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We consider the leading corrections to the Thomas-Fermi approach to the description of the
properties of a magnetically trapped, Bose-condensed cloud of atoms. Simple analytical expressions
are derived for the kinetic energy in terms of an effective cut-off length, which we calculate numer-
ically by considering the one-dimensional problem for a linear-ramp potential. We also determine
the lowest angular velocity at which it is energetically favorable for a vortex to enter the cloud. For
large clouds, our results are in excellent agreement with available numerical calculations.

PACS numbers: 03.75.F1,03.65.Db,05.30.Jp,32.80.P)

I. INTRODUCTION

The realization by Anderson et al. [1] of Bose condensation in magnetically trapped 8"Rb gas has generated consid-
erable excitement and stimulated interest in the ground-state properties of the dilute Bose gas. For a system so dilute
that depletion of the condensate can be neglected, the wave function, %(7), of the condensed state in an external
potential V(7) is given by the Gross-Pitaevskii (GP) equation [2]
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where y is the chemical potential. The effective two-body interaction is 47h*a/m, where a is the scattering length and
m is the particle mass. It was shown recently by Baym and Pethick [3] that the ground-state properties of the trapped
Bose gas with repulsive interactions may be described quite accurately for a sufficiently large number of particles by
a Thomas-Fermi (TF) approach, in which the kinetic energy is neglected. The density is then given by

W(F)* = (u=V(r)) for V(r) < p.

m
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For a non-rotating cloud this approach does not, however, take properly into account the decay of the wave function
near the outer edge of the cloud, and the Thomas-Fermi wave function consequently leads to unphysical behavior for
some properties, most notably the kinetic energy. This is easily seen since at the outer edge the wave function varies
as the square root of the distance from the turning point, and therefore its derivative varies inversely as the square
root of the distance. As a consequence, the kinetic energy diverges logarithmically as the end point of the integration
approaches the turning point.

In this paper we show how to evaluate the leading corrections to the Thomas-Fermi approach for large drops. We
shall consider two different cases. The first is that of non-rotating drops, where the kinetic energy is all-important
for the form of the wave function at the outer edge of a cloud of atoms. The second situation where the role of the
kinetic energy is crucial is in determining the structure of a vortex line in a cloud of atoms. In both cases the basic
philosophy will be the same: the Thomas-Fermi approximation is good except in a limited volume of space where the
kinetic energy operator is important. In the first case this region is close to the classical turning points at the edge of
the cloud, while in the latter case it is the region near the vortex line. Our approach is to graft solutions of the GP
equation onto those of the TF equation, thereby enabling us to derive analytical expressions for quantities of interest.
These will be compared with the results of numerical calculations for both these situations that have been performed
by Dalfovo and Stringari [4].

The plan of the paper is as follows: In Sec.Il we consider non-rotating clouds, and show that the structure of the
wave function at the outer edge is given by the solution of the GP equation for motion in a linear potential. We then
apply this result to calculate the kinetic energy of clouds of atoms in an anisotropic harmonic oscillator potential.
In Sec.JII we discuss properties of vortex lines, and derive expressions for the critical angular velocity at which it
becomes energetically favorable for a vortex line to enter a cloud.



II. NON-ROTATING CLOUDS

The basic idea of our approach is that for large drops, the wave function is close to the Thomas-Fermi result, except
near classical turning points, where the kinetic energy term cannot be neglected. As one can see from the dlfferentlal
equatlon the characteristic length associated with the structure near the turning point is of order (h*/2mF)'/3, where

= IVV| is the force acting on a particle at the turning point. This length is the same as that which enters the
Airy function solution for the wave function of a particle in a linear-ramp potential. Thus if the dependence of the
wave function is small in directions perpendicular to ﬁV, the GP equation in the vicinity of the classical turning
point reduces to that for a linear-ramp potential [5]. We therefore solve the non-linear GP equation for a linear-ramp
potential. When the kinetic energy is included, the wave function acquires a tail and extends smoothly beyond the
classical turning point. We shall consider the effect of this tail on the momentum distribution.

