
Journal of Supercomputing manuscript No.
(will be inserted by the editor)

Zeroing Memory Deallocator to Reduce Checkpoint
Sizes in Virtualized HPC Environments

Ramy Gad · Simon Pickartz ·
Tim Süß · Lars Nagel · Stefan Lankes ·
Antonello Monti · André Brinkmann

Received: date / Accepted: date

Abstract Virtualization has become an indispensable tool in data centers and
Cloud environments to flexibly assign virtual machines (VMs) to resources.
Virtualization also becomes more and more attractive for High-performance
Computing (HPC). This is mainly due to the strong isolation of VMs which
enables: (1) the sharing of cluster nodes and optimization of the system’s over-
all utilization; (2) load balancing by means of migrations due to the reduction
of residual dependencies; and (3) the creation of system-level checkpoints in-
creasing the fault tolerance in an application-transparent way.

On the downside, the additional virtualization layer conceals information
that is only available on the process level. This information has a direct influ-
ence on the checkpoint size which should be kept as small as possible. In this
paper, we propose a novel technique for checkpoint size reduction in virtual-
ized environments. We exploit the fact that the hypervisor detects zero pages
which are omitted when capturing a checkpoint. Moreover, compression tech-
niques are applied for a further reduction of the checkpoint size. We therefore
fill freed memory regions with zeros supporting both the zero page detection
and the compression. We evaluate our approach by taking the example of HPC
applications. The results reveal a reduction of the checkpoint size by up to 9%
when compression is disabled in the hypervisor and up to 49% with compres-
sion enabled. Furthermore, memory zeroing is able to reduce VM migration
time by up to 10% when compression is disabled and by up to 60% when
compression is enabled.

Ramy Gad, Tim Süß, and André Brinkmann
Zentrum für Datenverarbeitung, Johannes Gutenberg-Universität Mainz, E-mail:
{gad,suest,brinkmann}@uni-mainz.de

Simon Pickartz, Stefan Lankes, and Antonello Monti
Institute for Automation of Complex Power Systems, E.ON Energy Research Center,
RWTH Aachen, E-mail: {spickartz,slankes,amonti}@eonerc.rwth-aachen.de

Lars Nagel
Department of Computer Science, Loughborough University, E-mail: l.nagel@lboro.ac.uk



2 Gad, Pickartz, Süß, Nagel, Lankes, Monti, and Brinkmann

Keywords Virtualization · Checkpoint /Restart · Migration · HPC

1 Introduction

Supercomputers are moving towards exascale computing to fulfill the continu-
ally growing demands of HPC applications. Compared to today’s systems, this
performance gain will not only be achieved by an increase of the node count
but also by a rising amount of cores per node. Exascale-ready applications are
highly optimized to use all available cores of a single node, while many typical
HPC applications running on similar architectures are able to scale to many
nodes, but not to use hundreds of cores on a single node. They typically stress
one specific resource on a compute node, such as the CPU, the memory, or
the I/O subsystem. The sharing of nodes by multiple applications, i. e., the
co-scheduling of applications with distinct resource demands, can overcome
the resulting scaling limitations within a node. It has been shown that this
approach can increase both the overall system utilization and the energy ef-
ficiency [6, 40]. However, as applications have varying resource demands over
time, dynamic load balancing is required to avoid the congestions of single
resources. According load balancers require migration support to move jobs or
parts of them across the cluster.

Increasing the number of cores and nodes of the system introduces new
issues. The increasing number of hardware components of the system decreases
the mean time between failure (MTBF). While the MTBF was in the order
of days (BlueGene/L, Nov 2005) [21], it will further decrease for exascale
systems [3, 10, 16]. When errors can be detected in advance, then application
migration can solve this problem and increase the system’s resiliency. In the
case of imminent failures, an evacuation of affected nodes can be performed
by a migration of the respective processes [30,44]. Application checkpointing
is another way of solving this problem [22]. An application can save its status,
i. e., checkpoint, at regular intervals to a reliable storage. The checkpoint can
be triggered by the application or the system. In the case of a failure, the
application can be restarted from its last checkpoint.

In previous studies we investigated different migration techniques and found
full virtualization based on Kernel-based Virtual Machine (KVM) [24] to offer
high flexibility while providing performance results comparable to a native ex-
ecution [33] [5]. A drawback of this approach are high migration times caused
by the transfer of partly unused and therefore unnecessary memory regions.
This is due to lack of information on the system level performing the migra-
tion, i. e., only the application may distinguish between data necessary for its
further execution and data that can be discarded prior to the migration. In the
case of Virtual Machine (VM) migrations, this is aggravated by the additional
level in the address translation that comes with full virtualization. The hyper-
visor is not capable of detecting memory that has been freed by applications
running within the VM.



Zeroing Memory Deallocator to Reduce Checkpoint Sizes 3

In this article we propose to accelerate application migration in HPC by a
reduction of the transmitted data volume and for decreasing the storage size
of HPC applications’ checkpoints. We showcase our approach by taking the
example of VM migration/checkpointing. The migration time of VMs is mainly
determined by the network bandwidth [19] and the size of the virtual machine
image comprising the guest operating system and the application’s processes.
For a reduction of the VM checkpoint image size and an acceleration of the
migration, hypervisors apply compression [41] and zero-block detection [12].
We leverage these mechanisms to reduce the transmitted data to the minimum
that is required to resume the VM on the target node and to further decrease
the storage size of the VM checkpoint image.

When executed within a VM, the release of memory does not affect the
amount of data that is transferred during a migration or saved in a checkpoint
since these regions are only freed within the guest system but not returned
to the host. The same holds for the runtime, i. e., the glibc preserves freed
memory to serve further allocations during the course of the application’s ex-
ecution. Therefore, we overwrite these freed regions with zeros. This way, the
zero-page detection and the compression algorithm are able to further reduce
the amount of migrated/checkpointed data. In our approach, we substitute
the memory operations realloc and free to place zeros in every freed memory
region. We evaluate the approach by running a set of HPC applications from
various domains within VMs based on KVM. Our results show, that the pre-
sented approach reduces the migration time by up to 10% when it is applied
alone and by up to 60% when it is combined with compression. We show that
the overhead of our approach is neglectable for most applications and that it
reduces the checkpoint size of our tested applications by up to 9% if com-
pression is not enabled in the hypervisor and by up to 49% if the hypervisor
enables compression for our approach and for the baseline.

This article is an extended version of “Accelerating Application Migration
in HPC” [15]. In comparison, it provides a much more detailed description of
the methodology and evaluation. This includes a new in-depth analysis of the
overhead induced as well as the benefits of compressing partial zero pages. In
the new Section 5 we describe how the approach can avoid unnecessary zeroing
operations and benefit migration / checkpointing best.

The remainder of this paper is structured as follows: After discussing re-
lated work in the following section, we detail our approach in Section 3. In
Section 4 we present a comprehensive evaluation of our approach before gen-
eralizing our approach in Section 5 and concluding the paper in Section 6.

2 Related work

Application migration is used for fault tolerance and load balancing. Nagara-
jan et al. propose a fault tolerance scheme for MPI applications based on
proactive migration [30]. They monitor the health of computing nodes for the
detection of deteriorating behavior. This way they are able to anticipate node



4 Gad, Pickartz, Süß, Nagel, Lankes, Monti, and Brinkmann

failures. In such a case, the monitoring system triggers the migration of the
node’s processes to healthy nodes.

Application migration for load balancing is seldom exploited in HPC, but
quite common in cloud computing. Load balancing strategies can include the
current load distribution in the data center, historical data on the load and / or
information about renewable energy [18] [29]. Randles et al. present a com-
parison of distributed load balancing strategies [36].

