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Abstract: This is the second of two papers on the zero-viscosity limit for the incom-
pressible Navier-Stokes equations in a half-space in either 2D or 3D. Under the assump-
tion of analytic initial data, we construct solutions of Navier-Stokes for a short time which
is independent of the viscosity. The Navier-Stokes solution is constructed through a com-
posite asymptotic expansion involving the solutions of the Euler and Prandtl equations,
which were constructed in the first paper, plus an error term. This shows that the Navier-
Stokes solution goes to an Euler solution outside a boundary layer and to a solution of
the Prandtl equations within the boundary layer. The error term is written as a sum of
first order Euler and Prandtl corrections plus a further error term. The equation for the
error term is weakly nonlinear; its linear part is the time dependent Stokes equation.
This error equation is solved by inversion of the Stokes equation, through expressing
the solution as a regular (Euler-like) part plus a boundary layer (Prandtl-like) part. The
main technical tool in this analysis is the Abstract Cauchy-Kowalewski Theorem.

1. Introduction

This is the second of two papers on the zero viscosity limit of the incompressible Navier-
Stokes equationsin a half-space with analytic initial data, and in either two or three spatial
dimensions. Under the analyticity restriction and for small viscosity, we prove that the
Navier-Stokes equations have a solution for a short time (independent of the viscosity).
In the zero-viscosity limit, we show that this Navier-Stokes solution goes to an Euler
solution outside a boundary layer and to a solution of the Prandtl equations within the
boundary layer. As argued in the Introduction of Part | [6], we believe that the imposition
of analyticity is needed to make this problem well-posed, by preventing boundary layer
separation, but there is no proof of this.
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In the first paper [6], we proved short time existence of solutions for the Euler
equations and the Prandtl equations with analytic initial data. In this second paper, we
construct the Navier-Stokes solution as a sum of the Euler solution, the Prandtl solution
and an error term. Existence and bounds of sigihe square root of the viscosity) for
the error term are the main results of this paper. The error equation is weakly nonlinear,
since its solution is small. Its linear part is exactly the time-dependent Stokes equation,
with forcing terms and with boundary and initial data. As for the solution of the Euler
equations in [6], the incompressibility of the solution is ensured by use of the projection
method in order to avoid dealing directly with the pressure.

The main technical tool here is the Abstract Cauchy-Kowalewski (ACK) Theorem,
which is invoked to establish existence for the error equation. As discussed in the Intro-
duction to Part I, the abstract version of this theorem applies to dissipative equations,
even though the classical version does not.

A discussion of related references from the literature is presented in the Introduction
to PartI.

In Sect. 2 we state the Navier-Stokes equations and discuss how the Euler equations
and Prandtl equations, in the limit of small viscosity, can be formally derived from
Navier-Stokes through different scalings and asymptotic expansions. The introduction
of two different scalings, typical in singular perturbation theory, is formally necessary
to describe two different regimes of the flow: the inviscid regime (far away from the
boundary) and the viscous regime (close to the boundary) where the viscous forces
cannot be neglected even for small viscosity. The meaning of Theorem 1, which is the
main result of this paper, is to rigorously establish this formal result; i.e. to show that
the Euler and Prandtl equations are each a good approximation of the Navier-Stokes
equations in their respective domains of validity. In particular, the solution of the full
Navier-Stokes equations is divided into Euler, Prandtl and error terms, and the error term
is further divided into first order Euler, first order Prandtl and a higher order correction.

Section 3 contains an analysis of the time-dependent Stokes equations with pre-
scribed boundary data. For this linear problem, which we shall solve explicitly, we also
show that the solution is the superposition of an inviscid part, a boundary layer part, and a
small correction. Section 4 contains the decomposition of the error equation Egs. (4.1)—
(4.4) into first order Euler and Prandtl equations, which are solved in Sections 5 and 6.
The analysis of the equations for the remaining error takes all of Sect. 7. These “Navier-
Stokes error equations” contain terms of siXe ~*) due to the generation of vorticity at
the boundary. They are solved using what we call the “ Navier-Stokes operator,” which
solves Stokes equations with a forcing term (see Eqgs. (7.22)—(7.25)). It is suitable for
solving the error equation (and thus the original Navier-Stokes equations) with an it-
erative procedure. With the bounds on this operator, and with the use of the abstract
version of the Cauchy-Kowalewski Theorem, we can prove existence, uniqueness and
boundedness (in a suitable norm) for the error.

Final conclusions are stated in Sect. 8. The function spaces that are used in this
paper are all defined in Part I. For convenience, tables of function spaces and operators
are presented there. As in Part |, the exposition is presented for the two-dimensional
problem, but the results are all expressed for 3D as well as 2D.

2. Navier-Stokes Equations

2.1. A singular perturbation problemThe Navier-Stokes equations on the half plane
for a velocity fieldu V° = (uN°, vV) are
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O —vA)u NS +u NS . v VI + vplVS =, (2.1)
V-uN9=0, (2.2)

yu NS =0, (2.3)

uNS(t=0=ul”. (2.4)

Here,v = €2 is the viscosity coefficient, and is the trace operator, i.e.f(x,t) =
f(x,y = 0,t). The initial velocityu [ (z, y) must satisfy the incompressibility condi-
tion and the compatibility condition with the BC Eq. (2.3):

Vouds =0, (2.5)
yu ¥ = 0. (2.6)

In this paper we are interested in the behavior of the solution of N-S equations in the
limit of small viscosityr << 1. As usual in perturbation theory, it is natural to write
the solution as an asymptotic series of the form

uN=ul+eult+ul+ . (2.7)

where all the terma ? satisfy equations that are independent @he reason for expand-

ing ine = /v comes from the boundary layer expansion, which is described below).
The equation for the leading order tetn? comes from just neglecting the viscous term
in the Navier-Stokes equations, which yields the Euler equations

dul+u? . vu P +vpf =0, (2.8)
V-uf =0, (2.9)

Yo E = 0P (x,y=0,t) =0, (2.10)
wP @,y t=0=ul(x,y). (2.11)

This procedure works well, at least for short times far away from the boundary,
but gives unsatisfactory answers close to the boundary. Comparison of the boundary
conditions Egs. (2.3) and (2.10) for the Navier-Stokes and Euler equations, respectively,
shows the cause of the failure. For Euler equations we can only impose zero normal
velocity, since the equations are first order; while for Navier-Stokes the no-slip condition
requires both normal and tangential velocities to vanish. We must therefore allow a region
in the vicinity of the boundary where viscous forces are comparable to inertial forces,
and where there is an adjustment of the tangential velocity from zero at the boundary to
the value predicted by the Euler equations. This boundary layer should havessiZe,
so that the viscous term,, is of sizeO(1).

Thus it is natural to write all quantities in terms of a rescaled normal varigbte
y/e. Next, the incompressibility condition requires thgt = e ~1vy = O(1), which
requires the vertical velocity to be sizeO(g). Imposing this scaling in the Navier-
Stokes equations, and again neglecting terms which are first ordeme gets Prandtl’'s
equations for the fluid velocity ' (z, Y, t) = (u”, ev®) in the vicinity of the boundary;
ie.
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0 — dyy)uf +uP o,uf +vFoyuf +0,p" =0, (2.12)
oypt =0, (2.13)

dpuf + 0yt =0, (2.14)

yul = y0f =0, (2.15)

uf (2, Y — 00) — yu®, (2.16)

uf (2,Y,t=0) =ul (z,Y). (2.17)

Equation (2.16) is the matching condition between the inner (viscous) flow and the outer
(inviscid) flow. This condition is equivalent to the existence of an intermediate region
(e.g. a region wherg = O(¢*) with 0 < « < 1), where there is a smooth transition
between the viscous and inviscid regimes.

