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Abstract: This is the second of two papers on the zero-viscosity limit for the incom-
pressible Navier-Stokes equations in a half-space in either 2D or 3D. Under the assump-
tion of analytic initial data, we construct solutions of Navier-Stokes for a short time which
is independent of the viscosity. The Navier-Stokes solution is constructed through a com-
posite asymptotic expansion involving the solutions of the Euler and Prandtl equations,
which were constructed in the first paper, plus an error term. This shows that the Navier-
Stokes solution goes to an Euler solution outside a boundary layer and to a solution of
the Prandtl equations within the boundary layer. The error term is written as a sum of
first order Euler and Prandtl corrections plus a further error term. The equation for the
error term is weakly nonlinear; its linear part is the time dependent Stokes equation.
This error equation is solved by inversion of the Stokes equation, through expressing
the solution as a regular (Euler-like) part plus a boundary layer (Prandtl-like) part. The
main technical tool in this analysis is the Abstract Cauchy-Kowalewski Theorem.

1. Introduction

This is the second of two papers on the zero viscosity limit of the incompressible Navier-
Stokes equations in a half-space with analytic initial data, and in either two or three spatial
dimensions. Under the analyticity restriction and for small viscosity, we prove that the
Navier-Stokes equations have a solution for a short time (independent of the viscosity).
In the zero-viscosity limit, we show that this Navier-Stokes solution goes to an Euler
solution outside a boundary layer and to a solution of the Prandtl equations within the
boundary layer. As argued in the Introduction of Part I [6], we believe that the imposition
of analyticity is needed to make this problem well-posed, by preventing boundary layer
separation, but there is no proof of this.
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In the first paper [6], we proved short time existence of solutions for the Euler
equations and the Prandtl equations with analytic initial data. In this second paper, we
construct the Navier-Stokes solution as a sum of the Euler solution, the Prandtl solution
and an error term. Existence and bounds of sizeε (the square root of the viscosity) for
the error term are the main results of this paper. The error equation is weakly nonlinear,
since its solution is small. Its linear part is exactly the time-dependent Stokes equation,
with forcing terms and with boundary and initial data. As for the solution of the Euler
equations in [6], the incompressibility of the solution is ensured by use of the projection
method in order to avoid dealing directly with the pressure.

The main technical tool here is the Abstract Cauchy-Kowalewski (ACK) Theorem,
which is invoked to establish existence for the error equation. As discussed in the Intro-
duction to Part I, the abstract version of this theorem applies to dissipative equations,
even though the classical version does not.

A discussion of related references from the literature is presented in the Introduction
to Part I.

In Sect. 2 we state the Navier-Stokes equations and discuss how the Euler equations
and Prandtl equations, in the limit of small viscosity, can be formally derived from
Navier-Stokes through different scalings and asymptotic expansions. The introduction
of two different scalings, typical in singular perturbation theory, is formally necessary
to describe two different regimes of the flow: the inviscid regime (far away from the
boundary) and the viscous regime (close to the boundary) where the viscous forces
cannot be neglected even for small viscosity. The meaning of Theorem 1, which is the
main result of this paper, is to rigorously establish this formal result; i.e. to show that
the Euler and Prandtl equations are each a good approximation of the Navier-Stokes
equations in their respective domains of validity. In particular, the solution of the full
Navier-Stokes equations is divided into Euler, Prandtl and error terms, and the error term
is further divided into first order Euler, first order Prandtl and a higher order correction.

Section 3 contains an analysis of the time-dependent Stokes equations with pre-
scribed boundary data. For this linear problem, which we shall solve explicitly, we also
show that the solution is the superposition of an inviscid part, a boundary layer part, and a
small correction. Section 4 contains the decomposition of the error equation Eqs. (4.1)–
(4.4) into first order Euler and Prandtl equations, which are solved in Sections 5 and 6.
The analysis of the equations for the remaining error takes all of Sect. 7. These “Navier-
Stokes error equations” contain terms of sizeO(ε−1) due to the generation of vorticity at
the boundary. They are solved using what we call the “ Navier-Stokes operator,” which
solves Stokes equations with a forcing term (see Eqs. (7.22)–(7.25)). It is suitable for
solving the error equation (and thus the original Navier-Stokes equations) with an it-
erative procedure. With the bounds on this operator, and with the use of the abstract
version of the Cauchy-Kowalewski Theorem, we can prove existence, uniqueness and
boundedness (in a suitable norm) for the error.

Final conclusions are stated in Sect. 8. The function spaces that are used in this
paper are all defined in Part I. For convenience, tables of function spaces and operators
are presented there. As in Part I, the exposition is presented for the two-dimensional
problem, but the results are all expressed for 3D as well as 2D.

2. Navier-Stokes Equations

2.1. A singular perturbation problem.The Navier-Stokes equations on the half plane
for a velocity fieldu NS = (uNS , vNS) are
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(∂t − ν1) u NS + u NS · ∇u NS + ∇pNS = 0, (2.1)

∇ · u NS = 0, (2.2)

γu NS = 0, (2.3)

u NS (t = 0) = u NS
0 . (2.4)

Here,ν = ε2 is the viscosity coefficient, andγ is the trace operator, i.e.γf (x, t) =
f (x, y = 0, t). The initial velocityu NS

0 (x, y) must satisfy the incompressibility condi-
tion and the compatibility condition with the BC Eq. (2.3):

∇ · u NS
0 = 0, (2.5)

γu NS
0 = 0. (2.6)

In this paper we are interested in the behavior of the solution of N-S equations in the
limit of small viscosityν << 1. As usual in perturbation theory, it is natural to write
the solution as an asymptotic series of the form

u NS = u 0 + εu 1 + ε2u 2 + . . . , (2.7)

where all the termsu i satisfy equations that are independent ofε (the reason for expand-
ing in ε =

√
ν comes from the boundary layer expansion, which is described below).

The equation for the leading order termu 0 comes from just neglecting the viscous term
in the Navier-Stokes equations, which yields the Euler equations

∂tu
E + u E · ∇u E + ∇pE = 0, (2.8)

∇ · u E = 0, (2.9)

γnu E = vE (x, y = 0, t) = 0, (2.10)

u E (x, y, t = 0) = u E
0 (x, y) . (2.11)

This procedure works well, at least for short times far away from the boundary,
but gives unsatisfactory answers close to the boundary. Comparison of the boundary
conditions Eqs. (2.3) and (2.10) for the Navier-Stokes and Euler equations, respectively,
shows the cause of the failure. For Euler equations we can only impose zero normal
velocity, since the equations are first order; while for Navier-Stokes the no-slip condition
requires both normal and tangential velocities to vanish. We must therefore allow a region
in the vicinity of the boundary where viscous forces are comparable to inertial forces,
and where there is an adjustment of the tangential velocity from zero at the boundary to
the value predicted by the Euler equations. This boundary layer should have sizeε =

√
ν,

so that the viscous termνuyy is of sizeO(1).
Thus it is natural to write all quantities in terms of a rescaled normal variableY =

y/ε. Next, the incompressibility condition requires thatvy = ε−1vY = O(1), which
requires the vertical velocityv to be sizeO(ε). Imposing this scaling in the Navier-
Stokes equations, and again neglecting terms which are first order inε, one gets Prandtl’s
equations for the fluid velocityu P (x, Y, t) = (uP , εvP ) in the vicinity of the boundary;
i.e.
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(∂t − ∂Y Y ) uP + uP ∂xuP + vP ∂Y uP + ∂xpP = 0, (2.12)

∂Y pP = 0, (2.13)

∂xuP + ∂Y vP = 0, (2.14)

γuP = γvP = 0, (2.15)

uP (x, Y → ∞) −→ γuE , (2.16)

uP (x, Y, t = 0) = uP
0 (x, Y ) . (2.17)

Equation (2.16) is the matching condition between the inner (viscous) flow and the outer
(inviscid) flow. This condition is equivalent to the existence of an intermediate region
(e.g. a region wherey = O(εα) with 0 < α < 1), where there is a smooth transition
between the viscous and inviscid regimes.

As already noticed (see Subsect. 5.2 of [6]), it is natural to introduce the new variable
ũ P = (ũP , εṽP ) defined as

ũP = uP − γuE , (2.18)

ṽP = vP + Y ∂xγuE = −
∫ Y

0
dY ′∂xũP , (2.19)

and write Prandtl equations in terms of ˜uP as

(∂t − ∂Y Y ) ũP + ũP ∂xγuE + γuE∂xũP + ũP ∂xũP

+
[
ṽP − Y ∂xγuE

]
∂Y ũP = 0, (2.20)

γũP = −γuE , (2.21)

ũP (x, Y → ∞) −→ 0, (2.22)

ũP (x, Y, t = 0) = uP
0 (x, Y ) − γuE

0 = ũP
0 . (2.23)

We also define the normal velocityvP to be the velocity ˜vP minus its value at infinity;
i.e.

vP (Y ) = ṽP (Y ) − ṽP (Y = ∞) =
∫ ∞

Y

dY ′∂xũP . (2.24)

In [6] we have proved that, under suitable hypotheses on the initial conditions,
i.e. analyticity, incompressibility and compatibility with boundary conditions, both the
Euler and Prandtl equations admit a unique solution in the appropriate space of analytic
functions (see Theorems 4.1 and 5.1 in [6]). To be more specific, we found the existence
and the uniqueness of an analytic solution for Euler equations which isL2 in both thex
andy variable. For Prandtl, on the other hand, we proved existence and uniqueness for a
solutionũP which isL2 in thex variable, and exponentially decaying in theY variable
(i.e. outside the boundary layer); the normal component ˜vP of the velocity isO(ε), but
not decaying inY , and in fact goes to a constant outside the boundary layer.

At this point, a natural question is whether one can use the solutions of the Euler and
Prandtl equations to build a zeroth order approximation to the solution of Navier-Stokes
equations. The following theorem, which is the main result of this paper, gives a positive
answer to this question:

Theorem 1 (Informal Statement). Suppose thatu E(x, y, t) andu P (x, Y, t) are so-
lutions of the Euler and Prandtl equations, respectively, which are analytic in the spa-
tial variablesx, y, Y . Then for a short timeT , independent ofε, there is a solution
u NS(x, y, t) of the Navier-Stokes equations with
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u NS =

{
u E + O(ε) outside boundary layer
u P + O(ε) inside boundary layer.

