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Abstract

The objective of this paper is to investigate if and how capital adjustment departs from the

smooth pattern implied by standard model based on convex adjustment costs. Using Norwegian

micro data, we start by documenting various aspects of the distribution of investment rates. We

then present two pieces of econometric evidence on these issues. First, we estimate a discrete

hazard model to determine the probability of having an episode of high investment, conditional on

the length of the interval from the last high investment episode and we discuss what the empirical

results suggest about the shape of the adjustment cost function. Second, we move beyond this
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discretization of the investment problem and estimate a switching regression model that allows for

the response of the investment rate to fundamentals to differ across regimes. In both cases we

investigate the aggregate implications of our results.
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1. Introduction

The standard investment model is based on the assumption that there are convex costs attached to

adjusting capital. Following the seminal contribution by Eisner and Strotz (1963), typically the

adjustment cost function is assumed to be zero and flat at zero investment and to be symmetric

around zero. In these circumstances, if investment projects are divisible, there are no technological

reasons why one should observe frequent episodes of zero investment. Moreover, the firm has an

incentive to smooth investment over time in order to avoid paying increasing marginal adjustment

costs. When investment is constrained to be non-negative (because there are infinite disinvestment

costs), or when the marginal cost of adjustment is positive even for small changes in investment (i.e.

when the adjustment cost function is not continuously differentiable at zero) investment will be

intermittent, with zero investment periods alternating with periods of positive investment.1

Moreover, when there are increasing returns in the adjustment cost technology (for instance, because

of fixed costs), the range of inaction will increase and, in certain cases, investment activity may also

be lumpy with large adjustments concentrated in a few episodes. The intermittent and lumpy nature

of investment contributes to a non-smooth adjustment path for the capital stock. The non-

smoothness may also be enhanced by the inherent indivisibility of investment projects, so that

investment can only be changed in discrete increments. 2

Even though the theoretical papers that analyze the consequences of various departures from

the standard model of reversible investment with symmetric convex adjustment costs are rich and

numerous, the empirical evidence on these issues is still limited and several issues remain unsettled.

Focusing on micro level studies, Doms and Dunne (1998) provide evidence for the US that a large

portion of investment at the plant level is concentrated in a few episodes. Moreover, the proportion

                                    
1 The partial or total irreversibility due to the nature of disinvestment costs is caused by the fact that capital goods are, at

least, partly firm specific, and by the presence of lemon problems in second hand markets for capital. The basic

implications of irreversibility (non-negativity of investment) were originally analyzed by Arrow (1968) and later by Lucas

and Prescott (1971), Nickell (1974) and (1978), and, more recently, by Bertola and Caballero (1994), Dixit and Pindyck

(1994), Abel and Eberly (1994). For a review of the macro implications of and evidence on irreversibility see Serven

(1996).

2 The presence of non-convexities in adjustment costs was noted by Rotschild (1971) and it characterizes the

contribution by Caballero and Engel (1999), Cooper, Haltiwanger and Power (1999), Abel and Eberly (1994), and

Caballero and Leahy (1996). See Caballero (1997) for a critical review.
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of firms experiencing an investment spike is a given year is closely related to aggregate investment.

Cooper, Haltiwanger and Power (1999), on the basis of micro based estimates of the hazard function,

provide evidence that bursts of investment lasts for more than one period, but then the probability of

a plant experiencing a large investment episode increases in the time elapsed since the last such

episode. This last piece of evidence is supportive of non-convexities in the adjustment cost

technology. Barnett and Sakellaris (1998) shows empirically that the relationship between the

investment rate and average Q is nonlinear, using firm level data from Compustat. The Abel-Eberly

(1994) model predicts that there is a range of values of Q for which investment would not be

sensitive to changes in Q, while it would respond outside this range. The non-linearities found in the

Compustat data are not consistent with this simple model. However, Eberly (1997), an Abel and

Eberly (1999) argue that the empirical evidence is consistent with a model with irreversibilities and

fixed costs, if one allows for capital goods heterogeneity. Caballero, Engel and Haltiwanger (1995) in

the context of (S-s) types of models, relate investment to the gap between desired  and actual

capital stock and show empirically, using the LRD plant level data, that the elasticity of investment

to a shock is greater when the gap is large or positive and smaller when it is small or negative.

Additional evidence in favor of a non-linear response to the gap, with a region of inaction and a linear

response outside that region, is presented in Goolsbee and Gross (1997) for the US airline industry.3

Although many pieces of the evidence we have reviewed are consistent with the presence of

irreversibilities and non-convexities in the process of capital adjustment, the issue of their nature and

importance is far from settled. In particular there is no agreement on the importance of these issues

for understanding the evolution of aggregate investment. The objective of this paper is to use a very

rich panel of Norwegian plants and firms to establish a few stylized facts about the pattern of capital

adjustment, to discuss the implications of the empirical evidence for the shape of the adjustment cost

function, and to draw the aggregate implications of our findings. We will investigate both the

intermittent nature of investment and on the lumpiness of capital adjustment. This is important in

                                    
3 All the contributions mentioned so far rely on micro data. Bertola and Caballero (1994) concentrate instead on the

implications for aggregate investment of a model with a non-negativity constraint for investment (see also Bertola and

Caballero (1990)). They argue that a combination of non-linear investment policies and idiosyncratic shocks yields a

satisfactory fit of the model to aggregate data, although the residuals are non-trivial and serially correlated. Caballero and
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order to assess the empirical importance of the two forms of departures from the standard model of

investment, (partial or total) irreversibility due to disinvestment costs and non-convexities, due to

fixed adjustment costs, that have received more attention in the recent literature.

Aggregation across plants and capital goods may give a misleading impression about the

importance of zeroes and lumps in investment. For this reason we will conduct the analysis

separately for investment in plant and equipment, on the one hand, and buildings, on the other.

Moreover, since the data set specifies the nature of the plant (single plant, main, or secondary unit in

multi-plant firms) and since the information can be aggregated at the firm level, we will analyze how

the degree of intermittence and lumpiness changes as the unit of observation changes. We will indeed

show that the nature of the capital adjustment process varies substantially depending upon the

functional nature of the plant and upon the level of aggregation. We also show how episodes of zero

investment and lumpiness vary when firms (plants) are classified according to size.

