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Zero-temperature glass transition in two
dimensions
Ludovic Berthier 1, Patrick Charbonneau 2,3, Andrea Ninarello 4, Misaki Ozawa1 & Sho Yaida5

Liquids cooled towards the glass transition temperature transform into amorphous solids that

have a wide range of applications. While the nature of this transformation is understood

rigorously in the mean-field limit of infinite spatial dimensions, the problem remains wide

open in physical dimensions. Nontrivial finite-dimensional fluctuations are hard to control

analytically, and experiments fail to provide conclusive evidence regarding the nature of the

glass transition. Here, we develop Monte Carlo methods for two-dimensional glass-forming

liquids that allow us to access equilibrium states at sufficiently low temperatures to directly

probe the glass transition in a regime inaccessible to experiments. We find that the liquid

state terminates at a thermodynamic glass transition which occurs at zero temperature and is

associated with an entropy crisis and a diverging static correlation length. Our results thus

demonstrate that a thermodynamic glass transition can occur in finite dimensional glass-

formers.
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D ifficult scientific problems can drastically simplify in some
unphysical limits. For instance, very large dimensions
(d →∞, where d is the spatial dimensions) give relevant

fluctuations a simple mean-field character1, and one-dimensional
(d= 1) models can often be treated exactly. Yet these two solvable
limits are crude idealizations of our three-dimensional reality.
The rich theoretical arsenal developed to interpolate between
them has revealed the highly nontrivial role of spatial fluctuations
in all areas of science. In particular, as the number of spatial
dimensions decreases, a phase transition may change nature or
even disappear. Dimensionality thus provides a key tool for
understanding the essence of many natural phenomena.

The glass transition from a viscous liquid to an amorphous
solid is no exception2. Its mean-field description, which becomes
mathematically exact as d →∞, explains the dramatic slowdown
of glass-forming liquids through the rarefaction of the number of
glassy metastable states upon approaching a critical temperature,
TK3,4. The configurational entropy, sconf, which is the logarithm of
the number of such states, becomes subextensive when T ≤ TK.
The equilibrium glass transition thus corresponds to an entropy
crisis, a hypothesis first suggested by Kauzmann in his visionary
analysis of experimental data5 and initially formalized by Gibbs
and DiMarzio6 in the context of a lattice polymer model.

The broad discussion that has since ensued2 has notably tried to
describe the role of finite-d fluctuations beyond the mean-field
framework7–12, relating in particular the vanishing of sconf to a
diverging point-to-set correlation length, the key quantity for
characterizing nonperturbative fluctuations in glass formers13.
These fluctuations, however, make it difficult to examine finite-
dimensional glass formers analytically, even for simple models
composed of point-particles such as those we study here. Exploring
a broader diversity of models, from polymer14 to anisotropic pat-
chy15 models, may yet provide additional theoretical insight.

Meanwhile, Kauzmann’s intuition has been repeatedly vali-
dated by experiments16,17, but the conceptual and technical limits
of his results have not been lifted. Current experiments access
essentially the same restricted temperature range as his 70-year
old work. Theory and experiments thus currently fail to assess the
status of the Kauzmann transition in finite d, or whether new
mechanisms qualitatively change the underlying physics18,19.
Experimentally, it thus remains controversial whether the trend
discovered by Kauzmann survives at much lower temperatures;
entropy could go smoothly to zero20,21, or to a finite residual
value as temperature vanishes15,22,23.

In this context, computer simulations are especially valuable.
They allow direct measurements of both the configurational
entropy and the point-to-set correlation length for realistic
models of finite-dimensional glass formers2. The recent devel-
opment of the swap Monte Carlo algorithm (SWAP) further
allows the exploration of a temperature regime that experiments
cannot easily access24, even using ultrastable glassy materials25.
This has consolidated and extended Kauzmann’s experimental
findings for three-dimensional glass formers26. Here, we report
that SWAP is so efficient in d= 2 that it provides access to a
temperature regime equivalent to experimental timescales 1018

larger than the age of the universe. This remarkable advance gives
very strong evidence of a thermodynamic glass transition at TK=
0 for d= 2, accompanied by an entropy crisis and the divergence
of the point-to-set correlation length. Our results thus illuminate
the low-dimensional fate of the glass transition and shed light on
the nature of glassy dynamics in d= 227–30.