(2.25)

A formal version of this result, with a complete specification of the possible initial
data for the Navier-Stokes solution is given in the following theorem:

Theorem 1. Suppose the initial condition for the Navier-Stokes equations is given in
the following form

u NS
0 = u E

0 (x, y) + u P
0 (x, Y ) + ε [ω0(x, y) + Ω0(x, Y ) + e 0(x, Y )] , (2.26)

where

(i) u E
0 = (uE

0 , vE
0 ) ∈ H l,ρ,θ and

∇ · u E
0 = 0 , γnu E

0 = 0,

(ii) u P
0 = (ũP

0 , εvP
0 ) ∈ Kl,ρ,θ,µ and

vP
0 =

∫ ∞

Y

dY ′∂xũP
0 , γũP

0 = −γuE
0 ,

(iii) ω0 = (ω1
0, ω

2
0) ∈ N l,ρ,θ,

∇ · ω0 = 0 , γω2
0 = −γvP

0 ,

(iv) Ω = (�1
0, ε�

2
0) ∈ Kl,ρ,θ,µ and

�2
0 =
∫ ∞

Y

dY ′∂x�1
0 , γ�1

0 = −γω1
0,

(v) e 0 = (e1
0, e

2
0) ∈ Ll,ρ,θ and

∇ · e 0 = 0 , γe 0 = (0, −γ�2
0),

with l ≥ 6. Then there existρ < ρ, θ < θ, µ < µ, β > 0, andT > 0, all independent
of ε, such that the solution of the Navier-Stokes equations can be written in the form

u NS = u E(x, y, t) + u P (x, Y, t) + ε [ω(x, y, t) + Ω(x, Y, t) + e (x, Y, t)] (2.27)

in which

(i) u E ∈ H l,ρ,θ

β,T
is the solution of the Euler equations (2.1)–(2.4),

(ii) u P = (ũP , εvP ) ∈ Kl,ρ,θ,µ

β,T
is the modified Prandtl solution as defined in (2.18)

and (2.24), exponentially decaying outside the boundary layer,

(iii) ω ∈ N l,ρ,θ

β,T
is the first order correction to the inviscid flow; it solves Eqs. (4.7)–

(4.10) below,

(iv) Ω ∈ Kl,ρ,θ,µ

β,T
is the first order correction to the boundary layer flow; it solves

Eqs. (4.11)–(4.14) below,
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(v) e ∈ Ll,ρ,θ

β,T
is an overall correction; it solves Eqs. (4.15)–(4.18) below.

The norms ofω, Ω ande in the above spaces are bounded by a constant that does not
depend on the viscosity.

2.2. Discussion of the Theorem.Sinceu P is exponentially decaying for largeY = y/ε,
then the expression (2.27) shows thatu NS = u E + O(ε) for y outside of the boundary
layer (i.e.y >> ε). Fory inside the boundary layer (i.e.y ≤ ε), u E = (γuE , 0) +O(ε),
so thatu NS = u P + O(ε). This shows that the informal statement of the theorem
follows from the rigorous statement.

In this theorem the Navier-Stokes solution is represented in terms of a composite
expansion of the form (2.27), which includes a regular (Euler) termu E , a boundary
layer termu P and a correction term. Since the Euler solution has non-zero boundary
values, the Prandtl solution must be modified so that the sum of the two is zero at the
boundary and approaches the Euler solution at the outer edge of the boundary layer.
The theorem says that if the initial condition is a functionL2 in transversal and normal
component (together with its derivatives up to orderl), then the solution of the Navier-
Stokes equations will have the composite expansion form given in Eq. (2.27), at least
for a short time.

There are several other ways to represent the Navier-Stokes solution for small vis-
cosity. The most common method in perturbation theory [3] is to write the solution as a
matched asymptotic expansion in which

u NS = u P + O(ε) for y small enough, (2.28)

u NS = u E + O(ε) for y not too small. (2.29)

The formal validity of this representation is usually demonstrated by showing that the
O(ε) terms are small, and that there is a region of overlap for the validity of the two
expansions. While this representation is more easily understood than the composite
expansion, it is much more difficult to rigorously analyze due to the two spatial regimes.

A second method for representing the solution, which has been used for example in
[4, 8], is to introduce a cut off functionm = m(y/εα) with m(0) = 1,m(∞) = 0, and
0 < α < 1. The solution is then written as

u NS = mu P + (1− m)u E + O(εα). (2.30)

This method has two difficulties: It introduces an artificial length scaleεα which makes
the error terms artificially large. It also requires error terms in the incompressibility
equation, sincemu P + (1 − m)u E is not divergence-free. For these reasons we have
found the composite expansion method to be the most convenient for analysis.

The rest of this paper is devoted to proving Theorem 1. Unless otherwise stated,
l ≥ 6 throughout.

2.3. The error equation.If we pose

uNS = uE + ũP + εw1,
vNS = vE + ε

∫∞
Y

dY ′∂xũP + εw2 = vE + εvP + εw2,
pNS = pE + εpw,

(2.31)

and use these expressions in the N-S equations, we get the following equation for the
errorw = (w1, w2):
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(
∂t − ε21

)
w + w · ∇u 0 +

u 0 · ∇w + εw · ∇w + ∇pw = f +
(
g · ∂yũP , 0

)
, (2.32)

∇ · w = 0, (2.33)

γw = (0, g) , (2.34)

w (t = 0) = ω0 + Ω0 + e 0, (2.35)

in whichu 0 = (u0, v0) is defined by

u0 = uE + ũP ,
v0 = vE + εvP = vE + ε

∫∞
Y

dY ′∂xũP .
(2.36)

The forcing term isf = (f1, f2) given by

f1 = −ε−1
{
ũP
(
∂xuE − ∂xγuE

)
+ (∂xũP )

(
uE − γuE

)
+ (∂yũP )

(
vE + y∂xγuE

)}
− vP ∂yuE + ε1uE + ε∂2

xũP , (2.37)

f2 = − [∂tv
P + u0∂xvP + v0∂yvP + vP ∂yvE

]− ε−1ũP ∂xvE + ε1v0, (2.38)

and also

g =
∫ ∞

0
dY ′∂xũP . (2.39)

We want to show that the forcing termf is in Ll−2,ρ1,θ1
β1,T

, and that in this space it has
O(1) norm, namely that

|f |l−2,ρ1,θ1,β1,T ≤ c
(|u E

0 |l,ρ,θ + |ũP
0 |l,ρ,θ,µ + 1

)2
, (2.40)

where the constantc does not depend onε. Let us considerf1. From Theorems 4.1
and 5.1 of Part I [6], it is clear that the termsε1uE andε∂2

xũP satisfy the estimate
(2.40). Each of the remaining terms inf has a similar form: They are eachε−1 times
the product of a function which is exponentially decaying (with respect toY = y/ε)
outside the boundary layer (terms containing ˜uP andvP ), and a function that isO(ε)
inside the boundary layer (e.g.uE − γuE). It follows that they all satisfy (2.40). In an
analogous way one can see thatf2 is O(1) and satisfies the estimate (2.40).

Thus Eqs. (2.32)–(2.35) for the error termw (x, Y, t) have bounded forcing terms. In
Sects. 4–7 we shall prove that this system admits a solutionw which can be represented
in the following form:

w = ω + Ω + e , (2.41)

where the norms (in the appropriate function spaces) ofω, Ω ande remain bounded by
a constant independent ofε. The difficulty of this proof is the presence in Eq. (2.32) of
terms like∂yũP , which areO(ε−1) inside the boundary layer.

3. The Boundary Layer Analysis for Stokes Equations

Before addressing the problem of solving Eqs. (2.32)–(2.35), it is useful to consider a
somewhat simpler problem, the Stokes equations with zero initial condition and bound-
ary datag . This problem is of intrinsic interest, and the results will be used in the
analysis of the Navier-Stokes equations. The time-dependent Stokes equations are
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(∂t − ν1) u S + ∇pS = 0, (3.1)

∇ · u S = 0, (3.2)

γu S = g (x, t), (3.3)

u S (x, y, t = 0) = 0. (3.4)

Hereg is a vectorial functiong = (g′, gn). Primed quantities denote the tangential
components of a vector, while the subscriptn denotes the normal component. The
compatibility conditiong (x, t = 0) = 0 is required for the boundary data.

In this section we shall show that the solution of the above problem has a structure
similar to that for the Navier-Stokes solution Eq. (2.27); i.e. it is the superposition of an
inviscid (Euler) part, a boundary layer (Prandtl) part which exponentially decays to zero
outside a region of sizeε =

√
ν, and a correction term which is sizeO(ε) everywhere.

The Stokes problem Eqs. (3.1)–(3.4) has already been addressed by Ukai in [7], (where
even the case of non-zero initial data was considered), without making the distinction
between inviscid part, boundary layer part and correction term.

We seek a solution of the form

uS = uE + ũP + w1, vS = vE + εvP + w2, pS = pE + pw, (3.5)

so that (uE , vE) represents an inviscid solution, ( ˜uP , vP ) is a boundary layer solution
decaying (in both components) outside the boundary layer, (w1, w2) is a small correction,
and the pressurespE andpw are bounded at infinity. Please note that in this sectionuE ,
ũP and w refer to the “Euler”, “Prandtl” and correction components of the Stokes
solution; everywhere else in the paper, this notation is used for the usual Euler and
Prandtl solutions and for the correction in the Navier-Stokes solution. These quantities
solve the following equations:

∂tu
E + ∇pE = 0, (3.6)

∇ · u E = 0, (3.7)

γnu E = gn, (3.8)

u E (x, y, t = 0) = 0, (3.9)

(∂t − ν1) ũP = 0, (3.10)

∂xũP + ∂Y vP = 0, (3.11)

vP → 0 asY → ∞,

γũP = g′ − γuE , (3.12)

ũP (x, y, t = 0) = 0, (3.13)

(∂t − ν1) w + ∇pw = 0, (3.14)

∇ · w = 0, (3.15)

γw = (0, −εγvP ), (3.16)

w (x, y, t = 0) = 0. (3.17)

Note that Eq. (3.10)–Eq. (3.13) use the fast variableY = y/ε with ν = ε2, in terms of
which 1 = ε2∂xx + ∂Y Y . Also, there is no term1u E , since it is identically zero. We
now solve explicitly these equations.
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3.1. Convective equation.Take the divergence of (3.6) to obtain1pE = 0. Then apply
1 to (3.6) and use the initial conditionu E = 0, to obtain

1u E = 0. (3.18)

Therefore the solution of Euler problem is

u E = ∇Ngn, (3.19)

where the operatorN = −1/|ξ′| exp (−|ξ′|y) solves the Laplace equation with Neumann
boundary condition; i.e.