More precise conclusions concerning the nature of adjustment costs require an

econometric treatment. Our approach is two pronged. First, as in Cooper, Haltiwanger and Power

(1999), we estimate the hazard function describing the probability of episodes of high investment,

conditional on the length of the interval from the last episode of high investment. In addition to

controlling for business cycle conditions, we also control for observed and unobserved (plant)

heterogeneity. The main issue here is whether or not the hazard is upward-sloping. Finally, using

the estimates of the hazard model obtained at the micro level, we address the crucial question

whether taking into account of non-convexities helps in understanding aggregate investment

behavior, and more specifically the fluctuations in the aggregated proportion of plants

experiencing an investment spike.

Second, we abandon the discretization of the problem adopted in the hazard approach and

analyze the response of the investment rate to fundamentals in the context of a switching

regression model of investment.4 As Abel and Eberly (1994) suggest, the response of investment

                                                                   
Engel (1999) allow for increasing returns in the adjustment costs technology and find that their non-linear model can

explain aggregate sectoral data better than a linear model.

4 Hu and Schiantarelli (1998) use this methodology to investigate financing constraint. See also Letterie and Pfann

(2000) for an interesting application to the issue of investment and adjustment costs, using Dutch firm level data.
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to marginal expected returns (q for short) depends on the value of the latter, and there may be no

response over a certain range. In our empirical application we allow for two investment regimes

and permit the coefficients of various proxies for q to differ according to q being high  or low .

We use the estimates of the parameters of the model to calculate the probability of each regime

and discuss how they vary over the business cycle. Final we discuss whether a two-regime model

allows one to provide a better explanation of aggregate investment than a standard model.

The paper is organized as follows. In Section 2, we briefly describe the data and discuss the

salient aspects of the distribution of investment rates for equipment and buildings at the plant and

firm level. In Section 3 we first present estimates of the hazard function for investment spikes, and

then of a switching regression model. In both cases we discuss the aggregate implications of the two

models. Section 4 concludes the paper.

2. The Data and the Distribution of Investment at the Plant and Firm Level

The empirical work in this paper is based on a large unbalanced panel of 1866 Norwegian

production plants in the manufacturing sector for which annual information is available for at least

four consecutive years over the period 1978-1991. The plant level data is collected by Statistics

Norway (The Central Bureau of Statistics of Norway) and has been matched with firm level

balance sheet data contained in Statistics of Accounts for all firms with more than 50 employees.

The plants in our sample belong to 1252 firms and account on average for 41 percent of total

investment in manufacturing. Their total investment is highly correlated with total investment in

manufacturing. The correlation coefficient is 0.86 and it is highly significant.

Throughout the paper, investment is defined as purchases minus sales of fixed capital.

Expenditures related to repairs of existing capital goods are not included in the definition of

purchases. This distinction is a unique and very useful characteristic of the data set we are using.

In most of the paper, we distinguish between plant and equipment (equipment from now on), on



7

the one hand, and industrial buildings on the other.5 Equipment includes machinery, office

furniture, fittings and fixtures, and other transport equipment, excluding cars and trucks and

represents 64 percent of total investment.6

In order to assess the nature of the non-smoothness of investment patterns, we focus on

the salient features of the distribution of investment rates. In Figure 1, we present the distribution

of investment rates for equipment and buildings for the unbalanced sample of production plants.

Equipment investment represents approximately two thirds of total investment. Table 1 contains the

numerical information on the frequencies for equipment, buildings, and their sum, together with the

share of total real investment accounted for by investment rates within each interval.

Both distributions of investment rates are highly peaked and skewed, with fat and long right-

hand tails.7 Interestingly, episodes in which the plant refrains from engaging in any investment

activity occur frequently for investment in equipment and even more so in buildings. Zero

investment observations represent 21 percent of total observations for equipment and 61 percent for

buildings. If we sum the expenditure on equipment and buildings, zero investment episodes represent

20 percent of the total number of observations. This illustrates the general point that aggregating

across types of capital goods leads to an underestimate of the intermittent character of each type of

investment. Negative investment rates occur quite rarely for both equipment and buildings (only 2

percent of the observations in both cases involve negative investment expenditures). The frequency

of zero investment episodes and the infrequency of negative investment rates are consistent with

investment being largely irreversible. Periods of inactivity can also be explained by the presence of

fixed components of adjustment costs or with the existence of indivisiblities.

                                    
5 See the Data Appendix for details on sample selection, variable definitions and construction. The definition of

equipment and building investment we use here matches the availability of capital stock data. We have obtained the

replacement value of the capital stock using the perpetual inventory method, starting from a benchmark calculated

using the fire insurance value available from the Manufacturing Statistics.

6 Firms are instructed to record investment in equipment at the time of delivery. Investment in buildings is meant

to be recorded when the contract is signed for existing buildings, while construction work in the year when it occurs.

For multi-year projects, some firms may actually report investment purchases in equipment and buildings at the

completion of the project, although it is impossible to assess how widespread the practice is. This would be the

figure one actually wants to analyze the non-smoothness of investment orders, instead of expenditure.

7 Skeweness and Kurtosis tests overwhelmingly reject normality.
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Table 1 contains other interesting information concerning the nature of the distribution of

investment rates. Investment rates in excess of 20 percent occur only 12 percent of the time for

equipment, but they account for more than a third of total real investment expenditure. For buildings,

investment rates exceed 20 percent only 5 percent of the times, but these episodes account for more

than 50 percent of total investment. The importance of episodes characterized by large investment

expenditures, could be potentially suggestive of the relevance of non-convexities in the adjustment

cost technology, and will be investigated further below. However, there is another aspect of the

distribution that is worth nothing, i.e. that small  investment rates are fairly frequent and

quantitatively important. Positive investment rates of less than 10 percent represents 50 percent of

the observations for equipment and 29 percent for buildings and they account approximately for

around a third of total investment in both cases. Further calculations reveal that 31 percent of the

observations for equipment are greater than zero but smaller than 0.06, which is the figure we have

used for the depreciation rate, and can therefore be characterized as replacement investment. They

account for 21 percent of total equipment investment expenditure. One way to rationalize this fact is

argue that replacement investment is characterized by very small (virtually zero) adjustment costs

and that a fixed components becomes important only for expansion investment. In this case

observing small investment rates should not be surprising. Another possible explanation for the

frequency and quantitative importance of small investment rates, even in the presence of fixed

adjustment costs, could be the fact that time to build and a distribution of delivery dates

characterizes many investment projects spanning more than one calendar year. Finally, one may

observe episodes of small investment, if there is a convex component of adjustment costs, even in the

presence of fixed components.

