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1. INTRODUCTION

The starting point of almost all the recent combinatorial research on zero-sum
problems is the following theorem.

Theorem A. (Erdos, Ginzburg, Ziv [EGZ]). Let m > k > 2 be two integers
such that k | m. Then any sequence of m + k — 1 integers contains a subsequence of
cardinality m the sum of whose elements is divisible by k.

There is a rapidly growing literature on zero-sumn problems. As can be see in the
list of references, most of them dealt with the so-called zero-sum Ramsey numbers, a
concept first introduced by Bialostocki and Dierker ([BD1] [BD2]). To describe this
concept as well as the bipartite variant we need a few definitions. Let Z; denote the
cyclic additive group of order k. A Zi-coloring of the edges of a graph G = (V, E)
is a function f: E(G) — Zx. 1f Y f(e) =0 (in Z), we say that G is a zero-sum

ee E(G
graph (modk) (with respect to f)( )lf k divides the number, e(G'), of edges of (,
then the zero-sum Ramsey number R((, Zy) is the smallest integer ¢ such that for
every Zp-coloring of E(K) there is a zero-sum (mod k) copy of G in K.

If GG is bipartite and k|e((), then the zero-sum bipartite Ramsey number B(G,Z}.)
is the smallest integer ¢ such that for every Zj-coloring of E(K;;) (the complete
bipartite graph) there is a zero-sum (mod k) copy of G in Ny ;.

The existence of B((,Z;) follows fromn the trivial inequality B(G,Z;) < B(G, k),
where B(G, k) is the classical bipartite Ramsey number using k colors (see e.g.
[GRS])).

The first problem we consider here, in section 2, is that of estimating B(G,Z,).
As shown in [ALCA] R(G,Z,) < |G| + 2.

Define m((') = min{|A|,V(G) = AU B, |A| > |B|} where the minimum is taken
over all the representations of GG as a bipartite graph with classes A and B, (e.g.,
m(Ny ) =n, m(Ky3U RN47)=9).
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We prove that B((/,Z2) < m(G) + | and discuss some exact cases. The second
problem we consider here, in Section 3, is that of estimating B(Np, m, Zi). We prove
that if K |n (n > m) then B(N, m,Z;) < n+ k—1 and explore some cases in which
this bound is sharp. In contrast we prove that B(K, n,Z,2) grows exponentially.
Essentially the same behaviour is known to hold for R(K,,Zy) vs. R(N,, Z(’;)) as
proved in [CARI1] [CARS] [ALCA].

The third problem considered in Section 3, is to evaluate B(tK3,Z;) when k | ¢
and tK» is the disjoint union of ¢t edges. Using theorem A and a construction we
prove B(tN2,Z) =t + k — 1. Some related problems will be considered.

We follow the standard notation of [BOLI1]. In particular e(() denotes the numnber
of edges of (7. 5, denotes the group of permutations of n-element set. C,, denotes
the cyclic group of permutations of n-element set. For a finite set .S let

1 if |S| =0 (mod 2)
86(5) = e
0 if|S|=1 (mod 2).

2. AN UprPER BoOuND FOR B((,Z,)
The essence of this section can be summarized as:

Theorem 1. Let (¢ be a bipartite graph such that 2| e((G).

(1) iIfm(G) =1 (mod 2) then B(G,Zy) = m(G).

(1) ifm(G) =0 (mod 2) then B(G,Z2) < m(G) + 1.

(i) ifm(G) = 0 (mod 2) and A realizes m((G), |A| > |B|, and for every x € A
degz =0 (mod2) then B((,Z5) = m(G).

For the proof we apply a method developed in [ALCA]. We need Lemma and the
following definition.

Definition. Suppose Hy, Ho, ..., H, is a family of subgraphs of Ay ,. Then the

n

sum modulo-2 of Hy, ..., H, denoted by & > H;, is the subgraph of Ay, whose
i=1

edges are all those edges of Iy, belonging to an odd number of H;-s.