1Ngn = 0,
γ∂yNgn = gn.

(3.20)

3.2. Boundary Layer Problem.To solve Eqs. (3.10)–(3.13) it is useful to introduce the
operatorẼ1 acting on functionsf (x, t) defined on the boundary

Ẽ1f (x, Y, t) =2
∫ t

0
ds

Y

t − s

exp
[−Y 2/4(t − s)

]
(4π(t − s))1/2∫ ∞

−∞
dx′ exp

[−(x − x′)2/4ε2(t − s)
](

4πε2(t − s)
)1/2

f (x′, s).
(3.21)

This operator solves the heat equation with boundary conditionsf and zero initial
conditions (

∂t − ε2∂xx − ∂Y Y

)
Ẽ1f = 0,

γẼ1f = f,
Ẽ1f (x, Y, t = 0) = 0.

(3.22)

Note that the operator̃E1 differs from the operatorE1 (defined in Sect. 5.1 of Part I) by
the fact that it involves an integration on the transversal componentx also. Define

Mg = g′ + N ′gn. (3.23)

The solution of the boundary layer equations is written as

ũP = Ẽ1Mg . (3.24)

Using the incompressibility condition and the limiting condition, the normal component
is

vP =
∫ ∞

Y

dY ′∂xũP . (3.25)

3.3. The Correction Term.Here we shall use the Fourier transform variable with respect
to x. As in Part I, the corresponding transform variable is denotedξ′. As in Subsect. 3.1,
1pw = 0. Sincepw is bounded at∞, then(

∂y + |ξ′|) pw = 0. (3.26)

Defineτ =
(
∂y + |ξ′|)w2, so that Eqs. (3.14)–(3.16) imply
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(
∂t − ε21

)
τ = 0, (3.27)

γτ = γ
(
∂y + |ξ′|)w2,

= γ
(−∇′w1 + |ξ′|w2

)
,

= |ξ′|α, (3.28)

in which

α = −ε

∫ ∞

0
dY ′∂xũP . (3.29)

Sinceτ solves the heat equation with the above boundary condition, then

τ = |ξ′|Ẽ1α. (3.30)

From the definition ofτ , w2 satisfies

∂yw2 + |ξ′|w2 = |ξ′|Ẽ1α, (3.31)

which leads to
w2(x, Y, t) = e−|ξ′|yα + UẼ1α (3.32)

in whichU is defined as

Uf (ξ′, Y ) = ε|ξ′|
∫ Y

0
e−ε|ξ′|(Y −Y ′)f (ξ′, Y ′)dY ′. (3.33)

Notice that a similar operator occurs in Eq.(4.12) in [6]. Finally, the incompressibility
condition implies that

w1 = −N ′e−|ξ′|yα + N ′(1 − U )Ẽ1α. (3.34)

These above results can be summarized as follows: The solution of the Stokes prob-
lem Eqs. (3.1)–(3.4) is denoted bySg , with

u S = Sg = SEg + SP g + SCg

=

(−N ′Dgn

Dgn

)
+

(
Ẽ1Mg

ε
∫∞

Y
dY ′∂xẼ1Mg

)
+

(−N ′e−|ξ′|y + N ′(1 − U )Ẽ1

e−|ξ′|y + UẼ1

)
α.

(3.35)

After some manipulation, this can be simplified, as in [7], to

u S = Sg =

(−N ′e−|ξ′|ygn + N ′(1 − U )Ẽ1V1g

e−|ξ′|ygn + UẼ1V1g

)
, (3.36)

in which
V1g = gn − N ′g′. (3.37)

3.4. Estimates.In this subsection we prove some basic simple estimates on the operators
SE , SP , andSC . Propositions 3.1, 3.2 and 3.3 are presented as results on the time-
dependent Stokes equations, but are not used in the sequel. For analysis of the Navier-
Stokes equations, only Proposition 3.4 and Lemma 3.2 will be used.

We cannot in general give an estimate for the operatorSE in a space involving the
L2 norm iny. Nevertheless it is possible to give such an estimate for a special class of
boundary data.
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Proposition 3.1. Suppose thatg satisfies

gn = |ξ′|
∫ ∞

0
dy′f (ξ′, y′, t)k(ξ′, y′) (3.38)

with |ξ′| ∫∞
0 dy′|k(ξ′, y′)| ≤ 1 andf ∈ H l,ρ,θ

β,T . ThenSEg ∈ H l,ρ,θ
β,T , and the following

estimate holds:
|SEg |l,ρ,θ,β,T ≤ c|f |l,ρ,θ,β,T . (3.39)

Using Jensen’s inequality and replacing a factor of|ξ′| ∫∞
0 dy′|k(ξ′, y′)| by 1,

supθ′≤θ

∫
0(θ′)

dy

∫
dξ′e2ρ|ξ′|

[∫ ∞

0
dy′|ξ′|e−|ξ′|yk(ξ′, y′)f (ξ′, y′)

]2

≤ sup
θ′≤θ

∫
0(θ′)

dy

∫
dξ′e2ρ|ξ′|

∫ ∞

0
dy′|ξ′|e−2|ξ′|yk(ξ′, y′)

[
f (ξ′, y′)

]2
=
∫

dξ′e2ρ|ξ′|
∫ ∞

0
dy′k(ξ′, y′)

[
f (ξ′, y′)

]2
≤ |f |20,ρ,θ,β,T . (3.40)

Analogous bounds can be proved for the differentiated terms in the norm.
Now consider the “Prandtl” part. We first state an estimate for the operatorẼ1.

Lemma 3.1. Let f ∈ K ′l,ρ
β,T with f (t = 0) = 0. ThenẼ1f ∈ Ll,ρ,θ

β,T for someθ, and the

following estimate holds inLl,ρ,θ
β,T :

|Ẽ1f |l,ρ,θ,β,T ≤ c|f |l,ρ,β,T . (3.41)

A much stronger estimate actually holds. One can in fact prove the exponential decay of
Ẽ1f in the normal variable away from the boundary; see the proof given in the Appendix.

Using Lemma 3.1, the following estimates onSP ′ andSP
n (respectively the transver-

sal and the normal components of the operatorSP ) are obvious:

Proposition 3.2. Supposeg ∈ K ′l,ρ
β,T with g (t = 0) = 0. ThenSP ′g ∈ Ll,ρ,θ

β,T and

SP
n g ∈ Ll−1,ρ,θ

β,T for someθ, and

|SP ′g |l,ρ,θ,β,T ≤ c|g |l,ρ,β,T , (3.42)

|SP
n g |l−1,ρ,θ,β,T ≤ c|g |l,ρ,β,T . (3.43)

Again a stronger estimate could be proved, namely thatSP g is exponentially decaying
whenY −→ ∞ (i.e. outside the boundary layer). The loss of one derivative in the normal
component is due to the incompressibility condition (see e.g., Eq. (3.25)).

The estimate onSC will be a consequence of the following bound on the operator
U :

Lemma 3.2. Letf ∈ Ll,ρ,θ
β,T . ThenUf ∈ Ll,ρ,θ

β,T and

|Uf |l,ρ,θ,β,T ≤ c|f |l,ρ,θ,β,T . (3.44)
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The proof of Lemma 3.2 is like the proof of Proposition 3.1, and is based on the fact
thatUf can be written as a derivative with respect to the normal variable. Lemma 3.2
leads to the following proposition forSC :

Proposition 3.3. Supposeg ∈ K ′l,ρ
β,T . ThenSCg ∈ Ll−1,ρ,θ

β,T for someθ, and

|SCg |l−1,ρ,θ,β,T ≤ ε1/2c|g |l,ρ,β,T . (3.45)

This estimate on the size of the error is not optimal. In fact, a more careful analysis of
SC would reveal that the error term is made up of two parts: a Eulerian part (namely
e−|ξ′|yα) depending on the unscaled variabley, which is of sizeε in H l−1,ρ,θ

β,T , and a

part (namelyUẼ1α) depending on the scaled variableY , which is of sizeε in Ll−1,ρ,θ
β,T .

Something similar occurs in the analysis of the error for the Navier-Stokes equations
(see Sect. 4); to prove that the errorw is sizeε we shall break it up in several parts (see
Eq. (4.6) below) and estimate them in the appropriate function spaces.

We now give an estimate on the Stokes operatorS. Combine Lemma 3.1, 3.2 with
the representation (3.36) to obtain the following bound onS:

Proposition 3.4. Suppose thatg ∈ K ′l,ρ
β,T , with g (t = 0) = 0 and gn = |ξ′| ∫∞

0 dy′

f (ξ′, y′, t)k(ξ′, y′) with |ξ′| ∫∞
0 dy′|k(ξ′, y′)| ≤ 1 andf ∈ Ll,ρ,θ

β,T . ThenSg ∈ Ll,ρ,θ
β,T ,

and
|Sg |l,ρ,θ,β,T ≤ c

(|g′|l,ρ,β,T + |f |l,ρ,θ,β,T

)
. (3.46)

In addition, for eacht ≤ T , Sg ∈ Kl,ρ′,θ′
, and satisfies

sup
0≤t≤T

|Sg |l,ρ′,θ′ ≤ c
(|g′|l,ρ,β,T + |f |l,ρ,θ,β,T

)
(3.47)

in which0 < ρ′ < ρ − βT and0 < θ′ < θ − βt.