A. The linear-ramp potential

For a linear-ramp potential the GP equation is
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where the coordinate z measures distances in the direction of —VV, and the origin is chosen to be at the classical
turning point.

After introducing a scaled length variable y = z/6 where § is given by A’/2mé> = Fé, or 6 = (h?/2mF)'/3 and a
scaled wave function given by ¥ = %/b where b> = Fmé/4wh%a or b* = (2Fm/h2)2/3/8~ra we obtain

qlll :y\II+‘~I/3, (3)
where the prime denotes differentiation with respect to y. The corresponding Thomas-Fermi approximation is
¥ =/—y for y<0, ¥=0 for y>0. (4)

Note that the derivative of the TF wave function diverges as y — 07, as in the general case.
Before we discuss the numerical solution of (3) we consider the behavior for |y} > 1.
a)y> 1.

Here we may linearize (3) and obtain by neglecting the cubic term the asymptotic solution

C _ay3/2
¥ ~ WE 4 /3, (5)

which is just the asymptotic behavior of the Airy function.
b) y < —1
Here the TF solution ¥ ~ /=7 is approximately valid. In order to determine the leading correction to this, we write
¥ = ¥, + ¥, and linearize (3), thereby finding
—U] 4 y¥, + 3030, = Ty (6)
Using ¥2 = —y and \I!g = 1/4y,/—y we arrive at
R S (M)

where the second derivative of ¥, has been neglected, since it contributes to terms of higher order in 1/y. The
asymptotic solution is thus

\I!:\/—_y(1+8—1y-§). (8)

The numerical solution is shown in Fig.1, where we also show the asymptotic behavior for large |y|. From the
numerical result we find that the constant C entering (5) is approximately equal to 0.3971.



Let us now calculate the kinetic energy associated with this solution. One question that immediately comes up is
which operator one should use to do this. Two possibilities are (A%/2m) [ d®r|Vy|? and —(#%/2m) [ d3ryp* V4, and
provided the wave function vanishes or has zero gradient on the boundary of the volume over which the integration
is performed, the two expressions will lead to identical results. However, for the ramp potential the product of the
wave function and its gradient tends to a constant for large negative values of y. This apparent difficulty is removed
by recognizing that, in realistic physical situations, the potential will not be a linear ramp in the whole of space,
and therefore one has to match the solution for the linear ramp to the wave function for some other more general
potential, for example that for a harmonic oscillator in the problem of experimental interest. The answer for the total
kinetic energy will not depend on the form of the operator used, provided that ¥* Vi vanishes rapidly enough at large
distances, but how one assigns the kinetic energy to various parts of space will depend on the choice of operator. This
reflects the fact that the kinetic energy density operator is not uniquely defined.

We now evaluate the contribution to the kinetic energy for the wave function for the linear ramp, and for definiteness
we shall write this as

<p*>
2m

hz
= - / Bry* v, (9)

Let us first use the Thomas-Fermi wave function (4) for the calculation of the kinetic energy. We expect this to be
valid in the region z < —§&. Because of the square-root behavior of (4) the integration must be cut off at a distance !
(of order §) from the turning point. In evaluating the mean value of the square of the momentum, p?, using (4), we

introduce a lower cut-off at £ = —L and integrate from —L to z = —,
-1 1"
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The term of order #2/L% may be evaluated from the numerical solution to (3) which we show in Fig.1. The mean
value of the square of the momentum is obtained from

L 23 dzygy”
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In Fig.2 we plot the dependence of < p? > L?/k? on In(L/6). For large values of In(L/§) the dependence is fitted by
the linear function & In(L/8) — 0.2872 = 3 In(L/1.7766).