Results
Model and macroscopic behavior. We study a two-dimensional
mixture of soft particles interacting with a 1/r12 purely repulsive

power-law pair potential and a size polydispersity chosen to
minimize demixing, fractionation, and crystallization (see Meth-
ods). The average particle diameter is used as unit length, and the
strength of the interaction potential as unit temperature. SWAP is
implemented following the methodology recently validated for
d= 324. Systems ranging from N= 300 to N= 20,000 particles
within a periodic box are used to carefully track finite-size effects
in both dynamics and thermodynamics. We mainly present
results of N= 1000. Whereas experimental systems are typically
composed of more complex particles (such as large molecules or
polymers), the exact mean-field theory has thus far only been
developed for the same type of point particles as we simulate here.
In addition, such models have become a standard to study fun-
damental aspects of the glass transition, and are good repre-
sentations of colloidal glasses.

Figure 1a shows that the static structure factor S(k) evolves
smoothly over a broad temperature range, from the onset
temperature Tonset= 0.250 down to T= 0.026, which is the
lowest temperature for which our strict equilibrium criteria are
met. The typical low-temperature configuration depicted in
Fig. 1b shows that particles of different sizes are well mixed,
and that local ordering is extremely weak. In fact, no crystal-
lization event was ever observed in our simulations, and the
correlation lengths extracted from the pair correlation function
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Fig. 1 Statics and dynamics of the d= 2 glass former. a The smooth
evolution of the static structure factor from Tonset down to the lowest
studied temperature T= 0.026 indicates that the system remains fully
amorphous at all T. b Snapshot of an equilibrium configuration at T=
0.026. c Arrhenius representation of the structural relaxation time τα using
SWAP and normal Monte Carlo dynamics, rescaled by the relaxation time
at the onset temperature. The mode-coupling temperature, TMCT (gray
dashed line), and the estimated range of experimental glass temperature,
Tg (navy strip), are indicated. The Arrhenius fit to the low-T data provides a
lower bound for the growth of τα. SWAP can equilibrate systems down to
T≈ 0.3Tg, where the Arrhenius fit gives τnormal

α =τ0 � 1046
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for translational and bond-orientational orders evolve modestly
with T (see Supplementary Note 1). In other words, the model is
an excellent glass former.

The bulk dynamics and equilibration are captured by the bond-
orientational order time correlation, Cψ(t), which is not affected by
long-time tails observed in simple two-dimensional fluids27,31. The
1/e decay of Cψ(t) robustly defines bulk relaxation timescales τα
both for SWAP (τSWAP

α ) and normal (τnormal
α ) Monte Carlo

dynamics (Fig. 1c). We normalize these timescales by
τ0 � τnormal

α ðTonsetÞ. In agreement with earlier works27, we find
that translational correlation functions suffer from large finite-size
effects, but that subtracting long-range Mermin–Wagner transla-
tional fluctuations results in system-size independent measure-
ments28–30 consistent with bond-orientational dynamics (see
Supplementary Fig. 1). The normal dynamics exhibits a well-
known super-Arrhenius growth of τα. Fitting its temperature
evolution to a power-law divergence situates the mode-coupling
crossover at TMCT= 0.123, which is roughly the lowest temperature
accessible with this dynamics. Earlier work showed that thermaliza-
tion can be achieved below TMCT using Monte Carlo simulations32.
Following ref. 24, we estimate the narrow range within which the
experimental glass temperature takes place as Tg∈ [0.0738, 0.0907].
(Henceforth we set Tg= 0.082.) The lower end of this interval stems
from an Arrhenius fit which provides a lower bound to the true τα.
By all estimates, SWAP dynamics is clearly much faster than the
normal one. The speedup is about 5 orders of magnitude at TMCT,
10 at Tg, and the Arrhenius lower bound suggests a formidable 42
order-of-magnitude speedup at T= 0.026. Using an atomistic value,
τ0= 10−10 s, converts this estimate to τα= 1036 s, or approximately
1018 times the age of the universe. Such a “cosmological” speedup
leaves no doubt that the SWAP equilibration algorithm largely
bypasses the slowdown associated with the glass transition in d= 2.

Configurational entropy. This computational advance permits
the study of the d= 2 configurational entropy and its relationship
to the putative entropy crisis far beyond the previous work33.
Extending earlier work on d= 3 systems26, we obtain indepen-
dent estimates of sconf using state-of-the-art methodologies, see
Fig. 2a. Technical details are described in Supplementary Note 2.
The first estimate stems from subtracting the vibrational con-
tribution, measured by minimizing the potential energy of the
system to an inherent structure and obtaining its vibrational
spectrum, from the total liquid entropy34. This potential energy
landscape (PEL) approach needs to be complemented, for poly-
disperse systems, with an independent measure of the mixing
entropy35. Because minor but systematic additional adjustments
are then required, two sets of PEL estimates are reported in
Fig. 2a. The two are quantitatively close and similarly decrease
with T, which confirms that methodological details do not affect
our results in any essential way. This approach extends sconf
measurements from 1.5Tg in earlier d= 2 simulations33 down to
a temperature five times smaller, 0.3Tg.

