
Zero Skew Clock Routing With Minimum Wirelength�

Ting-Hai Chaoy, Yu-Chin Hsuz, Jan-Ming Ho{,

Kenneth D. Boesex and Andrew B. Kahngx

Abstract

In the design of high performance VLSI systems, minimization of clock skew is an increasingly
important objective. Additionally, wirelength of clock routing trees should be minimized in order to
reduce system power requirements and deformation of the clock pulse at the synchronizing elements of
the system. In this paper, we �rst present the Deferred-Merge Embedding (DME) algorithm, which
embeds any given connection topology to create a clock tree with zero skew while minimizing total
wirelength. The algorithm always yields exact zero skew trees with respect to the appropriate delay
model. Experimental results show an 8% to 15% wirelength reduction over previous constructions in [17]
[18]. The DME algorithm may be applied to either the Elmore or linear delay model, and yields optimal

total wirelength for linear delay. DME is a very fast algorithm, running in time linear in the number of
synchronizing elements. We also present a uni�ed BB+DME algorithm, which constructs a clock tree
topology using a top-down balanced bipartition (BB) approach, and then applies DME to that topology.
Our experimental results indicate that both the topology generation and embedding components of our
methodology are necessary for e�ective clock tree construction. The BB+DME method averages 15%
wirelength savings over the previous method of [17], and also gives 10% average wirelength savings when
compared to the method of [25]. The paper concludes with a number of extensions and directions for
future research.

1 Introduction

In synchronous VLSI designs, circuit speed is increasingly limited by two factors: (i) delay on the longest

path through combinational logic, and (ii) clock skew, which is the maximum di�erence in arrival times of

the clocking signal at the synchronizing elements of the design. This is seen from the following well-known

inequality governing the clock period of a clock signal net [2] [17]:

clock period � td + tskew + tsu + tds

where td is the delay on the longest path through combinational logic, tskew is the clock skew, tsu is the

set up time of the synchronizing elements (assuming edge triggering), and tds is the propagation delay

within the synchronizing elements. The term td can be further decomposed into td = td interconnect +

td gates, where td interconnect is the delay associated with the interconnect of the longest path through

combinational logic, and td gates is the delay through the combinational logic gates on this path. Increased

�The work of A. B. Kahng and K. D. Boese was supported in part by NSF MIP-9110696, ARO DAAK-70-92-K-0001, ARO
DAAL-03-92-G-0050, and a GTE Graduate Fellowship. A. B. Kahng is also supported by an NSF Young Investigator Award.
Author a�liations: (x) Dept. of Computer Science, UCLA, Los Angeles, CA 90024-1596; (y) Computer and Communication
Research Laboratories, ITRI, Hsin-Chu, Taiwan 31015 R.O.C.; (z) Dept. of Computer Science, UC Riverside, Riverside, CA
92521; ({) Institute of Information Science, Academia Sinica, Taipei, Taiwan 11529 R.O.C.

1

switching speeds due to advances in VLSI fabrication technology will signi�cantly decrease the terms tsu,

tds, and td gates. Therefore, td interconnect and tskew become the dominant factors in determining circuit

performance: Bakoglu [2] has noted that tskew may account for over 10% of the system cycle time in high-

performance systems. With this in mind, a number of researchers have recently studied the clock skew

minimization problem.

Several results address formulations with inherently small problem size. For building block design styles,

Ramananathan and Shin [21] have proposed a clock distribution scheme which applies when the blocks are

hierarchically organized. The number of blocks at each level of the hierarchy is assumed to be small, since

the algorithm exhaustively enumerates all possible clock routings and clock bu�er optimizations. Burkis

[5] and Boon et al. [4] have also proposed hierarchical clock tree synthesis approaches involving geometric

clustering and bu�er optimization at each level. More powerful clock tree resynthesis or reassignment

methods were used by Fishburn [13] and Edahiro [11] to minimize the clock period while avoiding hazards

or race conditions; Fishburn employed a mathematical programming formulation, while Edahiro employed

a clustering-based heuristic augmented by techniques from computational geometry. All of these methods

are essentially limited to small problem sizes, either by their algorithmic complexity or by their reliance

on strong hierarchical clustering. In contrast, we are interested in clock tree synthesis for \at" problem

instances with many sinks (synchronizing elements), as will arise in large standard-cell, sea-of-gates, and

multichip module designs.

Clock tree construction for designs with many clock sinks was �rst attacked by the H-tree method, which

was used in regular systolic arrays by Bakoglu and other authors [1] [10] [14] [26]. The H-tree structure

can signi�cantly reduce clock skew [10] [26], but is applicable only when all of the sinks have identical

loading capacitances and are placed in a symmetric array. A more robust clock tree construction for cell-

based layouts is due to Jackson, Srinivasan and Kuh [17]: their \method of means and medians" (MMM)

algorithm generates a topology by recursively partitioning the set of sinks into two equal-sized subsets,

then connecting the center of mass of the entire set to the centers of mass of the two subsets. While the

MMM solution will have reasonable skew on average, Kahng et al. [18] gave small examples for which

the source-sink pathlengths in the MMM solution may vary by as much as half of the chip diameter. In

some sense, this reects an inherent weakness in the top-down approach: it can commit to an unfortunate

topology early on in the construction. Kahng et al. [18] [9] have proposed a bottom-up matching approach

to clock tree construction: in practice their method eliminates all source-sink pathlength skew, while using

5%-7% less total wirelength than the MMM algorithm. However, as the method of [18] [9] focuses primarily

on pathlength balancing, their method addresses clock skew minimization only in the sense of the linear

delay model. Tsay [25] uses ideas similar to both [17] and [18], and achieves exact zero skew trees with

respect to the Elmore delay model [12] [22]. His algorithm was the �rst to produce trees with exact zero

skew in all cases. In the same spirit as the method of [18], Tsay's method recursively combines pairs of zero

skew trees at \tapping points", analogous to the \balance points" in [18], to yield larger zero skew trees.

2

The primary motivation behind our work is to minimize the total wirelength of clock routing trees while

maintaining exact zero skew with respect to the appropriate delay model. Total wirelength is a critical

parameter of the clock routing solution since excess interconnect not only increases layout area but also

results in greater tree capacitance, thus requiring more power for distribution of the clock signal. However,

both the top-down method of [17] and the bottom-up methods of [18] [9] [25] concentrate on the problem

of computing a clock tree topology, and only incompletely address the associated problem of �nding a

minimum-cost embedding of the topology. These previous methods are actually quite inexible in that they

permanently embed each internal node of the tree as soon as it becomes de�ned [18], or else choose the

embedding with at most one level of lookahead in the tree construction [17] [25].

In this paper, we �rst propose a new approach which achieves exact zero skew while signi�cantly reducing

the total wirelength of the clock tree. The basic idea of our Deferred-Merge Embedding (DME) algorithm is

to defer the embedding of internal nodes in a given topology for as long as possible: (i) a bottom-up phase

computes loci of feasible locations for the roots of recursively merged subtrees, and (ii) a top-down phase

then resolves the exact embedding of these internal nodes of the clock tree. In practice, the DME algorithm

begins with an initial clock tree computed by any previous method, then maintains exact zero clock skew

while reducing the wirelength. In regimes where the linear delay model applies, our method produces the

optimal (i.e., minimum wirelength) zero skew clock tree with respect to the prescribed topology, and this

tree will also enjoy optimal source-sink delay. Experimental results in Section 4 below show that the DME

approach is highly e�ective in both the Elmore and linear delay models. We achieve average savings in

total clock tree wirelength of 15% over the MMM algorithm [17] and 8% over the method of Kahng et al.

[18]. In all cases, our clock trees have exact zero skew according to the appropriate delay model, and our

Elmore delay computations have been con�rmed by SPICE simulations which show sub-picosecond skew

on all benchmark examples.

Since the DME algorithm only optimizes a prescribed topology, it cannot achieve all possible improve-

ment of the clock tree construction. Thus, to complement this successful embedding method, we also

propose a new top-down heuristic for constructing an initial clock tree topology, based on the geometric

concept of a balanced bipartition (BB). Applying our embedding to topologies generated in this way yields

a uni�ed BB+DME algorithm which gives very promising results: we achieve 15% reduction in tree cost

and as compared with the MMM algorithm [17], and we achieve 10% reduction in tree cost and a 22%

reduction in Elmore delay as compared with the method of Tsay [25].1 Again, all of our solutions have

exact zero skew. Our methods are quite robust, and extend to prescribed skew formulations as well as more

general optimizations of topologies for both clock routing and global routing. Furthermore, because our

method implicitly maintains all possible minimum-cost embeddings of a topology, it may be used to reroute

the clock net while preserving minimum wirelength, as may be necessary when channel density must be

1Note that SPICE simulations for BB+DME constructions on random sink sets (Table 4 below) indicate only a 3%
improvement in delay compared to the MMM algorithm. This suggests that although the Elmore model is reasonably accurate
for predicting skew, it is less accurate for predicting delay.

3

minimized.