Migration techniques can be broadly divided into three categories: process-
level migration, virtual machine migration, and container-based migration [33].
Process-level migration often leverages Checkpoint /Restart (C/R) mecha-
nisms, which allow for capturing snapshots of the current application state
comprising all necessary information for the later restart on the same or an-
other node. The simplest approach is system-level C/R which performs a mem-
ory core dump. It can be implemented in kernel space (see BLCR [11]) or in
user space (see DMTCP [1]). The advantage of system-level C/R is the trans-
parency to the application. Furthermore, checkpoints can be taken at arbitrary
points of the program’s execution. However, these approaches result in rela-
tively large checkpoints because they include data that is not required for
restarting the computation.

Application-level C/R was introduced with the goal to reduce checkpoint
sizes. However, this comes at the cost of an increased complexity and the in-
volvement of the application programmer, who is in charge of collecting all
data structures that are required for a restart of the application. This process
can be simplified by special libraries and compilers. The Libckpt library, e. g.,
provides transparent C/R, but requires user directives that mark the check-
points’ locations and data [34]. Bronevetsky et al. provide a source-to-source
compiler tool that automatically instruments the code to save and restore its
own state. The tool coordinates C/R for parallel OpenMP [7] and MPI pro-
grams [38]. An approach to reduce the checkpoint size of application-level C/R,
which is orthogonal to the approach presented in this paper, is to deduplicate
different generations of checkpoints [23].

Compression can also be used to reduce the checkpoint size. Ibtesham et al.
examine the feasibility of using compression to reduce checkpoint size in HPC
environment [20]. Their study reveals that checkpoint compression is a po-
tentially useful optimization for large-scale scientific applications. Islam et al.
introduce data aware checkpoint compression to improve the compressibility of
HPC applications’ checkpoints and decrease the checkpointing overhead [21].
They compress multiple checkpoint files from different processes together. Data
aware checkpoint compression extracts metadata semantic inside a process
checkpoint file and then it uses this knowledge to merge the checkpoints parts
from various processes intelligently. Often compression techniques have a finite
window where they look for similarities. However, with the provided semantic
data, similarities can be searched within all the checkpoint files.

The virtualization overhead is often seen as the main reason why virtual
machine migration is rarely used in HPC. Youseff et al. and Birkenheuer et al.
show that this overhead can be neglected and that the performance of virtual



Zeroing Memory Deallocator to Reduce Checkpoint Sizes 5

machines is relatively close to native execution [45] [4]. Breitbart et al. demon-
strate that the employment of virtual machines has only a minimal impact on
the applications’ performance in co-scheduling scenarios [5].

A lot of effort has been spent on the acceleration of VM migration, either
focusing on increasing the bandwidth between source and destination nodes
or on finding better algorithms for copying data between the nodes. None of
the studies investigated what is contained in the virtual machine image and
whether it is needed. Huang et al. propose a high performance virtual machine
migration design that uses Remote Direct Memory Access (RDMA) over In-
finiBand [19]. In this way, they are able to increase the available bandwidth
for migration and reduce the migration overhead by 80% compared to Gigabit
Ethernet. Satyanarayanan et al. propose a Suspend /Resume (S/R) approach
for virtual machines, in which a suspended virtual machine saves its volatile
state to a file [26, 37]. This file is copied to a remote node where the virtual
machine can be resumed.

Live migration is a technique for moving a VM between compute nodes
with almost zero downtime. There are different techniques for live migration,
for example, precopy and postcopy. Hirofuchi et al. propose live migration with
postcopy in which the content of a virtual machine is copied after its process
state has been sent to the target node [17]. Once the process state starts
execution on the target node, virtual machine memory pages are fetched on
demand from the source node. The precopy approach proposed by Clark et al.
first copies the whole memory state of the virtual machine from the source
to the destination node, while still running the virtual machine on the source
node [8]. As already transferred memory might get updated after being copied
from the source node, updated memory pages are iteratively copied to the des-
tination node before finally the process state can be copied to the target node.
Precopy works well for read-intensive workloads, while write-intensive applica-
tions accessing large amounts of memory can render this migration approach
impossible [17]. Precopy is nevertheless more resistant to faults because the
source node still holds an updated copy of the virtual machine and typically
experiences shorter downtimes, as the migration data can be transferred in
bigger chunks to the destination node.

3 Methodology

This section describes our approach to accelerate application migration. By
taking the example of VM migration, we first provide an overview of the mi-
gration mechanism inside QEMU/KVM and then describe the preload library
for zeroing freed memory which relies on the GNU C Library (or glibc) version
2.17. Finally, we briefly present the HPC application benchmarks that we use
for the evaluation of our approach.



6 Gad, Pickartz, Süß, Nagel, Lankes, Monti, and Brinkmann

3.1 Virtual Machine Migration in QEMU/KVM

KVM is an open source Linux-based virtualization solution [24]. It provides
full virtualization on x86 hardware utilizing the VT-x or AMD-V hardware
extensions [42] [43] and is implemented as a loadable kernel module. Starting
from Linux 2.6.20, the kernel components of KVM are part of the Linux main
branch.

KVM only virtualizes the CPU and the memory subsystem in kernel space.
Device emulation, e. g., access to virtual hard disks, and migration are per-
formed by the user-space emulator QEMU [2]. QEMU supports cold and live
migration. The former – often referred to as stop-and-copy migration – basi-
cally leverages checkpointing techniques. The guest VM has to be suspended
to obtain a consistent state and afterwards this state is sent over the network
to the target node. In contrast, live migration allows the guest to continue
its execution during the migration process. A popular method is the pre-copy
live migration which has been introduced by Clark et al. [8], which is split
into two phases: (1) the push-phase in which the guest keeps running on the
source host while its memory pages are already transferred to the target host.
Since the guest may modify pages that are already transferred, theses have to
be tracked and re-transmitted, i. e., the first phase is an iterative process that
lasts until a certain termination criterion is met. (2) the migration finalizes
with the stop-and-copy phase corresponding to the cold migration. Here, the
guest is stopped on the source host and the remaining dirty pages are trans-
ferred to the target host. Since these are likely to be considerably less than in
the case of a cold migration, the live migration is able to drastically reduce
the guest’s downtime at the expense of a higher network load.

The implementations of cold and live migration within QEMU are very
similar and we therefore restrict the analysis to the former in the scope of
this work. For an understanding of the underlying migration logic, a closer
look into the implementation of VMs by QEMU/KVM is necessary. A VM is
started as a normal process from the host’s point of view. Therefore, QEMU
allocates a region within the virtual address space representing the physical
memory of the VM, i. e., the guest-physical memory. Just as with any other
process, these memory pages are not backed by physical page frames before
the process, i. e., in this case the guest system, modifies the according regions.

During the migration process, QEMU traverses this virtual memory region
on the source node to determine which pages have to be transferred to the
destination to successfully resume the VM. QEMU is purely implemented in
user-space and therefore does not know the actual page mapping and whether
a particular page has already been used by the guest or not. However, virtual
pages that do not point to a physical page frame always point to the so-called
NULL page – a page frame that solely contains zeros. This fact is leveraged
by a zero-page detection algorithm within the migration logic. Each page is
analysed during the memory traversal whether it only contains zeros. Dur-
ing the migration, QEMU omits these zero-pages as they are not required to
successfully resume the VM on the target node. The zero-detection is imple-



Zeroing Memory Deallocator to Reduce Checkpoint Sizes 7

mented by an unrolled loop that can easily benefit from vector operations.
Furthermore, QEMU takes care of the proper handling of TCP/ IP connec-
tions to / from the guest during migration, i. e., the migration is transparent
from the application’s point of view since the protocol handles packet losses
and re-transmissions of missing packets.