As already noticed (see Subsect. 5.2 of [6]), it is natural to introduce the new variable
af = (@",ev") defined as

ot = uf — yu®, (2.18)

o =oP + Yoyl =— | ay’'o,ub, (2.19)
0

and write Prandtl equations in termswof as

(0 — Byy)al +af o,yuf +yufo,af + afo,af

+[0F — Yo,y oya” =0, (2.20)

vl = —yu®, (2.21)

P (z,Y — o0) — 0, (2.22)

af (@, Y, t =0 =ul(x,Y) —yuf =il . (2.23)

We also define the normal velocity’ to be the velocityw® minus its value at infinity;
ie.
P () =0F () - (Y = 0) = / dY'o,af . (2.24)
Y

In [6] we have proved that, under suitable hypotheses on the initial conditions,
i.e. analyticity, incompressibility and compatibility with boundary conditions, both the
Euler and Prandtl equations admit a unique solution in the appropriate space of analytic
functions (see Theorems 4.1 and 5.1 in [6]). To be more specific, we found the existence
and the uniqueness of an analytic solution for Euler equations whithiisboth thex
andy variable. For Prandtl, on the other hand, we proved existence and uniqueness for a
solutions” which is L? in thez variable, and exponentially decaying in trievariable
(i.e. outside the boundary layer); the normal componénofthe velocity isO(e), but
not decaying irt’, and in fact goes to a constant outside the boundary layer.

At this point, a natural question is whether one can use the solutions of the Euler and
Prandtl equations to build a zét@rder approximation to the solution of Navier-Stokes
equations. The following theorem, which is the main result of this paper, gives a positive
answer to this question:

Theorem 1 (Informal Statement). Suppose that. ©(z, y,t) andu ' (z, Y, t) are so-
lutions of the Euler and Prandtl equations, respectively, which are analytic in the spa-
tial variablesz,y,Y. Then for a short timd", independent of, there is a solution

u N9(z, y, t) of the Navier-Stokes equations with
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u ¥ + O(¢) outside boundary layer

NS _
vos {u P + O(e) inside boundary layer. (2.25)

A formal version of this result, with a complete specification of the possible initial
data for the Navier-Stokes solution is given in the following theorem:

Theorem 1. Suppose the initial condition for the Navier-Stokes equations is given in
the following form

w® =u (@, y) +af (@, Y)+elwolz, y) + Doz, Y) +eo(x, V)],  (2.26)
where
() wf=@f of)e H?? and

(i) @l =@y, evf) e Kbefr and
o0
oF = / QY 0,08 | il = —yul,
Y
(iil) wo = (i, wd) € NbP,
V- -wy=0, Vw(%:—vﬁg,

(iv) Q= (Q%,e03) € Kb»fr and
:/ dY'9,9%, 728 = —wp,
Y

(V) eo=(e},ed) e L»f and
V-eo=0, veo=(0,—72p),
with [ > 6. Then there exist < p, 0 < 0, i < p, 3 > 0, andT > 0, all independent
of , such that the solution of the Navier-Stokes equations can be written in the form
uNS=u B,y )+l (z, Y, t) +e[w(z,y, t) + Qa, Y, t) +e (z,Y, )] (2.27)
in which
(i) ufc Hﬁﬂ is the solution of the Euler equations (2.1)—(2.4),
iy w? = @P,evt) e Kg”’e " is the modified Prandtl solution as defined in (2.18)
and (2.24), exponentially decaying outside the boundary layer,

(i) w € N[g”’ is the first order correction to the inviscid flow; it solves Eqgs. (4.7)—
(4.10) below,

(iv) @ € Kgp %7 is the first order correction to the boundary layer flow; it solves
Egs. (4.11)—(4.14) below,
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(v) e € L%ﬁf is an overall correction; it solves Egs. (4.15)—(4.18) below.

The norms ofv, @ ande in the above spaces are bounded by a constant that does not
depend on the viscosity.

2.2. Discussion of the TheorerBincew * is exponentially decaying for largé = y /e,
then the expression (2.27) shows thal® = u ¥ + O(¢) for y outside of the boundary
layer (i.e.y >> ¢). Fory inside the boundary layer (i.6.< ¢), u ¥ = (yu?,0) +O(e),
so thatu V9 = u ¥ + O(¢). This shows that the informal statement of the theorem
follows from the rigorous statement.

In this theorem the Navier-Stokes solution is represented in terms of a composite
expansion of the form (2.27), which includes a regular (Euler) terfiy a boundary
layer termw © and a correction term. Since the Euler solution has non-zero boundary
values, the Prandtl solution must be modified so that the sum of the two is zero at the
boundary and approaches the Euler solution at the outer edge of the boundary layer.
The theorem says that if the initial condition is a functiohin transversal and normal
component (together with its derivatives up to orfethen the solution of the Navier-
Stokes equations will have the composite expansion form given in Eq. (2.27), at least
for a short time.

There are several other ways to represent the Navier-Stokes solution for small vis-
cosity. The most common method in perturbation theory [3] is to write the solution as a
matched asymptotic expansion in which

uNS=uP+0() forysmall enough (2.28)
uNS=uP+0() forynottoo small (2.29)

The formal validity of this representation is usually demonstrated by showing that the

O(¢) terms are small, and that there is a region of overlap for the validity of the two

expansions. While this representation is more easily understood than the composite

expansion, it is much more difficult to rigorously analyze due to the two spatial regimes.
A second method for representing the solution, which has been used for example in

[4, 8], is to introduce a cut off functiom = m(y/e*) with m(0) = 1, m(cc) = 0, and

0 < a < 1. The solution is then written as

u¥=muf + (1 —-m)uf +0E). (2.30)

This method has two difficulties: It introduces an artificial length se@lerhich makes
the error terms artificially large. It also requires error terms in the incompressibility
equation, sincenu © + (1 — m)u ¥ is not divergence-free. For these reasons we have
found the composite expansion method to be the most convenient for analysis.

The rest of this paper is devoted to proving Theorem 1. Unless otherwise stated,
[ > 6 throughout.

2.3. The error equationlf we pose

ulVS = uf +aF + ew?,

oV =0F e [[°dY 0,0 + ew? = vF + 20" +ew?, (2.31)

pNS sz _l_gpw7
and use these expressions in the N-S equations, we get the following equation for the
errorw = (wt, w?):
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(atfazA)w +w -Vu o+

u? Vw +ew -Vw +Vp¥ = f +(g~8yﬂp,0), (2.32)
V-w =0, (2.33)

yw =(0,9), (2.34)
w(t=0)=wo+Q+ey, (2.35)

in whichu © = (u?, v°) is defined by
u® = uf + il

W0 =vF +ev? =0 +e [T dY'0,a". (2.36)
The forcing term isf = (2, f?) given by

fl=—¢t {ﬂp (&EuE — :ﬂuE) +(0,17) (uE — qu) + (8yﬂp) (UE + y[“)x'qu)}

—ﬁpaqu +eAu® + 020t (2.37)
2= — [00" + 10,07 +0°0, 8" + 079,07 ] — e P 9,0 + e AP, (2.38)
and also -
g= / ay’'o,af . (2.39)
0

We want to show that the forcing terfhis in Lgfjfl’(’l, and that in this space it has

O(1) norm, namely that

‘f ‘Z*Z»Plﬁl,ﬁl,T <c (‘u g|l,p,0 + W(I)j‘l,p,e,u + 1)27 (2-40)
where the constant does not depend on Let us considerf!. From Theorems 4.1
and 5.1 of Part | [6], it is clear that the termau” anded2u” satisfy the estimate
(2.40). Each of the remaining terms jh has a similar form: They are eaeh? times
the product of a function which is exponentially decaying (with respedf te y/¢)
outside the boundary layer (terms containirg andw), and a function that i€)(c)
inside the boundary layer (e.g” — ~u®). It follows that they all satisfy (2.40). In an
analogous way one can see tlfaiis O(1) and satisfies the estimate (2.40).

Thus Egs. (2.32)—(2.35) for the error teton(x, Y, t) have bounded forcing terms. In
Sects. 4-7 we shall prove that this system admits a solutiavhich can be represented
in the following form:

w=—w+R+e, (2.41)

where the norms (in the appropriate function spaces), 6t ande remain bounded by
a constant independent of The difficulty of this proof is the presence in Eg. (2.32) of
terms liked, %", which areO(s 1) inside the boundary layer.

