and relation em-

bedding using Equation 3 and then training the

definition encoder using Equation 13 while allow-

ing all parameters to train. The embedding size

was fixed to 4096.

2https://everest.hds.utc.fr/lib/exe/

fetch.php?media=en:wordnet-mlj12.tar.gz
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