In Table 2 we investigate further the occurrence of zero investment episodes, distinguishing

by type of plant (single plant, main production unit, and secondary production unit in a multi-plant

firm) and aggregating up to the firm level. The figures in the table illustrate the general point that the

frequency of zero investment depends upon the functional nature of the production unit and upon

the level of aggregation (plant versus firm). The intermittent character of investment is particularly

pronounced for secondary production units (41 percent and 75 percent of zero observations for
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equipment and building respectively), which are responsible for between a fifth and a quarter of total

investment spending. It is less pronounced for single plants and for the main production unit of

multi-plant firms (which account for approximately a quarter and a half respectively of total

investment expenditure) and their figures are very similar to the ones obtained aggregating the data up

to the firm level. At the firm level, the frequency of zero investment is 6 percent for equipment and

49 percent for buildings. The figure for buildings remains, therefore quite large, while there is

reduction of the frequency of zero investment for equipment. This illustrates the fact that aggregating

plants into firms masks the importance of zero investment episodes.

Finally, in Table 2 we report the investment rates and the frequency of zero investment for

production plants (classified according to their nature) and firms partitioned according to whether the

number of employees is less than or greater than a hundred. Independently from the nature of the

plant, in all cases smaller units are characterized by more intermittent investment. The same

difference exists between small and large firms. Moreover, the differences in the frequency of zero

investment are substantial. For equipment investment, for instance, the frequency of zero investment

for small main units in multi-plant firms is (roughly) three times larger than for large main units (10

percent versus 3 percent).8 For small firms it is two times larger than for large firms (9 percent

versus 5 percent).

There are several explanations consistent with these results. First, larger plants may be

considered as agglomerations of plants of smaller size. In this case non differentiability at zero

investment, non convexities and indivisibilities may appear less important because of aggregation

within the plant over production lines or production processes. Another possibility is that the fixed

component of adjustment cost is relatively more important for small plants.

                                    
8 The difference in the frequency of zero investment episodes according to size is statistically significant and it is robust

to controlling for industrial sectors. For instance, if we estimate two separate logit models of the probability of

observing zero investment for equipment and buildings as a function of dummies that capture the functional nature

of the plant and its size, industry and year dummies, the t ratio on the difference of the coefficients of the size

dummies (defined according to whether a unit has more or less than 100 employees) equals 21.35 for equipment and

25.94 for buildings. Detailed results are not reported here for reasons of space, but are contained in a previous

version of this paper.
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Finally, size is a proxy for access to capital markets. 9 The size of a plant, and even more so the size

of a firm, is likely to be correlated, albeit imperfectly, with the existence of asymmetric information

problems. In these circumstances internal and external sources of finance are less perfect substitutes

for each other and we may observe periods of no investment when internal resources are not

available and it is prohibitively expensive to gain access to external funds. However, the latter

explanation is put in doubt by the following experiment. If financial constraints are an important

reason for zero investments, we expect to find the frequency of zero investments, conditional on

plant type and size, to be higher for plants belonging to smaller firms. However, if one calculates

these frequencies for multi-plant firms they are quite similar. For instance, they equal 10 percent for

small main-plants belonging to small firms, and 9 percent for small main-plants being part of a large

firm. We have also split the sample according to criteria correlated with the probability of facing

financial constraints (such as age, dividend payout ratio, leverage, whether quoted or not, type of

ownership). However, there are no significant differences in the frequencies of zero-investments

for those firms most likely to face financial constraints and those who are not, neither for the total

sample, or for the separate sub-sample of small or large firms.

Since lumpiness of investment may contain information about the importance of non-

convexities in the adjustment cost technology or of indivisibilities, we want to investigate further the

importance of episodes characterized by large investment expenditures. In order to assess the degree

of lumpiness in more details, we have concentrated on the sub-sample consisting only of those

plants with observations in all of the fourteen years.10

Following Doms and Dunne (1998), we have ranked the investment rates for each plant

(firm) from the lowest (rank 1) to the highest (rank 14). In Table 3 we report the mean investment

rate for each rank as well as the shares of total investment it represents. Starting with equipment

                                    
9 On financial constraints see, for instance, Fazzari, Hubbard and Petersen (1988) and the following literature

reviewed in Bernanke, Gertler and Gilchrist (1996), Hubbard (1998) and Schiantarelli (1996).

10 The balanced plant level panel contains a total of 362 production units with 5068 total observations. We will also

provide results at the balanced firm level sample containing 144 firms and 2016 total observations. Both panels are

biased towards larger, healthier, and more successful plants or firms. It is interesting to note that for the balanced plant

level panel the frequency of zero observation is smaller than those for the unbalanced panel (18 versus 21 for equipment

and 55 versus 61 percent for buildings), but still indicate that episodes of zero investment are an important phenomenon.
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investment at the plant level the mean investment rate for observations with rank 14 is 0.61. This

is six times higher than the average investment rate and two and a half time the second highest

investment rate. In terms of shares, 26 percent of total equipment investment is represented by

the investment episodes with rank 14, while 53 percent of total investment in equipment occurs

in the three highest ranked episodes. For buildings the average investment rate for observations

with the highest rank is 0.41 which is more than ten times greater than the average investment rate

and three times greater than the second highest investment rate. Finally, approximately 45 percent

of total investment in buildings occurs in the highest ranked episode and 80 percent in the three

highest ranked episodes. In Table 3 we also rank investment episodes for firms and for plant of

different size. The figures suggest that episodes of large investment are also very important for

firms, although the degree of lumpiness is somewhat reduced, confirming that aggregating plants

into firms generates a smoother capital adjustment process. Moreover, just as there is evidence

that periods of investment inactivity are more frequent for small plants (and firms), there is also

evidence that investment is lumpier for smaller units.11 This result can be easily explained if there

is a fixed component of adjustment costs that does not depend upon size, or by the presence of

indivisibilities.

How much do large investment episodes contribute to explaining aggregate investment? In

order to answer this question we have calculated the aggregate investment rate in equipment as the

ratio between total equipment investment and the total capital stock for our balanced sample. We

have then regressed it against the frequency of firms experiencing the highest investment spike in

each year of the sample. The regression results suggest that the spike frequency variable is positively

and significantly (t = 3.09) associated with the aggregate investment rate with a correlation coefficient

of 0.67. Also for buildings the frequency of firms experiencing the highest investment spike in a given

year is positively (correlation coefficient = 0.86) and significantly (t = 5.78) associated with the

aggregate investment rate.