Although the described zero-page detection already improves migration
times, especially for guests with a low memory footprint, it only works for
memory regions that have never been used by the guest. Memory regions
that were used and then freed by guest processes cannot be detected without
further effort. This is because a process running within the guest only returns
the memory to the guest kernel, but it is not returned to the host. Hence,
QEMU will still transfer these pages to the target node as they are likely
to contain values different from zero. If the pages were returned to the host
kernel, the according page mappings would again point to the NULL page. In
that case, the zero-detection would be capable of detecting these regions and
omit them during the migration process.

QEMU starting at version 2.4 also supports the migration of compressed
VMs. If enabled, each RAM page of a VM is compressed prior to the migra-
tion and decompressed at the destination node. The performance of the com-
pressed migration can be fine-tuned by modifying the parameters compress-
level and (de-)compress-threads. Compression is of course only applied to non-
zero pages.

3.2 Virtual Machine Memory Zeroing

Our zeroing preload library reduces the amount of data migrated by intercept-
ing memory deallocation calls and placing zeros in the deallocated memory
regions (cf. Fig. 1) before the memory is returned to the system. The new zero
regions either result in zero pages which are left out during the migration or
in partial zero pages which can be compressed more efficiently.

Allocated chunks Memory must only be overwritten when it is deallocated.
Deallocations are performed by functions provided by the glibc library, which
is dynamically linked to the application at runtime. Memory is deallocated by
calling free() or realloc(), which changes the size of allocated memory by
freeing an old memory section before allocating a new one. The implementation
of our preload library intercepts all deallocation related calls and clears the
corresponding memory.

Glibc generates for each memory allocation a so-called allocated chunk.
Allocated chunks are cascaded after each other in memory. When an allocated
chunk is freed, it is connected to other freed chunks using a double-linked list.
An allocated chunk contains besides the requested memory also metadata that
includes pointers to the next and the previous free chunk (only if this chunk
is currently deallocated), the size of this chunk, the size of the previous chunk
(if allocated) and three flags (cf. Fig. 2). The flags encode whether the current



8 Gad, Pickartz, Süß, Nagel, Lankes, Monti, and Brinkmann

malloc(),calloc() Functions

free(), realloc() Functions

free(), realloc() Functions

application

 zeroing preload library 

glibc library

get memory region size

free the memory region

Fig. 1: The preload library intercepts deallocation operations issued by an
application.

chunk is allocated via the mmap() system call, whether the previous chunk
is in use and whether this chunk belongs to a thread arena (a separate heap
memory which is maintained per thread).

The library only uses the application’s pointer to the data and the metadata
about the chunk size to zero the chunk’s user data.

Zeroing Memory alignment and additional metadata are the reasons that the
space occupied by an allocated chunk is larger than the memory requested by
the user. It is important to only zero-out user data and not the corresponding
metadata, as the metadata is still used by glibc, which moves the chunk to the
double-linked list of free chunks once the memory is deallocated. We therefore
carefully approximate the size of the user data by taking the chunk size minus
32Bytes, which is an upper bound for the size of the chunk metadata [13].

It is necessary to intercept calls to the functions free() or realloc()
before data can be zeroed. In order to do this, our library provides functions
with the same signature (function name, number of arguments, and types of
the arguments as well as of the return value) which are called instead of the
original functions. The new functions call the old functions, but only after
placing zeros in the user data region of the respective allocated chunk. The
placement of the zeros is performed by calling memset().

The proposed implementation does not require any extra metadata struc-
tures or the interception of allocation operations, so that its runtime overhead
primarily depends on the number of deallocation operations, the size of deallo-
cated memory and the durability of the operations. This overhead furthermore
has to be small, so that the zeroing of regions, which get reallocated and writ-
ten to again by the application, does not lead to increased runtimes. As shown



Zeroing Memory Deallocator to Reduce Checkpoint Sizes 9

User data

C
h
u

n
k 

si
ze

N
P

M
R

e
tu

rn
e
d

 p
o
in

te
r 

fr
o
m

 
th

e
 a

llo
ca

ti
o
n
 

o
p

e
ra

ti
o
n

 

{

3
 b

it
s 

co
n
ta

in
 fl

a
g

in
fo

rm
a
ti

o
n

S
iz

e
 fi

e
ld

 o
f 

th
e
 p

re
v
io

u
s 

a
llo

ca
te

d
 c

h
u
n
k

C
u
rr

e
n
t 

C
h
u
n

k

N
e
x
t 

C
h

u
n
k

P
re

v
io

u
s 

C
h

u
n
k

Po
in

te
r 

to
 t

h
e
 n

e
x
t 

ch
u
n
k
 

in
 d

o
u
b

le
 l
in

ke
d

 f
re

e
 l
is

t

Po
in

te
r 

in
 t

h
e
 p

re
v
io

u
s 

ch
u
n
k
 

in
 d

o
u
b

le
 l
in

ke
d

 f
re

e
 l
is

t

Fig. 2: The structure of an allocated chunk managed by glibc [13]. Only deal-
located chunks are connected to a double linked free list.

in Section 4, the implementation of our library has a negligible overhead for
most applications, while it can induce an overhead of 7% for selected applica-
tions like mpiBLAST.

3.3 HPC Application Benchmarks

We evaluated applications from different scientific areas like physics, chemistry,
and biology. The following list briefly describes the five HPC applications,
which have been used as benchmarks in our tests:

– NAMD is a parallel molecular dynamics simulator for large biomolecular
systems. It can simulate more than a hundred million atoms utilizing up
to 500.000 cores [31].

– mpiBLAST is the MPI-parallel version of the Basic Local Alignment Search
Tool (BLAST). It is a sequence alignment tool that gets nucleotide / protein
sequences as input, compares them to sequences in a database, and com-
putes statistics about the matching results. mpiBLAST can scale up to
hundreds of processors [9].

– GROMACS is a computational chemistry application that performs molec-
ular dynamics simulations. It can solve Newton’s equations of motion for
millions of interacting particles [35].

– LAMMPS is a molecular dynamics simulator, which can also model atomic,
polymeric, biological, metallic, granular, and coarse-grained systems using
a variety of force fields and boundary conditions. It parallelizes the com-
putation by spatially decomposing the simulation domain [14].



10 Gad, Pickartz, Süß, Nagel, Lankes, Monti, and Brinkmann

– PhyloBayes is a parallel implementation of the Bayesian Markov Chain
Monte Carlo (MCMC) sampler for phylogenetic inference. The program
uses nucleotide, protein, or codon sequence alignments to perform phylo-
genetic reconstruction [28].

4 Evaluation

In this section we evaluate our approach in terms of runtime overhead and
checkpoint size. We show that the reduction of the checkpoint size results in
a decrease of the migration time.

We used four NUMA systems for the evaluation. All systems have 32 virtual
cores distributed over two sockets with 8 physical cores each. Two systems are
equipped with Intel SandyBridge CPUs (E5-2650) and two with the newer
generation Intel IvyBridge CPUs (E5-2650 v2). They are clocked at 2GHz
and 2.6GHz respectively. The cluster is connected by a Gigabit Ethernet fabric
and all nodes employ a software stack based on CentOS 7. The virtualization
framework is based on KVM and QEMU version 2.5.1.

4.1 Zeroing Preload Library Overhead

The zeroing preload library introduces a runtime overhead which is mainly
the time required to place zeros in the freed memory regions. The additional
runtime therefore grows linear in the number of times memory is freed and
the size of the affected memory regions, which are both highly application-
dependent. To assess this overhead, we compared the execution time of each
application with and without the preload library within a VM.