The remainder of this paper is organized as follows. In Section 2, we formalize the minimum-cost

zero skew clock routing problem and also establish the linear and Elmore delay models that are used in

the subsequent discussion. Section 3 presents our main results. These include: (i) the Deferred-Merge

Embedding (DME) algorithm for e�ciently embedding a given topology; (ii) application of the DME

algorithm to both the linear and Elmore delay regimes; and (iii) our uni�ed BB+DME algorithm, which

uses a top-down balanced bipartitioning (BB) strategy to derive a good tree topology to which the DME

algorithm may be applied. Section 4 gives experimental results and comparisons with previous work, and

Section 5 concludes with directions for future research.

2 Problem Formulation

The placement phase of physical layout determines positions for the synchronizing elements of a circuit,

which we call the sinks of the clock net. A �nite set of sink locations, denoted by S = fs1; s2; : : : ; sng � <2,

speci�es an instance of the clock routing problem. A connection topology is de�ned to be a rooted binary

tree, G, which has n leaves corresponding to the set of sinks S. A clock tree T (S) is an embedding of the

connection topology in the Manhattan plane.2 The embedding associates a placement in <2 with each node

v 2 G; we will use pl(T; v) or pl(v) to represent this location. (When no confusion arises, we may also

denote pl(T; v) simply by v.) The root of the clock tree is the clock source, denoted by s0. We direct all

edges of the clock tree away from the source; a directed edge from v to w may be uniquely identi�ed with

w and written as ew . We say that v is the parent of w, and w is a child of v; the set of all children of v is

denoted by children(v). The wirelength, or cost, of the edge ew is denoted by jewj, and must be greater

than or equal to the Manhattan distance between its endpoints pl(w) and pl(v).3 The cost of T (S), denoted

cost(T (S)), is the total wirelength of the edges in T (S).

For a given clock tree T (S), let td(s0; si) denote the signal propagation time, or delay, on the unique

path from source s0 to sink si; the collection of edges in this path is denoted by path(s0; si). The skew

of T (S) is the maximum value of jtd(s0; si) � td(s0; sj)j over all sink pairs si; sj 2 S. If the skew of T (S)

is zero then it is called a zero skew clock tree (ZST). Given a set S of sinks, the zero skew clock routing

problem is to construct a ZST T (S) of minimum cost. A variant of the zero skew clock routing problem

asks for a minimum cost ZST with a prescribed connection topology:

Zero Skew Clock Routing Problem (S,G): Given a set S of sink locations, and given a connection

topology G, construct a zero skew clock tree T (S) with topology G and having minimum cost.

2Note that the binary tree representation su�ces to capture arbitrary Steiner routing topologies. Also, because the meaning
is clear, we use T (S) instead of T (S;G) to denote a clock tree; implicitly, the embedding is always with respect to a particular
topology G.

3To route a wire of greater length than the distance between its endpoints, the method of speci�ed-length routing due to
Hanafusa et al. [16] can be used.

4

The notion of a zero skew clock tree is well de�ned only in the context of a method for evaluating signal

delays. The delay from the source to any sink depends on the wirelength of the source-sink path, the RC

constants of the wire segments in the routing, and the underlying connection topology of the clock tree.4

Using equations such as those of Rubinstein et al. [22], one can achieve tight upper and lower bounds on

delay in a distributed RC tree model of the clock net. However, in practice it is appropriate to apply one

of two simpler RC delay approximations, either the the linear model or the Elmore model, both of which

are easier to compute and optimize during clock tree design.

2.1 Delay Models

2.1.1 Linear Delay

In the linear delay model, the delay along path(s0; si) is proportional to the length of the path and is

independent of the rest of the connection topology. Normalized by an appropriate constant factor, the

linear delay between any two nodes u and w in a source-sink path is

tLD(u;w) =
X

ev2path(u;w)

jevj:

While less accurate than the distributed RC tree delay formulas of Rubinstein et al [22], the linear delay

model has been e�ectively used in clock tree synthesis [18] [21]. In general, use of the linear approximation

is reasonable with older ASIC technologies, which have larger mask geometries and slower packages. Tsay

[25] notes that the linear delay model is also proper for emerging optical and wave interconnect technologies.

In addition, we observe that linear delay applies to hybrid packaging technologies, which have relatively

large interconnect geometries [24].

2.1.2 Elmore Delay

With smaller device dimensions and higher ASIC system speeds, a distributed RC tree model for signal

delay in clock nets is often required to derive accurate timing information. Typically, we use the �rst-

order moment of the impulse response, also known as the Elmore delay [6] [8] [25]. The Elmore delay

model is developed as follows. Let � and � respectively denote the resistance and capacitance per unit

length of interconnect, so that the resistance rev and capacitance cev of edge ev are given by � � jevj and

� � jevj, respectively. For each sink si in the tree T (S), there is a loading capacitance cLi
which is the input

capacitance of the functional unit driven by si.

We let Tv denote the subtree of T (S) rooted at v, and let cv denote the node capacitance of v.5 The

4The global routing phase of layout will typically consider the clock and power/ground nets for preferential assignment to
(dedicated) routing layers. We assume that the interconnect delay parameters are the same on all metal routing layers, and
we ignore via resistances. Thus, wirelength becomes a valid measure of the RC parameters of interconnections.

5As noted earlier, we will assume that cv = 0 for each internal node in all of our examples and benchmarks.

5

tree capacitance of Tv is denoted by Cv and equals the sum of capacitances in Tv. Cv is calculated using

the following recursive formula:

Cv =

�
cLi if v is a sink node si
cv +
P

w2children(v)(cew +Cw) if v is an internal node

According to [12] [22] [23], the Elmore delay tED(s0; si) can be calculated by the following formula (see

[25] for a discussion of underlying circuit models):

tED(s0; si) =
X

ev2path(s0;si)

rev(
1

2
cev + Cv):

More generally, the delay time between any two vertices u and w on a source-sink path is given by

tED(u;w) =
X

ev2path(u;w)

rev (
1

2
cev + Cv):

Elmore delay is additive: if v is a vertex on the u-w path, then tED(u;w) = tED(u; v) + tED(v; w), and in

particular, if v is a child of u on the u-si path, then tED(u; si) = rev(
1
2cev + Cv) + tED(v; si). A sink node

si may be treated as a trivial zero skew subtree with capacitance cLi and delay zero.

3 Main Results

This section presents our new uni�ed approach to constructing a ZST over a given set of sinks S. At a

high level, we divide the construction of the ZST into: (i) generation of a connection topology, and (ii)

embedding of that connection topology in the Manhattan plane. Our discussion begins with the Deferred-

Merge Embedding (DME) algorithm, which computes a wire-e�cient embedding of a given topology. Next,

we describe the application of the DME algorithm to both the linear and Elmore delay models. We then

present a new top-down balanced bipartition (BB) algorithm that creates a good connection topology, leading

to the uni�ed BB+DME algorithm.

3.1 The Deferred-Merge Embedding (DME) Algorithm

The Deferred-Merge Embedding (DME) algorithm embeds internal nodes of the topology G via a two-

phase process. A bottom-up phase constructs a tree of line segments which represent loci of possible

placements of the internal nodes in the ZST. A top-down phase then resolves the exact locations of all

internal nodes in T . In the discussion that follows, the distance between two points p and q is assumed to

be the Manhattan distance d(p; q), and the distance between two sets of points P and Q, written d(P;Q),

is given by minfd(p; q) j p 2 P and q 2 Qg.

6

3.1.1 Bottom-Up Phase: The Tree of Merging Segments

For prescribed sink locations S and connection topology G, we construct a tree of merging segments. The

basic idea is as follows. Each node v in G, is associated with a merging segment which represents a set

of possible placements of v. The merging segment of a node depends on the merging segments of its two

children, so the connection topology must be processed in a bottom-up order. In building the tree of

merging segments, we also assign a length to each edge in G; this length is retained in the �nal embedding

of G as a ZST.

Let a and b be the children of node v in G. We use TSa and TSb to denote the subtrees of merging

segments rooted at a and b, respectively. We are interested in placements of v which allow TSa and TSb

to be merged with minimum added wire while preserving zero skew. De�ne the merging cost between TSa

and TSb to be jeaj+ jebj, where jeaj and jebj denote the lengths to be assigned to edges ea and eb. These

lengths are chosen to minimize merging cost while balancing delays at pl(v). Because delay is a monotone

increasing function of wirelength, there is a unique optimal assignment of lengths to ea and eb.6

We now develop more precisely the construction of the tree of merging segments. A Manhattan arc is

de�ned to be a line segment, possibly of zero length, with slope +1 or -1; in other words, a Manhattan arc

is a line segment tilted at 45 degrees from the wiring directions. The collection of points within a �xed

distance of a Manhattan arc is called a tilted rectangular region, or TRR, whose boundary is composed of

Manhattan arcs (see Figure 1). The Manhattan arc at the center of the TRR is called its core. The radius

of a TRR is the distance between its core and its boundary.

radius

core

Figure 1: An example of a TRR with core and radius as indicated.