The proof of this proposition uses Jensen’s inequality as in the proof of Proposition
3.1. Proposition 3.4 and Lemma 3.2 are the only results from this section that will be
used in the rest of this paper.

4. The Error Equation

The equation for the error is(
∂t − ε21

)
w + w · ∇u 0 + u 0 · ∇w

+εw · ∇w + ∇pw = f +
(
g · ∂yũP , 0

)
, (4.1)

∇ · w = 0, (4.2)

γw = (0, g) , (4.3)

w (t = 0) = ω0 + Ω0 + e 0, (4.4)

in which the forcing termf is in Ll−2,ρ1,θ1
β1,T

, and isO(1) (see Eq. (2.40)). Notice that
in Eqs. (4.1) and (4.2), and in the rest of this paper, the divergence and the gradient are
taken with respect to the unscaled variabley; i.e.

∇ =
(
∂x, ∂y

)
. (4.5)

The rest of this paper is concerned with proving that equations (4.1)–(4.4) admit a unique
solution, and that this solution isO(1). We shall prove the following Theorem:



Zero Viscosity Limit for Analytic Solutions of N-S Equation. II. 475

Theorem 2. Suppose thatu E ∈ H l,ρ,θ
β,T , that ũP ∈ Kl,ρ,θ,µ

β,T , so thatf has norm in

Ll−2,ρ,θ
β,T bounded by a constant independent ofε. Then there existρ2 < ρ, θ2 < θ and

β2 > β andµ2 > 0 such that Eqs. (4.1)–(4.4) admit a solution which can be written in
the form:

w = ω + Ω + e , (4.6)

where

• ω ∈ N l−2,ρ2,θ2
β2,T

satisfies Eqs. (4.7)–(4.10);

• Ω ∈ Kl−2,ρ2,θ2,µ2
β2,T

satisfies Eqs. (4.11)–(4.14), and

• e ∈ Ll−2,ρ2,θ2
β2,T

satisfies Eqs. (4.15)–(4.18).

The quantityω represents the first order correction to the Euler flow. It satisfies the
following equations:

∂tω + ω · ∇u E + u E · ∇ω + ∇pω = 0, (4.7)

∇ · ω = 0, (4.8)

γnω = g, (4.9)

ω(t = 0) = ω0. (4.10)

In addition the initial dataω0 is required to satisfy the condition (iii) of Theorem 2.1.
The quantityΩ =

(
�1, �2

)
represents the first order correction inside the boundary

layer, with the convective terms omitted. It satisfies the following equations:

(∂t − ∂Y Y ) �1 = 0, (4.11)

�2 = ε

∫ ∞

Y

dY ′∂x�1, (4.12)

γ�1 = −γω1, (4.13)

�1(t = 0) = �1
0. (4.14)

The third part of the errore satisfies the following equations:(
∂t − ε21

)
e + e · ∇ [u 0 + ε (ω + Ω)

]
+
[
u 0 + ε (ω + Ω)

] · ∇e + εe · ∇e + ∇pe = Ξ, (4.15)

∇ · e = 0, (4.16)

γe =
(
0, −γ�2

)
, (4.17)

e (t = 0) = e 0. (4.18)

The forcing termΞ is given by:

Ξ =− [u 0 · ∇Ω+ω · ∇ (u P +εΩ
)
+Ω · ∇u 0+

(
u P +εΩ+εω

) · ∇ω+εΩ · ∇Ω
]

+ε2
[
1ω +

(
∂xx�1, 0

)]− (0, (∂t − ε21)�2
)

+ f +
(
g · ∂yũP , 0

)
. (4.19)

The initial data�1
0 ande 0 are required to satisfy conditions (iv) and (v) of Theorem

2.1.
The reason for the complicated representation Eq. (4.6) for the errorw is the fol-

lowing: To solve Eqs. (4.1)–(4.4) one has to use the projection operator due to the
incompressibility condition. The natural ambient space is therefore the space of func-
tions which areL2 in both transversal and normal components. In the right-hand side of
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Eq. (4.1), there are terms which are rapidly varying inside the boundary layer, and thus
depend on the rescaled variableY . So, in taking theL2 norm with respect to the normal
variable we are forced to use the variableY instead ofy. The boundary condition (4.3),
on the other hand, gives rise to terms which depend on the variabley. Their L2 norm
evaluated using the rescaled variableY would beO(ε−1/2). To avoid such a catastrophic
error, we use the decomposition (4.6):ω, which isL2 in y, takes care of the boundary
condition (4.3) (see Eq. (4.9));e , which isL2 in Y , takes care of the rapidly varying
forcing term;Ω cancels the transversal component ofω at the boundary (see Eq. (4.13)).

5. The Correction to the Euler Flow

In this section we shall prove the following theorem:

Theorem 3. Suppose thatg ∈ K ′l−1,ρ
β,T . Then there existρ2 < ρ,θ2 < θ andβ2 > β such

that Eqs. (4.7)–(4.10) admit a unique solutionω ∈ N l−2,ρ2,θ2
β2,T

. The following estimate

in N l−2,ρ2,θ2
β2,T

holds:

|ω|l−2,ρ2,θ2
β2,T

≤ c
(|u E

0 |l,ρ,θ + |ũP
0 |l,ρ,θ,µ + |ω0|l,ρ,θ

)
, (5.1)

where the norms ofu E
0 , ũP

0 andω0 are taken inH l,ρ,θ, Kl,ρ,θ,µ andN l,ρ,θ respectively.

The structure of Eqs. (4.7)–(4.10) is somewhat similar to the structure of Euler equations
and the proof of the above theorem closely follows the proof of Theorem 4.1 in [6]. The
functional setting here is slightly different; in fact Theorem 3 above is stated in the space
N l,ρ,θ

β,T , where only the first derivative with respect to time is taken, instead of the space

H l,ρ,θ
β,T , where time derivatives up to orderl are allowed. This is due to the presence of

the boundary conditiong deriving from Prandtl equations. We shall prove the above
theorem using the ACK Theorem.

The solution of Eqs. (4.7)–(4.10) can be written as

ω = ω0 +
(−N ′, 1

)
e−|ξ′|y (g − g0) + Ptω

∗, (5.2)

where the operatorPt is the integrated (with respect to time) half space projection
operator defined in Eq.(4.35) of [6]. The first term in this expression provides the correct
initial data, the second term the correct boundary data, and the third term the correct
forcing terms.

The projection operatorPt satisfies the following bounds inN l,ρ,θ
β,T :

Proposition 5.1. Letu ∗ ∈ N l,ρ,θ
β,T . ThenPtu

∗ ∈ N l,ρ,θ
β,T and

|Ptu
∗|l,ρ,θ,β,T ≤ c|u|l,ρ,θ,β,T . (5.3)

Proposition 5.2. Let u ∗ ∈ N l,ρ,θ
β,T . Letρ′ < ρ − βT andθ′ < θ − βT . ThenPtu

∗ ∈
N l,ρ′,θ′

for all 0 ≤ t ≤ T , and

|Ptu
∗|l,ρ′,θ′ ≤ c

∫ t

0
ds|u(·, ·, s)|l,ρ′,θ′ ≤ c|u|l,ρ,θ,β,T . (5.4)
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Using Eq. (5.5) one sees that (4.7)–(4.10) are equivalent to the following equation
for ω∗:

ω∗ + H ′(ω∗, t) = 0, (5.5)

where

H ′(ω∗, t) =
[
ω0 + (−N ′, 1)e−|ξ′|y (g − g0) + Ptω

∗
]

· ∇u E

+u E · ∇
[
ω0 + (−N ′, 1)e−|ξ′|y (g − g0) + Ptω

∗
]
. (5.6)

Using the Cauchy estimate, and with the same procedure we used to prove existence and
uniqueness for Euler equations in [6], one can see that the operatorH ′ satisfies all the
hypotheses of the ACK Theorem; therefore there existρ2 < ρ, θ2 < θ andβ2 > β such
that Eq. (5.5) admits a unique solutionω∗ ∈ N l−2,ρ2,θ2

β2,T
. Equation (5.2) and Proposition

5.1 also implyω ∈ N l−2,ρ2,θ2
β2,T

. Theorem 3 is thus proved.

6. The Boundary Layer Correction

We prove the following theorem:

Theorem 4. Letω be the solution of Eqs. (4.7)–(4.10) found in Theorem 5.1. Then there
existρ′

2 > ρ2, θ′
2 > θ2, β′

2 > β2, andµ2 > 0 such that Eqs. (4.11)–(4.14) admit a unique

solutionΩ ∈ K
l−2,ρ′

2,θ
′
2,µ2

β′
2,T

. It satisfies the following estimate inKl−2,ρ′
2,θ

′
2,µ2

β′
2,T

:

|Ω|l−2,ρ′
2,θ

′
2,µ2,β′

2,T
≤ c

(|u E
0 |l,ρ,θ + |ũP

0 |l,ρ,θ,µ + |ω0|l,ρ,θ + |Ω0|l,ρ,θ,µ2

)
, (6.1)

where the norms ofu E
0 , ũP

0 , ω0 andΩ0 are taken inH l,ρ,θ, Kl,ρ,θ,µ, N l,ρ,θ andKl,ρ,θ,µ

respectively.

The proof of this theorem uses the following lemma:

Lemma 6.1. There existsρ′
2 < ρ2 such that the boundary dataγω1 is in K

′l−2,ρ′
2

β2,T
. The

following estimate holds inK ′l−2,ρ′
2

β2,T
:

|γω1|l−2,ρ′
2,β2,T ≤ c|ω|l−2,ρ2,θ2,β2,T . (6.2)

The above lemma can be proved using a Sobolev estimate to bound thesup with respect
to y of ω1, and then a Cauchy estimate on thex derivative to bound the term∂y∂l−2

x ω1.
The solution of Eqs. (4.11)–(4.14) can be explicitly written as

�1 = E0(t)�1
0 − E1γω1 = E0(t)

(
�1

0 + γω1
0

)− E1γ
(
ω1 − ω1

0

)− γω1
0, (6.3)

where the operatorE0(t) andE1 have been defined in [6]. Proposition 5.1 and Propo-

sition 5.3 of [6], imply that�1 ∈ K
l−2,ρ′

2,θ
′
2,µ2

β′
2,T

. Using the expression (4.12) for�2

and again shrinking the domain of analyticity inx, and renamingρ′
2, we obtain also

�2 ∈ K
l−2,ρ′

2,θ
′
2,µ2

β′
2,T

. The proof of Theorem 4 is thus complete.