All benchmarks have been executed ten times and we took the median
over these runs to obtain stable results. Figure 3 shows the execution times of
our test applications which are normalized with respect to the median. The
figure also includes the standard deviation. mpiBLAST exhibits a large preload
library overhead of 7.1%. After mpiBLAST comes PhyloBayes with overhead
of 6.1%. In contrast, GROMACS, NAMD, and LAMMPS, show a negligible
overhead of less than 0.3%. The negative value of −0.11% for NAMD can
only be explained by noise. Only PhyloBayes experiences a large standard
deviation in comparison to the other applications. This can be explained by
the randomness of the CAT model [39] used by PhyloBayes.

Finding: The runtime overhead of the preload library depends
on the application and is at most 7.1% for our sample applications.

For an assessment of the source of the overhead, we modified the zeroing
preload library so that it generates a trace of the intercepted deallocation
operations. The overhead is proportional to the amount of these operations
and the size of the affected memory regions. The trace records the number
of zero bytes placed in the deallocated memory regions and the number of



Zeroing Memory Deallocator to Reduce Checkpoint Sizes 11

PhyloBayes mpiBLAST NAMD GROMACS LAMMPS

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

N
o
rm

a
liz

e
d
 r

u
n
ti

m
e

0.0609
0.0709

-0.0011 0.0030 0.0002

Zeroing disabled Zeroing enabled

Fig. 3: Impact of the preload library on the runtimes of selected HPC appli-
cations. The bars represent the normalized execution time, the median, and
the upper and lower quartiles. The numbers above the bars are the difference
between the medians for enabled and disabled zeroing.

deallocation operations issued by the application at runtime. We ran each test
application once inside of a VM with the modified preload library generating
the trace. Figures 4a and 4b show the number of deallocation operations per
minute and the amount of zeroed memory per minute. Every value in the
graphs represents the accumulated amount of the previous minute.

mpiBLAST sets the biggest amount of memory to zero per minute (cf.
Fig. 4b) and has the highest deallocation rate after LAMMPS (cf. Fig. 4a)
which explains why mpiBLAST has the highest preload library overhead in
Fig. 3. This is probably the result of a frequent usage of communication buffers
within the MPI layer. After mpiBLAST comes PhyloBayes in the amount
of memory set to zero per minute and the memory deallocation rate which
explains why PhyloBayes has the second highest preload library overhead after
mpiBLAST. LAMMPS, in contrast, reveals the lowest amount of memory set
to zero per minute. For LAMMPS, some points are missing in Fig. 4b because
the allocated chunk sizes were less than 32Byte. Although the preload library
intercepts every deallocation operation, it only places zeros in the deallocated
memory if the size of the allocated chunk is greater than 32Byte. As a result
of this, no zeros were placed in these memory regions and hence the respective
memory size is equal to zero, which cannot be plotted on the logarithmic scale.

Finding: mpiBLAST has the highest overhead among the bench-
mark applications because it has the highest product of deallocation
operations per minute and size of zeroed memory per minute.

4.2 VM Image Size

The migration time of an application running inside a VM is affected by the
size of the VM’s image which, in turn, mainly depends on the size of the ap-



12 Gad, Pickartz, Süß, Nagel, Lankes, Monti, and Brinkmann

0 5 10 15
Time in minutes

104

105

106

107

108

De
al

lo
ca

tio
n 

op
er

at
io

ns
 p

er
 m

in
ut

e

NAMD
mpiBLAST
PhyloBayes
GROMACS
LAMMPS

(a)

0 5 10 15
Time in minutes

101

102

103

104

105

106

107

108

109

1010

1011

Si
ze

 o
f t

he
 m

em
or

y 
se

t t
o 

ze
ro

 p
er

 m
in

ut
e

NAMD
mpiBLAST
PhyloBayes
GROMACS
LAMMPS

(b)

Fig. 4: Evaluation of the preload library concerning (a) the number of deallo-
cation operations intercepted by the library per minute and (b) the amount
of data in bytes zeroed per minute.



Zeroing Memory Deallocator to Reduce Checkpoint Sizes 13

plication’s memory image. We studied the effect of our zeroing preload library
on the size of the VM image and examined whether compression and the zero-
page detection algorithm inside KVM benefit from it. Since KVM performs
checkpointing as a memory core dump, this is a good measure for the VM’s
image size. Again, we ran each of our application benchmarks inside a VM
with and without the zeroing preload library. We performed three checkpoints
at intervals of 5min and compressed the checkpoints logging the checkpoint
size before and after compression. In the following, we always discuss the last
of these checkpoints, while all other measurements have shown very similar
results.

The zero-page detection algorithm is applied by the hypervisor to every
checkpoint. It first discards complete zero pages and then applies compres-
sion to the remaining image (if compression is enabled). We extended this
algorithms, so that is also logs the number of detected zero pages.

NAMD mpiBLAST PhyloBayes GROMACS LAMMPS
0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
iz

ed
 V

M
 c

he
ck

po
in

t s
iz

e

5.
3G

B

4.
1G

B

5.
2G

B

53
7.

0M
B

1.
2G

B

12
61

93
2

15
83

03
4

12
99

84
5

25
22

90
4

23
56

95
6

13
73

82
5

16
12

31
9

14
12

09
4

25
23

80
8

23
59

83
6

Zeroing disabled Zeroing enabled Size after compression

Fig. 5: Impact of the preload library on the checkpoint size. The values are
normalized to the checkpoint size with disabled preload library and without
compression. The numbers above the bars denote the respective absolute val-
ues. The numbers inside the bars refer to the amount of detected zero pages
in the checkpoint image.

The summarized results comparing the combination of zero-page detec-
tion and compression with the standard approaches are shown in Fig. 5. The
baseline is the image size without compression (zeroing disabled), where never-
theless already all pages are discarded, which only contain zeros. These results
can be directly compared with the image sizes produced by our library (ze-
roing enabled), where deallocated memory blocks are set to zero. Observing
these results, we see that, with disabled compression, all applications have a
smaller checkpoint size when zeroing is enabled.

The bars in Fig. 5 for zeroing disabled and zeroing enabled also contain the
image sizes after compression has been enabled. It can be seen that also in this
case our strategy is able to decrease the image footprints for all applications



14 Gad, Pickartz, Süß, Nagel, Lankes, Monti, and Brinkmann

besides GROMACS. It is important to notice that the zeroing-library can
have two positive effects on the resulting image size after compression has been
enabled. First of all, all complete zero blocks are automatically removed by the
hypervisor. Secondly, also pages, which only partially contain additional zeros
can be more easily compressed. Especially the second effect is investigated in
Section 4.4.

From the results we can derive that the zero-page detection algorithm is
able to find additional zero blocks generated by the preload library. The reduc-
tion of the checkpoint size refers to the amount of the additionally detected
zero pages and also to the amount of partially zeroed pages. For all appli-
cations except GROMACS, compression benefits from the additional partial
zero pages generated by the preload library.

Finding: When compression is disabled, zeroing can decrease the
checkpoint size by up to 9%. Enabling zeroing and compression, the
size can even drop by up to 94% compared to the case of no zero-
ing and no compression. When compression is additionally enabled
in the baseline approach, i. e., this corresponds to disabled zeroing
but enabled compression, zeroing is able to decrease the checkpoint
size by up to 49%. The benefit of zeroing depends on the number
of full or partial zero memory blocks detected at the time of the
checkpoint.

4.3 VM Migration Time

One goal of our zeroing approach is to accelerate application migration. For
this reason we compare the migration times of HPC application benchmarks
with and without the preload library enabled.

