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ZERO-SUM BIPARTITE RAMSEY NUMBERS 

YAIR CARO, Oranim 

(Received May 2, 1991) 

1. INTRODUCTION 

The start ing point of almost all the recent combinatorial research on zero-sum 

problems is the following theorem . 

T h e o r e m A. (Erdos, Ginzburg, Ziv [EGZ]). Let m ^> k ^> 2 be two integers 

such that k | m. Then any sequence of m -f k — 1 integers contains a subsequence of 

cardinality m the sum of whose elements is divisible by k. 

There is a rapidly growing literature on zero-sum problems. As can be see in the 

list of references, most of them dealt with the so-called zero-sum Ramsey numbers, a 

concept first introduced by Bialostocki and Dierker ([BD1] [BD2]). To describe this 

concept as well as the biparti te variant we need a few definitions. Let Z* denote the 

cyclic additive group of order k. A Z^-coloring of the edges of a graph G = (V, E) 

is a function / : E(G) —> Z^. If J2 f{e) = 0 (in Z*), we say that G is a zero-sum 
eeE{G) 

graph ( m o d k ) (with respect to / ) . If k divides the number, e(G), of edges of G, 

then the zero-sum Ramsey number 1t(G,Zj.) is the smallest integer t such that for 

every Z^-coloring of E(Kt) there is a zero-sum ( m o d k ) copy of G in Kt. 

If G is biparti te and k|e(G), then the zero-sum bipartite Ramsey number B(G, Zj.) 

is the smallest integer t such that for every Z^-coloring of E(Kt)t) (the complete 

biparti te graph) there is a zero-sum ( m o d k ) copy of G in Ktt. 

The existence of B(G,2k) follows from the trivial inequality H(G,Zjt) ^ I3(G,k), 

where I?(G, k) is the classical bipartite Ramsey number using k colors (see e.g. 

[GRS]). 

The first problem we consider here, in section 2, is that of estimating B(G,Z2). 

As shown in [ALGA] It(G, Z2) ^ \G\ + 2. 

Define m(G) = min{|yl|, V(G) = A U B, \A\ ^ \B\] where the minimum is taken 

over all the representations of G as a bipartite graph with classes A and H, (e.g., 

"-(A'l.n) = n, 7n(K2)3 U A'4.7) = 9). 
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We prove tliat I3(G,Z2) ^ m(G) + 1 and discuss some exact cases. The second 

problem we consider here, in Section 3, is that of estimating B(Iv'nm,Z^). We prove 

that if K | n (n >̂ m) then H(1vnm, Z^) ^ ti-f k — 1 and explore some cases in which 

this bound is sharp. In contrast we prove that B(Knn,2n^) grows exponentially. 

Essentially the same behaviour is known to hold for It(/v'n, Z^) vs. R,(Kn,2/n^) as 

proved in [CAR1] [CAR5] [ALGA]. 

The third problem considered in Section 3, is to evaluate B(tK2,2k) when k \ t 

and tIv2 is the disjoint union of t edges. Using theorem A and a construction we 

prove B(tK2,lk) — t -j- k — 1. Some related problems will be considered. 

We follow the standard notation of [BOL1]. In particular e(G) denotes the number 

of edges of G. Sn denotes the group of permutations of /.--element set. Cn denotes 

the cyclic group of permutations of ?i-element set. For a finite set S let 

6(S) 
1 if \S\ = 0 (moci 2) 

0 if \S\ = 1 (rnod 2). 

2. A N U P P E R B O U N D FOR B(G,22) 

The essence of this section can be summarized as: 

T h e o r e m 1. Let G be a bipartite graph such that 2 | e(G). 

(i) ifm(G) = 1 (mod 2) then B(G,22) = 777(G). 

(ii) ifm(G) = 0 (mod 2) then B(G,22) <C 771(G) + 1. 