By a redefinition ofρ2, θ2, β2, we may takeρ′
2 = ρ2, θ′

2 = θ2, β′
2 = β2.
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7. The Navier-Stokes Operator

In this section we shall prove the following theorem

Theorem 5. Under the hypotheses of Theorem 2, there existρ2, θ2, β2, such that
Eqs. (4.15)–(4.18) admit a unique solutione ∈ Ll−2,ρ2,θ2

β2,T
. This solution satisfies the

following estimate inLl−2,ρ2,θ2
β2,T

:

|e |l−2,ρ2,θ2,β2,T ≤ c
(|u E

0 |l,ρ,θ + |ũP
0 |l,ρ,θ,µ + |ω0|l,ρ,θ + |Ω0|l,ρ,θ,µ + |e 0|l,ρ,θ

)
,

(7.1)
where the norms ofu E

0 , ũP
0 ,ω0,Ω0 ande 0 are taken inH l,ρ,θ,Kl,ρ,θ,µ,N l,ρ,θ,Kl,ρ,θ,µ

andLl,ρ,θ respectively.

We shall prove this theorem using the ACK Theorem. In the same way as for the Euler
and Prandtl equations, we first invert the second order heat operator, taking into account
the incompressibility condition and the BC and IC. This is performed using the heat op-
erator,defined in Subsect. 7.1, which inverts

(
∂t − ∂Y Y − ε2∂xx

)
. Then in Subsect. 7.2

we insert the divergence-free projection and obtain the operatorN0. Using the Stokes
operator from Sect. 3 to handle the boundary data, in Subsect. 7.3 we define the operator
N ∗, which is suitable for the iterative solution of the Navier-Stokes equations (i.e. treat-
ing initial data and nonlinearities as forcing terms). Bounds on this operator are given
in Propositions 7.6 and 7.7. With the use of this Navier-Stokes operator, and taking into
account initial and boundary data Eq. (4.17) and Eq. (4.18), in Subsect. 7.4 we finally
solve the error equation. In Subsects. 7.5 and 7.6 we prove by the ACK Theorem that
this iterative procedure converges to a unique solution.

7.1. The heat operator.We have already introduced the operatorẼ1 in (3.21) which
solves the heat equation with boundary data. We now want to solve the heat equation
with a source and with zero initial and boundary data on the half planeY ≥ 0; i.e.(

∂t − ε2∂xx − ∂Y Y

)
u = w(x, Y, t),

u(x, Y, t = 0) = 0,
γu = 0.

(7.2)

First introduce the heat kernelẼ0(x, Y, t), defined by

Ẽ0(x, Y, t) =
e−x2/4tε2

√
4πtε2

e−Y 2/4t

√
4πt

. (7.3)

We solve the problem (7.2) on the half plane with the following operator:

u(x, Y, t) = Ẽ2w

=
∫ t

0
ds

∫ ∞

0
dY ′

∫ ∞

−∞
dx′ [Ẽ0(x − x′, Y − Y ′, t − s)

−Ẽ0(x − x′, Y + Y ′, t − s)
]
w(x′, Y ′, s).

(7.4)

We now state some estimates on this operator. In these estimatesw is defined forY ≥ 0.

Proposition 7.1. Letw ∈ Ll,ρ,θ
β,T . ThenẼ2w ∈ Ll,ρ,θ

β,T and

|Ẽ2w|l,ρ,θ,β,T ≤ c|w|l,ρ,θ,β,T . (7.5)
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Proposition 7.2. Supposew ∈ Ll,ρ,θ
β,T with γw = 0 and thatρ′ ≤ ρ − βt, θ′ ≤ θ − βt.

ThenẼ2w(t) ∈ Ll,ρ′,θ′
and

|Ẽ2w|l,ρ′,θ′ ≤ c

∫ t

0
ds|w(·, ·, s)|l,ρ′,θ′ ≤ c|w|l,ρ,θ,β,T . (7.6)

The proofs of these two propositions are given in the Appendix.

7.2. The projected heat operator.In [6] we introduced the divergence-free projection
operatorP∞. Here we employ a similar operator with the normal variable rescaled by a
factorε. The projection operator in thex andY variable,P

∞
, is the pseudodifferential

operator whose symbol is

P
∞

=
1

ε2ξ′2 + ξ2
n

(
ξ2
n −εξ′ξn

−εξ′ξn ε2ξ′2

)
, (7.7)

whereξ′ andξn denote the Fourier variables corresponding tox andY respectively. For
all w this operator satisfies

∇ · P∞
w = ∂xP

∞′w + ε∂Y P
∞

nw = 0. (7.8)

In [6] to avoid Fourier transform iny we expressedP∞ as an integration in the normal
variable. ForP

∞
one can similarly see that

P
∞

nw =
1
2

[
ε|ξ′|

∫ Y

−∞
dY ′e−ε|ξ′|(Y −Y ′)(−N ′w1 + w2)

+ ε|ξ′|
∫ ∞

Y

dY ′eε|ξ′|(Y −Y ′)(N ′w1 + w2)

]
,

(7.9)

P
∞′w = w1 +

1
2

[
−ε|ξ′|

∫ Y

−∞
dY ′e−ε|ξ′|(Y −Y ′)(w1 + N ′w2)

− ε|ξ′|
∫ ∞

Y

dY ′eε|ξ′|(Y −Y ′)(w1 − N ′w2)

]
.

(7.10)

Next we present estimates on the projection operator. In these estimatesw is defined
on Y ≥ 0, but we writeP

∞
w to mean the following: First extendw oddly toY < 0,

i.e.
w(x, Y ) = −w(x, −Y ) when Y ≤ 0 ; (7.11)

then applyP
∞

, and finally restrict the result toY ≥ 0 for application of the norm. The
resulting expressions forP

∞
are

P
∞

nw =
1
2
ε|ξ′|

[∫ Y

0
dY ′

(
e−ε|ξ′|(Y −Y ′) − e−ε|ξ′|(Y +Y ′)

)
(−N ′w1 + w2)

+
∫ ∞

Y

dY ′
(
eε|ξ′|(Y −Y ′)(N ′w1 + w2) − eε|ξ′|(−Y −Y ′)(−N ′w1 + w2)

)]
, (7.12)
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P
∞′w = w1 − 1

2
ε|ξ′|

[∫ Y

0
dY ′

(
e−ε|ξ′|(Y −Y ′) − e−ε|ξ′|(Y +Y ′)

)
(w1 + N ′w2)

+
∫ ∞

Y

dY ′
(
eε|ξ′|(Y −Y ′)(w1 − N ′w2)−eε|ξ′|(−Y −Y ′)(w1 + N ′w2)

)]
.

(7.13)

The following estimate is easily proved

Proposition 7.3. Letw ∈ Ll,ρ,θ with γw = 0. ThenP
∞

w ∈ Ll,ρ,θ and

|P∞
w |l,ρ,θ ≤ c|w |l,ρ,θ. (7.14)

We are now ready to introduce the projected heat operatorN0, acting on vectorial
functions, defined as

N0 = P
∞

Ẽ2. (7.15)

One can easily show thatP
∞

commutes with the heat operator
(
∂t − ∂Y Y − ε2∂xx

)
. It

then follows that for eachw such thatγw = 0,

∇ · N0w = 0, (7.16)(
∂t − ∂Y Y − ε2∂xx

)N0w = P
∞

w . (7.17)

The following estimates are a consequence of the properties ofP
∞

andẼ2 separately:

Proposition 7.4. Supposew ∈ Ll,ρ,θ
β,T . ThenN0w ∈ Ll,ρ,θ

β,T and

|N0w |l,ρ,θ,β,T ≤ c|w |l,ρ,θ,β,T . (7.18)

Proposition 7.5. Supposew ∈ Ll,ρ,θ
β,T with γw = 0 and thatρ′ ≤ ρ−βt, θ′ ≤ θ −βt.

Thenw andN0w are inLl,ρ′,θ′
for eacht, and

|N0w |l,ρ′,θ′ ≤ c

∫ t

0
ds|w (·, ·, s)|l,ρ′,θ′ ≤ c|w|l,ρ,θ,β,T . (7.19)

Note thatẼ2 has zero boundary data; thus the conditions in Proposition 7.3 are all
satisfied.

7.3. The Navier-Stokes operator.With the Stokes operator defined in Sect. 3 and the
projected heat operator of the previous subsection, we now introduce the Navier-Stokes
operatorN ∗ defined as

N ∗ = N0 − SγN0. (7.20)

This operator is used to solve the time-dependent Stokes equations with forcing, which is
equivalent to the Navier-Stokes equations if the nonlinear terms are put into the forcing.
In fact

w = N ∗w ? (7.21)

solves the system (
∂t − ∂Y Y − ε2∂xx

)
w + ∇pw = w ?, (7.22)

∇ · w = 0, (7.23)

γw = 0, (7.24)

w (t = 0) = 0, (7.25)

and satisfies the following bound:
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Proposition 7.6. Supposew ∈ Ll,ρ,θ
β,T . ThenN ∗w ∈ Ll,ρ,θ

β,T and

|N ∗w |l,ρ,θ,β,T ≤ c|w |l,ρ,θ,β,T . (7.26)

We already know, from Proposition 7.4, thatN0 obeys an estimate like (7.26). There-
fore the only part ofN ∗ which has to be estimated is that involving the Stokes operator
S. To bound this term it is enough to notice thatγN0w is a boundary data for which
the assumptions of Proposition 3.4 hold. In fact sinceẼ2w has been extended oddly for
Y < 0, thenγnN0w = γP

∞
nẼ2w is (see Eq. (7.12) )

γP
∞

nẼ2w = ε|ξ′|
∫ ∞

0
dY ′e−ε|ξ′|Y ′

N ′Ẽ2w
1. (7.27)

According to Proposition 7.1, this is of the form required in Proposition 3.4 for the
normal partgn of g = N0w . The tangential partg′ satisfies the bound

|g′|l,ρ,θ,β,T ≤ c|Ẽ2w |l,ρ,θ,β,T . (7.28)

Therefore
|SγN0w |l,ρ,θ,β,T ≤ c|Ẽ2w |l,ρ,θ,β,T ≤ c|w |l,ρ,θ,β,T , (7.29)

which concludes the proof of Proposition 7.6.
We shall also use the following Proposition, which is proved in the same way as the

previous result, using Proposition 7.5:

Proposition 7.7. Supposew ∈ Ll,ρ,θ
β,T with γw = 0 and thatρ′ ≤ ρ−βt, θ′ ≤ θ −βt.