We conclude that one obtains the correct asymptotic behavior of the kinetic energy, if one cuts off the integration
in the Thomas-Fermi approach at

I =1.7765, (12)

where we have restored the length scale introduced above (3). As we shall demonstrate below, the same effective
cut-off may be used for calculating the kinetic energy in more general situations.

Note that when L is slightly less than § the contribution to < p? > exhibited in Fig.2 turns negative, the wave
function and its second derivative having the same sign over most of the region of integration. This is not a problem,
since the total kinetic energy for a physically acceptable wave function will be positive. Here, however, we are interested
only in the region of large In L in order to determine the effective cut-off length [.

B. The isotropic harmonic oscillator

We now turn to the system of physical interest, a cloud of atoms which is trapped in a three-dimensional harmonic
oscillator potential. For simplicity, we first consider the isotropic case, where the potential is V(r) = mw?r?/2, leaving
the anisotropic case to Sect.IIC. The GP equation for the ground state wave function is

B2 od, ,d. 1 L., 4zh’a, .,
— e puj—— — bl il “ —_ / i ¥
s (P )+ s+ ()| 4(r) = () (13)
By the substitution y = r¢ we obtain
B2 2y 1 o, o o 47h%a 5
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where u = mw?R?/2. The TF solution is

mwrv R2 — r2 (15)
XTP = —————.
V8mah®
By approximating r? — R? ~ 2R(r — R) and replacing » by R in the interaction term we arrive at an equation of the

form (3). The characteristic length scale é is obtained by equating the energy R*/2mé? to the force mw?R times the
distance &, resulting in 6% = A2/2m2w?R or

(16)

where we have used the fact that g = mw? R?/2.
As before we may work out the correction to the TF wave function for » much less than R . Writing x = xo0 + xa
we obtain to leading order in r/R that the corresponding value of ¥(= x/r) is reduced by the factor

3h?
T 9m2wiR4

at the origin, relative to the value of the TF wave function for the same value of 4.
For the TF wave function the mean square momentum is

1
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where we have introduced a cut-off at R — ! as in one dimension. In Fig.3 we exhibit the result of numerically
integrating (14) and calculating < p? > by integrating from zero to infinity. These numerical results are compared
with the simple Thomas-Fermi formula (17) with [ given by the result (12) obtained from the linear ramp in one
dimension, while the characteristic length é is given by (16). It is seen that the simple formula agrees well with the
numerical result for In(R/§) greater than 3, the relative difference being less than 2.5%. For the 3"Rb experiment this
corresponds to the number of atoms exceeding 3 - 10°. Using a somewhat different approach Dalfovo et al. [5] have
independently obtained a result similar to (17).

C. The anisotropic harmonic oscillator

In the experiments reported in [1] the cloud of 8”Rb-atoms was magnetically confined in a TOP trap, an effective
three-dimensional harmonic oscillator potential with angular frequencies w? in the axial direction (taken to be the
z-axis) and w9 = w?/+/8 in the transverse direction (the z — y plane). The corresponding characteristic lengths are
denoted by a, = (h/mw,)/? and a; = (A/mw )2, m being the mass of a $"Rb-atom.

In the following we perform an analytical calculation of the mean kinetic energy for such a potential, in terms of
the effective cut-off length [ derived in Sect.ITA. The kinetic energy is determined as a function of the parameter A
specifying the ratio between the axial and the transverse oscillator frequency according to

w, = Aw_. (18)

Finally, we evaluate our expression for the kinetic energy for the case A = V/8 appropriate to [1] and compare our
results with the numerical calculations performed in [4].
In cylindrical coordinates the potential V(p, z) is thus given by

1 2, 9 9
V= §mw1(p“ +A%2%). (19)

The corresponding Thomas-Fermi wave function is
Y= AV R — p? — A%22 (20)

with A = (87a% a)!/?, while R is related to the chemical potential u by u = mR?w3 /2. Using the wave function (20)
we obtain



(2+/\2)R2 _ (1+)\2)p2 — 922222

Vi = A? R2 — p2 — )22 (21)