(iii) if 777(G) = 0 (mod 2) and A realizes 771(G), | A | > \B\, and for every x G A 

degx = 0 ( m o d 2 ) then B(G,22) = 771(G). 

For the proof we apply a method developed in [ALCA]. We need Lemma and the 

following definition. 

Def in i t ion . Suppose Hi, H2, . . . , Hn is a family of subgraphs of Ktt. Then the 
n 

sum modulo-2 of Hi, . . ., Hn denoted by 0 Yl Hi, *s ^ i e subgraph of Ktt whose 
1 = 1 

edges are all those edges of Kt t belonging to an odd number of H;-s. 

Observe that this is exactly the sum (in Z2) of the vectors corresponding to the 

Hi-s, where to each Hi is associated the characteristic vector, of length l2, of its 

edges. (Exactly e(G) places are 1 and the others are 0.) 
n n 

In the case that 0 ^ Hi is the empty graph we write 0 ^ H^ -= 0. 
i = l i=\ 

L e m m a . (Parity Lemma.) Let G be a bipartite graph so that 2 | e(G). Then 

B(G,22) is the least integer t such that Kt>t contains a family Hi, . . ., Hn of sub-
n 

graphs isomorphic to G, 77 is odd and 0 ^2 Hi — Q-
i=\ 
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P r o o f . Let It(G) be the family of all subgraphs of Ktt isomorphic to G. 

To each member H G h(G) we make correspond an equation with e(G) variables, 

namely ^2 xe = - ( m - ^ ) -
e€E(//) 

This system of equations has no solution if/ >̂ H(G,Z2), because in this case a 

zero-sum ( mod 2) copy of G will not satisfy its equation. Hence H(G, Z2) is the least-

such t. 

Recall a basic result from linear algebra: The system Ax = b has no solution iff the 

Gaussian elimination procedure results in a row of the form (0, 0, 0 . . . , 0, t) where 

t 7- 0 (see e.g. [STE] p. 142-143). We find that the above system has no solution iff 

there is an odd number of equations whose sum (in Z2) gives 0 = 1 , and the Lemma 

follows. • 

P r o o f o f T h e o r e m 1. Suppose / : E(Ktt) —• Z2 where t = \A\ + 6(A), 

\A\ = 777(G). Observe that t = \A\ + 6(A) = 1 (mod 2). 

Fix a copy of G in Ivt)t, and consider the direct product group C\ x C\~ := II 

acting on V(Kt,t), where C\ acts cyclically on one class of Ktt and Gt on the 

other class. 

How many copies of G do we get from the action of II? 

Exactly t2 = 1 (mod 2). 

On the other hand as 2 | e(G) every edge of E(Kt)t) appears in exactly e(G) copies 

of G, under the action of II. Hence 0 Yl ff(G) — Q, |II | = t2 = 1 (mod 2) and by 

the Parity Lemma I3(G,Z2) ^ t = \A\ + 6(A), \A\ = 777(G) which completes the proof 

of parts (i) and (ii). 

For part (iii) observe that 777(G) = | A | ^ \B\ + 6(B), (by assumption). Let f: 

E(Kt}t) —• Z2 , where t = 777(G) and fix a copy of Ktig in Ktyt where q = \B\ + 6(B). 

In Kt)q fix a copy of G in such a way that A is in the class of order t and B in the 

class of order q. 

Consider the action of the permutation group Cq on the class of order q. As 

q = 1 (mod 2) we get a family of q copies of G. On the other hand consider an 

edge e = (x,y) G E(Ktjq), where x G A. Clearly e appears in exactly deg x copies 

of G under the action of Cq, but deg x = 0 (mod 2) hence 0 Yl a(G) = 2» <Z = -
o£Cq 

(mod 2) and by the parity lemma we are done. • 

A simple observation [ALCA] states that if 2 | Q) then I?(A'n,Z2) = n + 2. Here 

we derive a similar result for the complete bipartite graph A'm>n when 2 | 77777. 