The merging segment of node v, ms(v), is de�ned recursively as follows: if v is a sink si, then ms(v) =

fsig. If v is an internal node, then ms(v) is the set of all placements pl(v) which allow minimum merging

6The uniqueness is shown as follows. Suppose the minimum merging cost is c. De�ne a function f(jeaj) to be the path
delay from v to sinks in TSa for edge length jeaj; similarly de�ne g(jebj) for the path delay from v to sinks in TSb. De�ne
g0(jeaj) = g(c � jeaj). A length assignment to ea must satisfy f(jeaj) = g0(jeaj), or alternatively, (f � g0)(jeaj) = 0. If
both f and g are monotone increasing functions, then g0 is monotone decreasing and f � g0 is monotone increasing. Thus
(f � g0)(jeaj) = 0 will have at most one solution.

7

cost, that is to say, all points within distance jeaj of ms(a) and within distance jebj of ms(b). If ms(a) and

ms(b) are both Manhattan arcs, then we obtain the merging segment ms(v) by intersecting two TRRs, trra

with core ms(a) and radius jeaj, and trrb with core ms(b) and radius jebj; i.e., ms(v) = trra \ trrb.

ms(a)

trr trr

ms(v) ms(b)

|e |

|e |

b

a

ba

Figure 2: Construction of merging segment ms(v) when the merging cost
equals �.

trr =ms(a)

ms(b)

trr

ms(v)

|e |

a

b

b

Figure 3: Construction of merging segment ms(v) when the merging cost
is greater than �. Note that in this example, radius(trra) = jeaj = 0.

The merging cost at v has an obvious lower bound of � = d(ms(a);ms(b)). If the merging cost is greater

than � (i.e., more wirelength is needed to balance the delays), then one edge length will equal zero and the

other will equal the merging cost. Figure 2 illustrates the algorithm for the case where the merging cost is

equal to �, and Figure 3 illustrates the algorithm for the case where the merging cost is greater than �. An

entire tree of merging segments is illustrated by Figure 4. The leaves of the tree of segments are all single

points representing the sink locations s1; : : : ; s8, and the internal nodes are Manhattan arcs.

We prove that all merging segments are Manhattan arcs using induction and the following lemma.

(Proofs of all lemmas are given in the Appendix.)

8

s1

s2

s3

s4

s5

s6

s7

s8

root merging
segment

Figure 4: An example of a tree of merging segments with sinks s1; : : : ; s8.
The solid lines are merging segments and the dotted lines indicate edges
between merging segments.

Lemma 1 : The intersection of two TRRs, R1 and R2, is also a TRR and can be found in constant time.

If radius(R1) + radius(R2) = d(core(R1); core(R2)), then the TRR R1 \R2 is also a Manhattan arc.

Lemma 1 implies that if ms(a) and ms(b) are both Manhattan arcs, then ms(v) is a Manhattan arc, as

follows: (i) if the merging cost at v is equal to �, then d(core(trra); core(trrb)) = jeaj+jebj = radius(trra)+

radius(trrb), and hence, trra \ trrb is a Manhattan arc; or ii) if the merging cost at v is greater than �,

then either trra or trrb will be a Manhattan arc whose intersection with any convex set will also be a

Manhattan arc. For each sink si, the merging segment ms(si) is a single point and thus a Manhattan arc.

By induction, therefore, all merging segments must be Manhattan arcs.

Procedure Build Tree of Segments
Input: Topology G; set of sink locations S
Output: Tree of merging segments TS containing

ms(v) for each node v in G and edge length jevj
for each v 6= s0

for each node v in G (bottom-up order)
if v is a sink node,
ms(v) fpl(v)g

else
Let a and b be the children of v
Calculate Edge Lengths(jeaj,jebj)
Create TRRs trra and trrb as follows:

core(trra) ms(a)
radius(trra) jeaj
core(trrb) ms(b)
radius(trrb) jebj

ms(v) trra \ trrb
endif

Figure 5: Construction of the tree of segments.

9

Figure 5 gives a precise description of the procedure Build Tree of Segments, which constructs the tree

of merging segments. Details of the Calculate Edge Lengths subroutine depend on the delay model and are

described in Sections 3.2.1 and 3.3.1 below.

By Lemma 1, procedure Build Tree of Segments requires constant time to compute each new merging

segment, and time linear in the size of S to construct the entire tree of merging segments.

pl(p)

|e |

trr

possible
placements

of v
ms(v)

p

v

Figure 6: Procedure Find Exact Placements: �nding the placement of v
given the placement of its parent p.

Procedure Find Exact Placements
Input: Tree of segments TS containing ms(v)

and jevj for each node v in G

Output: ZST T (S)
for each internal node v in G (top-down order)

if v is the root
Choose any pl(v) 2 ms(v)

else
Let p be the parent node of v
Construct trrp as follows:
core(trrp) fpl(p)g
radius(trrp) jevj

Choose any pl(v) 2 ms(v) \ trrp
endif

Figure 7: Construction of the ZST by embedding internal nodes of the
topology.

3.1.2 Top-Down Phase: Embedding of Nodes

Once the tree of segments has been constructed, the exact embeddings of internal nodes in the ZST are

chosen in a top-down manner. For node v in topology G, (i) if v is the root node, then select any point

10

in ms(v) to be pl(v);7 or (ii) if v is an internal node other than the root, choose pl(v) to be any point

in ms(v) that is at distance jevj or less from the placement of v's parent p (because the merging segment

ms(p) was constructed such that d(ms(v);ms(p)) � jevj, there must exist some choice of pl(v) satisfying

this condition). In case (ii), the algorithm �rst creates a square TRR trrp with radius jevj and core equal

to fpl(p)g; then, pl(v) can be any point from ms(v) \ trrp (see Figure 6). For the tree of merging segments

in Figure 4, the resulting placements are indicated by the points at which the segments are connected

by dotted lines. Figure 7 describes the procedure Find Exact Placements, which uses the tree of merging

segments to determine the �nal embedding of nodes in the ZST.

The time complexity of DME is analyzed as follows. Because each instruction in Find Exact Placements

is executed at most once for each node in G (and the intersection of TRRs ms(v) and trrp can be found in

constant time by Lemma 1), Find Exact Placements runs in time linear in the size of S. Because procedure

Build Tree of Segments also runs in linear time, DME as a whole is a linear-time algorithm.

3.2 Application of DME to Linear Delay

3.2.1 Calculating Edge Lengths

Calculating the edge lengths jeaj and jebj is straightforward in the linear delay model. Let a and b be

children of v with merging segments ms(a) and ms(b), and let tLD(a) and tLD(b) be the delays from a and

b to the sinks in their respective subtrees. Then, zero skew at v requires that

tLD(a) + jeaj = tLD(b) + jebj:

Again, let � = d(ms(a);ms(b)). If jtLD(a) � tLD(b)j � �, then the merging cost is minimized with

jeaj+ jebj = �, i.e.,

jeaj =
�+ tLD(b) � tLD(a)

2

and

jebj = � � jeaj:

On the other hand, if jtLD(a) � tLD(b)j > �, then the merging cost is minimized when one of the edge

lengths is equal to zero. It is easy to see that if tLD(a) > tLD(b), then jeaj = 0 and jebj = tLD(a)� tLD(b);

similarly, if tLD(a) < tLD(b) then jebj = 0 and jeaj = tLD(b)� tLD(a).

7If a �xed source location s0
0
is speci�ed, choose pl(s0) 2 ms(s0) with minimum distance from s0

0
and connect a wire

directly from s0
0
to pl(s0).

11

3.2.2 Optimality of DME for Linear Delay

The following theorem states that the DME algorithm is optimal in the linear delay regime.

Theorem 1 Given a set of sink locations S and a connection topology G, the DME algorithm produces a

ZST T with minimum cost over all ZSTs for S having topology G.

The proof of Theorem 1 relies on Lemmas 2 and 3. Lemma 2 asserts that for any node v in an optimal

ZST, pl(v) is in ms(v) and must therefore satisfy the constraints imposed in the bottom-up phase of the

algorithm. Lemma 3 implies that the placements of two sibling nodes correspond to a closest pair of points

in their respective merging segments. Together, Lemmas 2 and 3 can be used to show that placements in

an optimal ZST must satisfy the top-down phase of the algorithm. Let tLD(T; x) denote the delay in ZST

T between a point x in T and each sink which has x on its source-sink path.

a

b

q

q’

ms(v)

Figure 8: Optimal placement of v must be on ms(v). pl(T; v) = q;
pl(T 0; v) = q0; and cost(T 0) < cost(T).

Lemma 2 : Given a ZST T with topology G, let v be an internal node with children a and b. Suppose

the subtrees of T rooted at a and b can be generated by the DME algorithm for some placement of v on

ms(v), and also suppose that q = pl(T; v) 62 ms(v). Then a new ZST T 0 with the same topology can be

constructed from T by moving the placement of v so that the following hold: (i) q0 = pl(T 0; v) 2 ms(v); (ii)

cost(T 0) < cost(T); and (iii) tLD(T; q) = tLD(T 0; q).