Our second estimate directly measures the glass entropy by
performing a thermodynamic integration from the well-
controlled harmonic solid limit. This approach, which is inspired
by the Frenkel–Ladd method for crystals36, was recently adapted
to polydisperse amorphous solids37. Because it does not count the
number of inherent structures but measures instead the entropy
of constrained glassy states, it is also very close in spirit (although
not equivalent37) to the free-energy measurement that makes use
of the Franz–Parisi potential38. The Frenkel–Ladd estimate is
smaller than the PEL ones, as expected, but exhibits a similar
temperature dependence.

From the data in Fig. 2a, sconf seemingly vanishes close to TK=
0. This behavior sharply contrasts with that of three-dimensional

glass formers, for which evidence suggests that TK > 05,16,17,26.
The impending entropy crisis is expected to give rise to large-
scale fluctuations with a growing point-to-set correlation
length13. We use the computational tools developed in refs. 26,39,40

to analyze the thermodynamic properties of liquids confined
within spherical cavities of radius R drawn from a reference
equilibrium configuration (see Supplementary Note 3). The
distribution P(Q) of the core cavity overlap Q among
the confined equilibrium glassy configurations is then analyzed.
The point-to-set correlation length, ξPTS, is determined from the
decay with R of the average overlap. This length is then

transformed into a third estimate, sconf / ξ�ðd�θÞ
PTS with θ= 1. In

d= 2, this choice of θ is natural because it both saturates the
bound θ ≤ d− 113 and satisfies the wetting relation θ= d/23. The
resulting sconf(T)= ξPTS(Tg)/ξPTS(T) in Fig. 2a again has a similar
temperature evolution as other estimates.

Figure 2b shows that rescaling all configurational entropies by
their value at Tg collapses the entire set of measurements. This
robustness is non-trivial because all four estimates make different
types of approximations. The agreement of their temperature
dependence may thus resolve earlier discrepancies and debates
regarding conflicting estimates of the configurational
entropy41,42.

One expects sconf to vanish linearly, sconf∝ (T− TK), but this
scaling arguably has a quadratic correction at higher tempera-
tures. We thus perform a quadratic fit to the low-temperature
regime, T < Tg. This fitting yields |TK| ≤ 0.003 for all cases. These
estimates of TK are 10 times smaller than our lowest temperature,
T= 0.026, and 30 times smaller than Tg. The scaling behavior
implied by this observation is presented in Supplementary Note 4.
Known alternatives to an entropy crisis invoke a change in the
concavity of sconf14,22,43 and should be accompanied by a
maximum in the specific heat cV18,20,21; we observe neither the
convexity (Fig. 2a) nor the specific heat maximum (Fig. 2c). As
T → TK, cV instead monotonically increases towards a finite value
that is larger than the Dulong–Petit law. These observations
thus strongly support the occurrence of a non-trivial entropy
crisis at TK= 0. The only alternative left is a change of behavior
occurring at temperatures even lower than those we can study
directly.

Point-to-set length scale. The thermodynamic glass transition at
TK= 0 also coincides with a divergence of the point-to-set cor-
relation length. We illustrate the physical meaning of this length
scale in Fig. 3a in the form of a (T, 1/R) diagram reminiscent of
both the Franz–Parisi thermodynamic construction38 and of the
random pinning approach44,45. Upon decreasing the cavity size at
a given temperature, the system crosses over from a low-Q regime
at large R to a high-Q regime at small R, as illustrated by the
snapshots in Fig. 3a. For any T > 0, this crossover around R ≈ ξPTS
corresponds to a finite-size version of the random first-order glass
transition with a rarefaction of the number of locally available
states as R decreases46. The evolution of P(Q) in Fig. 3b indeed
exhibits features reminiscent of phase coexistence near an inci-
pient random first-order transition. The crossover also
sharpens as T decreases, suggesting that the growing correlation
length transforms it into a genuine thermodynamic phase tran-
sition as T → TK= 0. In absolute values, ξPTS ≈ 6.5 at T= 0.028,
which represents a very large static correlation length for
glassy models26,39,40. It implies that large clusters comprising
about 120 particles are statically correlated, and should thus
move collectively to restructure the liquid. These results are
consistent with the sharp decay of the configurational entropy
in Fig. 2 and the expected dramatic increase of the relaxation time
in Fig. 1.
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Discussion
The problem of the glass transition has two fundamental facets:
thermodynamics and dynamics. While the current study focused
on the thermodynamics of d= 2 glass formers, its dynamical
counterpart, which involves obtaining a detailed functional form
of the structural relaxation time, remains for now out of reach of
computational work. Our results nonetheless suggest that in d= 2
the divergence of the relaxation time must take place at zero
(rather than at finite) temperature. By identifying the thermo-
dynamic properties that underlie the nature of glassy dynamics in
d= 227–30, our results provide additional evidence that a ther-
modynamic transition can occur in finite-dimensional systems,
and that the lower critical dimension for the long-range amor-
phous order is dL= 2 (see Supplementary Note 5). This finding
lends indirect support to previous observations in d= 326, and
will surely guide future analytical work.