T h e o r e m 2. Let n ^ m ^ \ be integers. Then 

( n -f 1 if 2 I 771, 771 = 77 

H(Ivm>n,Z2) = 77 J I 2 I 777, 77 > 777 

71+ ì Іf2\ П Шìd 2J777. 
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P r o o f . (i) Suppose first 2 | 777, m = n. Let / : E(kn + \,n + i) —' Z. Take n 

vertices of one side of A'n_|_in_|_i, say 771, . . ., un and all the n + 1 vertices of the other 

side, say wu . . ., wn+\. 
n 

Define a sequence of 11+ 1 integers as follows: for 1 <C i <C n + 1, r/z = ^ / ( iv i , Uj). 
i = i 

By Theorem A there are 77 terms whose sum is 0 (mod 2), namely ^ (/; = 0 
« € / 

(mod 2), | / | = n. Now ui, . . ., wn and {w(,i E 1} form a zero-sum copy of 
I\n}n. Hence I3(A'rin, Z2) <C 77 -}- 1. For the lower bound consider A n n with classes 
A = {a!, . . . , 7tn} and B = {w\, . . ., iv n } . Define / : E( A ' n n ) —• Z2 by 

( l i=j=l 

I 0 otherwise. 

This Z2-coloring implies B(Ann,Z2) > », hence B(I\n n ,Zo) =- 77 -f 1. 

(ii) Suppose 2 | 777, 77 > 777. Repeat the argument above for / : E(I\Jin) —• Z-j 

obtain, in exactly the same way, I3(A'mn,Z2) ^ n and clearly LJ(A'„1>n, Z2) ^ n} 

hence H(I\min,Z2) = 77. 

(iii) Suppose 2 | 77, 77 > m and 2 {771. For the upper bound repeat the argument 

of (i) to obtain B(I\mn, Z2) ^ n + 1 . 

For the lower bound consider A ' n n with classes A = {ui, . . ., i t n } , B = {iv\, . . ., 7vn} 

and define / : K(I\'nn) —* Z2 by 

([ i = j 
f(ui,wj)=i . 

I U otherwise. 

Clearly no zero-sum copy of A ' n m exists because for every such copy I/, ^ / ( e ) = 
eeE(H) 

m _E 1 (mod 2). Hence I3(A'mn,Z2) = n + \ completing the proof. • 

3. ESTIMATIONS OF B(A'mn, Z , ) 

Let's first extend the argument used in the proof of theorem 2 to investigate 

t 9 ( A ' m n , Zj_) where k | 777 or k | 77. 

T h e o r e m 3 . Let n ^ m ^ 1 be integers. Then 

(i) H(Iv'm>n,Z,)<C { 

m + k — 1 if k | 777, 777 <CJ 71 <^ 777 + k — 2 

77 if k | 771, 77 ^ 771 - f k — 1 

t 77 + k — 1 ifk | 77 and k \ 777. 
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{ k — 1 if k is a prime 

I / i — T l t, thG" 
[Vk — 1J otherwise 

B(Km>n,Zk) ^max{7/7 + /(k),7?}. 

P r o o f . Suppose k|??? and ??? <C ?? <C ?/?+k —2. Consider / : E(Km+k-\,m+k-\) -+ 

Zk. Take ?/ vertices at one class of I\m+jk_iim+jt-i say { « i r . . , « n } and all the 
n 

?/7 + k — 1 vertices from the other class {?vj, . . . , wm+k-\} Define cii — J2 f(w{} HJ), 

l <C / <C ?// + k — 1. By theorem A there exists I C {V 2 , . . ., 7?? + k — 1}, |I | = ??? 

such that J2 (li = 0 (mod k). Clearly {u"i}"_i and {?v;,? G I} form a zero-sum copy 
iei 

( mod k) of Kjnjl. The two other cases follow easily along the same line, proving (i). 

For (ii) consider the following Z^-coloring. 

