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A zero-temperature magnetic susceptibility of a localized spin antiferromagnetically ex-
change-coupled with the conduction electrons is calculated on the basis of the model in which
a singlet bound state is formed between the localized spin and the conduction electrons. The
obtained susceptibility is given by uz%/|E| where E denotes the binding energy. It is shown
that this result holds in any stage of approximation.

§ 1. Introduction

For a system consisting of the conduction electrons and a localized spin
which are coupled by the antiferromagnetic exchange interaction, J<0, Yosida®
(henceforth, referred to as I) has shown by using a modified perturbation method
that a singlet bound state appears in the ground state of this system. Okiji?
confirmed this conclusion by performing the higher order calculations. Further,
it has been shown® that the energy of this ground state with the singlet bound
state is lower by the binding energy than that of the normal state and also
some extensions of this theory have been done,

Since these calculations are done at the absolute zero of temperature and
in the absence of a magnetic field, it would be a relevant problem as a next
step to extend this theory to finite temperatures and non-zero magnetic fields.
The effect of a static magnetic field acting only on the localized spin, for ex-
ample, is considered qualitatively as follows. The singlet bound state is com-
posed with the same weight of the two spin components of the localized spin
whose magnitude is one-half. The magnetic field changes this ratio, so that
the magnetic moment is induced to the ground state and spin flip which is es-
sential to gain the binding energy will become difficult as the magnetic field
is increased. A critical field at which the bound state disappears may be of
the same order as the binding energy of /=0, but it is now difficult to treat
this problem.

In this paper we focus ourselves on the limit of weak field and calculate
the magnetic susceptibility of the bound state at 0°K. First; we consider, for
simplicity, the case in which the magnetic field only interacts with the localized
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62 o Ishii and K. Yosida

spin.  After that we shall show that the case where the conduction electrons also
see the magnetic field can be treated without any essential change from the
former case except the Pauli paramagnetism. In connection with the calculation
of the susceptibility, we shall add the discussion of the triplet state in the case
of the antiferromagnetic interaction, in which a non-realistic bound state appears
at and after the first approximation.

§ 2. Caleunlation

)

We consider the effect of a magnetic field applied to the system consist-
ing of the conduction electrons and a localized spin which are coupled by the
antiferromagnetic exchange interaction. First we assume that only the localized
spin interacts with the magnetic field. The Hamiltonian is given by

H=H,+V+H,, ey
Hy= 2, &, aiy ay,, @
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where 1, represents the Zeeman energy of the localized spin, g its gfactor, s,
the Bohr magneton and ¥ the magnetic field applied along the s-axis. Other
notations are the same as in the previous papers.”?® The magnitude of the
localized spin is assumed to be one-half.

The wave function ol the ground state is expanded as follows :
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where « and (8, respectively, denote the spin-up and spin-down state of the
localized spin and ¢, represents the state of the Fermi sea. Inserting the ex-
pressions (2), (3), (4) and (5) into the Schriédinger equation

(II—E)¢y=0, 6)

we set up the simultaneous equations for the coefficients, I”, in the same way
as in the case /7=0" We notice here that the eigenvalues of 7, for the -
and f-components of the wave function ¢ are gu,01/2 and —gu,l1/2, respec-
tively, That is; the Schriodinger equation (6) can be expressed as

0= (Hy+ V4 4—E) o+ I+ V—4—E) ¢y, @

where
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Zero-Temperature Susceptibility of a Localized Spin 63

Y= la><lalp>, ¢g=3><B|¢>, and 4=gu,I1/2. (8)

Therefore, in the presence of the magnetic field, we can derive an equation for
I from that of 4=0" by replacing —E by 4—FE in the coefficients of 77¢, [
', ---and by —4—FE in those of 77, I'*", I'#¢ ... The calculation can be
performed in paralle] to the case of 4=0 and the details are omitted. Eliminat-
ing Iy, from the equations, we obtain as the first approximation the follow-
ing equations which correspond to Egs. (19) and (20) of I:
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In these equations, the shifts of the kinetic energy e, can be calculated as

TUN/S TN, e, td—E e, te—e,—d—E
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(%) |6Dlog2 + 2~ B+ mlog ~ T4+ (~E=log =) (12)
where a squared state density is assumed and p and D express its constant
state density and the half of the band width. The common term, —12D (Jp/4N)’
log2, to Eqs. (11) and (12) is interpreted as the energy shift of the bottom of
the scattering state, which is obtained by the usual perturbation, and can be
renormalized® to the energy as
Eeri 12D (’ (’[ ) Tog 2. (13)
We neglect other terms, (Jo/AN)*(—E+4)log|(—E+4)/D], because they
are smaller than (—Z%-4) by the order, (Jo/4N). Then, Egs. (9) and (10)

can be written as
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Jo. ,] 1 ~ ~ :
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By using the method of successive approximation the simultaneous integral
equations (14) and (15) can be reduced to the equations for G* and G*, up
to the third order in J as