Observe that this is exactly the sum (in Z3) of the vectors corresponding to the
I;-s, where to each H; is associated the characteristic vector, of length ¢, of its
edges. (Exactly e((7) places are 1 and the others are 0.)

n

™=

In the case that @ 5~ H; is the empty graph we write &

i=1 i

H; =0.
1

Lemma. (Parity Lemuma.) Let (G be a bipartite graph so that 2 | e((7). Then
B(G,Z,) is the least integer t such that N, contains a family H,, ..., H, of sub-

n
graphs isomorphic to G, n is odd and & Y H; = 0.

i=1
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Proof. Let [,(G) be the family of all subgraphs of K;; isomorphic to (.
To each member H € I;((:) we make correspond an equation with e((G) variables,
namely Yz, =1 (in Z).

e€E(H)

This system of equations has no solution if t > B((/,Z3), because in this case a
zero-suin (mmod 2) copy of (¢ will not satisfy its equation. Hence B(G, Z5) is the least
such ¢.

Recall a basic result from linear algebra: The system Az = b has no solution iff the
Giaussian elimination procedure results in a row of the form (0,0,0...,0,¢) where
t # 0 (see e.g. [STE] p. 142-143). We find that the above system has no solution iff
there is an odd number of equations whose sum (in Z,) gives 0 = 1, and the Lemma
follows. a

Proof of Theorem 1. Suppose f: E(KN;;) — Zy where t = |A| + 6(A),
|A] = m(G). Observe that t = |[A|+ 6(A) =1 (mod 2).

Fix a copy of (i in Ny, and consider the direct product group Ct(l) X Ct(:)) =H
acting on V(N,¢), where Ct(l) acts cyclically on one class of K;,; and Ct(z) on the
other class.

How many copies of (¢ do we get from the action of [/?

Exactly 2 =1 (mod 2).

On the other hand as 2| e((7) every edge of E(L;,) appears in exactly e((7) copies

of (7, under the action of /1. Hence & Y. o(G) =0, |[H| =t> =1 (mod 2) and by
oeH
the Parity Lemma B(G,Z3) < t = |A|+6(A), |A| = m(¢') which completes the proof

of parts (i) and (ii).

For part (iii) observe that m(G) = |A| > |B| + 6(B), (by assumption). Let f:
E(K¢1) — Za, where t = m((/) and fix a copy of Ky 4 in Ky, where ¢ = |B| + é(B).
In Ky, fix a copy of ¢ in such a way that A is in the class of order ¢t and B in the
class of order g¢.

Consider the action of the permutation group Cy on the class of order ¢q. As
q = 1 (mod 2) we get a family of q copies of (. On the other hand consider an
edge e = (z,y) € E(K;,), where 2 € A. Clearly e appears in exactly degz copies

of (i under the action of C,, but degz = 0 (inod 2) hence & Y o(G)=0,¢=1
0€C,
(mod 2) and by the parity lemma we are done. 0O

A simple observation [ALCA] states that if 2| (}) then R(K,,Z») = n+ 2. Here
we derive a similar result for the complete bipartite graph Kpn,n when 2| mn.

Theorem 2. Let n > m > 1 be integers. Then

n+1 if2|m, m=n
B(Kppn,Zs) =4 n if2|m, n>m
n+1 if2|n and 2¢m.
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Proof. (i) Suppose first 2| m, m = n. Let f: E(kny1n41) — Z. Take n
vertices of one side of Ny 1, say uy, ..., u, and all the n41 vertices of the other
side, say wy, ..., Wp41.

n
Define a sequence of n+ 1 integers as follows: for | <7< n+1, a; = 3 f(wi, uj).

=1
By Theorem A there are n terms whose sum is 0 (mod 2), namely Y «; = 0
i€l
(imod 2), |I| = n. Now wuy, ..., u, and {w;,i € [} form a zero-sum copy of

KNy n. Hence B(K,, ,,Z2) < n+ 1. For the lower bound consider K, , with classes
A={uy,...,u,} and B = {wy,...,w,}. Define f: E(Ny ) — Zs by

1 1=5=1

f(u,-,wj):{

0 otherwise.

This Zs-coloring implies B(K,, n,Z2) > n, hence B(N,, »,Z2) = n + 1.

(ii) Suppose 2| m, n > m. Repeat the argument above for f: E(N\, ,) — Z»
obtain, in exactly the same way, B(N,,n,Z2) < n and clearly B(N,, ., Z2) > n,
hence B(Ny n,2Z2) = n.