The importance of episodes characterized by large investment expenditures is consistent

with several scenarios. For instance investment may simply be a linear function of fundamentals, as

                                    
11 The classification is based on the initial number of employees (fewer or more than a hundred).
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implied by a standard model with quadratic adjustment costs, but the distribution of fundamentals is

characterized by infrequent large realizations. In other terms, it is necessary to define lumpiness

relative to a standard of comparison. However, it is interesting to note that the mean sale to capital

ratio associated with the highest ranked investment rate for equipment is only 1.23 times its overall

mean value (1.20 times for buildings). This comparison is informative because movements in the

sales to capital ratio are likely to be positively correlated with movements in the fundamental

determinants of investment. There is, therefore, prima facie evidence that the investment rate appears

to respond in a non-linear fashion to changes in fundamentals. Such a response is consistent, prima

facie, with the existence of what Dixit and Pindyck (1994) denote as stock  fixed costs, i.e. lump-

sum costs associated with taking an investment action, such as fixed costs of deciding on and placing

an order. With stock fixed costs, a finite instantaneous rate of investment, in the context of a

continuous time model, is not optimal and the capital stock can be shown to jump in discrete steps at

isolated instants. 12 A non-linear response is generated by the model by Abel and Eberly (1994).

They combine flow  fixed costs (costs that occur at a given rate at each instant over the interval

during which an action is taken) with an asymmetric linear component and a convex component. An

important kind of non-linearity comes from the fact that their model implies a range of inaction, such

that investment responds to fundamentals only outside this range. Moreover the investment rate is

finite also outside the inaction range. Whether the derivative of investment with respect to

fundamentals is then (a positive) constant, increasing or decreasing, depends upon the precise nature

of the convex component of costs (for instance, the derivative is constant with quadratic adjustment

costs). Ultimately, one has to rely on more structured econometric work in order to discriminate

between the various interpretations of the investment patterns outlined above.

3. Econometric Evidence on Investment and Adjustment Costs.

                                    
12 See Dixit and Pindyck (1994), p. 383 and following ones. See also Caballero and Leahy (1996) for the

implications of stock  fixed costs for the break-down of the relationship between investment and marginal q. See

Doms and Dunne (1998) for simulation results that support an explanation based on the existence of trigger points

different from zero.
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In this section we will present two pieces of econometric evidence on the importance of fixed costs

and irreversibilities (total or partial) in accounting for the non-smoothness of the investment patterns

observed in the micro data. First, as in Cooper, Haltiwanger and Power (1999), we estimate the

hazard function describing the probability of episodes of high investment, conditional on the length

of the interval from the last episode of high investment, and other controls. We also discuss the

macroeconomic implications of our results and their relevance in understanding the fluctuations in the

aggregate proportion of firms that experience episodes characterized by large investment

expenditures. Second, we abandon the discretization of the problem adopted in the hazard approach

and analyze the response of the investment rate to fundamentals in the context of an endogenous

switching regression model of investment that captures the essence of the model in Abel and Eberly

(1994). Finally, we compare the predicted aggregate investment pattern from a one-regime OLS

model and the switching regression model.

3a. The Shape of the Hazard and Fixed Adjustment Costs

The Cooper, Haltiwanger and Power (1999) model of machine replacement allows for indivisibilities,

a fixed component of adjustment costs, independent of size, and a component proportional to

output that represents the opportunity cost associated with the diversion of resources away from

production. The model is developed under the assumption of perfect capital markets. Under the

hypothesis of serially correlated exogenous shocks to firms  profitability and some additional

assumptions, they show that, given the state of the economy, the probability of machine

replacement increases as the time since last replacement increases.13 In other words, the hazard is

increasing. With serially correlated shocks and convex adjustment costs, investment should also be

                                    
13 This result holds under some restrictions on the size of the fixed costs and the curvature of the utility function

(utility must not be too concave). The different degree of lumpiness between small and large units may provide further

information on the nature of adjustment costs. In many contributions the fixed component is assumed to increase with

the size of the capital stock, sometimes proportionately as in Caballero and Leahy (1996). This is meant to reflect

forgone profits due to the loss of production that is likely to be associated with installation of capital. If this were the

only source of non-convexity, it would be difficult to use the shape of the cost function to rationalize our finding that

investment is lumpier for smaller plants. However, this results can be easily explained if there is also a fixed component

of adjustment costs that does not depend upon size, as in Cooper, Haltiwanger, and Power (1999), or by the presence of

indivisibilities.
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serially correlated and, therefore, the hazard decreasing. With serially uncorrelated shocks and no

adjustment costs, the hazard should be flat.

In modeling the hazard we assume that time is discrete and we denote with Tij the time at

which firm i has an investment spike during the j-th spell of zero investment. The hazard rate can the

be written as:

[ ]itijijijijt x),(Ttt, TtTp  1 Pr
1

+−?== − (1)

where t represents calendar time, t Tij− +−( )1 1  the interval from the last spike (a zero interval

represents the case of two adjacent spikes), and xit a set of additional conditioning variables. We

parameterize the hazard as a logistic function and we model the duration dependency in a very

flexible way by introducing a set of duration dummies, Dsit, equal to one if the interval from the last

spike is s=0,1,2, etc.. More precisely:
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where S denotes the longest spell duration. Notice that given the parameterization in (2) we can drop

subscript j, since the Dsit, and xit variables summarize all the differences in the hazard across spells

(i.e. Pijt = Pit). Define now dichotomous indicator variable, yit, that equals one if firm i has an

investment spike in period t and zero otherwise. Notice that Pit denotes the conditional probability

that yit equals one. Then it is easy to show that the log-likelihood function can be written as:14
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14 See Allison (1982), for instance.
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where t i  and ti denote respectively the first and last year for which firm s i observations can be used

for estimation. In other terms, we have observed firm s i first spike at time 1−
i

t  . The form of the

log-likelihood implies that if firm specific effects are absent and if we treat the initial conditions as

fixed constants, the parameters can be estimated using the standard maximization routines for binary

logit models. In a first specification, we have included in the vector xit , year dummies, sector

dummies, initial size dummies (according to whether the firm has more or less than 100 employees),

dummies that capture whether a plant belongs to a multi-plant firm or not, and dummies that capture

the nature of the plant (main or secondary) in multi-plant firms. Finally, we have included the age of

the plant at the beginning of the first spike, and a set of dummies to capture the year in which the

first spike occurs. The inclusion of this ample menu of variables is meant to reduce the risk that the

estimates of the duration dependence parameters, _s , may be contaminated by unobserved

heterogeneity, resulting in negative duration dependence, when in fact there is positive duration

dependence (the conditional probability of an investment spike increases the longer the interval from

last spike).