Then inLl,ρ′,θ′
,

|N ∗w |l,ρ′,θ′ ≤ c

∫ t

0
ds|w (·, ·, s)|l,ρ′,θ′ ≤ c|w|l,ρ,θ,β,T . (7.30)

7.4. The solution of the error equation.We can now solve Eqs. (4.15)–(4.18). If one looks
at these equations one sees that they are of the form (7.22)–(7.25) (where all forcing
and nonlinear terms are inw ?, see Eq. (7.37) below) plus boundary and initial data.
We therefore expresse as the sum of two terms: the first involving the Navier-Stokes
operator and the second where all boundary and initial data are. In fact we write

e = N ∗e ∗ + σ , (7.31)

whereσ solves the following time-dependent Stokes problem with initial and boundary
data:

(∂t − ∂Y Y ) σ + ∇φ, = 0 (7.32)

∇ · σ = 0, (7.33)

γσ = (0, εG), (7.34)

σ (t = 0) = e 0, (7.35)

having denoted:

G = −
∫ ∞

0
dY ′∂x�1, (7.36)

and wheree ∗ satisfies the following equation:
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e ∗ = Ξ − {e · ∇ [u 0 + ε (ω + Ω)
]

+
[
u 0 + ε (ω + Ω)

] · ∇e + εe · ∇e − ε2∂xxσ
}

.
(7.37)

Equations (7.32)–(7.35) can be solved explicitly. First note thatφ is harmonic, so that,
imposing it to be bounded at infinity,(

∂y + |ξ′|)φ = 0. (7.38)

Apply (∂y + |ξ′|) to the normal component of Eq. (7.32), and define

τ =
(
∂y + |ξ′|)σ2 (7.39)

which satisfies

(∂t − ∂Y Y ) τ = 0, (7.40)

γτ = ε|ξ′|G, (7.41)

τ (t = 0) = |ξ′|V1e 0, (7.42)

in which V1e 0 = e2
0 − N ′e1

0. DenoteG0 = G(t = 0). Then the solution of the system
(7.40)–(7.42) is

τ = E0(t)
(|ξ′|V1e 0 − ε|ξ′|G0

)
+ E1

[
γε|ξ′|G − ε|ξ′|G0

]
+ ε|ξ′|G0

= |ξ′|τ̃ . (7.43)

The initial conditione 0 is in Ll,ρ,θ; this obviously impliese 0 ∈ Ll−2,ρ′′
2 ,θ′′

2 . One has
the following proposition:

Proposition 7.8. Given thate 0 ∈ Ll−2,ρ2,θ2, thatG ∈ K ′l−2,ρ2
β2,T

, and the compatibility

conditionγne 0 = εG0, thenτ̃ ∈ Ll−2,ρ2,θ2
β2,T

and

|τ̃ |l−2,ρ2,θ2,β2,T ≤ c
(|e 0|l−2,ρ2,θ2 + |G|l−2,ρ2,β2,T

)
. (7.44)

The proof of this proposition is based on the estimates on the operatorsE0(t) andE1
given in Propositions 5.2 and 5.3 of [6]; regarding the estimate in Proposition 5.3, we
notice in fact that if a function is inKl,ρ,θ,µ

β,T it is a fortiori in Ll,ρ,θ
β,T .

Now, the expression (7.43) forτ in (7.39) and the boundary condition (7.34) onσ2

imply that
σ2 = εe−ε|ξ′|Y G + Uτ̃ , (7.45)

whereU has been defined in (3.33). The incompressibility condition then leads to

σ1 = −εN ′e−ε|ξ′|Y G + N ′(1 − U )τ̃ . (7.46)

A bound forσ is given by

Proposition 7.9. Suppose thatG = |ξ′|G̃, with G̃ ∈ Kl−2,ρ2
β2,T

, thenσ ∈ Ll−2,ρ2,θ2
β2,T

and

|σ |l−2,ρ2,θ2,β2,T ≤ c
(|e 0|l−2,ρ2,θ2 + |G̃|l−2,ρ2,β2,T

)
≤ c

(|u E
0 |l,ρ,θ + |ũP

0 |l,ρ,θ,µ + |ω0|l,ρ,θ + |Ω0|l,ρ,θ,µ + |e 0|l,ρ,θ

)
.

(7.47)
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The proof of this proposition is based on Lemma 3.2 and Proposition 7.8 for the estimate
of the terms involving ˜τ , and on the fact that if̃G ∈ K ′l−2,ρ2

β2,T
, thenε|ξ′|e−ε|ξ′|Y G̃ ∈

Ll−2,ρ2,θ2
β2,T

.
We are now ready to prove existence and uniqueness for Eqs. (4.15)–(4.18). Use

Eq. (7.31) in (7.37), interpret this equation as an equation fore ∗, and use the abstract
version of the Cauchy–Kowalewski Theorem, in the function spacesXρ = Ll,ρ,θ and
Yρ,β,T = Ll,ρ,θ

β,T , to prove existence and uniqueness for the solution. This is similar to
the procedure used in [6] to prove existence and uniqueness for the Euler and Prandtl
equations. Rewrite Eq. (7.37) as

e ∗ = F (e ∗, t), (7.48)

whereF (e ∗, t) is

F (e ∗, t) = k − {[u 0 + ε (ω + Ω + σ )
] · ∇N ∗e ∗

+ N ∗e ∗ · ∇ [u 0 + ε (ω + Ω + σ )
]

+εN ∗e ∗ · ∇N ∗e ∗} (7.49)

andk is the forcing term

k = Ξ − {[u 0+ε (ω+Ω)
] · ∇σ +σ · ∇ [u 0+ε (ω+Ω)

]
+εσ · ∇σ

}
= f − {[(u 0+ε(ω+Ω+σ )

) · ∇Ω+
(
ω · ∇u P − (g∂yũP , 0)

)
+(Ω+σ ) · ∇u P

][
(Ω+σ ) · ∇u E +

(
u P +ε(ω+Ω+σ )

) · ∇ω+
(
u 0+ε(ω+Ω+σ )

) · ∇σ
]}

+ε2
[
1ω+∂xx

(
�1, 0

)
+∂xxσ

]− (0, (∂t − ε21)�2
)
. (7.50)

The rest of this section is concerned with proving that the operatorF satisfies all the
hypotheses of ACK Theorem.

7.5. The forcing term.In this subsection we shall prove the following proposition,
asserting that the forcing term is bounded inLl−2,ρ2,θ2

β2,T
andO(1):

Proposition 7.10. There exists a constantR0 such that

|F (0, t)|l−2,ρ2−β2t,θ2−β2t ≤ R0. (7.51)

Equation (7.49) shows that
F (0, t) = k (7.52)

with k given by (7.50). We already know thatf ∈ Ll−2,ρ2,θ2
β2,T

(see the discussion after
Eq. (2.40)). The terms in the first square brackets are exponentially decaying outside the
boundary layer. Inside the boundary layer they can be shown to beO(1) with a Cauchy
estimate on the terms where∂y is present: this is possible because they go linearly fast
to zero at the boundary. All terms inside the second square brackets are more easily
handled because noO(ε−1) appear. Proposition 7.10 is thus proved.

7.6. The Cauchy estimate.In this subsection we shall prove that the operatorF satisfies
the last hypothesis of the ACK Theorem. Here and in the rest of this section

ρ′ < ρ(s) ≤ ρ2 − β2s,

θ′ < θ(s) ≤ θ2 − β2s.
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Proposition 7.11. Supposeρ′ < ρ(s) ≤ ρ2 − β2s andθ′ < θ(s) ≤ θ2 − β2s. If e ∗1

ande ∗2 are inLl−2,ρ2,θ2
β2,T

with

|e ∗1|l−2,ρ2,θ2,β2,T ≤ R, |e ∗2|l−2,ρ2,θ2,β2,T ≤ R, (7.53)

then

|F (e ∗1, t) − F (e ∗2, t)|l−2,ρ′,θ′

≤ C

∫ t

0
ds

{ |e ∗1 − e ∗2|l−2,ρ(s),θ′

ρ(s) − ρ′ +
|e ∗1 − e ∗2|l−2,ρ′,θ(s)

θ(s) − θ′

}
+C|e ∗1 − e ∗2|l−2,ρ′,θ′,β2,t

∫ t

0
ds
∑
i=1,2

{ |e ∗i|l−2,ρ(s),θ′

ρ(s) − ρ′ +
|e ∗i|l−2,ρ′,θ(s)

θ(s) − θ′

}
(7.54)

in which all the norms are inLl,ρ,θ andLl,ρ,θ
β,T .

The proof of the above proposition occupies the remainder of this section. First introduce
the Cauchy estimates inLl,ρ,θ.