(iii) Suppose 2 |n, n > m and 2tm. For the upper bound repeat the argument
of (i) to obtain B(Kp, n,Z2) < n+ 1.

For the lower bound consider K, ,, with classes A = {u),...,u,}, B = {w),...,w,}

and define f: E(K, ) — Z3 by

| i
f(ui,wj):{ =

0 otherwise.

Clearly no zero-sum copy of Ny, ,, exists because for every such copy H, 5 f(e) =
e€E(H)
m =1 (mod 2). Hence B(Ky n,Z2) =n+ 1 completing the proof. O

3. ESTIMATIONS OF B(Ny, n, Zy)

Let’s first extend the argument used in the proof of theorem 2 to investigate
B(Kyun,Zi) where k| m or k| n.

Theorem 3. Let n > m > 1 be integers. Then

m+k—1 ifklm m<n<m+k-—2
(i) B(KNmn, L)< {n ifklm n>m+k—1
n+k—1 il k|n and ktm.
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then

k-1 if k is a prime
(1) put  f(k) =

[V —1] otherwise

B(Kpon,Zi) = max{m+ f(k),n}.

Proof. Supposek|mandm < n < m+k—2. Consider f: E(RKp4k—1,mtk-1) —
Zi. Take n vertices at one class of Nypp—1 mek—1 say {ui,...,u,} and all the

n
m+ k — 1 vertices from the other class {wy,..., Wm4r—1} Define a; = Y f(wi, uj),
i=1

Il <i<m+k—1. By theorem A there exists [ C {1,2,...,m+k —J 1}, Il =m
such that 3~ a; =0 (inod k). Clearly {u;}7-, and {w;,i € I'} form a zero-sum copy
i€l
(mod k) ofel\',,l‘n. The two other cases follow easily along the same line, proving (i).
For (i1) consider the following Z-coloring.
Take a copy of Nyugsk)=1,m+sk)—1 With classes {uy, ..., upmypry=1} and {wy, ...,
Wyt pk)—1}- Define a Zy-coloring as follows.

A ) 1 ffi>mand j >2m
U, Wy ) = .
0 otherwise.
Any copy of I\, , must contain some of the u;, : > m, say a of them and some of
the wj, j 2 mn, say b of them.

For such a copy we have S>> f(e) = ab# 0 (mod k) because of the definition
e€EE(Km,n)
of f(k), and the fact that a,b < f(k). Hence we must have B(Rp, n, Zg) 2 max{m+

f(k),n}. i

An immediate corollary of Theorem 3 is:

Theorem 4. Let n > m > 1 be integers and k be a prime. Then

m+k—1 ifklm m<n<m+k-2.

] [\>m nyz' =
(Ko i) {n ifklm n>2m+k—1

(holds even if k is not a prime).

Remark. The main consequence of Theorem 3 is that if k¥ | mn and k <
max{m, n} then B(N,, ,,Z) is small. So it is inevitable to ask what if k| mn
but & > max{m,n}. Moreover even after Theorems 3 and 4 we have not yet deter-
mined B(N| ,,Z;) although we know that it is at most n 4+ k£ — 1. We shall take a

closer look at these problems.
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Let’s first derive a lower bound for B(K,, ., Zy) for large k.

Theorem 5. Suppose k |n? and further n?/k = t where t is a fixed integer. Then
B([\'n’”, ZL) 2 211_6671/412‘

Proof. We apply the “second moment” probabilistic argument.
Let f: E(Nm,m) — Zi be a random mapping, (m to be determined later), given
by the rule

fe) = 1 with probability 2:‘7 = %
0 with probability 1 —

3}

For every copy of Ny, n in Ny let Y = 3 f(e) be the edge-sumn random vari-
c€EKn.n)

able. Then Y ~ B(nz, _}1‘7), EY) = n2. k. =

2n?

A 2 _k k
and o(Y) = y/n W(l —55) <

2n2

Ik

%, (Y 1s a binomial randomn variable). By the standard approximation of the bi-
nomial distribution (see e.g. [BOL2] p. 11-12) the probability that Y = 0 (inod k)

(1.e., will deviate by at lcast \/I, standard deviations from its expectation) is

k 22 -
< Prob (n' —E(Y)| > g) < e 2K AT g —k?/2m?