In evaluating the total kinetic energy we first integrate (21) over p from 0 to po(z) — I(z), with po(z) = VR? — X222,
while {(z) is the z-dependent effective cut-off length. The 2-dependence of [(z) arises from two sources: First, in the
direction perpendicular to the surface the cut-off length is inversely proportional to the cube root of the magnitude of
the potential gradient, |VV(7)|, evaluated at the surface p = pg(z) and hence to (1+ (A* — A?)(z/R)?)~1/6. Secondly,
since we integrate over p, the effective cut-off is increased by the inverse of the cosine of the angle between the p-axis
and the direction of the potential gradient at the surface. Together, these two effects imply that

(1= (2 = )X*(z/R)*)M3

(=) = 10—, 72

(22)

In calculating the kinetic energy we first integrate over p. The ensuing z-integration of Inl(z) involves elementary
integrals. The final result for the mean kinetic energy per particle may be written as
o 2
2 h-v
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where
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for oblate traps and

2R _ 5, 3 I L VIR
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for prolate traps. For an isotropic trap these results reduce to the one given in the previous sub-section. The
integrations leading to the results (23-25) can alternatively be performed by scaling the coordinates associated with
the principal axes of the ellipsoid so that the region of integration becomes the unit sphere.

In evaluating (23-25) it is convenient to relate R and é to the number of atoms NV, the scattering length a and the
oscillator parameters a; and A according to

F:%(A2+2)ln +2241), 0 <1, (25)

R 15N Aa
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and
R 15N da
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In Fig.(4) we show our result for the kinetic energy as a function of N for the parameter values A = +/8 and
a/a; = 4.33-1073 appropriate for the experiment of {1], together with the results of the numerical calculations of [4].
For the case of N = 10%, our approximate expression for the kinetic energy per particle gives 0.38%w which compares
favorably with the result of the numerical calculations, 0.45hw | .

III. THE ENERGY OF A VORTEX

We now calculate the energy of a single vortex in a Bose-condensed cloud. This quantity is important for estimating
the lowest angular velocity for which it is favorable for a vortex to enter the cloud. In a uniform medium, the energy
per unit length of a vortex with a single quantum of circulation 27h/m lying along the axis of a cylindrical container
of radius b 1s given by

R 1.464b
e=mn—In
m 3

. (28)



where & is the coherence length. This result was first obtained by Ginzburg and Pitaevskii [6]. The coherence length
£ is defined in the usual manner by

B2 _ 4mah’n

omé2 - m

(29)

where n = [¥]? is the density of the uniform medium. For a large cloud of atoms of radius R this implies that the
coherence length at the center is given by

£ hw
E= 2 (30)
since the chemical potential is related to the central density n(0) by u = 47h%an(0)/m.

If the characteristic dimensions of the cloud are large compared with the coherence length at the center of the
cloud, we may determine the energy in a simple way by using the result (28) to calculate the energy out to a radius
p1 satisfying £ € p1 € R and then calculate the energy at larger distances in a purely hydrodynamic manner. First
of all, let us consider the two-dimensional problem, in which we neglect the z-dependence. The energy per unit length
is then given by

R® . 1.464 1 (R
e=mngTln S 1 2 [ ()i (p)2mpds. (31)
m EO 2 251

Here ng is the particle density for p — 0 in the absence of a vortex, while & is the coherence length evaluated
for that density. Since the velocity v is given in magnitude by 2/mp and the density in a harmonic trap varies as
(1 — p*/R?) in the Thomas-Fermi approximation, one finds

R 1.464p; R? [ rdr r2 R?  1464R 1
€ = analn——-o— —+ Wno—-Ll F(] — ‘R—z—) g TI'TL();-n—(IIl 50 - 5) (32)

where the integral has been evaluated for p; <« R, with terms of higher order in p, /R being neglected. The logarithmic
term is the result for a medium of uniform density, while the —1/2 reflects the lowering of the kinetic energy due to
the reduction of particle density caused by the presence of the trapping potential. Thus the energy per unit length is
given by an expression similar to (28) but with a different numerical constant 1.464/¢'/? = 0.888,