Lemma 2 is illustrated in Figure 8. The construction of T 0 from T reduces the tree cost by modifying

the q{a and q{b connections so that they share wire on the segment from q to q0.

Lemma 3 : Suppose that a and b are two sibling nodes in ZST T with parent v, and suppose that the

subtrees of T rooted at a and b can be generated using the DME algorithm. If d(a; b) > d(ms(a);ms(b))

and d(a; b) > jtLD(a) � tLD(b)j, then a new ZST T 0 can be constructed from the same topology, with

cost(T 0) < cost(T) and with tLD(T; q) = tLD(T
0; q) for q = pl(T; v).

12

a

bq

q’

b’

a’

ms(v)

Figure 9: Optimal placement of siblings a and b must satisfy the distance
constraint in the top-down phase Find Exact Placements. pl(T; a) = a and
pl(T 0; a) = a0, etc.; and cost(T 0) < cost(T).

Figure 9 contains an illustration of Lemma 3. Moving the placements of nodes a and b to locations a0

and b0 allows the a0{q and b0{q connections to share wire on the segment from q0 to q. The delay at point

q remains unchanged.

Proof of Theorem 1: The proof is by contradiction. The DME algorithm places only two constraints

on the placement of a node v in G: (i) pl(v) 2 ms(v) and (ii) d(pl(v); pl(p)) � Lv, where p is the parent

of v and Lv is the edge length assigned by DME to ev. Condition (i) arises by the construction in the

top-down phase of DME, and condition (ii) is required by the bottom-up phase of DME. Suppose ZST

T has minimum cost for point set S and topology G, but contains a node placement violating one of the

two conditions. Let v be a node with greatest depth in T that violates either condition, and let w be the

sibling of v. Because v has maximumdepth, all of the descendants of v and w can be produced using DME.

Consequently, because T has minimum cost, Lemma 2 implies that pl(T; v) must be in ms(v) and pl(T;w)

must be in ms(w). Thus, v does not violate condition (i).

Consequently, v must violate (ii), i.e., d(pl(T; v); pl(T; p)) > Lv. Let L(T; ev) denote the length of edge

ev in T . Because the length of an edge must be at least the distance between its endpoints, L(T; ev) > Lv.

Suppose d(pl(T; v); pl(T;w)) � d(ms(v);ms(w)). Then the subtrees of T rooted at v and w can be generated

by DME for some placement of p on ms(p), and by Lemma 2, cost(T) can be improved by moving p to

its merging segment and setting L(T 0; ev) = Lv and L(T 0; ew) = Lw. If d(pl(T; v); pl(T;w)) � jtLD(v) �

tLD(w)j, then cost(T) can be reduced by moving pl(p) to pl(v) if Lv = 0, or to pl(w) if Lw = 0. Hence, we

must have d(pl(T; v); pl(T;w)) > d(ms(v);ms(w)), and d(pl(T; v); pl(T;w)) > jtLD(v) � tLD(w)j. Then by

Lemma 3 cost(T) can be decreased, contradicting the assumption that T has minimum cost.

13

It can be proved that in the linear model, DME also minimizes the source-sink delay in a ZST, and that

this delay is equal to one-half the diameter of the sink set S. A proof of this result is contained in [3].

The DME algorithm is also optimal for any topology in the variant of the ZST problem where the source

location is pre-de�ned. Suppose that ms(s0) is the merging segment for the root node s0 of topology G

and that s0

0 is the prescribed source location. The DME algorithm can be modi�ed at the beginning of

the procedure Find Exact Placements to connect s0
0 with the closest point in ms(s0). This point becomes

pl(s0). Lemmas 2 and 3 can be used to prove the optimality of this method: they state that any tree rooted

at a location q 62 ms(s0) will have minimum cost only if the two subtrees of G directly below the root are

merged at a point q0 2 ms(s0) which is then connected to s0
0 by a single edge.

3.3 Application to Elmore Delay

3.3.1 Calculating Edge Lengths in the Elmore Delay Model

To calculate the edge lengths needed to merge two trees of merging segments TSa and TSb with minimum

merging cost in the Elmore model, we use the analysis of Tsay [25]. Let TSa and TSb respectively have

capacitance C1 and C2 and delay t1 = tED(a) and t2 = tED(b), and let pl(v) be a merging point with

minimummerging cost.

From the de�nition of Elmore delay, we have that tED(v; a) = rea(
1
2cea + C1). Thus, pl(v) satis�es:

rea(
1

2
cea +C1) + t1 = reb(

1

2
ceb + C2) + t2: (1)

Let d(ms(a);ms(b)) = �. Suppose that TSa and TSb can be merged with merging cost �; in other words,

jeaj = x and jebj = � � x for 0 � x � �. Then we have resistances rea = �x and reb = �(� � x) and

capacitances cea = �x and ceb = �(� � x). Substituting into (1) and solving for x yields

x =
t2 � t1 + ��(C2 +

1
2��)

�(C1 + C2 + ��)
(2)

Case 1: If 0 � x � �, then there exists a feasible zero skew merging point of TSa and TSb with merging

cost �, jeaj = x and jebj = �� x.

Case 2: If x < 0 or x > �, then the assumption of merging cost � results in a negative edge length for

either ea or eb. In this case, an extended distance �0 > � is required to balance the delays of the two trees.

If x < 0, which means t1 > t2, we choose pl(a) as the merging point and set jeaj = 0 and jebj = �0. Then

t1 = ��0(
1

2
��0 +C2) + t2

and we use the quadratic formula to solve for �0:

�0 =
((�C2)2 + 2��(t1 � t2))

1

2 � �C2

��
:

14

Similarly, if x > �, we set jebj = 0 and

jeaj = �0 =
((�C1)2 + 2��(t2 � t1))

1

2 � �C1

��
:

The above analysis shows that a zero skew merging point between two ZSTs can always be found. The

merging cost depends on the distance between the two roots of the ZSTs, the delay of each ZST, and the tree

capacitance of each ZST. Intuitively, to minimize the merging cost we should therefore choose topologies

such that merged subtrees have minimum distance between their roots, along with similar capacitances

and delays, so as to avoid the extra cost �0 � �. This motivates our new BB algorithm, which uses the

geometric notion of a balanced bipartition for computing a topology. Before describing this algorithm in

Section 3.4 below, we observe that the DME algorithm is not optimal for all topologies in the Elmore delay

approximation model.

3.3.2 Suboptimality of DME for Elmore Delay

s 10

s

s

s

s

s

s

p

p

p

11

10

11.297

11.683

12.155

p

p

.3125

.3079

.3042

.3005

5.3005

.1037

.1037.1046
.6875

1

2

5

3

0

2

31

4 0

6

4

Figure 10: ZST T , which would be constructed by the DME algorithm with
sub-optimal cost for its topology. (Note that the tree is not drawn to scale;
lengths of horizontal and vertical segments are as indicated.)

Recall that in the linear delay regime, the DME algorithm produces an optimum (minimum wirelength)

ZST for any given topology. Our experimental results in Section 4 clearly show the e�ectiveness of the DME

algorithm in the Elmore delay model, and indeed we believe that in practice the algorithm gives solutions

that are very close to optimum. However, the ZSTs T in Figure 10 and T 0 in Figure 11 demonstrate that,

for some sink sets and topologies, DME will not be optimal for Elmore delay. T and T 0 connect terminal

points s1; :::; s6 to source s0. Both trees are assumed to extend to the right side of s0, with their subtrees

15

on the right of s0 being mirror images of the subtrees to the left of s0 (this ensures that the source will be

at s0 in the optimal tree). In this example, we set both the unit resistance � and unit capacitance � to

one, and the loading capacitance cLs
of each sink node s to zero.8

The ZST T 0 in Figure 11 was constructed so that if points s1 and s2 are merged at point p0

1, then vertical

wires from points s3 through s6 will merge along the horizontal wire from s1 to s0 with exactly zero skew.

If, however, s1 and s2 are merged on their merging segment as shown in the tree T of Figure 10, the delay

at p0
1 will increase, and jogs will be required in the edges es3 through es6 . In this example, the four required

jogs are each of length greater than 0.3. Thus, their sum is greater than 1, which was the amount of wire

saved initially by merging s1 and s2 at p0.

s p’11

s

s

s

s

s

s p’ p’

p’

11

1
10

.1 .1 .1

11.297

11.683

12.155

51
1

1

3

5

2

2

4

6

04

3

Figure 11: ZST T 0, which has optimal cost for the topology in Figure 10,
but which violates the DME algorithm. In T 0, the internal nodes placed at
p0 and p1 in T are placed at the same point, p0

1. (The tree is not drawn to
scale; lengths of horizontal and vertical segments are as indicated.)