3. The Boundary Layer Analysis for Stokes Equations

Before addressing the problem of solving Egs. (2.32)—(2.35), it is useful to consider a
somewhat simpler problem, the Stokes equations with zero initial condition and bound-
ary datag . This problem is of intrinsic interest, and the results will be used in the
analysis of the Navier-Stokes equations. The time-dependent Stokes equations are
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(0, —vA)u ¥ +Vp® =0, (3.1)
V-u=0, (3.2)

u® =g (1), (3.3)
w®(z,y,t=0)=0. (3.4)

Hereg is a vectorial functiory = (¢, g»). Primed quantities denote the tangential
components of a vector, while the subscriptdenotes the normal component. The
compatibility conditiong (x, ¢ = 0) = 0 is required for the boundary data.

In this section we shall show that the solution of the above problem has a structure
similar to that for the Navier-Stokes solution Eq. (2.27); i.e. it is the superposition of an
inviscid (Euler) part, a boundary layer (Prandtl) part which exponentially decays to zero
outside a region of size = /v, and a correction term which is siz¥¢) everywhere.

The Stokes problem Egs. (3.1)—(3.4) has already been addressed by Ukai in [7], (where
even the case of non-zero initial data was considered), without making the distinction
between inviscid part, boundary layer part and correction term.

We seek a solution of the form

2 p¥=p (3.5)

wS = uP + 0l +wt, v =0F + el +w
so that (., v”) represents an inviscid solution,{;7") is a boundary layer solution
decaying (in both components) outside the boundary layér(?) is a small correction,
and the pressurgg® andp® are bounded at infinity. Please note that in this seaiion
@’ andw refer to the “Euler”, “Prandtl” and correction components of the Stokes
solution; everywhere else in the paper, this notation is used for the usual Euler and
Prandtl solutions and for the correction in the Navier-Stokes solution. These quantities
solve the following equations:

ot +vpl =0, (3.6)

V-uf =0, (3.7)

TnU E= 9n, (3.8)

w?(z,y,t=0)=0, (3.9)

0, —vAa)af =0, (3.10)

2.uF +oywt =0, (3.11)
7 - 0ay — oo,

vl =g —yuF, (3.12)

af (z,y,t =0)=0, (3.13)

0y —vA)w +Vp, =0, (3.14)

V-w =0, (3.15)

yw = (0, —eywh), (3.16)

w (x,y,t=0)=0. (3.17)

Note that Eq. (3.10)-Eqg. (3.13) use the fast variable y/e with v = €2, in terms of
which A = €29, + dyy. Also, there is no termhu ¥, since it is identically zero. We
now solve explicitly these equations.
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3.1. Convective equatiorilake the divergence of (3.6) to obtakyp” = 0. Then apply
A to (3.6) and use the initial conditicm ¥ = 0, to obtain

Auf =0 (3.18)
Therefore the solution of Euler problem is
uf =VNg,, (3.19)

where the operata¥ = —1/|¢’| exp (—|¢’|y) solves the Laplace equation with Neumann
boundary condition; i.e.

ANg, =0,

V9, Ngn = gn. (3.20)

3.2. Boundary Layer Problenilo solve Egs. (3.10)—(3.13) it is useful to introduce the
operatork; acting on functions'(z, t) defined on the boundary

. t Y exp[-Y?/4(t — s)
Eif(z, Y1) =ZA dst s (ZEw(t o S))1/2S ]

0 ,exp[—(:c —2')? )43t — s)} ,
[m dx (47T82(t - s))l/z f(@', s).

(3.21)

This operator solves the heat equation with boundary conditfoasd zero initial
conditions

(0r — €2040 — Ovy) Erf =0,
. vEuf = f, (3.22)
Erf(z,Y,t =0) =0

Note that the operatdil differs from the operatoF); (defined in Sect. 5.1 of Part I) by
the fact that it involves an integration on the transversal companatso. Define

Mg =g +N'g,. (3.23)
The solution of the boundary layer equations is written as
af = EMg . (3.24)
_Using the incompressibility condition and the limiting condition, the normal component
is

ot = / ay’'o,ar . (3.25)
Y

3.3. The Correction TernmHere we shall use the Fourier transform variable with respect
toz. Asin Part |, the corresponding transform variable is dengtels in Subsect. 3.1,
Ap®* = 0. Sincep® is bounded abo, then

(0, +1¢']) p* = 0. (3.26)

Definer = (9, +|¢'|) w?, so that Egs. (3.14)—(3.16) imply
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(0, —*A) T =0, (3.27)
v = (9 +1€]) w?,
=7 (Yl +[¢0?),

=[¢'a, (3.28)
in which -
a=—¢ / dy'o,ub. (3.29)
Sincer solves the heat equation with fhe above boundary condition, then
7= |¢|Era. (3.30)
From the definition of-, w? satisfies
dyw? +|¢'[w® = |¢'| Faa, (3.31)
which leads to
wi(z,Y,t) = e E1Wa +TEa (3.32)
in which U is defined as
UfE.Y)=el¢ /0 S e, Yy (3.33)

Notice that a similar operator occurs in Eqg.(4.12) in [6]. Finally, the incompressibility
condition implies that

wr=—N'e €W+ N'(1 - U)o (3.34)

These above results can be summarized as follows: The solution of the Stokes prob-
lem Egs. (3.1)—(3.4) is denoted By , with

u®=8g =8g +8g +58%
_(-N'Dg. , Mg o NCEENA-TDE
Dgn e [0 dY'0,E1Mg e 1€+ TE,
(3.35)

After some manipulation, this can be simplified, as in [7], to

S _ _ —Nle_lf/lygn +NI(1— )El 19
=Sqg = , L - U)EyY 3.36
v 9 < e 1¢ ‘ygn +UFE1V1g ’ ( )

in which
Vig =g, — N'¢’. (3.37)

3.4. Estimatesln this subsection we prove some basic simple estimates on the operators
S, S, andS¢. Propositions 3.1, 3.2 and 3.3 are presented as results on the time-
dependent Stokes equations, but are not used in the sequel. For analysis of the Navier-
Stokes equations, only Proposition 3.4 and Lemma 3.2 will be used.

We cannot in general give an estimate for the oper&foin a space involving the
L? norm iny. Nevertheless it is possible to give such an estimate for a special class of
boundary data.
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Proposition 3.1. Suppose thag satisfies
b= I¢] [y DR ) (3.39)

with €] [7° dy'|k(¢', )| < 1and f € Hj;%'. ThenSEg € Hy%’, and the following
estimate holds:

859 [1,p,0,8.0 < ¢l flip0,07- (3.39)
Using Jensen’s inequality and replacing a facto|r§dff0°o dy'|k(€', )| by 1,

o0 2
sy [y [age€| [T a1l )

<sup [ dy / dg' '€ / ay' €' (e o) [F(E )]
07<6 Jr(o7) 0
. / de'29I€| / dy k(o) [FE )]
0
<|f1g.p0.5.1- (3.40)

Analogous bounds can be proved for the differentiated terms in the norm.
Now consider the “Prandtl” part. We first state an estimate for the opekator

Lemma3.1. Let f ¢ K’Bl::pr with f(¢t = 0) = 0. ThenE, f € Lgfj’? for somed, and the

following estimate holds i’

\Erflipo81 < clf

A much stronger estimate actually holds. One can in fact prove the exponential decay of

E; f inthe normal variable away from the boundary; see the proof given in the Appendix.
Using Lemma 3.1, the following estimates8fi’ andS?” (respectively the transver-

sal and the normal components of the oper&0r) are obvious:

1,p,8,T- (3.41)

Proposition 3.2. Supposgy € K% with g (t = 0) = 0. ThenS™'g € L%’ and
SPg e Ly 7" for somey, and

189 [1.p.0.51 < clg |1p.p.1, (3.42)

859 i—1p6,87 < clg .1 (3.43)

Again a stronger estimate could be proved, namely$fas is exponentially decaying
whenY — oo (i.e. outside the boundary layer). The loss of one derivative in the normal
component is due to the incompressibility condition (see e.qg., Eq. (3.25)).