We ran each application within a VM possessing 10GiB of guest physical
memory and migrated them back and forth between the two cluster nodes. The
migration interval varied between 3min to 5min depending on the application
runtime. The VM’s virtual CPUs were mapped to the host’s topology [5].
For doing so, we performed a one-to-one pinning of each virtual CPU to its
counterpart on the host system, i. e., the CPU IDs seen by the guest match
those on the host. Furthermore, the VM configuration comprises a virtual
Non-Uniform Memory Access (NUMA) topology matching that of the host.
Therefore, the virtual CPUs have to be grouped in so-called NUMA cells in
accordance with the host’s NUMA topology. As a result the guest system sees
exactly the same hardware configuration as software running natively on the
host. We used a Gigabit Ethernet link for data transfer and QEMU for the
migration of the VMs with compression enabled or disabled and with default
parameters, i. e., eight compression threads, two decompression threads, and
a compression level of 1. To get stable results, we repeated this test 10 times
and calculated the arithmetic mean. It is important to note that QEMU’s
zero-page detection algorithm discards full zero pages and that compression,
if enabled, is only applied to the remaining pages.



Zeroing Memory Deallocator to Reduce Checkpoint Sizes 15

As seen in Figs. 6a to 6j, the effect of the zeroing is highly application
dependent. For NAMD, PhyloBayes, and mpiBLAST our approach accelerates
the migration time regardless of whether compression was enabled or not. This
is on par with the previous results estimating the impact of the preload library
on the checkpoint size (cf. Fig. 5). Consequently, the zeroing does not have an
impact on the migration performance of GROMACS and LAMMPS. When
zeroing was applied alone without compression, NAMD benefited the most. It
showed migration time savings of up to 10% (cf. Fig. 6b).

The combination of zeroing enabled and compression enabled provided the
least migration time for NAMD, PhyloBayes, and mpiBLAST. PhyloBayes
benefited the most when zeroing and compression are enabled; its migration
time was improved by up to 60% compared to the case when migration is
performed without zeroing and without compression (cf. Fig. 6d). Also, its
migration time was improved by up to 19% compared to the case when mi-
gration is performed without zeroing and with compression.

PhyloBayes and NAMD experienced a major improvement in the migration
time saving when zeroing and compression are applied together comparing to
the case when zeroing was used alone. On the other side, mpiBLAST only
showed a minor improvement compared to PhyloBayes and NAMD. We relate
this to the amount of partial zero pages injected by the zeroing library, which
will be studied more closely in Section 4.4.

Although we only regarded the migration over Gigabit Ethernet, the pre-
sented approach might be interesting for other interconnects as well. In any
case, the overhead generated by the preload library has to be compensated for
by the savings that can be achieved with the given link speed.

Findings: The migration procedure of KVM benefits from the
zeroing approach because it can leave out full zero pages and usually
better compresses partial zero pages. The combination of zeroing
and compression provides the best acceleration.

4.4 Partial Zero Pages and Compression

In this section, we investigate more closely when and how compression benefits
from the zeroing approach. As mentioned before, full zero pages are discarded
from the VM image before compression. Hence, compression is only applied to
partial zero pages and full data pages. Of course, compression benefits from
other data criteria, but they are not part of this study because we are only
interested in zeros injected by our library.

In the previous test, in Section 4.3, mpiBLAST showed a minor improve-
ment in the migration time saving when compression is added to zeroing com-
pared to PhyloBayes and NAMD. mpiBLAST migration time saving was im-
proved from around 6% to 29% (difference 23%) while PhyloBayes migration
time saving was improved from around 4% to 60% (difference 56%) and NAMD
migration time saving was improved from around 9% to 44% (difference 35%).



16 Gad, Pickartz, Süß, Nagel, Lankes, Monti, and Brinkmann

We relate this to the amount of partial zero pages in the VM image before
compression.

To understand this phenomenon, we analyzed the effect of zeroing on the
VM image. We re-ran the previous test from Section 4.3, but without com-
pression, and instrumented QEMU to log the number of partial zero pages as
well as the number and size of zero regions at every VM migration. The size of
a continuous zero region in a page is always between 1 and 4095 bytes because
the maximum page size is 4096 bytes and full zero pages are discarded. The re-
sulting trace contains a histogram for each migration providing for each region
size the number of occurrences of this region in the respective VM image.

To analyze the effect of the preload library on the zero distribution, we
subtracted the histogram before the zeroing from the histogram after the ze-
roing. Then we computed the cumulative function of the result (cf. Fig. 7).
The cumulative function accumulates the size of the differences in the partial
zero pages. Figure 7 shows that the number of accumulated zeros increases for
PhyloBayes and NAMD, but decreases for mpiBLAST.

In this figure, we are mostly interested in the final accumulated value at the
largest region size, as it characterizes the total difference of zeros and there-
fore gives an indication about the compressibility of the image. PhyloBayes
comes in first place, then NAMD, and finally mpiBLAST. For GROMACS
and LAMMPS the final accumulated value of the difference in the partial zero
pages is almost equal to zero. This result matches our expectations since the
migration performance of both applications is not affected by the zeroing ap-
proach at all. Especially interesting are the results for mpiBLAST. Here, the
accumulated value of zeros is even negative. This explains for the previous test,
why mpiBLAST showed a minor improvement in the migration time saving
when zeroing and compression are applied together compared to PhyloBayes
and NAMD. This raises the question about why zeroing does not produce
more zero ranges in the migrated image of mpiBLAST.

There are two possible reasons:

1. There are not many zeros placed, or their placement results in full zero
pages, but not in partial zero pages. We observed this for mpiBLAST
and our assumption is that deallocations of communication buffers are the
main source for zero regions in the mpiBLAST image. As these buffers are
often set to a multiple of the page size, the preload library only produces
complete zero pages rather than additional partial zero pages.

2. Each application has different memory allocation and deallocation pattern.
Zeros that our approach writes in the application memory might get re-
allocated and used by the application.

5 Generalization of the approach

In this section we discuss the current limitations of the memory management in
the context of virtual machine migration / checkpointing. The main approach
presented in this paper is to reduce the size of virtual machines by writing zeros



Zeroing Memory Deallocator to Reduce Checkpoint Sizes 17

in freed memory regions which benefits zero-page detection as well as compres-
sion schemes. In this way, zero-page detection can discard complete zero pages
for migration, and compression schemes achieve better results. However, freed
memory regions that have been filled with zeros might be reallocated and
reused by the application. This is, for example, common for communication
buffers of MPI implementations. As these unnecessary zero writes only degrade
the performance, our future goal is to completely eliminate them.

Figure 8 shows the memory allocation stack ranging from the application
to the hardware level. The application allocates and deallocates memory using
the functions malloc(), free(), calloc(), and realloc() of glibc which is a shared
library in the application address space. It allocates and releases memory from
the guest operating system using the system calls brk(), sbrk(), or mmap().
The guest operating system obtains memory from the host operating system
through the virtualization layer.

Memory released by the application is returned to the glibc library. How-
ever, there is no guaranteed time period in which the glibc library returns the
memory back to the guest operating system. In case of a VM, this is aggravated
by the fact that the guest operating system never returns freed memory to the
host operating system. One way to return this memory to the host operating
system is to destroy the VM and to create a new one. Of course, this should
only be done when the application running in the VM has terminated.

A better solution is to use our approach and enhance it by a small modifica-
tion. The idea is to zero memory regions only when a migration or a checkpoint
is imminent and thus to avoid unnecessary zero writes. The glibc library needs
to be modified to react upon migration / checkpoint requests (similar to the
approach for the migration of MPI applications in [32]). In doing so, it would
place zeros into freed memory regions only directly before a migration starts.
On the one hand, this would result in slightly higher migration / checkpoint la-
tencies as the zeroing would add to the overall migration/checkpointing time.
On the other hand, the runtime overhead would be reduced which is especially
interesting for applications exhibiting a high memory allocation / deallocation
frequency, e. g., as is the case for mpiBLAST.