Methods
Model. The glass-forming model we consider consists of particles with purely
repulsive soft-sphere interactions, and a continuous size polydispersity. Particle

diameters, σi, are randomly drawn from a distribution of the form: f(σ)= Aσ−3, for
σ∈ [σmin, σmax], where A is a normalization constant. The size polydispersity is

quantified by δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 � �σ2

p
=�σ, where � � � � Rdσ f ðσÞð� � �Þ, and is here set to δ=

0.23 by imposing σmin/σmax= 0.45. The average diameter, �σ, sets the unit of length.
The soft-sphere interactions are pairwise and described by an inverse power-law
potential

vijðrÞ ¼ v0
σ ij
r

� �12

þ c0 þ c1
r
σ ij

 !2

þ c2
r
σ ij

 !4

; ð1Þ

σ ij ¼
ðσ i þ σ jÞ

2
ð1� εjσ i � σ jjÞ; ð2Þ

where v0 sets the unit of energy (and temperature with Boltzmann constant kB= 1),
and ε ¼ 0:2 quantifies the degree of non-additivity of particle diameters. We
introduce ϵ> 0 to the model in order to suppress fractionation and thus enhance
glass form ability24,47. The constants, c0, c1, and c2, enforce a vanishing potential
and the continuity of the first and second derivatives of the potential at the cut-off
distance rcut= 1.25σij. We simulate a system with N particles within a square cell of
area V under periodic boundary conditions, at number density ρ=N/V= 1.01.
Most simulations have N= 1000, but systems with N= 300, 3000, 8000, and 20,000
are also studied.
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Fig. 2 Zero-temperature Kauzmann transition. a Decrease of the configurational entropy with temperature using the potential energy landscape (PEL),
Frenkel–Ladd (FL), and point-to-set (PTS) length estimates. The error bars for FL correspond to the ambiguity of defining the plateau regime in the mean
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increases monotonically above the Dulong–Petit law for d= 2 (dashed horizontal line), which is also consistent with a thermodynamic transition at TK= 0
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Observables. We monitor the system structure with two common liquid state
quantities: the pair-distribution function g(r), and the structure factor S(k)=
〈ρ−kρk〉/N, where ρk ¼Pi e

ik�ri is the Fourier-space density. Orientational corre-
lations are also considered, and are quantified using the six-fold bond-orientational
order parameter [?]48

ψ6 ¼
1
N

XN
j¼1

ψj
6 where ψj

6 ¼
1
nj

Xnj
k¼1

expði6θjkÞ; ð3Þ

where the sum is performed over the nj first neighbors of the j-particle. These
neighbors are defined as particles with rij/σij < 1.33, which is the location of the
distance of the first minimum in the rescaled radial distribution function g(r/σij).
The angle θjk then measures the orientation of the axis between the two particles
with respect to the x-axis. Because these correlations are orientationally invariant
the choice of x-axis is made without loss of generality. Orientational correlations
are then monitored through the two-point bond-orientational correlation function

g6ðrÞ ¼ hψ6ðrÞψ�
6ð0Þi; ð4Þ

where ψ6ðrÞ ¼
PN

i¼1 δðjr� rijÞψi
6. The radial decay of the hexatic order correla-

tion function, g6(r)/g(r)48, provides an hexatic correlation length ξ6, as presented in
Supplementary Note 1.