Take a copy of A ' m + / ( f c )_ i | m + / (^) - - i with classes {uu . .., um+f{k)-\} and {u?i, . . . , 
wm+f(k)-i }• Define a Zjk-coloring as follows. 

{ 1 iff / ^ ?/7 and j >̂ ??? 

l) otherwise. 

Any coj)y of K7U)U must contain some of the ?/2-, i J> ???, say a of them and some of 

the Wj, j J> ?/7, say b of them. 

For such a copy we have Yl f(e) — ub ^ 0 (mod k) because of the definition 
e£E(KTn,n) 

of f(k), and the fact that a,b <C f(k). Hence we must have B(Kmn,Zk) ^ inax{?7? + 

/(*).«}• ' • 

An immediate corollary of Theorem 3 is: 

T h e o r e m 4 . Let 7/ ^ ??? ^ 1 be integers and k be a prime. Then 

77? + k — 1 if k I 77? 77? <C 7? <C 77? + k — 2 . 
B(Km,n , Z * ) = , 

II k I 77? 7? ^ 77? + k — 1 

(holds even if k is not a prime). 

R e m a r k . The main consequence of Theorem 3 is that if k \ mn and k <C 
max{77?,?i} then B(Knhn,Zk) is small. So it is inevitable to ask what if k \ mn 

but k > max{??7,7/}. Moreover even after Theorems 3 and 4 we have not yet deter­
mined B(Ki>n,Zk) although we know that it is at most ?? + k — 1. We shall take a 
closer look at these problems. 
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Let's first derive a lower bound for B(KnitH,Zk) for large k. 

T h e o r e m 5. Suppose k \ n2 and further n2/k = t where t is a fixed integer. Then 

B(Kn,n,Zk)2 £ e " l 4 ( 2 . 

P r o o f . We apply the "second moment" probabilistic argument. 

Let / : F(1vmrn) —* Zfc be a random mapping, (777 to be determined later), given 

by the rule 
f 1 with probability ^ 2 = T[ 

1 0 with probability 1 — -L. 

For every copy of 1vn)7l in Km,m let ^ — 5Z f(e) ^ e t u e edge-sum random vari-
eeE(Kn,n) 

able. Then Y ~ B(n2, ^ ) , E(Y) = n2 • ^ = § and <r(Y) = x / n 2 ^ ( l - ^ ) < 

w 4, (V is a binomial random variable). By the standard approximation of the bi­

nomial distribution (see e.g. [BOL2] p. 11-12) the probability that Y = 0 (mod k) 

(i.e., will deviate by at least w | standard deviations from its expectation) is 

<C Proh (\Y - E(Y)\ % * ) <C 2 f-
2 f c 2 l 4" 2 = 2 e ~ * 2 l 2 " \ 

Hence if we choose 777, such that (rn) < ^ek l2n then we infer that B(K1ltn, Ik) > m. 

A simple calculation gives 77? <J £ e * 2 / 4 " 3 = £ e n / 4 ' 2 . Hence B(Kritn,lk) ^ 

Z-enlAt\ "' "* U 
le 

R e m a r k . The same argument gives an exponential lower bound for B(Knn, Z^) 

if k I 7i2 and k > nl 5+ £ , e > 0 fixed. 

Let's now derive an upper bound for B(Kjnn, Z m n ) . 

T h e o r e m 6. 

B(KmtTl,lmn) <: n<m{(2n-2)C2m~ M + 1, (2?n - 2) ^ ~ M + l } 

P r o o f . Set l + ( 2 7 ? - 2 ) ( 2 n ; - 1 ) = q and let / : E(Kqtq) — Z m n . Choose 2?/i - 1 

vertices A = {vi, • . ., i>2m-i} from one class of Kqq, and let B denote the set of 

vertices of the other class. By theorem A, for each u G B there is a subset Au C A 

such that |A U | = 771 and Yl f('uiv) = 0 (mod 7/?). 