Table 1 contains the calculated delay and capacitance at each of the internal nodes of T and T 0. For

example, in T 0 the capacitance at p0
1, Cp0

1

, is 33; and the delay at node p0
2 is

tED(p
0

2) = tED(p
0

1) + 0:1 � (
0:1

2
+Cp0

1

) = 60:5 + 3:305 = 63:8 =
(11:297)2

2

Because unit resistance and capacitance both equal one, and because loading capacitances at the leaves are

zero, the tree capacitance of each node equals the amount of wire in its subtree. Thus, we see in Table 1

that cost(T 0) is less than cost(T) by 0.44.

8The example can be easily altered to have non-zero loading capacitances: shorten each edge adjacent to a terminal node
by a small value c > 0, and then set the loading capacitance of each terminal node to c.

16

Tree T Tree T 0

node delay capacitance node delay capacitance
p0 50 20
p1 64.0 32.0 p01 60.5 33.0
p2 67.3 43.7 p02 63.8 44.4
p3 71.9 55.8 p03 68.2 56.2
p4 77.6 68.4 p04 73.9 68.4
s0 454.0 2�73.66 s0 428.6 2�73.44

Table 1: Delay and capacitance at each internal node in ZSTs T and T 0.

3.4 Topology Generation

It is easy to see that, as hinted by the examples of Figures 10 and 11, the choice of topology will a�ect

the success of the DME embedding. We now present a new heuristic for generating connection topologies.9

The heuristic works in top-down fashion, dividing the sink nodes recursively into two partitions with nearly

equal total loading capacitance. We call this heuristic the Balanced Bipartition (BB) method. The BB

method o�ers a more powerful top-down partitioning scheme than the previous approaches of Jackson et

al. [17] and Tsay [25], which divide the sink set recursively, using only alternating horizontal and vertical

cuts.

For our description of the BB method, we introduce the following notation. Denote the diameter of S

by dia(S) = maxfd(p; q) j p; q 2 Sg and the number of sinks in S by jSj. Since the cost of any routing tree

of S is greater than dia(S) and less than jSj �
dia(S)

2
, we consider dia(S) to be a heuristic approximation of

the cost of any ZST T (S). Recall also that imbalanced loading capacitance may lead to excess edge length

in the DME construction; we call a bipartition of a set of sinks S into two subsets S1 and S2 a balanced

bipartition if the di�erence between the total loading capacitances of the two subsets is at mostmaxfcLi
g.10

Intuitively, we would like to �nd a balanced bipartition which divides set S with minimum partition cost,

given by dia(S1)+ dia(S2). This is the idea behind the BB heuristic. In the Euclidean metric, the problem

of constructing a balanced bipartition which minimizes the sum of diameters can be solved in O(n2) time

[19]. However, we are not aware of any polynomial-time algorithm that yields a minimum cost balanced

bipartition in the Manhattan plane.

Let p:x and p:y be the x- and y-coordinates of point p. The octagon of set S is de�ned as the region

formed by the intersection of eight half spaces (in clock-wise order around the octagon): y � max
p2S

fp:yg,

y � x � min
p2S

fp:y � p:xg, x � min
p2S

fp:xg, y + x � min
p2S

fp:y + p:xg, y � min
p2S

fp:yg, y � x � max
p2S

fp:y � p:xg;

9No NP-completeness result has been obtained for our general minimum-cost zero skew clock tree formulation (i.e., where
the topology has not been prescribed). However, [18] [9] showed that a closely related problem (in the linear delay model), the
\bounded-skew pathlength-balanced tree problem", is trivially NP-complete since it reduces the minimum rectilinear Steiner
tree problemwhen the allowed pathlength skew is in�nite. Thus, heuristics for computing promising topologies are of interest.

10For the linear delay model, we use uniform loading capacitances in the input to the BB algorithm, because delay depends
only on the edge lengths.

17

x � max
p2S

fp:xg, y + x � max
p2S

fp:y + p:xg. The octagon set of S, Oct(S), is the set of sink locations in S that

lie on the boundary of S's octagon.

-70 -40 -30 -20 -10 0 10 20 50 60
-60

-50

-40

-30

-20

 0

10

20

30

40

50

60

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

s12

s13

s14

s15

s16

(a)
-70 -40 -30 -20 -10 0 10 20 50 60

-60

-50

-40

-30

-20

 0

10

20

30

40

50

60

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

s12

s13

s14

s15

s16

S2 S1

REF1 = {s5,s10,s16} Dia (S1) = 120 Dia (S2) = 160

(b)

-70 -40 -30 -20 -10 0 10 20 50 60
-60

-50

-40

-30

-20

 0

10

20

30

40

50

60

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

s12

s13

s14

s15

s16

S2 S1

REF2 = {s5,s10,s16} Dia (S1) = 130 Dia (S2) = 140

(c)
-70 -50 -40

-30

-20

-10

-5

-1

 0

10

20

50

60
-60

-50
-45

-40
-35

-30

-20

-10

-1 0
 5

10

20 21

30
36

40
45

50

60

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

s12

s13

s14

s15

s16

s0

cost = 571

(d)

Figure 12: (a) Octagon lines of 16 sink locations; (b) Partition result of
REF1; (c) Partition result of REF2; (d) The ZST produced by BB+DME.

Fig. 12(a) shows the octagon for a set of 16 sink locations; the octagon set is fs1; s3; s5; s10; s14; s16g.

The lines de�ning the octagon induce a natural circular ordering on the sinks in the octagon set. For

example, s1 � s5 � s10 � s16 � s14 � s3 � s1 is the circular order of the octagon set of Figure 12(a). Note

that the octagon set construction naturally captures those parameters of the sink set which are relevant

to diameter computations in the Manhattan plane. Based on extensive experimental investigations, we

have found that each of the sets S1 and S2 in a balanced bipartition of S is likely to consist of consecutive

elements in Oct(S). Based on this observation, a balanced bipartition heuristic is as follows.

18

1. Compute Oct(S) and sort Oct(S) in circular order.

2. Perform steps 3-5 for each set of b1
2 jOct(S)jc consecutive sinks in Oct(S), called a reference set and

denoted by REFi, i = 1; : : : ; jOct(S)j.

3. For each sink p 2 S, compute the weight of p, equal to min
r2REFi

d(p; r) + max
r2REFi

d(p; r).

4. Sort the sinks in ascending order of weight, then add sinks according to this order to S1 until the

di�erence between the sum of capacitances in S1 and one half the total capacitance is minimized.

5. The remaining sinks are placed in S2, and the partition cost dia(S1) + dia(S2) is obtained.

6. Over all reference sets REFi, select the partition (S1; S2) with smallest partition cost.

In the example of Figure 12(a), each set of three consecutive sinks in the octagon set will be a possible

reference set: REF1 = fs5; s10; s16g has partition cost 280 as shown in Figure 12(b); REF2 = fs10; s16; s14g

has partition cost 270 as shown in Figure 12(c); etc. After all six reference sets have been evaluated, we

�nd that the optimal reference set is REF2 with cost 270. Figure 12(d) shows the output of the BB+DME

algorithm on the instance of Figure 12(a).11

The time complexity of the BB algorithm is a�ected by characteristics of the sink set S. The number

of times that the loop over steps 3 - 5 must be repeated is given by jOct(S)j, the number of reference sets.

In the worst case this value is �(n), but in practice it is usually bounded by a constant. Because BB is

recursive, its complexity is also a�ected by the relative sizes of the bipartitions. In the worst case, when

loading capacitances are very unbalanced, we can have jS1j = 1 and jS2j = jSj � 1.

Steps 3 and 4 dominate all others in the complexity of BB and are repeated for each reference set. (The

diameters in step 5 can be calculated in linear time in the Manhattan metric.) Step 4 requires O(n logn)

operations each time it is run, while step 3 requires O(njOct(S)j) time. If jOct(S)j = �(n), then the total

time used in step 3 for a single bipartition can be reduced from O(n3) to O(n2 logn) by using a priority

queue such as a Fibonacci heap.12

In the very worst case, we can have jOct(S)j = �(n) and pathologically unbalanced loading capacitances;

each bipartition will require O(n2 logn) time and the total time complexity of BB will be O(n3 logn). If

jOct(S)j = O(1) but loading capacitances are still unbalanced, the time complexity will be O(n2 logn).

The time complexity is reduced when we impose very reasonable constraints on the loading capacitances,

e.g., the largest and smallest capacitances can di�er by at most a constant factor, or simply that the

cardinalities of the partitions di�er by at most a constant factor. If the loading capacitances are \balanced"

11For the Elmore delay model, we observe that the DME algorithm is not always optimal for topologies generated by
balanced bipartitioning. To see this, we modify the counter-example of Section 3.2 as follows. Let the loading capacitance of
each sink be a small �xed value � > 0. Suppose that there are 16 sink nodes near point s6 within a very small radius � > 0
of each other. Similarly, suppose there are 8 sink nodes at point s5, 4 at s4, 2 at s3 and 1 at both s1 and s2. Then the BB
algorithm will generate the topology of Figure 10.

12The priority queue, however, will increase the worst-case space requirements from O(n) to O(n2).