Lemma 7.1. Letf (x, Y ) ∈ Ll,ρ,θ. Then for0 < ρ′ < ρ and0 < θ′ < θ,

|∂xf |l,ρ′,θ ≤ c
|f |l,ρ,θ

ρ − ρ′ , (7.55)

|χ(Y )∂Y f |l,ρ,θ′ ≤ c
|f |l,ρ,θ

θ − θ′ . (7.56)

In the above propositionχ(Y ) is a monotone, bounded function, going to zero linearly
fast near the origin (see e.g. Eq.(4.28) ) of [6]. The Sobolev inequality implies the
following lemmas:

Lemma 7.2. Letf (x, Y ) andg(x, Y ) be inLl,ρ,θ. Then for0 < ρ′ < ρ,

|g∂xf |l,ρ′,θ ≤ c|g|l,ρ′,θ
|f |l,ρ,θ

ρ − ρ′ . (7.57)

Lemma 7.3. Let f (x, Y ) and g(x, Y ) be in Ll,ρ,θ with g(x, Y = 0) = 0. Then for
0 < θ′ < θ,

|g∂Y f |l,ρ,θ′ ≤ c|g|l,ρ,θ′
|f |l,ρ,θ

θ − θ′ . (7.58)

Lemmas 7.2 and 7.3 then imply

Lemma 7.4. Supposee 1 and e 2 are in Ll−2,ρ,θ
β,T with γne 1 = γne 2 = 0. Then for

0 < ρ′ < ρ and0 < θ′ < θ,

|e 1 ·∇e 1−e 2 ·∇e 2|l−2,ρ′,θ′ ≤ c

[ |e 1 − e 2|l−2,ρ,θ′

ρ − ρ′ +
|e 1 − e 2|l−2,ρ′,θ

θ − θ′

]
, (7.59)

where the constantc depends only on|e 1|l−2,ρ,θ,β,T and|e 2|l−2,ρ,θ,β,T .



Zero Viscosity Limit for Analytic Solutions of N-S Equation. II. 485

We are now ready to prove Proposition 7.11. We first take into consideration the non-
linear partN ∗e ∗ · ∇N ∗e ∗. From the estimates (7.26) and (7.30) on the Navier-Stokes
operator, the estimate (7.59) on the convective operator and the fact thatγnN ∗e ∗ = 0,
it follows that

|N ∗e ∗1 · ∇N ∗e ∗1 − N ∗e ∗2 · ∇N ∗e ∗2|l−2,ρ′,θ′

≤ C

∫ t

0
ds

[ |e ∗1(·, ·, s) − e ∗2(·, ·, s)|l−2,ρ(s),θ2

ρ(s) − ρ′

+
|e ∗1(·, ·, s) − e ∗2(·, ·, s)|l−2,ρ2,θ(s)

θ(s) − θ′

]
+C|e ∗1 − e ∗2|l−2,ρ2,θ2,β2,T

∫ t

0
ds
∑
i=1,2

[ |e ∗i(·, ·, s)|l−2,ρ(s),θ2

ρ(s) − ρ′

+
|e ∗i(·, ·, s)|l−2,ρ2,θ(s)

θ(s) − θ′

]
≤ C

∫ t

0
ds

[ |e ∗1(·, ·, s) − e ∗2(·, ·, s)|l−2,ρ(s),θ2

ρ(s) − ρ′

+
|e ∗1(·, ·, s) − e ∗2(·, ·, s)|l−2,ρ2,θ(s)

θ(s) − θ′

]
. (7.60)

Sinceγn

(
u 0 + ε(ω + Ω + σ )

)
=0, one can estimate the term

(
u 0 + ε(ω + Ω + σ )

)·
∇N ∗w ? in a similar fashion. The termN ∗w ? · ∇ (u 0 + ε(ω + Ω + σ )

)
is easily es-

timated. The proof of Proposition 7.11 is thus achieved.

7.7. Conclusion of the Proof of Theorem 5.The operatorF (e ∗, t) satisfies all the
hypotheses of the ACK Theorem. Therefore, there exists aβ2 > 0 such that Eq. (7.48) has
a unique solutione ∗ ∈ Ll−2,ρ2,θ2

β2,T
. Because of Proposition 7.6, thenN ∗e ∗ ∈ Ll−2,ρ2,θ2

β2,T
.

Given the expression (7.31) for the errore and Proposition [7.9] forσ , the proof of
Theorem 5 is achieved.

7.8. Conclusion of the Proof of Theorem 1.We have thus proved thatu E ∈ H l,ρ,θ
β,T

(Theorem 4.1 of [6]), thatu P ∈ Kl−1,ρ,θ,µ
β,T (Theorem 3 of [6]), thatω ∈ N l−2,ρ2,θ2

β2,T

(Theorem 5.1), thatΩ ∈ Kl−2,ρ2,θ2,µ2
β2,T

(Theorem 4), and thate ∈ Ll−2,ρ2,θ2
β2,T

(Theorem
5). By a redefinition of the parameters, we may take (ρ2, θ2, β2, µ2) = (ρ, θ, β, µ), and
the proof of Theorem 1 is achieved.

8. Conclusions

In the analysis above, we have proved existence of solutions of the Navier-Stokes equa-
tions in two and three dimensions for a time that is short but independent of the viscosity.
As the viscosity goes to zero, the Navier-Stokes solution has been shown to approach
an Euler solution away from the boundary and a Prandtl solution in a thin boundary
layer. The initial data were assumed to be analytic: although this restriction is severe,
we believe that it might be optimal. In fact separation of the boundary layer is related to
development of a singularity in the solution of the time-dependent Prandtl equations, as
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discussed in [2]. We conjecture that the time of separation (and thus the singularity time)
cannot be controlled by a Sobolev bound on the initial data, unless some positivity and
monotonicity is assumed as in [5]. It would be very important to verify this by an explicit
singularity construction, or to refute it by an existence theorem in Sobolev spaces for
Prandtl.

This result suggest further work on several related problems: Analysis of the zero-
viscosity limit for Navier-Stokes equations in the exterior of a ball is presented in [1].
An alternative derivation of this result may be possible by a more direct analysis of the
Navier-Stokes solution. In two-dimensions, a solution is known to exist for a time that is
independent of the viscosity. Thus by writing the solution as a Stokes operator times the
nonlinear terms and analysis of the Stokes operator, it should be possible to recognize
the regular (Euler) and boundary layer (Prandtl) parts directly.

We believe that the method of the present paper could be used to prove convergence
of the Navier-Stokes solution to an Euler solution with a vortex sheet, in the zero viscosity
limit outside a boundary layer around the sheet. Note that the problem with a vortex sheet
should be easier because the boundary layer is weaker since tangential slip is allowed,
but it is more complicated since the boundary is curved and moving.

Appendix A: The Estimates for the Heat Operators

Proof of Lemma 3.1.To prove Lemma 3.1 it is useful to introduce the following changes
of variables into the expression (3.21) for the operatorẼ1:

ζ =
Y

[4(t − s)]1/2
, η =

x′ − x

[4(t − s)]1/2
. (A.1)

One has

Ẽ1f =
2
π

∫ ∞

Y/
√

(4t)
dζe−ζ2

∫ ∞

−∞
dηe−η2

f
(
x + ηY/ζ, t − Y 2/4ζ2

)
. (A.2)

To get an estimate inLl,ρ,θ
β,T one has to bound the appropriateL2 norm inx andY of

∂i
xẼ1f with i ≤ l, ∂t∂

i
xẼ1f with i ≤ l − 2 and∂i

x∂j
Y E2f with i ≤ l − 2, j ≤ 2.

We shall in fact prove a stronger estimate; we shall in fact prove that these terms are
exponentially decaying in theY variable. Let us first bound∂i

xẼ1f :

sup
0≤t≤T

sup
Y ∈Σ(θ−βt)

e(µ−βt)<Y sup
|=x|≤ρ−βt

‖∂i
xẼ1f‖L2(<x)

= sup
0≤t≤T

sup
Y ∈Σ(θ−βt)

e(µ−βt)<Y sup
|=x|≤ρ−βt

{∫ ∞

−∞
d<x

[
2
π

∫ ∞

Y√
4t

dζe−ζ2
∫ ∞

−∞
dηe−η2

∂i
xf

(
x +

ηY

ζ
, t − Y 2

4ζ2

)]2


1/2

≤ sup
0≤t≤T

sup
Y ∈Σ(θ−βt)

e(µ−βt)<Y sup
|=x|≤ρ−βt

{
2
π

∫ ∞

Y/
√

(4t)
dζe−ζ2

∫ ∞

−∞
dηe−η2‖∂i

xf
(· + i=x, t − Y 2/4ζ2

) ‖2
L2(<x)

}1/2
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≤ sup
0≤t≤T

sup
Y ∈Σ(θ−βt)

e(µ−βt)<Y


[

sup
0≤t≤T

sup
|=x|≤ρ−βt

‖∂i
xf (· + i=x, t)‖L2(<x)

]2

2√
π

∫ ∞

Y/
√

(4t)
dζe−ζ2

}1/2

≤ sup
0≤t≤T

sup
|=x|≤ρ−βt

‖∂i
xf (· + i=x, t)‖L2(<x)

sup
0≤t≤T

sup
Y ∈Σ(θ−βt)

e(µ−βt)<Y

{
2√
π

∫ ∞

Y/
√

(4t)
dζe−ζ2

}1/2

≤ |∂i
xf |0,ρ,θ,β,T . (A.3)

In passing from the second to the third line, we used the Jensen inequality to pass the
square inside the integrals inζ andη, and performed the integration in<x. We now
bound∂t∂

i
xẼ1f with i ≤ l − 2 by

sup
0≤t≤T

sup
Y ∈Σ(θ−βt)

e(µ−βt)<Y sup
|=x|≤ρ−βt

‖∂t∂
i
xẼ1f‖L2(<x)

≤ sup
0≤t≤T

sup
|=x|≤ρ−βt

‖∂t∂
i
xf (· + i=x, t)‖L2(<x)

sup
0≤t≤T

sup
Y ∈Σ(θ−βt)

e(µ−βt)<Y

{
2√
π

∫ ∞

Y/
√

(4t)
dζe−ζ2

}1/2

≤ |∂t∂
i
xf |0,ρ,θ,β,T . (A.4)