. 2 .2 /0,2 . .

Hence if we choose m, such that (™) < 1¢*7/27 then we infer that B(N, , Zx) > m.

) n 2 1
: . : . n k%/an® _ n _n/4at? -

A simple calculation gives m < e / = g€ /47 Hence B(KNyn, L) 2

2
n en/at” a

2e

Remark. Thesame argument gives an exponential lower bound for B(K,, 5, Zy)
if k| n?and k> n'>* ¢ >0 fixed.

Let’s now derive an upper bound for B(Ny n, Zmn)-

Theorem 6.

2m — | 2n—1
B(Kmn,Limn) < min{(‘Zn — 2)( m ) +1,(2m— 2)( n ) + l}

m n

Proof. Setl+(2n-— 2)(2",'”“') =qandlet f: E(K,,) — Zmn. Choose 2m — 1
vertices A = {vy,...,v2m—1} from one class of IV, ,, and let B denote the set of
vertices of the other class. By theorem A, for each u € B there is a subset A,, C A

such that [Ay] =mand Y f(u,v) =0 (mod m).

VEA,
But there are (2";:1) subsets of cardinality mof A, and |B| = ¢ = (‘271—2)(2":;1) +
1, hence there are 2n — | vertices of B, say uy, us, ..., ug,—1 such that A,, = A,, =
coi = Augo, =D, (D C A). Foreachl <i<2n—1 put a; = # > f(u;,v) and
veD

observe that a; must we an integer for | <7< 2n— 1.
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Apply theorem A again on {ay,...,a2,-1}. Then there is a subset I € {1,2,...,
2n — 1}, |I| = n, such that )" a; =0 (mod n).

i€l
Now the complete bipartite graph K, , with classes Vi = D and Vo, = {u;: i € I}
is a zero-sum copy (modmn) of Kp, . a

Remark. A rough estimate gives ;—ee"/“ < B(Kpn,Zn2) < nd4™, but by the
trivial observation that B(Kp, n,Z,2) 2 B(Kn n,2), and by the standard probabilistic
argument we can improve the lower bound to B(Kpn,Z,2) 2 —2'—‘32"/2 > 2"—86"/4.
Also by standard probabilistic argument one can show B(K, »,n?) > é%n".

Hence B(Kn n,Z,2) K B(Knn,n?).

Our last result is the exact determination of B(Ki n,Zx) and B(nK,, Zy).
Theorem 7. Let n > k > 2 be integers such that k |n. Then

B(nKy,2;) = B(K1n,Zx) =n+k —1.

Proof. Let f: E(Kntk—1n+k—1) — Zr. Then trivially by Theorem A (as it
contains both a copy of Ky n4r—1 and a copy of (n + k — 1)K3) there is a zero-sum
(mod k) copy of both K;, and nK,. For the lower bound of B(K n,Zi) take a
copy of Kytr-2n4k—2 With classes {uy,us,...,unyr—2} and {wi, ..., wopk—2}.

1 fl<i<n—-landng<j<n+k—-2
Define f(u;,w;) = orl<j<n—landng<i<n+k—2
0 otherwise.

It is easily verified that there is no zero-sum copy of K ,. For the lower bound of
B(nKq, ;) take again a copy of K, 4k—2 ntk—2 With classes as before.

1 fngi<n+k-2

0 otherwise.

Define f(u;,w;) = {

Once again it is easy to see that for every copy of nKs, 1 < o fle) <k-—1,
eEE(an)
hence no zero-sum copy of nK exists. O
In closing we suggest some further problems and conjectures, whose solution may
contribute to our understanding of the behavior of the zero-sum bipartite Ramsey
numbers.

Problem 1. Determine B(G,Z;) for every graph G such that 2|e(G), or at least
if (i is connected.

Problem 2. Determine B(Ky, n,Zy) for k| mn and k < max{m,n}. Recall that
by Theorem 3 this is a moderate number.
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Problem 3. Is it true that lim B(K, ,,Z,2)/B(Kpn,2) =17

Conjecture. (A. Biallostocki) For n > 2 B(K2,,Z2,) < 4n —3.
Observe that by theorem (' we only know that B(K3n,Z2,) < 6n — 5.
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