19

and jOct(S)j = �(n), then the time complexity of BB is O(n2 logn). Finally, under the most realistic

circumstances, when the loading capacitances are balanced and jOct(S)j = O(1), the time complexity of

BB is O(n log2 n).

4 Experimental Results

The BB and DME algorithms were implemented on Sun SPARC workstations in the C/UNIX environment.

The code can be obtained from the authors. We compared routing cost and source-sink delay of the

BB+DME output with previous results of Jackson et al. [17], Kahng et al. [18] and Tsay [25], which were

obtained for both the linear and Elmore delay models.

Because the DME algorithm can be applied to any prescribed topology, we also applied it to topolo-

gies obtained in previous studies. In this way, we could separate the e�ects of DME from the e�ects of

complementary heuristics for generation of clock tree topologies. We used two sets of benchmarks: (i)

sink placements for the MCNC benchmarks Primary1 and Primary2 used in [17] and [18], and originally

provided by the authors of [17] (Primary1 contains 269 sinks, and Primary2 contains 603 sinks); and (ii)

sink placements for the �ve benchmark sets r1 - r5 used in [25] (the sizes of these examples range from 267

to 3,101 sinks).

reduction by reduction by reduction by
KCR+DME BB+DME BB+DME

number MMM KCR KCR+DME from BB+DME from from
of sinks cost cost cost KCR (%) cost MMM (%) KCR (%)

Primary1 269 161.7 153.9 140.3 8.8 140.5 13.1 8.7
Primary2 603 406.3 376.7 350.4 7.0 360.8 11.2 4.2

r1 267 1,815 1,627 1,497 8.0 1,500 17.4 7.8
r2 598 3,625 3,349 3,013 10.0 3,010 17.0 10.1
r3 862 4,643 4,360 3,902 10.5 3,908 15.8 10.4
r4 1,903 9,376 8,580 7,782 9.3 8,000 14.7 6.8
r5 3,101 13,805 12,928 11,665 9.8 11,757 14.8 9.1

average 9.1 14.9 8.2

Table 2: Comparison of BB+DME with other algorithms in the linear delay model using MCNC benchmarks
Primary1 and Primary2 and benchmarks r1 through r5 from Tsay.

4.1 Linear Delay Model

Our experimental results for linear delay are contained in Table 2. We compared BB+DME with the

Method of Means and Medians (MMM) of Jackson et al. [17] and with the bottom-up, matching based

method of Kahng, Cong and Robins (KCR) [18]. In order to test the performance of the DME algorithm

alone, we also ran DME on the topologies produced by the KCR algorithm. The combined BB+DME

20

algorithm produced an average reduction in cost of 15% from the MMM results. We also obtained an 8%

average cost reduction from the KCR algorithm. Note that in the linear model, DME also produces trees

with optimal source-sink delay [3], and our experiments showed an average reduction of 19% from the KCR

algorithm. The improvement in source-sink delay ranged from 9% for Primary1 to 23% for r3.

reduction by reduction by
BB+DME BB+DME

number MMM Tsay Tsay+DME KCR+DME BB+DME from from
of sinks cost cost cost cost cost MMM (%) Tsay (%)

Primary1 269 161.7 * * 140.1 140.5 13.1 *
Primary2 603 406.3 * * 345.2 360.8 11.1 *

r1 267 1,815 1,697 1,658 1,487 1,535 15.4 9.5
r2 598 3,625 3,432 3,368 3,020 3,065 15.4 10.7
r3 862 4,643 4,407 4,333 3,867 3,962 14.7 10.1
r4 1903 9,376 8,866 8,694 7,713 8,054 14.1 9.2
r5 3101 13,805 13,199 12,926 11,606 11,837 14.3 10.3

average 14.0 10.0

Table 3: Comparison of BB+DME with other algorithms in the Elmore delay model. �Results for Tsay's
algorithm were obtained from Dr. Ren-Song Tsay and were not available for the Primary1 and Primary2
benchmarks.

4.2 Elmore Delay Model

We tested the BB+DME algorithm for Elmore delay on the same benchmark sink sets. The results are

contained in Table 3. Again, these results indicat a signi�cant improvement by BB+DME over previous

algorithms. The average reduction in wirelength was 14% over MMM results, and 10% over the results

of Tsay. It should be noted that DME alone resulted in an average improvement of only 2% over Tsay's

algorithm, which can be attributed to the fact that Tsay's embedding algorithm allows deferral of the

choice of placements for one level in the tree (the two endpoints of each merging segment are selected and

carried to the next level, where the actual embedding is chosen to be the point which allows the minimum

connection cost).13 Our results also indicate a very signi�cant reduction in source-sink delay in the Elmore

model: the combination of KCR+DME reduced delay over the trees of Tsay by an average of 22%.

To obtain a more complete picture of the BB+DME performance, we also tested the algorithm on sink

sets with locations chosen randomly from a square grid, i.e., with coordinates si:x; si:y 2 [�2500; 2500].

The size of the sink sets ranged from 8 to 64. In these experiments, we also compared our algorithm with

minimum rectilinear Steiner trees (RSTs) constructed by the heuristic in [7]; the BB+DME tree cost was

only 64% above the heuristic RST cost. Finally, we used the circuit simulator SPICE2G.6 [20] to evaluate

13A surprising outcome of our experiments was the strong performance of topologies generated by the KCR algorithm.
The combination of KCR and DME actually outperformed BB+DME by an average of 2.5% on the seven benchmarks. We
expected balanced topologies to be superior in the Elmore delay model where the amount of load on each line a�ects delay,
but our experimental results indicate that a bottom-up approach originally designed for the linear delay model can perform as
well or better. However, we note that KCR uses such techniques as H-ipping and uncrossing of matching edges; the latter has
exponential worst-case time complexity. Moreover, the minimum-diameter bipartitioning approach of BB is probably more
useful when the distribution of sink locations is highly pathological.

21

clock skew in the ZSTs generated on the random sink sets. For both the MMM and BB+DME clock

trees, SPICE decks were generated with the following speci�cations. The routing area was assumed to be

0:5cm�0:5cm, and all the parameters were based on a 1.2�m CMOS technology. An input clock frequency

of 100 MHz and a superbu�er driven by the input clock source were assumed. The delays between the

source and the sink nodes were measured at the output node of the inverter which drives the sink nodes.

Table 4 shows the average maximum delays, minimum delays and clock skews for the sinks sets of each

size. The maximum delay of BB+DME was on average 3% less than that of MMM. The average skew of

MMM was 9.2 picoseconds while that of BB+DME was only 0.5 picoseconds, a 93% reduction. Figure 13

shows the output of the BB+DME algorithm on an instance containing 64 sinks. The total routing length

is 50445�m and the source-sink delay is 0.91ns. By contrast, the MMM algorithm yielded a tree with cost

59256�m and delay 0.94ns for this case.

MMM BB+DME BB+DME / MMM
#Pts delay clock delay clock delay clock

max min skew max min skew max min skew
8 769.3 763.2 6.1 746.6 746.2 0.4 0.970 0.978 .07
16 801.8 797.0 4.8 783.2 782.5 0.7 0.977 0.982 .15
24 836.6 826.2 10.4 808.7 808.3 0.4 0.967 0.978 .04
32 863.5 855.6 7.9 837.3 836.5 0.8 0.970 0.978 .10
40 885.6 876.3 9.3 857.0 856.5 0.5 0.968 0.977 .05
48 908.9 896.4 12.5 876.8 876.3 0.5 0.965 0.978 .04
56 926.2 914.4 11.8 890.2 889.7 0.5 0.961 0.973 .04
64 940.6 930.1 10.5 910.7 910.2 0.5 0.968 0.979 .05

average 0.968 0.978 .07

Table 4: Mean delay time and clock skew for random sink sets (time unit = picosecond). The rightmost
three columns display ratios between the results of BB+DME and MMM.

5 Conclusions and Directions for Future Work

Minimization of clock skew is critical to the design of high-performance VLSI systems. Recent research

has yielded a number of heuristics which e�ectively eliminate skew according to either the Elmore or linear

delay model. However, these previous methods concentrate on generation of the clock tree topology, and

then embed the topology in the plane with little concern for the minimization of total wirelength.

Obviously, minimization of total wirelength will lead to reduction of wiring area, with the added e�ect

of less blockage for subsequent routing phases of layout. We also note that clocking accounts for a large

portion of system power requirements: wire minimization can signi�cantly reduce the power needed to

drive the clock signal, thus improving system feasibility and reliability. Finally, wirelength reduction will

improve performance by lessening such e�ects as pulse narrowing, pulse deformation, etc. Given these

considerations, our work gives a uni�ed approach to clock tree construction which combines the topology

22

S0

Figure 13: An example of a ZST produced by BB+DME for 64 randomly
chosen sink nodes.

generating phase (BB) with the embedding phase (DME).