Translational dynamics is characterized by first measuring the intermediate
scattering function

Fsðk; tÞ ¼
1
N

XN
j¼1

exp ik � ðrjðtÞ � rjð0ÞÞ
h i* +

ð5Þ

at the wave number k corresponding to the first peak of S(k). The relaxation time of
the density fluctuations, τTRα , is then extracted from the exponential decay of the
scattering function, i.e., Fsðk; τTRα Þ ¼ e�1. Orientational dynamics is characterized
similarly, replacing the Fourier-space density by the bond-orientational correlation
function in Eq. (3) defined by

Cψ6
ðtÞ ¼ 1

N

XN
i¼0

ψi
6ðtÞ ψi

6ð0Þ
� ��* +

: ð6Þ

In order to extract the bond-orientational relaxation time τα, we use
Cψ6

ðταÞ ¼ e�1.

Equilibration and the glass ceiling. Normal Monte-Carlo (MC) simulations allow
only local particle displacements, drawing a random displacement vector on the (x,
y) axis in the interval [−Δrmax, Δrmax] with Δrmax= 0.6 and moving a randomly
chosen particle following a Metropolis acceptance criterion. Compounding N such
displacement attempts defines a MC step, which is used as unit of time in this
work. To ensure equilibration, we monitor both static and dynamical observables.
Starting from a high-temperature liquid configuration, we quench the system at the
final temperature and wait for the potential energy of the system to stop aging on a
time window of ~106 MC steps. We first estimate τα on simulations long enough to
allow few decorrelations of Cψ6

ðtÞ, and then perform simulations for 220τα. The
system is left to equilibrate during the first 20τα; static and dynamical observables
are computed over the following 200τα. Swap MC simulations include attempts at
exchanging random pairs of particle diameters, which replace particle displace-
ments with probability pswap= 0.2. This algorithm defines the SWAP dynamics.
The same equilibration and measuring protocol as for normal MC is then followed.
Static observables monitor ordering and phase separation in the system, as dis-
cussed in Supplementary Note 1, whereas dynamical observables quantify the
relaxation and equilibration timescales.

In Supplementary Fig. 1, we report orientational τα and translational τTRα
relaxation times for both normal and SWAP dynamics. Because the relaxation of
local orientational degrees of freedom is slower, the associated timescale is used as
reference. We perform three different fits to the τα results for the physical
dynamics, in order to extract the temperatures relevant to the dynamical slowing
down. First, we fit τα to a power-law function, as is predicted in the context of the
mode-coupling theory49,

τα / ðT � TMCTÞ�γ; ð7Þ
over the interval τα∈ (τ0, 103τ0). The resulting TMCT= 0.123 roughly corresponds
to the lowest temperature at which normal dynamics can reach equilibrium in
simulations of reasonable duration24.

Next, we estimate the laboratory glass transition temperature, Tg, at which
experiments with atomic and molecular glass formers cannot be equilibrated
anymore. At Tg, relaxation times have increased by 12 orders of magnitude with
respect to their value at the onset of the supercooled dynamics50. We thus fit the
relaxation times both to a Vogel–Fulcher–Tallman (VFT) law

τα / exp
A

T � TVFT

� �
; ð8Þ

and to an Arrhenius law

τα / exp
B
T

� �
; ð9Þ

where A and B are fitting constants. These two expressions respectively
overestimate and underestimate the increase of relaxation times in experimental
glass-formers51,52. We fit Eq. (8) using the whole temperature range T < Tonset,
whereas we fit Eq. (9) only to T < 0.16 to ensure that the result serves as a proper
lower bound on the relaxation time. Extrapolating up to the temperature at which
log10ðτα=τ0Þ ’ 12 gives TVFT

g ¼ 0:0907 and TArr
g ¼ 0:0738. These two

temperatures are, by construction, upper and lower bounds for Tg, and thus define
an experimental glass-ceiling regime (blue shaded region)26 in Figs. 1, 2 and 3 as
well as Supplementary Fig. 1. In all cases, SWAP dynamics equilibrates well beyond
this experimentally limited regime, reaching T= 0.026. Supplementary Fig. 1 also
shows the fitting curves to the dynamics. The mode-coupling power-law prediction
describes the growth of the relaxation times only within the first three decades of
the glassy regime, but at lower temperatures it overestimates the results by many
orders of magnitude. Whereas Eq. (8) adequately describes these same results over
more than four decades, an Arrhenius law captures barely two decades.

Data availability
The data necessary to reproduce the figures in this paper are publicly available through
the Duke University Libraries Digital Repository (https://doi.org/10.7924/r46w9b248)53.
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