However, since this risk cannot be eliminated we have also estimated the model allowing for

firm specific constants (in addition to year and duration dummies and age at the first spike). As it is

well known, the parameter estimates are consistent only when the number of time series

observations is large enough to allow for a large number of switches between spike and non-spike

episodes (the incidental parameters problem). Whether or not these conditions are satisfied for our

sample will be discussed below.

Because of the problems associated with the fixed effect logit estimator, we have also applied

the approach proposed by Heckman and Singer (1984), in which a random firm specific effect is

included in the hazard. Rather than parametrizing its distribution, they then assume that it is discrete,

with a small number of mass points. Continuing to treat the initial conditions as fixed, the log

likelihood function can be written as:
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and vpr  the associated probability.15 In order to estimate the model we must define what is meant

by an investment spike. We will use two definitions of spikes: 1) an absolute spike, when the

investment rate exceeds 20 percent; 2) a relative spike when the investment rate exceeds 2.5 the

median investment rate for each plant and it is greater than the depreciation rate (set at 6 percent for

equipment and 2 percent for buildings).16 The model is estimated separately for equipment and

buildings for the unbalanced panel of production plants.

In Table 4a we report the results for equipment, starting from the OLS estimates of a model

in which yit is regressed only on the set of duration dummies (duration 0 denotes consecutive spikes,

duration 1 a one year interval between spikes, etc.). This yields the standard Kaplan-Meier non-

parametric estimate of the hazard for the entire panel. The Kaplan-Meier estimator suggests that the

hazard is the highest for both equipment and building and for all the spike definitions in the period

immediately following a spike and then declines sharply in the following period. After that there are

fluctuations around a pretty flat trend for the absolute spike definition, and a slight upward trend

after four years have passed since the last spike for the relative spike definition. However, the

probability of a spike remains substantially lower, even for the longest duration, than the value

attained in a period immediately adjacent to a spike. Note, finally, that Kaplan-Meier estimate of the

hazard is consistent only if there is no (temporal or firm specific) heterogeneity in the sample.

The second set of results reported in Table 4a are the estimates obtained from the logit model

that controls for time, sector, and other firm specific characteristics. Only the coefficients for the

duration dummies are reported for brevity sake. Duration 0, meaning that two spikes occur in

                                    
15 See Dustman and Windmeijer (1997) for an application of the Heckman and Singer (1984) approach to the case of

a logistic hazard. We are grateful to Frank Windmeijer for making his computer program available to us.

16 With this formulation we avoid classifying as a spike, for those firms that have a zero or very small median value

of the investment rate, episodes in which investment is less than depreciation.
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adjacent periods, is used as the reference case in estimation so that now the duration i dummies (i =

1,.., 9 plus) represent deviations from this case. For all definitions of spikes also in this case the

hazard is the highest in the period immediately following a spike and it falls sharply after that. It

then remains relatively flat, using the absolute spike definition, while the hazard eventually rises after

an initial fall, using the relative spike definition. The interesting difference relative to the Kaplan-

Meier estimates is that the coefficients of duration 8 or higher is not significantly different from zero

with the relative spike definition. This implies that the probability of having a spike at the longest

durations is not significantly different from the value it had in the year immediately following a

spike. In Table 5 we report the conditional probability of a relative spike for the worst recession

year, 1983, and for the year of greatest expansion, 1986.17 As implied by the duration dummies

coefficients, the conditional transition probability first falls, then it gradually flattens out and finally

starts rising after four years from the last spike. The swings are quite large in years of expansion. For

instance, the probability of an investment spike in 1986 is 39.7 percent in the year immediately

following a spike. It then falls to 22.1 percent at duration 1 and it reaches a minimum value of 18.6

percent at duration 3. It then increases up to 39.9 percent at duration 9 or higher. The pattern is the

same in recessions years, but less pronounced (transition probabilities fluctuate between 11.7 and 5.3

percent). Summarizing, the conditional transition probability for the relative spike definition displays

an overall U shape (or a J shape, after the drop from duration 0 to duration 1), that is more

pronounced during booms and less pronounced during contractions.

The third set of results in Table 4a are obtained from the estimation of the logit models with

fixed effects. These have been obtained by estimating the unconditional likelihood function allowing

for firm specific constants, in addition to the duration and year dummies.18 When we allow for firm

specific fixed effects, we still find evidence that the probability of observing another investment

spike is high immediately after an episode of large investment expenditure. However, contrary to the

                                                                   

17 We have also assumed that the plant is the main plant of a multi-plant firm in the metal and engineering sector,

with median size and age.

18 The use of the standard conditional logit model (Chamberlain (1980, 1983) is not appropriate in this case, due to

the presence among the regressors of variables that represent the timing of the realization of an investment spikes in

the past (see Card and Sullivan (1988)).
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previous results, now the hazard increases rather quickly for both spike definitions, the increase is

monotonic in all cases but one, and it very significant. Moreover, generally the conditional

probability of an investment spike rises quickly beyond the value attained in the period immediately

after a spike.

However, we must treat these latter results with caution because of the incidental parameters

problem. In our unbalanced panel the number of observations ranges between two and thirteen. 64

percent of the observations belong to firms with eight or more years of observations, and 38 percent

to firms with eleven or more years of observations. It is not clear a priori whether or not this time

span and the variation in yit that occurs during it is enough to render the small sample bias problem

unimportant. However, a set of Monte Carlo experiments we have conducted suggests that the fixed

effect logit leads to a substantial overestimate of the slope of the hazard, to the point that even if the

true hazard is flat, the estimated hazard would appear significantly upward sloping.19

Note that in order to be included in the sample used to estimate the fixed effects model a firm

must have had at least two spikes (an initial one to start the dating of the duration dummies and

another one during the estimation period). We present in Table 4a also the results obtained by

applying the standard logit estimator (without fixed effects) to this smaller sample. Now for both

spike definitions, the hazard displays an overall U shape, with the conditional probability of a spike

rising, respectively, after five or three years since the last spike. Moreover, at the longer durations,

the conditional probability of a spike rises significantly above its value in the year immediately

following a spike. One caveat about these results is that they may be affected by sample selection

problems. By including in the sample firms that have experienced at least two spikes, we have indeed

selected a group for which lumpiness may indeed be more important.