The balanced bipartition (BB) heuristic generates a connection topology by recursively dividing the set

of sinks into two subsets with equal total loading capacitance while at the same time minimizing the sum

of diameters of the two subsets. This balance condition is a novel aspect of the method, and is useful when

delay depends on both pathlength and capacitance, as in the Elmore model. The partitioning strategy

based on minimizing the sum of diameters improves upon previous top-down bisection strategies of Jackson

et al. [17] and Tsay [25], which can only use horizontal or vertical cuts to partition the set of sinks.

The Deferred-Merge Embedding (DME) algorithm o�ers many improvements over previous embedding

schemes. DME constructs a highly exible tree of merging segments which allows a choice among minimum-

cost zero skew clock trees. Given any connection topology over the set of sink locations, DME always

produces a tree with exact zero skew, and may thus be applied to previously generated clock trees in order

to improve both wirelength and delay. Experiments show that applying DME alone to the clock trees

constructed by other algorithms results in wirelength reductions of 2% to 9%. The DME algorithm also

extends to problem formulations where the clock source is prescribed. Finally, given the linear delay model,

DME yields optimal total wirelength and optimal source-sink delay.

Our experimental results indicate that the BB+DME methodology yields routing solutions with exact

23

zero skew (which we con�rmed to be in the subpicosecond range using SPICE2G.6) and signi�cantly reduced

total wirelengths (8% - 15% less than the best previous methods). Furthermore, the superiority of BB+DME

over previous methods depends on their joint application. For instance, our improvement of approximately

8% over the matching-based method of Kahng et al. (KCR) [18] is directly attributable to the DME

embedding, since DME applied to topologies generated by KCR yields clock tree cost very similar to that

obtained using BB+DME. On the other hand, DME alone can achieve only 2% out of the 15% improvement

of BB+DME over Tsay [25]. Thus 13% of the cost savings can be attributed to the BB topology.

There are many promising extensions to our current approach. The DME algorithm readily applies to

problems of prescribed skew (i.e., \useful" skew [1]), where the arrival times of the clocking signal must

di�er by prescribed amounts. This is handled by setting initial delays at the sinks to non-zero values. The

DME algorithm can also be used for problems with allowed skew [1] [13] [25], where the signal must arrive

at each sink within a prescribed segment of time.

Finally, the general issue of topology generation remains an important area for further investigation.

A promising approach is to run DME concurrently with matching-based and other bottom-up topology

generating heuristics. In general, the construction of optimal topologies appears to be very di�cult (perhaps

NP-hard). However, we expect future investigations in this area to have fruitful applications, for both clock

tree construction and the broader area of high-performance routing.

6 Remarks and Acknowledgements

Through independent research, the two groups of authors came up with essentially identical approaches to

constructing zero skew clock routing trees with minimum wirelength for a given tree topology. The major

di�erences between the two treatments are: (i) Chao, Hsu and Ho apply DME to the Elmore delay model,

while Boese and Kahng establish the theoretical results for DME with respect to both the linear and Elmore

delay models; and (ii) Chao, Hsu and Ho proposed the top-down balanced bipartition technique to generate

an initial clock tree topology, while Boese and Kahng assume arbitrary existing tree topologies, e.g., those

derived from the KCR method [18] [9]. The work of Chao, Hsu and Ho [8] appeared at the 29th ACM/IEEE

Design Automation Conference; the work of Boese and Kahng [3] appeared at the 5th IEEE International

Conference on ASIC. The authors are grateful to Dr. Ren-Song Tsay for providing benchmark data and

for his communications which made this collaboration possible.

24

7 Appendix: Proofs of Lemmas 1, 2, and 3

Lemma 1 : The intersection of two TRRs, R1 and R2, is also a TRR and can be found in constant time.

If radius(R1) + radius(R2) = d(core(R1); core(R2)), then the TRR R1 \R2 is a Manhattan arc.

y=b

x=a x=a x=a

y=b

y=b

y=b

x=a

core of the
intersection

4

2

3

1

1 3 2 4

Figure 14: Intersection of two TRRs after 45-degree rotation.

Proof: Rotate the plane by 45 degrees so that the boundaries of R1 and R2 are vertical and horizontal line

segments (see Figure 14). Let R0

1 and R0

2 be the two TRRs after rotation with boundary lines given by:

� R0
1: (a1 � a2 and b1 � b2)

x = a1
x = a2
y = b1
y = b2

� R0

2: (a3 � a4 and b3 � b4)

x = a3
x = a4
y = b3
y = b4

Then R0
1 \R0

2 is a rectangular region with boundary lines

x = max(a1; a3)

x = min(a2; a4)

y = max(b1; b3)

y = min(b2; b4)

Since rotating each TRR by 45 degrees requires constant time, determining the intersection of the two

25

TRRs R1 \R2 also requires only constant time.

If radius(R1)+radius(R2) = d(core(R1); core(R2)), then decreasing the radius of either R1 or R2 must

cause their intersection to become empty; otherwise, we could form a path between core(R1) and core(R2)

with length less than d(core(R1); core(R2)). Consequently, R1 \ R2 must have zero width and be a line

segment or a single point. Since R1 \R2 is also a TRR, it must be a Manhattan arc.

Q

x

 PA(x,Q)

Figure 15: Projection area PA(x;Q) under the Manhattan metric.

De�ne a straight-line path between two points x and y to be any minimum-length path between them

using only vertical and horizontal lines. If x and y are not on the same horizontal or vertical line, then

there will be an in�nite number of straight-line paths between them. De�ne the projection area PA(x;Q)

from a point x through a set of points Q as the set of all points p for which there exists a straight-line path

from x to p that passes through Q. (Q must be between p and x.) Figure 15 contains an example of the

projection area from a point x through a Manhattan arc Q.

The next lemma about projection areas will be used to prove Lemmas 2 and 3. It states that the union

of two projection areas from points p and q, respectively, through a merging segment ms between them, is

the entire plane.

Lemma 4 : Let ms be a merging segment between the two points p and q. Then

PA(p;ms) [PA(q;ms) = <2:

26

trr

trr

(a) (b)

p

p q

p

z

z

trr
p

z

q

p

p

trr z

p

q

p

q

1

2

1

2

2

2

1

1

Figure 16: Two cases to consider in the proof of Lemma 4.

Proof: If the merging cost between p and q is greater than d(p; q), then either ms = fpg or ms = fqg.

Since for any point x, PA(x; fxg) = <2, this implies that either PA(p;ms) = <2 or PA(q;ms) = <2 and

the proof is complete. For the case when the merging cost equals d(p; q), merging segment ms is constructed

as the intersection of two TRRs, trrp and trrq, such that core(trrp) = fpg, core(trrq) = fqg, and

radius(trrp) = x � d(p; q)

radius(trrq) = (1� x) � d(p; q)

for some x satisfying 0 � x � 1. If x = 1 or x = 0, the lemma is immediately true, since either PA(p; fpg) =

<2 or PA(q; fqg) = <2 will hold. Let z1 and z2 be the two endpoints of merging segment ms. If 0 < x < 1

then we need to consider the two cases depicted in Figure 16:

(a) z1 and z2 are both corners of the same TRR, either trrp or trrq. Assume without loss of generality

that they are both corners of trrp.

(b) z1 and z2 are corners of di�erent TRRs. Assume without loss of generality that z1 is a corner of trrq

and z2 is a corner of trrp.

De�ne a ray
�!

p1p2 from point p1 through point p2 as the half-line with endpoint p1 that extends through

p2. In case (a), the straight-line path from p to z1 is a vertical line segment and the straight-line path from

p to z2 is a horizontal segment. In Figure 16(a) it is evident that PA(p; fz1g) is a half plane with border

line z1p1 and PA(p; fz2g) is a half plane bordered by line z2p2. Furthermore, PA(p;ms) is the in�nite

region separated from p by (and including) ray
�!

z1p1, segment ms, and ray
�!

z2p2. Similarly, PA(q;ms) is

the region separated from q by the same border. Consequently, PA(p;ms)[PA(q;ms) is the entire plane.

In case (b), shown in Figure 16(b), PA(p;ms) is the in�nite region separated from p by (and including)
�!

z1p1, ms, and
�!

z2p2. PA(q;ms) is the region separated from q by the same border. Again, PA(p;ms) [

27

PA(q;ms) = <2.

Lemma 2 : Given a ZST T with topology G, let v be an internal node with children a and b. Suppose

the subtrees of T rooted at a and b can be generated by the DME algorithm for some placement of v on

ms(v), and also suppose that q = pl(T; v) 62 ms(v). Then a new ZST T 0 with the same topology can be

constructed from T by moving the placement of v so that the following hold: (i) q0 = pl(T 0; v) 2 ms(v); (ii)

cost(T 0) < cost(T); and (iii) tLD(T; q) = tLD(T
0; q).

Proof: Consider Figure 8 of Section 3.2.2. Let a and b be the placements in T of v's children. By Lemma

4, there exists a point q0 on ms(v) such that there is a straight-line path either from a to q or from b to

q, that passes through q0. Without loss of generality, assume that this path is from b to q. Because bq0q is

a straight-line path, segment bq in T can be replaced by segments bq0 and q0q in T 0 without changing the

delay between b and q, and leaving the delay at point q unchanged. Moreover, the construction of ms(v)

ensures that zero-skew is maintained by setting the edge ea equal to the segment aq0 and pl(T 0; v) = q0.