In general, C libraries maintain the free memory regions by means of a
buddy system [25] or similar data structures. Instead of zeroing the mem-
ory regions during migration / checkpointing, the C library is able to ignore
free regions and may signal the hypervisor through a hypercall that the data
should not be migrated. This approach would replace the zero page detection
within QEMU and possibly yield an improved migration performance. How-
ever, this only affects free regions which occupy full memory pages. Partially
freed pages benefit only if they are compressed and if zeros are written into
them. Therefore, an ideal solution could combine both approaches: (1) freed
memory regions smaller than the page size are filled with zeros while (2) full
pages are completely omitted during the migration process.

Although we focused on VM migration in this work, the general concept
may be beneficial to other means of process isolation, e. g., Operating Sys-



18 Gad, Pickartz, Süß, Nagel, Lankes, Monti, and Brinkmann

tem (OS) containers based on Docker1, as well. The zeroing of freed memory
regions affects two aspects of the migration procedure: (1) full zero-pages are
omitted during the memory traversal; and (2) the compression benefits from
partial zero-pages. The former aspect is specific to the migration of VMs since
they reduce the amount of information available to the hypervisor, i. e., the
mapping of the guest-physical memory to host-virtual memory is transparent.
In contrast, the mapping of the virtual address space of OS containers is vis-
ible to the host OS, i. e., the concept of zero-pages becomes obsolete in this
case. However, the second aspect likewise applies to container-based and even
process-level migration. This is because these pages are part of the virtual ad-
dress space of the isolation domain and therefore have to be transferred to the
destination as well. In accordance with the observations made in Section 4.4,
especially the zeroing of partial zero pages in conjunction with compression is
able to improve the migration time significantly.

6 Conclusion & Future Work

In this paper, we have shown the limitations of the current memory man-
agement in the context of virtual machine migration / checkpointing and have
presented a prototype to reduce the amount of data transmitted during vir-
tual machine migrations and to decrease the storage size of virtual machine
checkpoints. The approach places zeros in unused data regions such that zero-
page detection and compression schemes work more efficiently. The evaluation
reveals a positive effect on both, the migration time and the size of the ap-
plication image. In particular, we demonstrated the merit of our method for
HPC by choosing a set of test applications from this domain. Our approach
reduced the migration time by up to 10% when it is applied alone and by up
to 60% when it is combined with compression. We have shown that the over-
head of our approach is negligible for most applications. We have also shown
that our approach reduces the checkpoint size of our tested applications by up
to 9% without compression and up to 49% with compression enabled in the
hypervisor. This reduces the storage required for checkpoints.

In Section 5, we have explained how our prototype could be integrated in
a general-purpose operating system with even smaller overhead in comparison
to our current solution. In addition, the combination of specialized operat-
ing systems for virtual machines like Unikernels (e. g. HermitCore [27]) and
our presented technique promises an additional reduction of the memory con-
sumption and consequently shorter migration times and smaller checkpoint
sizes.

In the future, we will explore the possibilities of virtual machine migration
in different environments. Here we will especially focus on the challenges that
appear with different networks and heterogeneous systems. Furthermore, we
plan to integrate the developed migration techniques into the SLURM batch

1 https://docker.io

https://docker.io


Zeroing Memory Deallocator to Reduce Checkpoint Sizes 19

system. Installed in a large cluster, we will analyze how the rescheduling of jobs
can help to increase utilization and throughput. Scheduling virtual machines
with respect to their long-time resource requirements raises new questions and
research challenges.

We have made our implementation publicly available under https://gitlab.
rlp.net/brinkman/zeroingpreloadlibrary/.

Acknowledgements This research and development was supported by the Federal Min-
istry of Education and Research (BMBF) under Grant 01IH13004 (Project FAST) and Grant
01IH16010B (Project Envelope).

References

1. Ansel, J., Arya, K., Cooperman, G.: DMTCP: Transparent checkpointing for cluster
computations and the desktop. In: 23rd IEEE International Symposium on Parallel and
Distributed Processing, IPDPS 2009, Rome, Italy, May 23-29, 2009, pp. 1–12 (2009)

2. Bellard, F.: QEMU, a fast and portable dynamic translator. In: Proceedings of the
FREENIX Track: 2005 USENIX Annual Technical Conference, April 10-15, 2005, Ana-
heim, CA, USA, pp. 41–46 (2005)

3. Bergman, K., Borkar, S., Campbell, D., et al.: ExaScale computing study: Technology
challenges in achieving exascale systems peter kogge, editor & study lead (2008)

4. Birkenheuer, G., Brinkmann, A., Kaiser, J., Keller, A., Keller, M., Kleineweber, C.,
Konersmann, C., Niehörster, O., Schäfer, T., Simon, J., Wilhelm, M.: Virtualized HPC:
a contradiction in terms? Software - Practice and Experience 42(4), 485–500 (2012)

5. Breitbart, J., Pickartz, S., Weidendorfer, J., Monti, A.: Viability of virtual machines in
HPC – A state of the art analysis. In: Euro-Par 2016: Parallel Processing Workshops -
Euro-Par 2016 International Workshops, Grenoble, France, August 24-26, 2016, Revised
Selected Papers, pp. 721–733 (2016)

6. Breitbart, J., Weidendorfer, J., Trinitis, C.: Case study on co-scheduling for HPC appli-
cations. In: 44th International Conference on Parallel Processing Workshops, ICPPW
2015, Beijing, China, September 1-4, 2015, pp. 277–285 (2015)

7. Bronevetsky, G., Marques, D., Pingali, K., Szwed, P.K., Schulz, M.: Application-level
checkpointing for shared memory programs. In: Proceedings of the 11th International
Conference on Architectural Support for Programming Languages and Operating Sys-
tems, ASPLOS 2004, Boston, MA, USA, October 7-13, 2004, pp. 235–247 (2004)

8. Clark, C., Fraser, K., Hand, S., Hansen, J.G., Jul, E., Limpach, C., Pratt, I., Warfield,
A.: Live migration of virtual machines. In: 2nd Symposium on Networked Systems
Design and Implementation (NSDI 2005), May 2-4, 2005, Boston, Massachusetts, USA,
Proceedings. (2005)

9. Darling, A., Carey, L., Feng, W.C.: The design, implementation, and evaluation of
mpiBLAST. In: 4th International Conference on Linux Clusters: The HPC Revolution
2003 in conjunction with ClusterWorld Conference & Expo, pp. 13–15 (2003)

10. Dongarra, J., Beckman, P., Moore, T., et al.: The international exascale software project
roadmap. Int. J. High Perform. Comput. Appl. 25(1), 3–60 (2011). DOI 10.1177/
1094342010391989

11. Duell, J.: The design and implementation of berkeley lab’s linux checkpoint/restart.
Tech. rep., Lawrence Berkeley National Laboratory (2003)

12. Dusser, J., Seznec, A.: Decoupled zero-compressed memory. In: High Performance Em-
bedded Architectures and Compilers, 6th International Conference, HiPEAC 2011, Her-
aklion, Crete, Greece, January 24-26 2011. Proceedings, pp. 77–86 (2011)

13. Ferguson, J.N.: Understanding the heap by breaking it. Black Hat USA pp. 1–39 (2007)
14. FrantzDale, B., Plimpton, S.J., Shephard, M.S.: Software components for parallel mul-

tiscale simulation: an example with LAMMPS. Eng. Comput. (Lond.) 26(2), 205–211
(2010)

https://gitlab.rlp.net/brinkman/zeroingpreloadlibrary/
https://gitlab.rlp.net/brinkman/zeroingpreloadlibrary/