The last set of results presented in Table 4a has been obtained by applying the random effect

with mass points approach by Heckman and Singer (1984a,b) to the larger sample. After some

                                    
19 In the first experiment we have assumed that the estimates we have obtained from the fixed effects logit

constitute the true model. Two hundred replications suggest that the coefficients of the duration dummies are

overestimated and that the bias increases at longer durations. If in each replication the firm specific constants are not

re-estimated, the bias virtually disappears. This means that it is indeed the estimation of the large number of

incidental parameters that causes the problem. In the final experiment we have assumed that the hazard is flat and we

have used the other parameters estimated by the logit fixed effects as the true ones. The researcher would have

concluded that the hazard was, on average, significantly upward sloping. Details of the experiments are reported in
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experimentation we have allowed for three mass points for the absolute spike definition and two

mass points for the relative spike definition. Again, we treat the initial conditions as fixed. For the

absolute spike definition the slope the hazard is greater in this case compared to the one obtained

applying the standard logit to the same sample. However this differences does not lead to

substantially different conclusions. For the relative spike definition, the estimate of the coefficients

of the duration dummies are identical to the results obtained using the standard logit model up to the

third figure after the decimal point. Results do not change if we allow for a larger number of mass

points (up to four). In general, it appears that the firm level characteristics we have included as

regressors do a good job in controlling for heterogeneity. Moreover, defining the spike in relation to

each individual firm s overall experience, further reduces the importance of unobserved heterogeneity.

As a final experiment, we have investigated whether the slope of the hazard differs between

small and large firms. However, the χ2
 test on the joint significance of the duration dummies

interacted with a dummy that equals one if the plant is small suggests that the difference is not

significant even at the 10 percent level, independently form the spike definition used. The lumpier

nature of investment for small firms may be associated with a greater excess sensitivity of small firms

to the availability of internal sources of finance. In order to test for the role played by financial

factors, we have added as an explanatory variable in the hazard model firm level cash flow (divided

by the capital stock) and cash flow interacted with a dummy that equals one if the firm (not the

plant) is small.20 Note that it is appropriate to examine the role played by the availability of internal

resources at the firm, not at the plant level. Although we do not report the results in full details, it is

important to note that the cash flow coefficient is positive and significant (for instance, it is equal to

0.76 with a t ratio equal to 3.04 using the absolute spike definition), but there is no significant

difference between plants belonging to small or large firms.21 This evidence suggests that the

                                                                   
the appendix of the 1998 version of this paper.

20 Cash flow is defined as pre-tax profits before year end adjustments, plus depreciation, minus taxes, minus profits

on disposal of fixed assets (net of losses). This exercise is in the spirit of Fazzari, Hubbard, and Petersen (1988).

21 The conclusions reached before concerning the shape of the hazard still hold. If we also add the plant level current

and lagged sales to capital ratio to the set of explanatory variables, the former has a positive effect on the probability of

observing an investment spike. At the same time the conclusions concerning the role of cash flow are not altered.
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different degree of lumpiness in investment between small and large firms is not likely to be related to

the existence of financial constraints.

If we discount the fixed effect results and the logit results for the smaller sample, we must

conclude that the evidence that the hazard for equipment investment is eventually upward sloping is

mixed. The econometric results from the standard logit model suggest that, at least for the relative

spike definition, there is evidence that the hazard has an overall U shape and it is actually J shaped

after the initial fall from duration 0 to duration 1. This can be interpreted as evidence in favor of the

presence of a fixed component of adjustment costs that eventually becomes dominant. The high

value of the hazard in the period immediately following a spike continues to be consistent with the

fact that several investment projects may give rise to expenditures that are spread over many

months, belonging to different years. It is also consistent with a model of investment in which there

are convex components to adjustment costs. The presence of convex costs may also explain why the

hazard continues to decrease mildly before turning upward.22 These results should be compared

with those in Cooper, Haltiwanger and Power (1999), where they allow for unobserved

heterogeneity using the mass point approach, but with a different specification of the hazard (see

Meyer (1990)). They conclude that the hazard increases steadily and substantially immediately after

the initial drop from duration 0 to duration 1 for a large fraction of plants. In our case, for the relative

spike definition, the hazard is instead J shaped from duration 1 onward. In both cases, the fact that

the hazard slopes upward implies that fixed costs are important. The fact that it takes longer in our

case, suggest that the issue of convex components in adjustment costs should be further investigated.

The results for buildings strengthen the case of the importance of fixed components in

adjustment costs (see Table 4b). Even if one discounts, the fixed effects results (indicating a strongly

upward sloping hazard after the period adjacent to a spike) for the incidental parameters problem,

the standard logit results for both the absolute and relative spikes definition do suggest a U shaped

hazard. The mass point results coincide with those for the standard logit model, confirming that not

much is gained from allowing a discrete distribution for the constant term.

                                    
22 The evidence in Abel and Eberly (1999), Eberly (1997), and Goolsbee and Gross (1997) is consistent with the

presence of convex components of adjustment costs, when the firm adjusts.
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A different issue of great importance is the whether the hazard rate is pro- or counter-

cyclical. In all the models, the estimate of the year dummies coefficients suggest that the probability

of an investment spike increases significantly in booms and decreases in recessions. For instance, the

correlation coefficient between the rate of growth in manufacturing GDP and the year dummies

coefficients in the standard logit model for equipment, with the high spike definition, is 0.67 (t = 2.9).

Moreover, the results reported in Table 5 on the conditional transition probabilities for 1983 and

1986 show that the probability of an episode characterized by large investment expenditures is

substantially higher in booms, compared to recessions. This is true at all durations. We know, from a

theoretical point of view, that there are two contrasting forces at work here. On the one hand, firms

would want to replace machines at times when the opportunity cost of lost output is small. On the

other hand, they would also want to introduce new machines when returns are high. Empirically, the

latter factor dominates.

How important are non-convexities in understanding aggregate investment fluctuations?

More specifically, is there a gain in taking into account of the interaction between macro shocks and

the distribution across firms of the length of the interval since the last investment spike? For the logit

model based on the absolute spike definition, there is not going to be much gain beyond that

generated by the fact that the hazard is definitely higher in the period immediately adjacent a spike.

This is because, after duration zero, the hazard is relatively flat. Changes in the cross sectional

distribution may play a bigger role in the logit model based on the relative spike definition, since in

that case we have found empirical support for a U shaped hazard. We, therefore, focus on the macro

implications of this model.