The estimate o“ will be a consequence of the following bound on the operator

U

Lemma3.2. Letf € L%’ ThenU f € L%’ and

[Uflipo.810 <lflipopr (3.44)
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The proof of Lemma 3.2 is like the proof of Proposition 3.1, and is based on the fact
thatU f can be written as a derivative with respect to the normal variable. Lemma 3.2
leads to the following proposition fa#¢':

Proposition 3.3. Supposg € K% ThensCg € L} 1"’ for somef, and

899 li—1.p.0.80 < €%¢lg |1p,5.7- (3.45)

This estimate on the size of the error is not optimal. In fact, a more careful analysis of
S¢ would reveal that the error term is made up of two parts: a Eulerian part (namely

e~ 1€'lva) depending on the unscaled variablewhich is of sizes in H} 7, and a

part (nameI)UEla) depending on the scaled variaBfe which is of sizes in Ll 1 P
Something similar occurs in the analysis of the error for the Navier- Stokes equauons
(see Sect. 4); to prove that the erioris sizez we shall break it up in several parts (see
Eq. (4.6) below) and estimate them in the appropriate function spaces.

We now give an estimate on the Stokes oper&to€ombine Lemma 3.1, 3.2 with
the representation (3.36) to obtain the following boundson

Proposition 3.4. Suppose thag € K’lﬁ’pT, withg (¢ = 0) = Oandg, = |¢'| f0°° dy’'

FEL Y OKE ) with |€'] [° dy'|k(€',y)| < 1and f € L% ThenSg € L5,
and

189 l1.p.0.67 < (19 lLp,8.7 + | flip0,8.T) - (3.46)
In addition, for eacht < 7", Sg € K'*"¥', and satisfies

187 1 flip0.8,1) (3.47)

SUD 1Sg |10 < c(lg
0<t<

inwhich0 < p/ < p— 8T and0 < ¢ < 6 — f3t.

The proof of this proposition uses Jensen’s inequality as in the proof of Proposition
3.1. Proposition 3.4 and Lemma 3.2 are the only results from this section that will be
used in the rest of this paper.

4. The Error Equation

The equation for the error is

(at—szA)w +w - Vu?+u® Vw

+ew - V'LU + va = f + (g . ay&P’ O) ) (41)
V- w = 0’ (42)

yw =(0,9), (4.3)
w(t=0)=w0+Qo+eo, (44)

in which the forcing termf is in Ll 2’” %1 and isO(1) (see Eq. (2.40)). Notice that
in Egs. (4.1) and (4.2), and in the rest of thIS paper, the divergence and the gradient are
taken with respect to the unscaled variaglee.

= (0s,0y) . (4.5)

The rest of this paper is concerned with proving that equations (4.1)—(4.4) admita unique
solution, and that this solution 3(1). We shall prove the following Theorem:
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Theorem 2. Suppose that: © ¢ Hé’f’jz", thata” € Klﬁ’ﬁ,ze’“, so thatf has norm in
Ly; 27 bounded by a constant independent oThen there exist, < p, 2 < ¢ and
B2 > 3 andu, > 0 such that Egs. (4.1)—(4.4) admit a solution which can be written in
the form:

w=wt+t+e, (4.6)

where
o w e Nj 2% satisfies Eqgs. (4.7)-(4.10);
o 0 € K, 7" satisfies Eqgs. (4.11)-(4.14), and
o e € L} %" satisfies Egs. (4.15)—(4.18).

The quantityw represents the first order correction to the Euler flow. It satisfies the
following equations:

dwtrw-VuP+u? . Vw+Vp* =0, 4.7
V-w=0, (4.8)

Tnw = g, (4.9)

w(t =0) = wo. (4.10)

In addition the initial datav is required to satisfy the condition (iii) of Theorem 2.1.
The quantity2 = (Ql, Qz) represents the first order correction inside the boundary
layer, with the convective terms omitted. It satisfies the following equations:

(0 — Oyy) Q' =0, (4.11)
Q%= / dY'0,Q, (4.12)
Y
Q= —ywt, (4.13)
Q'(t = 0) = Q. (4.14)

The third part of the erroe satisfies the following equations:

(0 —A)e +e VI [u+e(w+Q)]

+[ul+e(w+N)] Ve +ece Ve +Vp© = =, (4.15)
V.e =0, (4.16)

ve = (O, —792) , (4.17)

e(t=0)=eo. (4.18)

The forcing term= is given by:
S=—[u? VOtw V(@ +eQ)+Q - Vu O+ (@ +eQ+ew) - Vw+eQ - VO
+22 [Aw + (0,:Q1,0)] — (0,(0; — £2A)Q%) + f +(g9-9,a",0).  (4.19)

The initial dataQ2§ ande o are required to satisfy conditions (iv) and (v) of Theorem
2.1.

The reason for the complicated representation Eq. (4.6) for the «rrizr the fol-
lowing: To solve Egs. (4.1)—(4.4) one has to use the projection operator due to the
incompressibility condition. The natural ambient space is therefore the space of func-
tions which arel? in both transversal and normal components. In the right-hand side of
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Eq. (4.1), there are terms which are rapidly varying inside the boundary layer, and thus
depend on the rescaled variableSo, in taking the’? norm with respect to the normal
variable we are forced to use the variablénstead ofy. The boundary condition (4.3),

on the other hand, gives rise to terms which depend on the varjaBleeir L? norm
evaluated using the rescaled variablevould beO(s—1/2). To avoid such a catastrophic
error, we use the decomposition (4.6); which is L? in y, takes care of the boundary
condition (4.3) (see Eq. (4.9)¥, which isL? in Y, takes care of the rapidly varying
forcing term;2 cancels the transversal componenbdt the boundary (see Eq. (4.13)).

5. The Correction to the Euler Flow

In this section we shall prove the following theorem:

Theorem 3. Supposethat € K/; . Thenthere exigt < p, 6, < fandj3, > such
that Egs. (4.7)—(4.10) admit a unique solutione N} 27%. The following estimate
in Né;f,z”bg? holds:

Wl 772% < e ([w §lip0 + 18 10,0, + lwolipo) (5.1)

where the norms af £, if’ andwy are taken inf/!-0¢ | K1:¢-9:# and N'-»-¢ respectively.

The structure of Egs. (4.7)—(4.10) is somewhat similar to the structure of Euler equations
and the proof of the above theorem closely follows the proof of Theorem 4.1 in [6]. The
functional setting here is slightly different; in fact Theorem 3 above is stated in the space

N é’f}a, where only the first derivative with respect to time is taken, instead of the space
H;;fT’G, where time derivatives up to ordeare allowed. This is due to the presence of
the boundary conditiog deriving from Prandtl equations. We shall prove the above
theorem using the ACK Theorem.

The solution of Egs. (4.7)—(4.10) can be written as

w=wot (~N',1) e W (g — go) + P, (52)
where the operatoP; is the integrated (with respect to time) half space projection
operator defined in Eq.(4.35) of [6]. The first term in this expression provides the correct

initial data, the second term the correct boundary data, and the third term the correct
forcing terms.

The projection operataP; satisfies the following bounds Wé’}’}o:
Proposition 5.1. Letu * € N;%’. ThenPu * € N4’ and

|Ptu*

1p,0.8.T < clulip0.pT- (5.3)

Proposition 5.2. Letu * € N;%. Letp’ < p— ST and¢’ < 6 — T. ThenPu * €
NEA forall 0 < ¢ < T, and

t
|Prw*[1,pr00 < C/ dsfuls -, 8)ipr00 < clulip0,67- (5.4)
0
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Using Eg. (5.5) one sees that (4.7)—(4.10) are equivalent to the following equation
for w*:
w*+ H'(w*,t) =0, (5.5)

where
H'(w*,t) = [wo + (=N, D)e €1 (g — go) + th*} Vu?
+uf.v [wo £ (=N, 1)e 1€ (g — go) + th*} . (56
Using the Cauchy estimate, and with the same procedure we used to prove existence and

uniqueness for Euler equations in [6], one can see that the opdfateatisfies all the
hypotheses of the ACK Theorem; therefore there exdst p, 6, < 6 andg, > 3 such

that Eq. (5.5) admits a unique solutiarf € Né;%pz’(’z. Equation (5.2) and Proposition
5.1 also implyw € N7, 5. Theorem 3 is thus proved.