The procedure for the above bound is essentially the same that was used for∂i
xẼ1f . The

only thing to note is that the derivative with respect to time passed through the integral
in ζ becausef (x, t = 0) = 0. We now bound∂Y ∂i

xẼ1f with i ≤ l − 2 by

sup
0≤t≤T

sup
Y ∈Σ(θ−βt)

e(µ−βt)<Y sup
|=x|≤ρ−βt

‖∂Y ∂i
xẼ1f‖L2(<x)

= sup
0≤t≤T

sup
Y ∈Σ(θ−βt)

e(µ−βt)<Y sup
|=x|≤ρ−βt∥∥∥∥ 2

π

∫ ∞

Y/
√

(4t)
dζe−ζ2

∫ ∞

−∞
dηe−η2

[
η

ζ
∂i+1

x f (x + ηY/ζ, t − Y 2/4ζ2) − Y

2ζ2
∂t∂

i
xf (x + ηY/ζ, t − Y 2/4ζ2)

]∥∥∥∥
≤ sup

0≤t≤T
sup

Y ∈Σ(θ−βt)
e(µ−βt)<Y sup

|=x|≤ρ−βt{
2√
π

∫ ∞

Y/
√

(4t)
dζe−ζ2 Y

2ζ2[∥∥∂i+2
x f (· + =x, t − Y 2/4ζ2)

∥∥2
+
∥∥∂t∂

i
xf (· + =x, t − Y 2/4ζ2)

∥∥2
]}1/2

≤ (|∂i+2
x f |0,ρ,θ,β,T + |∂t∂

i
xf |0,ρ,θ,β,T

)
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sup
0≤t≤T

sup
Y ∈Σ(θ−βt)

e(µ−βt)<Y

[
2√
π

∫ ∞

Y/
√

(4t)
dζe−ζ2 Y

2ζ2

]1/2

≤ c|f |l,ρ,θ,β,T . (A.5)

In passing from the second to the third line of the above estimate, we first integrated
by parts inη the term∂i+1

x f and then used Jensen’s inequality to pass theL2 norm in
<x inside the integral inζ andη. To bound∂Y Y ∂i

xẼ1f with i ≤ l − 2, note thatẼ1f
satisfies the heat equation and use the bounds above. The proof of Lemma 3.1 is thus
achieved.

Proof of Proposition 7.1.To prove Proposition 7.1, it is useful to make the following
changes of variables into the expression (7.4) for the operatorẼ2:

ζ =
Y ′ − Y√
4(t − s)

, z =
Y ′ + Y√
4(t − s)

, η =
x′ − x√
4(t − s)

. (A.6)

These lead to

Ẽ2f =
∫ t

0
ds

∫ ∞

−∞
dηe−η2

[∫ ∞

−Y/
√

4(t−s)
dζe−ζ2

f (x+η
√

4(t−s), Y +ζ
√

4(t−s), s)

−
∫ ∞

Y/
√

4(t−s)
dζe−ζ2

f (x + η
√

4(t − s), −Y + ζ
√

4(t − s), s)

]
. (A.7)

To get an estimate inLl,ρ,θ
β,T , bound∂i

xẼ2f with i ≤ l, ∂t∂
i
xẼ2f with i ≤ l − 2 and

∂i
x∂j

Y Ẽ2f with i ≤ l − 2, j ≤ 2. First bound∂i
xẼ2f by

sup
0≤t≤T

sup
θ′≤θ−βt

∥∥∥∥∥ sup
|=x|≤ρ−βt

‖∂i
xẼ2f‖L2(<x)

∥∥∥∥∥
L2(0(θ′,a/ε))

≤ sup
0≤t≤T

sup
θ′≤θ−βt

{∫
0(θ′,a/ε)

dY sup
|=x|≤ρ−βt

∫ ∞

−∞
d<x[∫ t

0
ds

(∫ ∞

−Y/
√

4(t−s)
dζe−ζ2

∫ ∞

−∞
dηe−η2

∂i
xf (x + η

√
4(t−s), Y + ζ

√
4(t−s), s)

−
∫ ∞

Y/
√

4(t−s)
dζe−ζ2

∫ ∞

−∞
dηe−η2

∂i
xf (x+η

√
4(t−s), −Y +ζ

√
4(t−s), s)

)]2


1/2

≤ c sup
0≤t≤T

sup
θ′≤θ−βt

{∫
0(θ′,a/ε)

dY

∫ T

0
ds[∫ ∞

−∞
dζe−ζ2

∫ ∞

−∞
dηe−η2

sup
|=x|≤ρ−βt

∥∥∥f (· + i=x, Y + ζ
√

4(t − s))
∥∥∥2

+
∫ ∞

−∞
dze−z2

∫ ∞

−∞
dηe−η2

sup
|=x|≤ρ−βt

∥∥∥f (· + i=x, −Y + z
√

4(t − s))
∥∥∥2
]}1/2
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≤ c sup
0≤t≤T

sup
θ′≤θ−βt

∥∥∥∥∥ sup
|=x|≤ρ−βt

‖∂i
xf‖L2(<x)

∥∥∥∥∥
L2(0(θ′,a/ε))

. (A.8)

In passing from the second to the third line of the above estimate, we used Jensen’s
inequality and overestimated the integrals ins, ζ andz. Now bound∂Y ∂i

xẼ1f with
i ≤ l − 2 by

sup
0≤t≤T

sup
θ′≤θ−βt

∥∥∥∥∥ sup
|=x|≤ρ−βt

‖∂Y ∂i
xẼ2f‖L2(<x)

∥∥∥∥∥
L2(0(θ′,a/ε))

≤ sup
0≤t≤T

sup
θ′≤θ−βt

{∫
0(θ′,a/ε)

dY sup
|=x|≤ρ−βt

∫ ∞

−∞
d<x[∫ t

0
ds

(∫ ∞

−Y/
√

4(t−s)
dζe−ζ2

∫ ∞

−∞
dηe−η2

∂Y ∂i
xf (x+η

√
4(t−s), Y +ζ

√
4(t−s), s)

−
∫ ∞

Y/
√

4(t−s)
dζe−ζ2

∫ ∞

−∞
dηe−η2

∂Y ∂i
xf (x + η

√
4(t − s), −Y + ζ

√
4(t − s), s)

)

+ 2
∫ t

0
ds

e−Y 2/4(t−s)

√
4(t − s)

∫ ∞

−∞
dηe−η2

∂i
xf (x + η

√
4(t − s), 0, s)

]2


1/2

≤ c sup
0≤t≤T

sup
θ′≤θ−βt

∥∥∥∥∥ sup
|=x|≤ρ−βt

‖∂Y ∂i
xf‖L2(<x)

∥∥∥∥∥
L2(0(θ′,a/ε))

+ sup
0≤t≤T

sup
θ′≤θ−βt

{∫
0(θ′,a/ε)

dY sup
|=x|≤ρ−βt

∫ ∞

−∞
d<x

[
2
∫ t

0
ds

e−Y 2/4t

√
4(t − s)

∫ ∞

−∞
dηe−η2

∂i
xf (x + η

√
4(t − s), 0, s)

]2


1
2

≤ c|∂Y ∂i
xf |0,ρ,θ,β,T

+ c sup
0≤t≤T

sup
θ′≤θ−βt

{
sup

0≤t≤T
sup

|=x|≤ρ−βt

∥∥∂i
xf (· + i=x, 0, t)

∥∥2

L2(<x)

∫
0(θ′,a/ε)

dY e−Y 2/4t

∫ t

0
ds

1√
4(t − s)

}1/2

≤ c|∂Y ∂i
xf |0,ρ,θ,β,T + c

∑
0≤j≤1

sup
0≤t≤T

∥∥∥∥∥ sup
|=x|≤ρ−βt

‖∂j
Y ∂i

xf‖L2(<x)

∥∥∥∥∥
L2(0(θ′=0,a/ε))

≤ c|f |l,ρ,θ,β,T . (A.9)

In passing from the third to the fourth line, we estimated the value of∂i
xf at the boundary

with theL2 (in Y ) estimate of∂i
xf and∂Y ∂i

xf . Now bound∂Y Y ∂i
xẼ1f with i ≤ l − 2

by
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sup
0≤t≤T

sup
θ′≤θ−βt

∥∥∥∥∥ sup
|=x|≤ρ−βt

‖∂2
Y ∂i

xẼ2f‖L2(<x)

∥∥∥∥∥
L2(0(θ′,a/ε))

≤ c|∂Y Y ∂i
xf |0,ρ,θ,β,T + c

∑
1≤j≤2

sup
0≤t≤T

∥∥∥∥∥ sup
|=x|≤ρ−βt

‖∂j
Y ∂i

xf‖L2(<x)

∥∥∥∥∥
L2(0(θ′=0,a/ε))

+ sup
0≤t≤T

sup
θ′≤θ−βt

{∫
0(θ′,a/ε)

dY sup
|=x|≤ρ−βt

∫ ∞

−∞
d<x

[∫ t

0
ds

Y e−Y 2/4(t−s)√
4(t − s)3

∫ ∞

−∞
dηe−η2

∂i
xf (x + η

√
4(t − s), 0, s)

]2


1
2

≤ c|f |l,ρ,θ,β,T

+ sup
0≤t≤T

sup
θ′≤θ−βt

{∫
0(θ′,a/ε)

dY sup
|=x|≤ρ−βt

∫ ∞

−∞
d<x

[∫ ∞

Y/
√

4t

dζe−ζ2
∫ ∞

−∞
dηe−η2

∂i
xf (x + ηY/ζ, 0, s)

]2


1
2

≤ c|f |l,ρ,θ,β,T . (A.10)

In passing from the third to the fourth line, we used Jensen’s inequality to pass the square
inside the integral inζ andη. Then we used the fact that the integral inζ from Y/

√
4t to

infinity is an exponential decaying function ofY to perform the integration inY . Finally
we estimated the value of∂i

xf at the boundary with theL2 (in Y ) estimate of∂i
xf and

∂Y ∂i
xf .

Proof of Proposition 7.2.The proof of Proposition 7.2 uses the same calculations as in
the previous proof, except that in Proposition 7.2 the boundary terms withY = 0 are all
zero. With these terms absent, the result (7.6) follows from the estimates (A.8)–(A.10).
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