2l D 0
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The integrals in Eqs. (19) and (20) are calculated under the condition of |E|
>34 by retaining the logarithmic term of the highest order and the above two
equations can be written as

0=G*(1—zx+2" 22y —2xy"+ é V)G Q-2+ 2y +ay — éay‘”’),

R ; . 2
0=G“2y— ;—f +2y+axy'—3y) + Gl —y+ —-gf—x3 —2x"y —2xy’+3y%), (22)

where
Jo | —E 4 Jo, —E—4
= DO ) AV pe— l))‘ . Z,d
AN D YEUNTE D (23)

From the condition that the simultaneous Eqs. (21) and (22) have a non-trivial
solution, we obtain the secular equation
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Zero-Temperature Susceptibility of a Localized Spin 65

0=F(x, y)=C+2-82y—-3xy"+")’'— (& —3x2—-1) (3’ -3y —1). (24)

If we put 4=0, x becomes equal to y and Eq. (24) is factorized as

F(x)=(1—-38x—32) (1+x— 3 2 =0. (25)

The solution of the equation

0=1-3x—-32" (26)
gives the singlet bound state of £=0.305 and that of the equation
0::17’—x*~-g~x3 ©7)

gives the triplet bound state of x=1.08" This triplet bound state did not
appear at the zeroth approximation” and it is, in this stage of approximation,
a false solution, because the present perturbation expansion is considered to be
not convergent for a triplet state. We shall discuss this point in some details
in the Appendix. There is a possibility that the magnetic field 4 will mix
this ‘wrong’ triplet bound state in the singlet bound state, so that Eq. (24)
gives no correct answer for the large value of 4. However, for the infinitesi-
mal 4, we may use Eq. (24) to see how the singlet bound state varies with
the magnetic field. We expand £, x and y, respectively, about the values of
4=0 as follows :

E=FE,+0E, (28)
. (]p{OE_A (OE — 4)° ] .
r=12,+0 ox=-"%. PO S 29
FZRTOL TTUNL B 22 9)
. . Jp[(?FHA (OE+4)* ]
= o0y, Oy = A _\ETA) ], 30
y=hrny YTUNL B o F (30)

where x, is the solution of Eq. (26) and E, is related to a, as zo= (Jo/4N)
log (—E,/D). Substituting Eqs. (29) and (30) into Eq. (24), we obtain, neglecting
the higher order terms with respect to Jp/4N,

Fle)+ & % Pl (0z+0y) =0. (31)
2 (/Zl'o
Putting F'(x,) =0 and F’(x,) #-0, we obtain
= e A [ <J() ] .
E=E+ 2. |1+0 . 32
R, 4N> (32)

In the zeroth approximation which is given by neglecting the third power of x
and y in Eq. (24), the same result as Eq. (31) is obtained, where the value
of T, is taken to be that of the zeroth approximation, Eo= —D exp (4N/3Jp).

The functional form of Eq. (31) indicates that the energy of the singlet
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bound state in a weak magnetic field is generally given by Eq. (32), namely,
in each stage of the approximation, in which E, is the value at its approxima-
tion. Thus, the result of Eq. (32) is exact in so far as the exact value is used
for K,

This result can be proved more directly. Also in the higher order per-
turbation, simultaneous equations for G* and G* can be expressed in terms of
2z and vy, in so far as the logarithmic terms of the highest order are retained.
Instead of calculating the exact form of the secular equation F(x, y) =0, we
can use its Taylor expansion about x=y=ux, for a small value of 4,

y=x+y (x) (=) + % ' (xo) (B —200) "+ . (33)

vy’ (x,) is estimated as follows. F(x,y) is symmetric with respect to z and y,
because of the invariance under the inversion of the magnetic field direction.
Furthermore, F(x,y) is given by a polynomial of x and y, so that it is ex-
pressed as

O = F(x, y) = an Anm (xmyu -+ x”ym) .