6. The Boundary Layer Correction

We prove the following theorem:

Theorem 4. Letw be the solution of Egs. (4.7)—(4.10) found in Theorem 5.1. Then there
existpl, > p2, 05 > 0, 35 > (2, andu, > Osuch that Egs. (4.11)—(4.14) admit a unique

/ ’ ’ ’
solutionQ K;fp’pz’ez’“z. It satisfies the following estimate Iﬁl,_?pz’ez’“z:
27 2>
Q012,050 10851 < ¢ ([W§ 106+ 180 |00, + [wolip0 + [Qol1p62) »  (6.2)

where the norms af §, @l’, wo andQq are taken inlf 50| Kp:0on  NLeO and K1e:0o1
respectively.

The proof of this theorem uses the following lemma:

Lemma 6.1. There existg), < p, such that the boundary data.! is in Kg;%”’é. The

. . =205
following estimate holds ifk'; "

12,5801 < Cl@li-2,p0.05,07- (6.2)

The above lemma can be proved using a Sobolev estimate to boushthéth respect
to y of wl, and then a Cauchy estimate on theerivative to bound the teri, 0. -2w?.
The solution of Egs. (4.11)—(4.14) can be explicitly written as

Q' = Bo(t)Qf — Bryw' = Eo(t) (2§ +1wi) — Evy (w' — wj) — ywp, (6.3)

where the operataFy(t) and E; have been defined in [6]. Proposition 5.1 and Propo-
sition 5.3 of [6], imply thatQ! e ngT,pg,ag,m_ Using the expression (4.12) f&?
and again shrinking the domain of analyticity in and renamingy, we obtain also
Q% e Klﬁ;il";’eé’“z. The proof of Theorem 4 is thus complete.

By a redefinition ofpy, 6, 52, we may takep), = pz, 05 = 02, 55 = [3a.
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7. The Navier-Stokes Operator

In this section we shall prove the following theorem

Theorem 5. Under the hypotheses of Theorem 2, there existd,, 32, such that
Egs. (4.15)—(4.18) admit a unique solutiene Llﬁ;ZT"pz’ez. This solution satisfies the

following estimate infi; %7 %:

~P
Lo0 + 1700 |1,,0,1 * [woli,p.0 + [Qol1,p,0, + € 0l1p.0)

(7.1)
where the norms af ¥, @8, wo, Qo ande o are taken inH 70 | KLp:Oon NLeO | L6
and L!»9 respectively.

|e |l—2,pz,927527T <c (|’u,65

We shall prove this theorem using the ACK Theorem. In the same way as for the Euler
and Prandtl equations, we first invert the second order heat operator, taking into account
the incompressibility condition and the BC and IC. This is performed using the heat op-
erator,defined in Subsect. 7.1, which inveils — dyy — €29, ). Then in Subsect. 7.2

we insert the divergence-free projection and obtain the opefgolJsing the Stokes
operator from Sect. 3 to handle the boundary data, in Subsect. 7.3 we define the operator
N*, which is suitable for the iterative solution of the Navier-Stokes equations (i.e. treat-
ing initial data and nonlinearities as forcing terms). Bounds on this operator are given
in Propositions 7.6 and 7.7. With the use of this Navier-Stokes operator, and taking into
account initial and boundary data Eq. (4.17) and Eqg. (4.18), in Subsect. 7.4 we finally
solve the error equation. In Subsects. 7.5 and 7.6 we prove by the ACK Theorem that
this iterative procedure converges to a unique solution.

7.1. The heat operatorWe have already introduced the operafarin (3.21) which
solves the heat equation with boundary data. We now want to solve the heat equation
with a source and with zero initial and boundary data on the half gtane0; i.e.

(3,5 — szﬁm — aYY) u = ’U)(ZC, Y; t)a
u(x,Y,t = 0) 0 (7.2)
Yu 0.

First introduce the heat kernéb(z, Y, t), defined by
e—w2/4t52 e—Y2/4t

Varte2 Ant

We solve the problem (7.2) on the half plane with the following operator:

Eo(z,Y,t) = (7.3)

u(x,Y,t) = Fow
t e’} 0 -
= / ds/ dY’/ dz' [Eo(x — 2',Y = Y',t — s) (7.4)
0 0 —o0
—Eo(z — 2/, Y +Y' t — )] w(a’, Y, s).

We now state some estimates on this operator. In these estimetegfined fory” > 0.

Proposition 7.1. Letw € L};%’. ThenEyw € L%’ and

|E2w

10,87 < clwlip0,7. (7.5)
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PropoNSition 7.2. Supposev € Lgffe withyw = 0and thatp’ < p — §t, 0’ < 6 — jt.
ThenEyw(t) € L' ¢ and

t
|E2wli,pr o0 < C/ dslw(, -, 8)1,pr00 < clwlip,0,8,7- (7.6)
0
The proofs of these two propositions are given in the Appendix.

7.2. The projected heat operatoin [6] we introduced the divergence-free projection
operatorP°. Here we employ a similar operator with the normal variable rescaled by a
factore. The projection operator in theandY variable,P”", is the pseudodifferential
operator whose symbol is

P ( & _‘55/5”), (7.7)

262+ 62 \ —et'E, €267

where¢’ and¢,, denote the Fourier variables corresponding &mdY respectively. For
all w this operator satisfies

V-P w =0,P 'w +edy P~ ,w =0. (7.8)

In [6] to avoid Fourier transform ig we expressed> as an integration in the normal
variable. ForP™ one can similarly see that

P w :% l€§/|/y dY’e==lE 10 =Y (N7t 4 02)
= (7.9)
+E|£/| / dylea|5/|(YY')(N/wl+,w2):| ,
Y
P™'w =w1+} [—5|§’|/Y AY'e €107 =Y) (1 4 N7p?)
2 o0 (7.10)

_ €|f/| /oo dy/eg|£/|(y—y/)(w1 _ N/wZ)] .
Y

Next we present estimates on the projection operator. In these estimiatdsfined
onY > 0, but we writeP™ w to mean the following: First extend oddly toY < 0,
ie.

w(z,Y)=—w(x,-Y) whenY <O0; (7.11)

then applyP ", and finally restrict the result t§ > 0 for application of the norm. The
resulting expressions faP~ are

y
P*w = %6|§’| l/ dy’ (e’df/'(y’y/) - eidf/KYﬂﬂ)) (—N'wt +w?)
0

o0
+/ ay’ (e‘g‘fll(y_“//)(N'wl +w?) — €I =YD (Nt + wz))} ,(7.12)
Y
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Y
ﬁoolw — U)l _ %€|§/| / dy’ (675\§’|(Y7Y’) _ 675\5'\(Y+Y’)> (wl +N/w2)
0

. /Oody/ (ee\f'\(YfY')(wl B N’wz)efﬁ'(YY')(w1+N’w2))] .
JY
(7.13)
The following estimate is easily proved
Proposition 7.3. Letw € L"*? withyw = 0. ThenP~ w e L' and
P w |1p0 < clw i 0. (7.14)

We are now ready to introduce the projected heat operdgpacting on vectorial
functions, defined as e
No=P E,. (7.15)
One can easily show th&t ~ commutes with the heat operal@; — Oyy — €20,,). It
then follows that for eaclw such thatyw =0,

V- Now =0, (7.16)

(8 — Oyy — €20us) Now =P w . (7.17)

The following estimates are a consequence of the propertis oind £, separately:
Proposition 7.4. Supposav € Li’y. ThenNow € Ly and

INow |1,p.0.87 < clw |1p087T- (7.18)

Proposition 7.5. Supposey € Llﬁ’f}e withyw = 0andthaty’ < p— 5t 6 <6 — fSt.
Thenw andApw are in Lb¢"¢" for eacht, and

t
Now 1,760 < C/ dslw (-, -, 8)|1,pr,00 < clwli,p,0,6,7- (7.19)
0

Note that/, has zero boundary data; thus the conditions in Proposition 7.3 are all
satisfied.