De�ne length(T; xy) to be the edge length between points x and y in ZST T . Because the delay at q

remains unchanged in T 0 and the a|q and b|q connections share wire between q0 and q in T 0, we must

have cost(T 0) = cost(T) � length(T 0; q0q).

Lemma 3 : Suppose that a and b are two sibling nodes in ZST T with parent v, and suppose that the

subtrees of T rooted at a and b can be generated using the DME algorithm. If d(a; b) > d(ms(a);ms(b))

and d(a; b) > jtLD(a) � tLD(b)j, then a new ZST T 0 can be constructed from the same topology, with

cost(T 0) < cost(T) and with tLD(T; q) = tLD(T
0; q) for q = pl(T; v).

Proof: (See Figure 9 in Section 3.2.2.) To prove the lemma, we will �rst construct a ZST Tnew with

source at q = pl(T; v), and then replace the subtree of T rooted at v with part of Tnew to create T 0. Using

Theorem 2 of [3] we show that the connections a|q and b|q share wire on a partial edge eq0 in T 0, whereas

they do not share wire in T . Because T 0 is also constructed so that the lengths of the a|q and b|q

connections are the same as in T , tree T 0 will have lower cost than T .

Let Gv be the subtree of topology G rooted at v, and let Sv be the set of sinks in Gv. Suppose that

sink si is the sink in Sv furthest from q. Create a new sink z that is located at a point directly opposite of

q from si; i.e., d(q; si) = d(q; z) and d(si; z) = 2 � d(q; si). Consider a new set of sinks: Snew = Sv [fzg.

We create a topology Gnew for Snew that merges Gv and z at its root, snew0. We then run DME on

Snew using topology Gnew to create ZST Tnew. By Theorem 2 of [3], Tnew will have minimum feasible

delay at each sink, equal to one-half the diameter of Snew, speci�cally d(q; si). By the Fact used in the

proof of Theorem 2 of [3], ms(snew0) is the set of all points within distance d(q; si) of every sink in Snew.

Therefore, q 2 ms(snew0) and Tnew can be constructed so that q = pl(Tnew; snew0). Let a0 = pl(Tnew; a),

28

b0 = pl(Tnew; b), and q0 = pl(Tnew; v). We now construct ZST T 0 for S by cutting o� the subtree of T

rooted at q and replacing it with Tnew minus the edge between q and z. Since tLD(T
0; q) = d(q; si), it must

be that tLD(T
0; q) � tLD(T; q). If the strict inequality holds, we add extra wire between q and q0 to enforce

equality, and thereby retain zero skew.

For convenience, we use ea0 and eb0 to represent the embeddings of edges ea and eb in T 0. We also use

eq0 to denote the partial edge between q0 and q in T 0. Because the subtrees of T rooted at a and b were

constructed according to DME, we have tLD(T; a) = tLD(T 0; a0) and tLD(T; b) = tLD(T; b0). Thus, because

tLD(T 0; q) = tLD(T; q), it must be that

jeaj = jea0 j+ jeq0 j and jebj = jeb0 j+ jeq0 j: (3)

Because d(a; b) > d(ms(a);ms(b)) and d(a; b) > jtLD(a) � tLD(b)j, d(a; b) is strictly greater than the

merging cost between ms(a) and ms(b). Therefore,

jeaj > jea0 j and jebj > jeb0 j: (4)

Equations (3) and (4) imply that jeq0 j > 0, and thus

jeaj+ jebj > jea0 j+ jeb0 j+ jeq0 j:

As a result, cost(T 0) < cost(T).

References

[1] H. Bakoglu, J. T. Walker and J. D. Meindl, \A Symmetric Clock-Distribution Tree and Optimized
High-Speed Interconnections for Reduced Clock Skew in ULSI and WSI Circuits", Proc. IEEE Intl.
Conf. on Computer Design, 1986, pp. 118-122.

[2] H. Bakoglu, Circuits, Interconnections and Packaging for VLSI , Addison-Wesley, 1990.

[3] K. D. Boese and A. B. Kahng, \Zero-Skew Clock Routing Trees With Minimum Wirelength," Proc.
IEEE Intl. Conf. on ASIC, 1992, pp. 1.1.1 - 1.1.5.

[4] S. Boon, S. Butler, R. Byrne, B. Setering, M. Casalanda and Al Scherf, \High Performance Clock
Distribution For CMOS ASICS," IEEE Custom Integrated Circuits Conference, 1989, pp. 15.4.1-15.4.4.

[5] J. Burkis, \Clock Tree Synthesis for High Performance ASICs," IEEE Intl. Conf. on ASIC, 1991, pp.
9.8.1-9.8.4.

[6] P. K. Chan and K. Karplus, \Computing Signal Delay in General RC Networks by Tree/Link Parti-
tioning", IEEE Trans. on CAD 9(8), August 1990, pp. 898-902.

[7] T.-H. Chao and Y.-C. Hsu, \Rectilinear Steiner Tree Construction by Local and Global Re�nement,"
Proc. IEEE Intl. Conf. on Computer-Aided Design, 1990, pp. 432-435.

[8] T.-H. Chao, Y.-C. Hsu and J.-M. Ho, \Zero Skew Clock Net Routing," in Proc. ACM/IEEE Design
Automation Conf., 1992, pp. 518-523.

29

[9] J. Cong, A. B. Kahng and G. Robins, \Matching-Based Methods for High-Performance Clock Routing",
to appear in IEEE Transactions on CAD.

[10] S. Dhar, M. A. Franklin and D. F. Wann, \Reduction of Clock Delays in VLSI Structures," Proc. IEEE
Intl. Conf. on Computer Design, 1984, pp. 778-783.

[11] M. Edahiro, \A Clock Net Reassignment Algorithm Using Voronoi Diagrams," IEEE Intl. Conf. on
Computer-Aided Design, 1990, pp. 420-423.

[12] W. C. Elmore, \The Transient Response of Damped Linear Networks With Particular Regard to
Wide-Band Ampli�ers," Journal of Applied Physics 19(1), Jan. 1948, pp. 55-63.

[13] J. P. Fishburn, \Clock Skew Optimization," IEEE Transactions on Computers 39(7), July 1990, pp.
945-951.

[14] A. L. Fisher and H. T. Kung, \Synchronizing Large Systolic Arrays", Proceedings of SPIE 341, May
1982, pp. 44-52.

[15] M. Garey and D. S. Johnson, \The Rectilinear Steiner Problem is NP-Complete", SIAM J. of Applied
Math. 32(4), 1977, pp. 826-834.

[16] A. Hanafusa, Y. Yamashita and M. Yasuda, \Three-Dimensional Routing for Multilayer Ceramic
Printed Circuit Boards," Proc. IEEE Intl. Conf. on Computer-Aided Design, 1990, pp. 386-389.

[17] M. A. B. Jackson, A. Srinivasan and E. S. Kuh, \Clock Routing for High Performance ICs," Proc.
ACM/IEEE Design Automation Conf., 1990, pp. 573-579.

[18] A. B. Kahng, J. Cong, and G. Robins, \High-Performance Clock Routing Based on Recursive Geometric
Matching," Proc. ACM/IEEE Design Automation Conf., 1991, pp. 322-327.

[19] C. Monma and S. Suri, \Partitioning Points and Graphs to Minimize the Maximum or the Sum of
Diameters," Proc. Sixth Intl. Conf. on the Theory and Applications of Graphs, John Wiley & Sons,
1988.

[20] L. Nagel, \SPICE2: A Computer Program to Simulate Semiconductor Circuits," ERL Memo. No.
UCB/ERL M75/520, May 1975.

[21] P. Ramanathan and K. G. Shin, \A Clock Distribution Scheme for Non-Symmetric VLSI Circuits,"
Proc. IEEE Intl. Conference on Computer-Aided Design, 1989, pp. 398-401.

[22] J. Rubinstein, P. Pen�eld, and M. A. Horowitz, \Signal Delay in RC Tree Networks," IEEE Transac-
tions on CAD 2(3), July 1983, pp. 202-211.

[23] T. Sakurai, \Approximation of Wiring Delay in MOSFET LSI," IEEE Journal of Solid-State Circuits
18(4), August 1983, pp. 418-426.

[24] K. P. Shambrook, \An Overview of Multichip Module Technologies", Proc. IEEE Workshop on Mul-
tichip Modules, March 1991, pp. 1-6.

[25] R. S. Tsay, \Exact Zero Skew," Proc. IEEE Intl. Conf. on Computer-Aided Design, 1991, pp. 336-339.

[26] D. F. Wann and M. A. Franklin, \Asynchronous and Clocked Control Structures for VLSI Based
Interconnection Networks," IEEE Transactions on Computers 21(3), March 1983, pp. 284-293.

30