R®  0.888R
e =mng—In .
m &o

The angular momentum £ per unit length is just i times the total number of particles per unit length. For R > ¢
the latter may be evaluated in the Thomas-Fermi approximation, and one finds

(33)

R 0> 1 .
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The critical angular velocity €2, for a vortex to be energetically favorable is given by the condition € — Q.1.£ = 0, and
therefore, by combining (33) and (34),

h 0.888R
In .

ch = Qng ‘EO

(35)

Let us now consider the three-dimensional problem. If the semi-axis, Z, of the cloud in the z-direction is much
greater than the coherence length, one may estimate the energy of the cloud by adding the energy of horizontal slices
of the cloud. The total energy is then given by (33), integrated over the vertical extent of the cloud,

_wh? [? 0.888R(z)
E= ], zno(z) In 0 (36)
For a harmonic trap no(z) = neo(1 — z2/22), while R(z) = R(1 — 22/2%)Y/? and £(z) = &(z = 0)(nao/no(z))/2. The

energy is then given simply as
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Using the fact that fol dy(1 — y*)In(1 — y?) = (121n2 — 10)/9 we obtain the final result

_4mngo B? . 0.671R
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The total angular momentum is
2 2
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and therefore the lower critical angular velocity 1s given by
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When this expression for the critical angular velocity is evaluated In Fig.(5) we show the results for the critical
angular velocity for the parameters A = v/8 and a/a; = 4.33-10~3 appropriate for the experiment of Ref. [1], together
with the results of the numerical integrations of the GP equation [4]. For N = 10* we find that the critical angular
velocity is 0.323w, , which agrees extremely well with the result of the numerical calculations.

IV. DISCUSSION

In this paper we have derived analytical expressions for the kinetic energy and lower critical angular velocity for
large clouds of Bose-condensed atoms. For experimentally realizable conditions, our results are a good approximation
to those obtained by solving the Gross-Pitaevskii equation numerically. Our methods for calculating the kinetic energy
may readily be applied to more general traps, such as harmonic traps with no axis of symmetry.

We remark that our starting point, the Gross-Pitaevskii equation, may be used with confidence since, for the
conditions in experiments to date, depletion of the condensate due to particle interactions is extremely small. This
may easily be seen from the fact that for the uniform Bose gas, the fractional depletion of the zero momentum state
is (8/(371/?))(noa®)*/?, which is of the order of one per cent.

For the conditions in the experiment [1] the agreement between the analytical results and the results of numerical
integrations is even better for the critical angular velocity than it is for the kinetic energy. This is a consequence of
the fact that the largest contribution to the kinetic energy comes from motion in which the cloud is thinnest, the
z-direction, for which our semiclassical wave function is less accurate than for the motion in the other directions which
dominates the result for the critical angular velocity.
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Figure captions

Fig. 1. The numerical solution for the linear-ramp potential (full line) together with the various asymptotic solutions.

Fig. 2. The figure shows the dependence of < p? > L?/Ah? on In(L/§). For large values of In(L/6) the dependence is
linear and given approximately by % 1n(L/1.7766).

Fig. 3. A comparison of analytical and numerical results for the kinetic energy of the isotropic three-dimensional
oscillator.

Fig. 4. The kinetic energy per particle, Eq. (23), in units of fiw as a function of the particle number N for parameters
appropriate to the 8"Rb experiment: A = V8 and a/a; = 4.33-103. The data points are the results of the numerical
integrations of Ref. [4].

Fig. 5. The critical angular velocity, Eq. (40), in units of w, as a function of the particle numiber \ for parameters
appropriate to the 8’Rb experiment: A = /8§ and a/a; = 4.33 - 1073, Again, the data peants are taken from the
numerical calculations of Ref. [4].
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