7.3. The Navier-Stokes operatdwith the Stokes operator defined in Sect. 3 and the
projected heat operator of the previous subsection, we now introduce the Navier-Stokes
operatot\V* defined as

N* =Ny — Sy NG. (7.20)
This operator is used to solve the time-dependent Stokes equations with forcing, which is
equivalent to the Navier-Stokes equations if the nonlinear terms are put into the forcing.
In fact

w =N w* (7.21)
solves the system
(0 — Oyy — €%0ps) w + VP =w *, (7.22)
V-w =0, (7.23)
~yw =0, (7.24)
w(t=0)=0, (7.25)

and satisfies the following bound:
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Proposition 7.6. Supposav € Lgfgp&. ThenNV*w € Lgf’:’re and

WY w [1p0,87 < clw i,p0,5T- (7.26)

We already know, from Proposition 7.4, thie§ obeys an estimate like (7.26). There-
fore the only part ofV* which has to be estimated is that involving the Stokes operator
S. To bound this term it is enough to notice thatyw is a boundary data for which
the assumptions of Proposition 3.4 hold. In fact sifg@ has been extended oddly for
Y <0, them, Now =~P°, Frw is (see Eq. (7.12))

VP Eyw =el¢| / dY'e €'Y N Byt (7.27)
0

According to Proposition 7.1, this is of the form required in Proposition 3.4 for the
normal party,, of g = AMpw . The tangential pag’ satisfies the bound

1910087 < clEow [1p0,87 (7.28)

Therefore .
|SYNow i,p,0,8,7 < el E2w |1p0,87 < clw [1,0,6,7, (7.29)
which concludes the proof of Proposition 7.6.

We shall also use the following Proposition, which is proved in the same way as the
previous result, using Proposition 7.5:

Proposition 7.7. Supposes € Li%’ withyw = 0and thaty’ < p—ft, 0’ < 0 — jt.
Then inLi"-¢",

t
IN*w |00 < C/ ds|w (-, 8)ipr 00 < clwlip0,67- (7.30)
0

7.4. The solution of the error equatiowe can now solve Eqs. (4.15)—(4.18). If one looks

at these equations one sees that they are of the form (7.22)—(7.25) (where all forcing
and nonlinear terms are v *, see Eq. (7.37) below) plus boundary and initial data.
We therefore express as the sum of two terms: the first involving the Navier-Stokes
operator and the second where all boundary and initial data are. In fact we write

e =N*e*+o, (7.31)

whereo solves the following time-dependent Stokes problem with initial and boundary
data:

(Or —Oyy)o +V¢,=0 (7.32)
V.o =0, (7.33)
vo =(0,eG), (7.34)
o(t=0)=ey, (7.35)
having denoted:
= —/ dy'o,Qt, (7.36)
0

and wheree * satisfies the following equation:
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e*=5—{e Vu’+e(w+q)
) , (7.37)
+ [u’+e(w+Q)]-Ve +ce - Ve —e°0,,0 }.

Equations (7.32)—(7.35) can be solved explicitly. First note ¢ghiastharmonic, so that,
imposing it to be bounded at infinity,

(0, +1¢']) ¢ =0. (7.38)
Apply (9, + |¢']) to the normal component of Eq. (7.32), and define

7= (9, +|¢]) o? (7.39)
which satisfies
(Or — Oyy)T =0, (7.40)
v =¢|¢|G, (7.41)
7(t = 0) =|¢'|Vae o, (7.42)

in which Vie o = €5 — N'el. DenoteGo = G(t = 0). Then the solution of the system
(7.40)—(7.42) is
T = Eo(t) (|€'|Vie o — €|¢/|Go) + Ex [ye|¢'|G — ]| Go] +¢l¢'|Go
= [¢')7. (7.43)

The initial conditione o is in L"*:%; this obviously impliese o € L!=2%-%'. One has
the following proposition:

Proposition 7.8. Given thate o € L!~2#2%, thatG € K7, 2", and the compatibility
conditiony, e o = Go, then? € L}, %/*% and

7l1-2,p0.6.80.7 < € (l€ 0l1-2,0.0, + |Gli-2,p,.8,.7) - (7.44)

The proof of this proposition is based on the estimates on the opetagtisand E;
given in Propositions 5.2 and 5.3 of [6]; regarding the estimate in Proposition 5.3, we
notice in fact that if a function is i ;%" it is a fortiori in Lj;’;".

Now, the expression (7.43) farin '(7.39) and the boundafy condition (7.34) @h
imply that
o?=ee VG +TF, (7.45)

whereU has been defined in (3.33). The incompressibility condition then leads to
ol=—eN'e<€'IVG+ N'(1- D)7 (7.46)

A bound foro is given by

Proposition 7.9. Suppose that = |¢'|G, with G € K, 3, theno € Lj; %% and

10 [1-2,p0,00,8.7 < ¢ (|€ 0li-2,05,0, + |Gl1-2,p,8,,7)

< (| lip0 * 170 |,p.0.0 + [wolip.0 + [R0l1,p.0,0 * € 0li,p.0) -
(7.47)
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The proof of this proposition is based on Lemma 3.2 and Proposition 7.8 for the estimate
of the terms involvingr; and on the fact that it € K, 272, thene|¢/|e <€V G €
LZ*ZTA,pzﬁz. '

We are now ready to prove existence and uniqueness for Egs. (4.15)—(4.18). Use
Eq. (7.31) in (7.37), interpret this equation as an equatiof fgrand use the abstract
version of the Cauchy—Kowalewski Theorem, in the function spages L' and

Y, 81 = Lg”:’rg, to prove existence and unigueness for the solution. This is similar to

the procedure used in [6] to prove existence and uniqueness for the Euler and Prandtl
equations. Rewrite Eq. (7.37) as

e*=F (e"1), (7.48)
whereF (e *,t) is
F(e*,t)=k - {[u0+6(w+ﬂ+a)] -VN¥e*
+N*e* Vul+e(w+Q+o)]
+eN*e* - VN'e*} (7.49)
andk is the forcing term
k=5- {[u Ote (w+ﬂ)] -Vo +to -V [u Ote (w+ﬂ)] teo Vo }
=f —{[(u+e(w+Q+0)) - VO+(w - Va T’ — (g0,a",0))+(Q+a ) - Va ']
[(Q+a' ) Vu E+(UP+5(w+Q+o' )) . Vw+(u Ote(w+Q+o )) -Vo } }
2 [Aw+0,, (21,0)+0,,0 ] — (0,(9; — £2A)27) . (7.50)
The rest of this section is concerned with proving that the opeftaatisfies all the
hypotheses of ACK Theorem.

7.5. The forcing term.In this subsection we shall prove the following proposition,
asserting that the forcing term is bounded.ify %> andO(1):

Proposition 7.10. There exists a constaifity such that
|F (O, t)|l*2,p2*52t,92762t < Ro. (7.51)

Equation (7.49) shows that
FOt) =k (7.52)

with & given by (7.50). We already know th#it € L, % (see the discussion after

Eq. (2.40)). The terms in the first square brackets are exponentlally decaying outside the
boundary layer. Inside the boundary layer they can be shown @(bewith a Cauchy
estimate on the terms whefg is present: this is possible because they go linearly fast

to zero at the boundary. All terms inside the second square brackets are more easily
handled because r@(< ') appear. Proposition 7.10 is thus proved.