 In the context of the Cooper, Haltiwanger and Power (1999) model of discrete investment,

the behavior of aggregate investment is represented by the aggregate proportion of plants

experiencing an investment spike (that can be thought, at each point in time, as the product of the

hazard times the frequency of firms with a given duration, summed over all possible durations). One

way to address this question is to conduct a dynamic simulation of the estimated model at the level

of each firm, and to construct three simulated measures of the aggregate frequency of spikes.23 The

                                    
23 The simulation works as follows. For each firm we have used the estimated year and duration parameters obtained
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first one allows for both year and duration effects; the second one only for year effects; the third one

only for duration effects. The ability of these three measures to track the actual aggregate proportion

of firms experiencing a spike will then be compared.

In Figure 2 we report the results obtained for the standard logit hazard model for equipment

of Table 4a, using the relative spike definition, and one drawing per firm. In the Figure, f1 represents

the estimated frequency based on the full model, allowing for the consequences of both common

macro shocks and changes in the distribution of interval lengths. f2 represents the frequency obtained

when the duration parameters are set to zero, and, for this reason, can be seen as being generated by a

model that allows for common macro shocks, but assumes a flat hazard. f3 is the frequency obtained

when the coefficients of the year dummies are set to zero and all the action comes from changes in

distribution of delivery dates. We also plot the actual frequency based on the sample of 6609

observation used in estimation of the conditional logit model.

Several features of the results are worth noting. First, f2 provides quite a good fit for the

aggregate proportion of firms experiencing an investment spike and adequately captures the main

turning points in the series. This means that common macro shocks play the major role in explaining

fluctuations in the observed aggregate frequency of investment spikes. However, allowing for

changes in the cross sectional distribution of dates since last adjustment improves somewhat the

ability of the model to track the aggregate proportion data. For instance the correlation coefficient

between the simulated and actual aggregate proportion increases from 0.853 to 0.959. In conclusion,

while there are interesting cyclical movements in the cross sectional distribution, they are small

compared to the fluctuations generated by common macro shocks. Our conclusion concerning  the

dominant role of aggregate shocks are consistent with those reached by Cooper, Haltiwanger and

                                                                   
from the standard logit model, to calculate the estimated hazard rate for the first year the firm appears in the sample used

for estimation. For this first observations we use the information that the spike occurred in the previous period. We then

have drawn a random number from a uniform distribution between zero and one. If this number falls short of (exceeds)

the estimated hazard rate, then we define the observation as an investment spike (non-spike). We then repeat the process

for the following years, using the simulated length of the interval from the last spike to calculate the hazard. We have

experimented taking either one set of drawings per firm or up to fifty drawings. In both cases, we then calculate for each

year the aggregate frequency of investment spikes. The results suggest that using one or more drawing for each firm

makes no difference to the overall conclusions.
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Power (1999), although they emphasize that changes in the  cross-sectional distribution may be

important at particular times. 24

3b. A Switching Regression Model of Investment

The main limitation of the hazard approach used in the previous sub-section is that investment

decisions have been modeled as a discrete process (either an investment spike occurs or it does

not). This abstract from the fact that firms not only decide whether they should invest, but

outside the inaction range, decides also how much to invest. Moreover it introduces a degree of

arbitrariness in deciding what constitutes an investment spike. In this section we will develop a

switching regression model, in which the response of investment to fundamentals differ according

to the regime firms are in.25

The theoretical model by Abel and Eberly (1994) suggests that, in the presence of fixed

costs and partial irreversibilities, the firm may find itself in one of three regimes. More

specifically, there exists a range of value of the shadow value of capital, q, for which the firm will

follow a policy of zero investment. Above this range the firm will have positive investment, while

negative investment will occur below it. In both cases investment will be an increasing function of

it shadow value (the relationship may differ for positive or negative investment). As we have

already explained in Section 2, there are very few observation with negative investment for

equipment investment, rendering virtually impossible to estimate a three-regime model. For this

reason we will estimate a two-regime model (a "high" and "low" q regime). In the high q regime we

expect the firms to respond more to changes in fundamentals. In the low q regime we do not

impose that investment does not respond at all, but we would expect a weaker response to

changes in fundamental. We do not impose a zero response because there may be some small

investment, particularly of a replacement nature, that may have fairly costless to adjust. The

econometrician does not observe in which regime the plant is in, but can estimate the probability

                                    
24  Thomas (1999) and Khan and Thomas (2000), in the context of an equilibrium business cycle model with non-

convex adjustment costs, argue that the contribution of distributional changes to the aggregate business cycle is

small, once one takes into account of equilibrium price movements.

25 See also Letterie and Pfann (2000) for related work.
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of each regime occurring. More precisely, the estimated model is:
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Most of the results presented below are, we assume that obtained under the additional

simplifying assumption that the error terms in the investment function are not correlated with

those in the switching function ( εσ1 = εσ 2 = 0). However we also present a set of results in which

convergence has been obtained for the more general model. The likelihood function for each

observations, under the εσ1 = εσ 2 = 0 assumption is:
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where ( )φ and ( )Φ  are the normal density and the cumulative distribution functions. When

εσ1 and εσ 2  are allowed to differ from zero, the likelihood of each observation becomes:
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Due to the computational complexity of the model, we concentrate on equipment investment,

which is by far the most important component (constituting two thirds of total investment).

Although it would be desirable, it is practically impossible to control for plant specific-time

invariant effects in the investment equations and in the switching function. However, we will

include in all three of them, industry dummies, time dummies, a dummy to distinguish single

plants from multi-plants, a dummy to distinguish main from secondary plants and a dummy to

distinguish small from large plants (on the basis of initial employment being smaller or greater

than one hundred employees). All three equations include also time dummies that capture, among

other things, changes in the real price of investment goods.

In modeling the shadow value of capital, itq , we have assumed that firms have information

only up to time t-1, in order to minimizes endogeneity problems. Note that most firms are not

quoted on the stock market in Norway, so that one cannot use the market value of the firm in

constructing a proxy for marginal q. Moreover, we are using plant level data containing a sizeable
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fraction of establishments belonging to multi-plant firms, for whom it is not clear anyway how

firm level stock market valuations should be used. Given these considerations we have

experimented with four different proxies for itq . We start with either once lagged values of the

operating profit rate, π/K (see the results reported in columns (1) and (3) of Table 6), or of the

sales to capital ratio, S/K (columns (2) and (4)). The former is legitimate approximation to the

shadow value of capital under the assumption of perfect competition, constant returns to scale

and firms using only once lagged information on the profit rate to forecast future profitability.