20 Gad, Pickartz, Süß, Nagel, Lankes, Monti, and Brinkmann

15. Gad, R., Pickartz, S., Süß, T., Nagel, L., Lankes, S., Brinkmann, A.: Accelerating ap-
plication migration in HPC. In: High Performance Computing - ISC High Performance
2016 International Workshops, Frankfurt, Germany, June 19-23, 2016, Revised Selected
Papers, pp. 663–673 (2016)

16. Glosli, J.N., Richards, D.F., Caspersen, K.J., Rudd, R.E., Gunnels, J.A., Streitz, F.H.:
Extending stability beyond cpu millennium: A micron-scale atomistic simulation of
kelvin-helmholtz instability. In: Proceedings of the 2007 ACM/IEEE Conference on
Supercomputing, SC ’07, pp. 58:1–58:11. ACM, New York, NY, USA (2007). DOI
10.1145/1362622.1362700

17. Hirofuchi, T., Nakada, H., Itoh, S., Sekiguchi, S.: Reactive consolidation of virtual ma-
chines enabled by postcopy live migration. In: Proceedings of the 5th International
Workshop on Virtualization Technologies in Distributed Computing, VTDC@HPDC
2011, San Jose, CA, USA, June 8, 2011, pp. 11–18 (2011)

18. Hu, J., Gu, J., Sun, G., Zhao, T.: A scheduling strategy on load balancing of virtual
machine resources in cloud computing environment. In: Third International Symposium
on Parallel Architectures, Algorithms and Programming, PAAP 2010, Dalian, China,
18-20 December, 2010, pp. 89–96 (2010)

19. Huang, W., Gao, Q., Liu, J., Panda, D.K.: High performance virtual machine migration
with RDMA over modern interconnects. In: Proceedings of the 2007 IEEE International
Conference on Cluster Computing, 17-20 September 2007, Austin, Texas, USA, pp. 11–
20 (2007)

20. Ibtesham, D., Arnold, D., Ferreira, K.B., Bridges, P.G.: On the viability of checkpoint
compression for extreme scale fault tolerance. In: Proceedings of the 2011 International
Conference on Parallel Processing - Volume 2, Euro-Par’11, pp. 302–311. Springer-
Verlag, Berlin, Heidelberg (2012). DOI 10.1007/978-3-642-29740-3_34

21. Islam, T.Z., Mohror, K., Bagchi, S., Moody, A., de Supinski, B.R., Eigenmann, R.:
McrEngine: A Scalable Checkpointing System Using Data-aware Aggregation and Com-
pression. In: Proceedings of the International Conference on High Performance Com-
puting, Networking, Storage and Analysis, SC ’12, pp. 17:1–17:11. IEEE (2012)

22. Jin, H., Ke, T., Chen, Y., Sun, X.H.: Checkpointing orchestration: Toward a scalable hpc
fault-tolerant environment. In: Proceedings of the 2012 12th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid 2012), CCGRID ’12, pp.
276–283. IEEE Computer Society, Washington, DC, USA (2012). DOI 10.1109/CCGrid.
2012.61

23. Kaiser, J., Gad, R., Süß, T., Padua, F., Nagel, L., Brinkmann, A.: Deduplication po-
tential of HPC applications’ checkpoints. In: 2016 IEEE International Conference on
Cluster Computing (CLUSTER), Taipei, Taiwan, September 12-16, 2016, pp. 413–422
(2016)

24. Kivity, A., Kamay, Y., Laor, D., Lublin, U., Liguori, A.: kvm: the Linux Virtual Machine
Monitor. In: Proceedings of the Linux symposium, pp. 225–230 (2007)

25. Knowlton, K.C.: A fast storage allocator. Commun. ACM 8(10), 623–624 (1965). DOI
10.1145/365628.365655

26. Kozuch, M., Satyanarayanan, M.: Internet suspend/resume. In: 4th IEEE Workshop
on Mobile Computing Systems and Applications (WMCSA 2002), 20-21 June 2002,
Callicoon, NY, USA, p. 40 (2002)

27. Lankes, S., Pickartz, S., Breitbart, J.: HermitCore – A Unikernel for Extreme Scale
Computing. In: Proceedings of the International Workshop on Runtime and Operating
Systems for Supercomputers (ROSS 2016), held in conjunction with 25th International
ACM Symposium on High-Performance Parallel and Distributed Computing (HPDC
2016). Kyoto, Japan (2016)

28. Lartillot, N., Lepage, T., Blanquart, S.: Phylobayes 3: a bayesian software package for
phylogenetic reconstruction and molecular dating. Bioinformatics 25(17), 2286–2288
(2009)

29. Mäsker, M., Nagel, L., Brinkmann, A., Lotfifar, F., Johnson, M.: Smart grid-aware
scheduling in data centres. Computer Communications 96, 73–85 (2016)

30. Nagarajan, A.B., Mueller, F., Engelmann, C., Scott, S.L.: Proactive fault tolerance
for HPC with xen virtualization. In: Proceedings of the 21th Annual International
Conference on Supercomputing, ICS 2007, Seattle, Washington, USA, June 17-21, 2007,
pp. 23–32 (2007)



Zeroing Memory Deallocator to Reduce Checkpoint Sizes 21

31. Phillips, J.C., Braun, R., Wang, W., Gumbart, J.C., Tajkhorshid, E., Villa, E., Chipot,
C., Skeel, R.D., Kalé, L.V., Schulten, K.: Scalable molecular dynamics with NAMD.
Journal of Computational Chemistry 26(16), 1781–1802 (2005)

32. Pickartz, S., Clauss, C., Breitbart, J., Lankes, S., Monti, A.: Prospects and challenges
of virtual machine migration in HPC. Concurrency and Computation: Practice and
Experience 30(9) (2018). DOI 10.1002/cpe.4412

33. Pickartz, S., Gad, R., Lankes, S., Nagel, L., Süß, T., Brinkmann, A., Krempel, S.:
Migration techniques in HPC environments. In: Euro-Par 2014: Parallel Processing
Workshops - Euro-Par 2014 International Workshops, Porto, Portugal, August 25-26,
2014, Revised Selected Papers, Part II, pp. 486–497 (2014)

34. Plank, J.S., Beck, M., Kingsley, G., Li, K.: Libckpt: Transparent checkpointing under
UNIX. In: USENIX 1995 Technical Conference on UNIX and Advanced Computing
Systems, New Orleans, Louisiana, USA, January 16-20, 1995, Conference Proceedings,
pp. 213–224 (1995)

35. Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts, M.R.,
Smith, J.C., Kasson, P.M., van der Spoel, D., Hess, B., Lindahl, E.: GROMACS 4.5: a
high-throughput and highly parallel open source molecular simulation toolkit. Bioin-
formatics 29(7), 845–854 (2013)

36. Randles, M., Lamb, D.J., Taleb-Bendiab, A.: A comparative study into distributed load
balancing algorithms for cloud computing. In: 24th IEEE International Conference on
Advanced Information Networking and Applications Workshops, WAINA 2010, Perth,
Australia, 20-13, April 2010, pp. 551–556 (2010)

37. Satyanarayanan, M., Gilbert, B., Toups, M., Tolia, N., Surie, A., O’Hallaron, D.R.,
Wolbach, A., Harkes, J., Perrig, A., Farber, D.J., Kozuch, M., Helfrich, C., Nath, P.,
Lagar-Cavilla, H.A.: Pervasive personal computing in an internet suspend/resume sys-
tem. IEEE Internet Computing 11(2), 16–25 (2007)

38. Schulz, M., Bronevetsky, G., Fernandes, R., Marques, D., Pingali, K., Stodghill, P.: Im-
plementation and evaluation of a scalable application-level checkpoint-recovery scheme
for MPI programs. In: Proceedings of the ACM/IEEE SC2004 Conference on High
Performance Networking and Computing, 6-12 November 2004, Pittsburgh, PA, USA,
p. 38 (2004)