7.6. The Cauchy estimatin this subsection we shall prove that the oper#tosatisfies
the last hypothesis of the ACK Theorem. Here and in the rest of this section

P < p(s) < p2 — Bas,
0" < 0(s) < 03 — Bas.
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Proposition 7.11. Suppose’ < p(s) < p2 — f2s and @’ < 0(s) < 0, — Bos. If € *1
ande *2 are in Lj; 57" with

|e *l|172’P2»92ﬂ2,T <R, |e *2|l*2’92,92,ﬁz’T <R, (7.53)
then

|F (e *! t) —F (e 2 12,00

<C ds e i 2”(5)79' Llet—e oy
0(s) — 0
p(s) (s)

e i_aps).00 . € 1—2,0.005)
+Cle ™t —e 2|1 20 ,t/ ds { | P+ — (7.54)
RO :21:2 p(s) —p' O(s) — 0’

in which all the norms are i."»¢ and L};";’ .

The proof of the above proposition occupies the remainder of this section. Firstintroduce
the Cauchy estimates iff*f.

Lemma 7.1. Let f(x,Y) € L"*?. Thenfor0 < p/ < pand0 < ¢’ < 6,

102 flipr0 < c|f“’p" (7.55)
)y Fl i < 022 (7.56)

In the above propositiog(Y’) is a monotone, bounded function, going to zero linearly
fast near the origin (see e.g. Eq.(4.28) ) of [6]. The Sobolev inequality implies the
following lemmas:

Lemma 7.2. Let f(z,Y) andg(z,Y) be inL:7f. Then for0 < p’ < p,

190: Flupr 0 < clalt ol 'l”; (7.57)

Lemma 7.3. Let f(x,Y) and g(z,Y) be in LbY with g(xz,Y = 0) = 0. Then for
0<0 <0,

190y fli1,p,00 < clglip,0r |éf|_l”;?~ (7.58)

Lemmas 7.2 and 7.3 then imply
Lemma 7.4. Supposee ! and e 2 are in Lj; 2’ with v,e * = v,e 2 = 0. Then for
0<p <pand0< @ <6,

el Vel—e?.Ve?| 5,0 <c e —pe |;2p’ \e _06 |0l,2p ay (7.59)

where the constantdepends only ofe ;5 , ¢ 5. and|e 2[;_2 ,.0.5.1-



Zero Viscosity Limit for Analytic Solutions of N-S Equation. II. 485

We are now ready to prove Proposition 7.11. We first take into consideration the non-
linear part\*e * - VA *e *. From the estimates (7.26) and (7.30) on the Navier-Stokes
operator, the estimate (7.59) on the convective operator and the faet,thde * = 0,
it follows that

IN*e*1. VN*e*! — N*e*2. VN*e *le—27p’,9’
< C/t d |:|e *l(‘a B S) —€ *2('7 ) s)|l—27P(5)792
= S Y

0 p(s) —p

|e *1('3 B S) —€ *2('3 *y 3)‘172,;}2,0(3)
0(s) — 0’

t
1 *2
+Cle™ —e |l—2,pz,ez,ﬁz,T/ ds
0

i=1,2

+

|:|6 *i('v B 5)|l—2»/’(5)792
p(s) —p

LlerG 5)1—279279(8):|

0(s) — 0"
< C/t ds |:|€ *1('7 B S) —€ *2('7 B S)|l—27p(s),92
~ Jo p(s) = p'
|e *l('y E 8) —€ *2('7 E 8)‘l—2, ,0(s)
+ T Pz : (7.60)

Sincey, (u®+e(w + Q2 +0))=0,0necanestimatethetefm® + e(w + 2 + o))
VN*w * in a similar fashion. The tertV*w * - V (u % +e(w + Q + o)) is easily es-
timated. The proof of Proposition 7.11 is thus achieved.

7.7. Conclusion of the Proof of Theorem Fhe operatorF (e *,t) satisfies all the
hypotheses of the ACK Theorem. Therefore, there exigtsa 0 suchthat Eq. (7.48) has
aunique solutioe * € Li; %", Because of Proposition 7.6, thafre * € L}, %%
Given the expression (7.31) for the erwrand Proposition [7.9] foer , the proof of
Theorem 5 is achieved.

7.8. Conclusion of the Proof of Theorem We have thus proved that © € Hj;%’

(Theorem 4.1 of [6]), thatr” € K +”*# (Theorem 3 of [6]), thatw € N, 5>

(Theorem 5.1), thaf? € Ké;?’pz’ez’“z (Theorem 4), and that < Llﬁ;zfpz’ez (Theorem
5). By a redefinition of the parameters, we may take 42, 52, 112) = (p, 0, 5, 1), and
the proof of Theorem 1 is achieved.

8. Conclusions

In the analysis above, we have proved existence of solutions of the Navier-Stokes equa-
tions in two and three dimensions for a time that is short but independent of the viscosity.
As the viscosity goes to zero, the Navier-Stokes solution has been shown to approach
an Euler solution away from the boundary and a Prandtl solution in a thin boundary
layer. The initial data were assumed to be analytic: although this restriction is severe,
we believe that it might be optimal. In fact separation of the boundary layer is related to
development of a singularity in the solution of the time-dependent Prandtl equations, as
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discussed in [2]. We conjecture that the time of separation (and thus the singularity time)
cannot be controlled by a Sobolev bound on the initial data, unless some positivity and
monotonicity is assumed as in [5]. It would be very important to verify this by an explicit
singularity construction, or to refute it by an existence theorem in Sobolev spaces for
Prandtl.

This result suggest further work on several related problems: Analysis of the zero-
viscosity limit for Navier-Stokes equations in the exterior of a ball is presented in [1].
An alternative derivation of this result may be possible by a more direct analysis of the
Navier-Stokes solution. In two-dimensions, a solution is known to exist for a time that is
independent of the viscosity. Thus by writing the solution as a Stokes operator times the
nonlinear terms and analysis of the Stokes operator, it should be possible to recognize
the regular (Euler) and boundary layer (Prandtl) parts directly.

We believe that the method of the present paper could be used to prove convergence
ofthe Navier-Stokes solution to an Euler solution with a vortex sheet, in the zero viscosity
limit outside a boundary layer around the sheet. Note that the problem with a vortex sheet
should be easier because the boundary layer is weaker since tangential slip is allowed,
but it is more complicated since the boundary is curved and moving.

Appendix A: The Estimates for the Heat Operators

Proof of Lemma 3.1To prove Lemma 3.1 itis useful to introduce the following changes
of variables into the expression (3.21) for the operdtgar

Y "

CZW’“W- (A1)
One has
uf = 2 h e [ —n’ 2402
BIEn /Y/mt) e /_oo dne” " f (@ +nY/Ct=Y*/4C). (A2)

To get an estimate imlﬁ’f’T’e one has to bound the appropridté norm inz andY of

O Fyf with i < I, 3,8LF1f with i < | — 2 andd.d) Eof withi < 1 -2, j < 2.
We shall in fact prove a stronger estimate; we shall in fact prove that these terms are
exponentially decaying in th¥ variable. Let us first bound! £ f:

sup  sup TR qup |98 B fl| Lo

0<t<T YeX(9—6t) || <p—pt

o0
= sup sup eHTAIRY  gyp {/ dRz
0<t<T YeEX(9—pt) w|<p—pt \J—oo

1/2

2
2 [ 2 [ 2 ny y?
¢ n° gt T —
[77‘ /Y dee /,oo dne " 0.1 <l * ¢ ot 4§2)

Vat

(u—BORY 2 [~ ¢
< sup sup e sup — dCe

0<t<T YeX(6—pt) ISz|<p—pt | T Jy/v(4t)

- 1/2
/ dne™ 0L f (- +iSx, t — Y2/4C%) IIizmx)}

— 00
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2
< sup  sup #FIRYEN sup  sup || f(-+ 137, 1)|| L2(a)
0<t<TY €X(9—pt) 0<t<T S| <p—pt

5 oo 1/2
i d{efcz
VT Sy i)