But there are (2m~l) subsets of cardinality 777 of A, and \B\ = q = (2n-2)(2™-1) + 

1, hence there are 27/ — 1 vertices of B, say 1/1, 1/3, . . ., 772n_i such that AUl = Au.2 = 

. . . = Ali2n_l := D, (D C A). For each 1 <C i <C 271 — 1 put az- = ^ XZ /(u*> i ;) anc^ 

observe that az must we an integer for 1 <C i <C 2n — 1. 
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Apply theorem A again on {ci\,.. .,a2n-\}. Then there is a subset I E { 1 , 2 , . . . , 

2n — 1}, | 1 | = 7i, such tha t ^ a, = 0 (mod n) . 
• € / 

Now the complete biparti te graph A'm .n with classes Vi = D and V2 = {«»: « G 1} 

is a zero-sum copy (mod7?i7i) of Km)n- O 

R e m a r k . A rough estimate gives ^ e n / 4 ^ B(Kn)H, Zn2) ^ n 4 n , but by the 

trivial observation that B(Kn>n,Zn2) ^ I3(Ivnn,2), and by the standard probabilistic 

argument we can improve the lower bound to B(A'n>n,Zn2) ^ ^ 2 n ' 2 ^ - n j e n ' 4 . 

Also by s tandard probabilistic argument one can show H(A'nn,n
2) J> ^nn. 

Hence /3(A n > n ,Z n 2) < ^ B(Kn)fl,n
2). 

Our last result is the exact determination of B(K\)Tl,Zk) and B(nK2,Zk). 

T h e o r e m 7. Let ?i ^ t ^ 2 be integers such that k\n. Then 

B(nK2,Zk) = B(K1)n,Zk) = n + * - 1. 

P r o o f . Let / : F(A'n+jt_in+jb_i) —• Zfc. Then trivially by Theorem A (as it 

contains both a copy of I\in+fc_i and a copy of (n + k — 1)A'2) there is a zero-sum 

(mod k) copy of both Ivin and 7iAV For the lower bound of B(K\n,Zk) take a 

copy of An+A._2,n+fc-2 with classes {ul}u2,.. .,un+k-2} and {w\,. ..,wn+k-2}. 

{ 1 if 1 ^ i <C 7i — 1 and n<^j^.n + k — 2 
or 1 ^ j ^ n — 1 and n^.i^n + k — 2 

0 otherwise. 

It is easily verified that there is no zero-sum copy of A'i>n. For the lower bound of 

B(nK2, Zk) take again a copy of Kn+k-2)Tl+k-2 with classes as before. 

( 1 i f n ^ i ^ n + k-2 
Define f(ui,Wj) — < 

[ 0 otherwise. 

Once again it is easy to see that for every copy of nA'2, 1 ^ Y2 f(e) ^ & "~ -> 
e€E(nK2) 

hence no zero-sum copy of 7iA'2 exists. D 

In closing we suggest some further problems and conjectures, whose solution may 

contribute to our understanding of the behavior of the zero-sum biparti te Ramsey 

numbers. 

P r o b l e m 1. Determine B(G, Z2) for every graph G such that 2 | e(G), or at least 
if G is connected. 

P r o b l e m 2. Determine B(KnX)H,Zk) for k \ mn and k ^ max{?n ,n} . Recall that 

by Theorem 3 this is a moderate number. 
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P r o b l e m 3. Is it true that lim B(Kn n , 7.n?)/ B(Kn n , 2 ) — 1? 

C o n j e c t u r e . (A. Biallostocki) For n ^ 2 B(I\2>n^2n) ^ 4?i — 3. 

Observe t h a t by theorem G we only know that B(K2,n, ^2n) ^ 6n — 5. 

A c k n o w l e d g e m e n t . I am indebted to Noga Alon and Arie Bialostocki for several 

helpful remarks. I am also indebted to the referee for his suggestions. 
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