Differentiating this with respect to x and setting x=y=ux, we obtain y’(z,) =
—1 if F(x, y) has no double root at x=y=x, or

St n) A,y =F (x) £
Then Eq. (33) becomes

« 1 ’7 9
Yy=2x Xy (o) (x—20) "+ -, (34)

F

Substituting Egs. (29) and (30), we obtain

SN

~ —~ 2 )

E=F,+ ‘-{-[1%Jp-y"(xo)}+m. (35)
2E,

This is just the same expression as Eq. (32). From this we obtain the magne-
tic susceptibility x,

OQE 1 < 1 >2 -
e — T = —_—— —— (’, 36
o B\ 27" “o

To justify this conclusion we must show that the ‘ wrong’ triplet bound
state stated before has no influence on Eq. (36). The contribution of the triplet
bound state to the result of Eq. (35) is estimated by the second order pertur-
bation of I1,,

B < @
E,—E,

where ¢ and ¢' denote the wave function of singlet and triplet bound states,
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Zero-Temperature Susceptibility of a Localized Spin 67.

respectively, and E, is the energy of the triplet bound state, Using the wave
function and the energy of the first approximation, we estimate E, as

. (B LG EN A4
Eo=al = log? o ) - 38
TNE P EE (88)

where « is the constant of the order unity. I, is smaller than £/2E, in Iq.
(34) by a factor (Eﬁ/ﬁo)logz(_gﬁ/ﬁ?o). In the limit J—>0 this factor tends to
zero, so that the triplet bound state has little effect on the result and the con-
tribution to 4°/2FE, seems to come from triplet scattering states.

For triplet scattering states we use the following wave function as a crude
approximation,

1 1 b .
gL = \/2 (di& L ag 13)) (/)m

D ey = - 5 (aif, aif, aw, -+ ais ais: s, 8) o, (39)
oy — 1 S Sk ¥ & 9
¢k1k2k;, - A\/é ((l,’,;l L iyt Ayt & Ay v Ay ), Aiyy | ) ﬂbv,

and calculate the perturbed energy of the singlet bound state up to the order
J? as

sy ISOHEGE 4
s e\ >

- Eo — &k ZEQ ’
o | FEAY > | it LIS 0

E/() — (5;51 ’1‘ 3/92 - Sk’;;)

£ (Ip> 15
2F, AN/ 2(1+3x)

The first expression is the same as that of Eq. (32). Thus, we can see that
the magnetic susceptibility of the singlet bound state results almost from the
transition to the triplet scattering states with one electron excitation. As we
have seen, Eq. (82) holds in general. It is to be noted here that the change
of the distribution of the conduction electrons gives rise to only an effect of
1/N compared with (86), as can be seen from Eq. (42).

Next we consider the case where the conduction electrons also interact
with the magnetic field. For simplicity it is assumed that the g-value of the
conduction electron is the same as that of the localized spin. I, in Eq. (4)
is replaced by

]'15 = "////;[1 I:;S,; |- >__11., (di', (227 N Cl),ii\ (223 ) ] . (4 l)

I
2

The wave function is given by Eq. (5) with a modification of the region of £
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68 H. Ishii and K. Yosida

in the summand, because of the polarization of the conduction band. The shift
of the Fermi surface is denoted by 7. In order to clarify a distinction between
the wave functions without and with the polarization, we denote them as ¢ and
¢, respectively. Then, the kinetic energy of the electron in the up band is
er—7: 0=g,~D+7 or approximately as 0=¢,=~D), because 7 is negligible against
D. Also that of the down band is ¢;+7: 0=¢,=D, and the energies of hole
states are considered in a similar way. Using the above, we can write the
Schrodinger equation as ‘

(Hy+ I+ V—E)§ ~ (I-10—1~'4+p*//2_—2pﬁd+V+9JSW~E)%

Jo
2N
Comparing Eq. (42) with Eq. (7), we notice that 7(14Jp/2N) corresponds to
4 in Eq. (7). The constant term — (p7* —2p7%4) is the energy gain of the con-
duction electron system due to the magnetic field and Pauli paramagnetism is
derived from it. Thus the energy shift 7 is equal to 4. Therefore, there is
no difference between Eq. (42) and Eq. (7) besides Pauli paramagnetism, In
this case % is given by

+ (Ho—y+ 07" =204+ V = " =) . (42)

2

. 1 1 '
X=%Lp— o < 2'.(]ﬂls> . (43)
Here 7(Jo/2N) is neglected with respect to 7 in Eq. (42).

§ 3. Discussion

We have obtained above a constant zero-temperature susceptibility, which
is given by 1./ | Eol ~ui2/kT.. |E,| is the binding energy which will tend to
—Dexp(N/Jp). Thus, it may be expected that the magnetic susceptibility of
the localized spin increases monotonically as temperature is lowered and ap-

proaches the above constant value, saturating at low temperatures if we assume
a smooth change in temperature as has been asserted by Suhl and Wong.®

A constant zero-temperature susceptibility has been obtained by Takano and
Ogawa” and also by Dworin® who uses the Anderson model. However, Dworin’s
value is proportional to

o

X/ -
kT,

and is smaller by a factor of Jp/N than ours. Therefore, his value for the
binding energy of the singlet bound state seems to be larger by the same factor
than ours.