< sup sup [|OLf(+iSz, 1)l raga
0<t<T |Sz|<p—pBt

- 1/2
Sup Sup e(li_ﬁt)%y i dCG_CZ
0<t<T Y €X(0—pt) e Y/\/(4t)

< 0% flo,p.0.8.7- (A.3)
In passing from the second to the third line, we used the Jensen inequality to pass the

square inside the integrals {handn, and performed the integration . We now
boundo; 0. E1f withi <1 — 2 by

sup sup AT gup ||3tagicElf||L2ma:)
0<t<T Y EX(6—pt) |Se|<p—pt

< sup  sup  |8:9L (- +iSz, )| Lagray
0<t<T |Sz|<p—pBt

, 1/2
sup  sup el TAORY —/ dce<
0<t<T Y e X(6—B1) VT Jy ) ian

< |0:0% flo,p.0,,- (A.4)

The procedure for the above bound is essentially the same that was u@@ﬁ?f¢r The
only thing to note is that the derivative with respect to time passed through the integral
in ¢ becausef(x,t = 0) = 0. We now boundy 0. E1 f withi <[ — 2 by

sup sup W TAIRY qup ||3Y8;51f||L2(§ex)
0<t<T YeZ(0—pt) |Sa|<p—pt

= sup sup eH IR gyp
0<t<T YeX(0—f5t) |Sz|<p—Bt

2 (o] o0
f/ d(:e_Cz/ dne‘"z
™ Jy /\/(4t) —o0

[Zai”f(x +nY/(t—Y?/4¢3) -

y
s 0Ly Gt - Y2/4<2>] H

< sup  sup eWTAIRY  gyp
0<t<T YeX(6—pt) |Sz|<p—pBt

2 i 2 Y
i d(e_c _
{ VT Jy e 2¢?

1/2
02727 + Syt = Y2/ |+ 0021 (- + St = Y?/4c))|] }

< (105 flo.p.0,8.1 + 10405 flo.p.0.5.7)
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1/2

2 o0 2 Y

(n—BHRY —¢
sup sup e —/ dCe™> —
0<t<T YeX(0—B1) [\/7? Y/ /(4t) 2¢?
< c|flip0.87- (A-5)

In passing from the second to the third line of the above estimate, we first integrated
by parts iny the termd*! f and then used Jensen’s inequality to passitheorm in

Rz inside the integral if andn. To bounddyy 8% E1 f with i < [ — 2, note thatl; f
satisfies the heat equation and use the bounds above. The proof of Lemma 3.1 is thus
achieved.

Proof of Proposition 7.1To prove Proposition 7.1, it is useful to make the following
changes of variables into the expression (7.4) for the opefator

¢ = Y'-Y Y'+Y J

¥ BRIV e RV "9

These lead to

ng:/tds/oo dne™ /OO dCe™s fla+n\/A(t—s), Y +C /Bt —s), )
0o Joo Y/ VA
—/OO dCe™S f(z + /Al — 5), —Y + (/A — 5), 9)] - (A7)

Y/VA(lt—s)

To get an estimate ilﬁ,ﬁ;ff", boundd’ E, f with i < 1, ,0L o f with i < [ — 2 and

9L0% Bof withi < 1 — 2,5 < 2. First bound?. £, f by

sup sup
0<t<T §'<0— 5t

sup ||3;E2f||L2(m)
[Sz|<p—pBt

L2(I(6’,a/¢))

0<t<T 9’ <0—f3t |Sz|<p—pt J —co

o0
< sup sup / dY  sup dRx
I’ ,a/e)

[/tds </Oo /OO dne™ O+ /Al —5), Y + /At~ 5), 5)
0 - o

dce<’
Y/ /A=)
1/2

2
7/ d(e{z/ dneﬁzaif(x+77\/4(tfs ,Y+C\/4(ts,s)>] }

Y/ /AG=s)

T
<ec sup sup / dY/ ds
0<t<T 6'<6—Bt | JT(0",a/z) 0

o0 2 o0 2 2
{ / d¢e=¢ / dne™  sup || f(-+iSz, Y + /A — s))H
—0 —oo |3z <p—pt

o0 2 o0 2
+ / dze™” / dne”  sup
—0 —0 |Sw|<p—Bt

1/2
F(+iSw, —Y +20/a(t — s))ﬂ }
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<c sup sup
0<t<T 9'<0—pt

sup  |0%f |l L2y (A.8)

[Sz|<p—pt

L0’ ,a/¢))

In passing from the second to the third line of the above estimate, we used Jensen’s
inequality and overestimated the integralssin and z. Now bounddy 9., E1 f with
1<1l—2hy

sup  sup
0<t<T 0/<6—pt

sup ||3Y3iE2f||L2(§Rm)
|Sz|<p—pt

LA(r(6",a/¢)

oo
< sup sup / dY  sup dRzx
I’ ,a/e)

0<t<T 0’ <0—f3t |Sz|<p—pt J —co

l/tds (/Oo /Oo dneﬂzc()y@;f(x+77\/4(t—s),Y+C\/4(t—s ,S)
0 - —0

dces
Y/ /Al—s)

- / d¢e ¢ / dne " 0y d' f(z + /At — 5), —Y + (/A — 3), 5)
Y/ VA5 —oo

1/2
t o o—Y?/At—s) 2

"2 )y A

/OO dne ™" 0% f(z + /A — ), 0, )

<c sup sup
0<t<T '<6-ft

sup ||3Y5§;f||L2(§Rz)
[Sz|<p—pt

LA(T(6",a/2))

+ sup sup / dY  sup dRx
0’ ,a/e)

0<t<T §'<O—p3t |Sz|<p—pBtJ—oc0

[N

t e Yi/4 oo . 2
-n° gt /A —
[2/0 ds ) dne™" 0, f(x + n\/4(t — s),0, s)]

< c|dy . flo.p.0,6,1

. 5 2
+ ¢ sup sup {SUD sup  [|0LF(-+iS2,0,8)|| o
0<t<T 0'<0—pt | 0<t<T |Sz|<p—Bt

. L 1/2
dYe Y’ /4 / ds——n
/r(e/,a/e) o VAt —s)

< cloy O flopopr+e Y. sup

0<j<10stsT L2(1(0'=0,a/¢))
<c|flip0,87- (A.9)

sup ||3{/8;f||L2(m)
[Sz|<p—pt

In passing from the third to the fourth line, we estimated the val@é 6fat the boundary
with the L2 (in Y) estimate of?. f anddy 0, f. Now bounddyy 9. Ey1 f with i <1 — 2
by
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sup  sup sup (030, Eaf || Lagnay

0<t<T 0'<O—-pt |||Sz|<p—pFt L2(T (0" ,a /<))

< c|oyydLf

0,0,0,8T T C E sup sup (10405 f | L2y
[P _
1< <2 0St<T ||[Sal<p—pt LAT(0'=0,0/2)

o0
+ sup sup / dY  sup dRx
0<t<T 6'<0—p3t 0’ ,a/e) |Sz|<p—pBtJ—oc0

1
2

f/td Ll P S |
§— e” T O f(x+ t—s),0,s
0 \/4(t—8)3 —00 7 K

< c|fli,p.0.81

o0
+ sup sup / dY  sup dRx
0<t<T 0'<0-pt | JT(0",a/c) |Sz|<p—pBt J —oc0

1

2) 2

[/ Mf*/ Mf#%KNWWQQ%
Y/Vat —oo

< flip0,8,T (A.10)

In passing from the third to the fourth line, we used Jensen’s inequality to pass the square
inside the integral ig and. Then we used the fact that the integraf ifflom Y/+/4t to
infinity is an exponential decaying function Bfto perform the integration it". Finally
we estimated the value & f at the boundary with thé? (in Y) estimate of? f and

Oy 0L,

Proof of Proposition 7.2The proof of Proposition 7.2 uses the same calculations as in
the previous proof, except that in Proposition 7.2 the boundary termsinti®) are all
zero. With these terms absent, the result (7.6) follows from the estimates (A.8)—(A.10).
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