39. Si Quang, L., Gascuel, O., Lartillot, N.: Empirical profile mixture models for phyloge-
netic reconstruction. Bioinformatics 24(20), 2317–2323 (2008)

40. Süß, T., Döring, N., Gad, R., Nagel, L., Brinkmann, A., Feld, D., Schricker, E., Sod-
demann, T.: Impact of the scheduling strategy in heterogeneous systems that provide
co-scheduling. In: Proceedings of the 1st COSH Workshop on Co-Scheduling of HPC
Applications, COSH@HiPEAC 2016, Prague, Czech Republic, January 19, 2016., pp.
37–42 (2016)

41. Svärd, P., Tordsson, J., Hudzia, B., Elmroth, E.: High performance live migration
through dynamic page transfer reordering and compression. In: IEEE 3rd International
Conference on Cloud Computing Technology and Science, CloudCom 2011, Athens,
Greece, November 29 - December 1, 2011, pp. 542–548 (2011)

42. Uhlig, R., Neiger, G., Rodgers, D., Santoni, A.L., Martins, F.C.M., Anderson, A.V.,
Bennett, S.M., Kägi, A., Leung, F.H., Smith, L.: Intel virtualization technology. IEEE
Computer 38(5), 48–56 (2005)

43. Walters, J.P., Chaudhary, V., Cha, M., Jr., S.G., Gallo, S.M.: A comparison of virtualiza-
tion technologies for HPC. In: 22nd International Conference on Advanced Information
Networking and Applications, AINA 2008, GinoWan, Okinawa, Japan, March 25-28,
2008, pp. 861–868 (2008)

44. Wang, C., Mueller, F., Engelmann, C., Scott, S.L.: Proactive process-level live migra-
tion and back migration in HPC environments. Journal of Parallel and Distributed
Computing 72(2), 254–267 (2012)

45. Youseff, L., Wolski, R., Gorda, B.C., Krintz, C.: Evaluating the performance impact of
xen on MPI and process execution for HPC systems. In: Proceedings of the First Inter-
national Workshop on Virtualization Technology in Distributed Computing, VTDC@SC
2006, Tampa, Florida, USA, November 17, 2006, p. 1 (2006)



22 Gad, Pickartz, Süß, Nagel, Lankes, Monti, and Brinkmann

5 10 15 20 25 30
Time in minutes

20

30

40

50

60

70

M
ig

ra
ti

o
n
 t

im
e
 i
n
 s

e
co

n
d
s

NAMD migration time
Zeroing Enabled Comp. Enabled

Zeroing Disabled Comp. Enabled

Zeroing Enabled Comp. Disabled

Zeroing Disabled Comp. Disabled

(a)

5 10 15 20 25 30
Time in minutes

0

10

20

30

40

50

60

70

M
ig

ra
ti

o
n
 t

im
e
 s

a
v
in

g
 p

e
rc

e
n
ta

g
e

NAMD migration time saving
Zeroing Enabled Comp. Enabled

Zeroing Disabled Comp. Enabled

Zeroing Enabled Comp. Disabled

(b)

5 10 15 20 25 30
Time in minutes

20

30

40

50

60

70

M
ig

ra
ti

o
n
 t

im
e
 i
n
 s

e
co

n
d
s

PhyloBayes migration time
Zeroing Enabled Comp. Enabled

Zeroing Disabled Comp. Enabled

Zeroing Enabled Comp. Disabled

Zeroing Disabled Comp. Disabled

(c)

5 10 15 20 25 30
Time in minutes

0

10

20

30

40

50

60

70

M
ig

ra
ti

o
n
 t

im
e
 s

a
v
in

g
 p

e
rc

e
n
ta

g
e

PhyloBayes migration time saving
Zeroing Enabled Comp. Enabled

Zeroing Disabled Comp. Enabled

Zeroing Enabled Comp. Disabled

(d)

5 10 15 20 25 30
Time in minutes

20

30

40

50

60

70

M
ig

ra
ti

o
n
 t

im
e
 i
n
 s

e
co

n
d
s

mpiblast migration time
Zeroing Enabled Comp. Enabled

Zeroing Disabled Comp. Enabled

Zeroing Enabled Comp. Disabled

Zeroing Disabled Comp. Disabled

(e)

5 10 15 20 25 30
Time in minutes

0

10

20

30

40

50

60

70

M
ig

ra
ti

o
n
 t

im
e
 s

a
v
in

g
 p

e
rc

e
n
ta

g
e

mpiblast migration time saving
Zeroing Enabled Comp. Enabled

Zeroing Disabled Comp. Enabled

Zeroing Enabled Comp. Disabled

(f)

4 6 8 10 12 14
Time in minutes

0

10

20

30

40

50

60

70

M
ig

ra
ti

o
n
 t

im
e
 i
n
 s

e
co

n
d
s

GROMACS migration time
Zeroing Enabled Comp. Enabled

Zeroing Disabled Comp. Enabled

Zeroing Enabled Comp. Disabled

Zeroing Disabled Comp. Disabled

(g)

4 6 8 10 12 14
Time in minutes

0

10

20

30

40

50

60

70

M
ig

ra
ti

o
n
 t

im
e
 s

a
v
in

g
 p

e
rc

e
n
ta

g
e

GROMACS migration time saving
Zeroing Enabled Comp. Enabled

Zeroing Disabled Comp. Enabled

Zeroing Enabled Comp. Disabled

(h)

5 10 15 20
Time in minutes

10

12

14

16

18

20

M
ig

ra
ti

o
n
 t

im
e
 i
n
 s

e
co

n
d
s

LAMMPS migration time
Zeroing Enabled Comp. Enabled

Zeroing Disabled Comp. Enabled

Zeroing Enabled Comp. Disabled

Zeroing Disabled Comp. Disabled

(i)

5 10 15 20
Time in minutes

0

10

20

30

40

50

60

70

M
ig

ra
ti

o
n
 t

im
e
 s

a
v
in

g
 p

e
rc

e
n
ta

g
e

LAMMPS migration time saving
Zeroing Enabled Comp. Enabled

Zeroing Disabled Comp. Enabled

Zeroing Enabled Comp. Disabled

(j)

Fig. 6: Migration time and Migration time saving with zeroing enabled or dis-
abled when compression is enabled (dashed curves) or disabled (solid curves):
(a-b) NAMD, (c-d) PhyloBayes, (e-f) mpiBLAST, (g-h) GROMACS, and (i-
j) LAMMPS. The saving is with respect to the case when zeroing and com-
pression are disabled.



Zeroing Memory Deallocator to Reduce Checkpoint Sizes 23

0 500 1000 1500 2000 2500 3000 3500 4000
The size of a continuous zero region in bytes

2

1

0

1

2

3

4

5

6

C
u
m

u
la

ti
v
e
 s

iz
e
 o

f 
th

e
 d

if
fe

re
n
ce

s 
in

 t
h
e
 p

a
rt

ia
l 
ze

ro
 p

a
g
e
s 1e8

NAMD
mpiBLAST
PhyloBayes
GROMACS
LAMMPS

Fig. 7: Cumulative function of the volume of the difference in the partial zero
pages in bytes. The difference is between the two cases when zeroing enabled
and disabled. Only mpiBLAST shows a total negative accumulated value.

Fig. 8: Memory allocation stack. The application accesses memory using the
glibc library which interacts with the guest operating system using system calls.
This is a shared library in the application address space. The application and
the guest operating system are included in the VM image.


	Introduction
	Related work
	Methodology
	Evaluation
	Generalization of the approach
	Conclusion & Future Work