Recently, Hamann” has succeeded in solving Nagaoka’s coupled integral
equations and shown that the susceptibility diverges at the absolute zero of
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Zero-Temperature Susceptibility of a Localized Spin 69

temperature, although the magnitude of the localized spin vanishes for S=1/2.
This result is certainly contradictory to our expectation. However, in order
to elucidate this point, we must extend our theory to finite temperatures.
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Appendix

It has been mentioned in the text that for the antiferromagnetic ex-
change, a non-realistic triplet bound state appears at and after the first approxi-
mation in the perturbation expansion, and this makes it difficult to treat the
effect of the magnetic field comparable to the binding energy E. In this Ap-
pendix, we shall briefly discuss a possibility for a triplet bound state on the
basis of the simplest approximation. For ferromagnetic exchange, the same
equation for z= (Jp/4N)log(lEi/D) expressed by a power series with respect
to x has no definite root within the radius of convergence.”® This seems to
indicate that for a triplet state the present perturbation expansion does not lead
us to a convergent result. Therefore, in order to avoid this difficulty in treat-
ing the effect of a magnetic field, we must solve the problem in a closed form.

The simplest approximation for obtaining the binding energy may be to
restrict the excited states to those states with only one excited electron-hole pair.
Even in such a case, it is still difficult to obtain an exact solution. Therefore,
we shall here return to Eqs. (24), (25) and (26) of I and discuss a triplet
bound state. These equations can be written for a triplet state as

_J »
Ni=% <% LG+, (AD
G=34Ts, (AZ

J I
g)=—52. 3 e A3
S(ew) 4]\12 S (A3)

The iteration used in I gives the following series which determines the binding
energy :

by

\ 2
:o{g d»NDy(JO) Sy(elq &,
4Nﬂ ZV vl—‘E

+52<J()’7>4Sy(c1 &) e Sy(e‘ﬂil) de,

U

4LM Cl ’—E e

C9
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Jo\° S y(e+e) S y (et ‘,1) y(es+ey)
+5 < ~ - de de, - des+ -], (A4
4N) J oea—Fk Joa—E (S g — I 1o (A
ete—E
ete)=log. T A5
viete) et +D—FE (49)

Retaining the most divergent terms, we obtain the following power series with
respect to x= (Jp/4N)log (|E|/D):

5 5 10, 425 ; 7750

l=—z+-"-2"— "7 2"+

: 2 (A6)
3 3 63 567

The ratios between the coefficients of the two successive terms on the right-
hand side of the power series are —1.667, —2, —2.024 and —2.026. There-
fore, the radius of convergence of this series is less than about 1/+/2=0.70 and
within this radius Eq.(A6) has no root. This is also true on the minus side
of x, which corresponds to the ferromagnetic exchange.

For (Jo/4N) =<0, it is expected that (Al 2 8) has no solution. This
equation can be expressed as

1

@) = {r@)[1+5alog e+ 2 +w) 1, (A7)
X+

)
0

where w= —E/D. Then, the kernel, [1+5alog(xz+2"+w)], of this integral
equation is always positive for negative «. Therefore, if 7'(x) has no node,
it is easy to see that (A7) has no solution. If 7"(x) has one zero at x=x,,
the following relation should hold :

{gf(x’) [1+5alog(x+ 2" +w) |dx’

1

Hlreyiisalos@r v a0 (A8)

We assume that 7'(x) >0 for x<<a,. When =z is smaller than z, the left-hand
side of (A8) has the same sign as that of /'(z) for x<{x,, namely plus sign.
However, the left-hand side of (A7) should have a sign opposite to (A8) be-
cause of negative «. This is impossible. The same rsasoning can be applied
to the cases for which /'(x) has any number of zeros, and we can verify that
(A7) has no solution for negative «. Thus, it can be concluded that a bound
state which appears in the perturbation series is not realistic.

References

1) K. Yosida, Phys. Rev. 147 (1966), 223.

220z 1snbny |z uo 1senb Aq L9¥0061/19/1/8€/a101E/d)d/WO0o"dNod1WapEDE//:SA]Y WOl PAPEOJUMOQ



2)
3)
4)
5)
6)
)

Zero-Temperature Susceptibility of a Localized

Okiji, Prog. Theor. Phys. 36 (1966), 712.

. Yosida, Prog. Theor. Phys. 36 (1966), 875.

. Suhl and D. Wong, Physics 3 (1967), 17.

Takano and T. Ogawa, Prog. Theor. Phys. 35 (1966), 34'3
Dworin, Phys. Rev. Letters 16 (1966), 1042,

. R. Hamann, to be published.

Spin

I

220z 1snbny Lz uo isenb Aq L9y006L/1.9/1/8€/e0ne/did/Wwoo dno-olwepese//:sdpy Wwol) pepeojumoq