The latter can be shown to be proportional to the marginal q under the assumption of a Cobb-

Douglas production function, imperfect competition, and the information set including only one

lag on the sales to capital ratio. We then expand the information set available to firms and assume

that they use two lags of both the profit and sales to capital ration to forecast their future value in

a bivariate VAR context and compute the present discounted value of either the profit rate, qπ

(column (5)) or the of the sales to capital ratio, qS (columns (6) and (7)).26 Finally we allow the

investment response in each regime to be non-linear by adding a quadratic term to the

specification.

The most important conclusion that can be drawn from the results reported in Table 6 is

that, independently from the proxy for itq  used in estimation, investment reacts differently to

fundamentals in the two regimes. More specifically, when fundamentals are high the response is

larger than when fundamentals are low. For instance, when the lagged profit rate is used as a

proxy (see column (1)), and the correlation coefficients are set to zero, the coefficients of itq  are

respectively .082 and .026. In all cases the coefficients are statistically different, using a likelihood

ratio test, at the one percent significance level.27 This result is quite important, because it is in

line with the basic predictions of the Abel and Eberly (1994, 1999) model, even without having to

introduce additional considerations about the heterogeneity of investment goods. The availability

                                    
26 See Abel and Blanchard (1986) and Gilchrist and Himmelberg (1995) and (1998) for a discussion. The last two

papers apply the approach to firm level data, while the first paper contains an application to aggregate data.

27 See Goldfeld and Quandt (1976) on why using the χ2
 distribution and standard degrees of freedom yields a test

that favors non rejection of the null, even if the likelihood ratio test may not have a χ distribution in the switching

regression case.
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of plant level data for different categories of investment is a possible explanation as to why we are

able to get fairly sharp results that had eluded some of the previous researchers. For instance, that

in a multiple regime model, Barnett and Sakellaris (1998) find that the high qit regime is

characterized by lower, not higher response of investment to fundamentals.28 In columns (3)

through (7) we have added a quadratic term to the investment function, and we find evidence that,

especially in the high itq  regime, the derivative of investment with respect to itq  is positive, but

decreasing, i.e. the g( itq ) function is concave. It remains true that at any observed value of itq , the

response remains higher in the high itq  regime. Another important result that is consistent with

the descriptive evidence is the fact that the threshold value of itq  at which there is a switch to the

high response regime is higher for smaller firm (judging from the coefficient on the dummy for

initial employment, not reported in the table).

Whereas all the results in columns (1) through (6) are obtained under the restriction that

the correlation coefficient between the errors in the investment equation and the one in the

switching function equals zero, in column (7) we relax this restriction for the model that assumes

that fundamentals are proportional to the present discounted value of the sales to capital ratio,

based on a bivariate VAR for the sale to capital ratio and the profit rate. Our basic conclusions

still hold, and are actually strengthened, since now the response of investment to fundamentals

increases, particularly in the high q regime. There is a problem, however with the results in

column (7) in that the estimated correlation coefficient between the error term in the high itq

regime and the one in the switching function, 1
ρ , is very close to one in absolute value (the

estimate of 2
ρ equals instead .295), suggesting that in effect they are the same error term, and

hence that the likelihood function should, perhaps, be modified.29

Finally we want to address the aggregate implications of our results. Again we are

interested in the importance of the irreversibilities and non-convexities in understanding aggregate

investment fluctuations. In the context of our switching regression model, we will ask the question

                                    
28 Note that their estimation method does not allow for random shocks in the switching function.

29 Although this issue is worth of future investigation, it is comforting that our conclusions hold across different

specifications.
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whether we can explain the aggregate investment rate better if we allow for a two-regime model

instead of a two-regime model. We use our model to calculate expected investment for each firm in

each year (the expected value of the investment rate in each regime times the probability of each

regime occurring, evaluated at our parameter estimates). We then calculate the expected aggregate

investment rate in each year as the sum of the expect investment rate for each firm weighted by

the firm capital stock relative to the total. We repeat the same calculation for a model estimated

by OLS on all the observations, and we plot the two fitted series together with actual aggregate

investment in Figure 3. Both fitted series track aggregate investment fairly well. The series based

on the two-regime model is only very marginally more closely associated to the actual series (the

correlation coefficient between actual on fitted aggregate investment is .96 when the latter is based

on the switching regression model and .95 when it is based on the OLS model). In Figure 3 we also

plot the average ex post probability of being in the high qit regime obtained from the switching

regression model. The average ex post probability also tracks the movements in actual investment

rates quite well. 30

4. Conclusions

The descriptive evidence we have discussed implies that the occurrence of zero investment

episodes at the plant level is a very important phenomenon both for equipment and buildings, and

particularly for the latter. Moreover, the proportion of observations characterized by negative

investment rates is very small. Aggregating across investment goods and, even more importantly,

across plants masks the importance of periods of inactivity. At the plant level there is evidence

that few episodes characterized by large investment account for a large fraction of total

investment

The descriptive evidence at the plant level is consistent with the existence of

disinvestment costs (leading to irreversibility, partial or total), non-convexities and indivisibilities.

                                                                   

30 The ex post probability takes into account of information about investment. See, for instance, Hu and

Schiantarelli (1998), eq. (8), for details.
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The existence of a large fraction of observations characterized by small investment rates may raise

some questions. However, if we assume that adjustment costs for replacement investment are

very small, and fixed components become relevant only for expansion investment, one should not

be surprised to observe small positive investment rates. Moreover, the observation of frequent

small investments may be the result of time to build and of the distribution of delivery lags across

calendar years. Finally, it may also suggest that the adjustment cost function also includes convex

components, together with the fixed components.

Another result of great interest is that the frequency of zero investment (and lumpiness)

varies substantially across plants and firms of different sizes. In particular, small plants or firms

are characterized by a much higher incidence of zero investment expenditure. This can be

explained by the existence of fixed costs that do not vary with a firm’s size, and/or with the

existence of indivisibilities . These differences are also consistent, in principle, with the existence

of financial constraints, the severity of which is greater for smaller firms. However, the evidence

suggests that the latter is not the most likely explanation.

The econometric results allow us to sharpen our assessment about the importance of

irreversibilities and non-convexities. As far as the shape of the hazard for equipment investment is

concerned, the results obtained from a menu of discrete time duration models suggest that for

equipment investment, the hazard, after an initial fall, is either fairly flat, using the absolute spike

definition or U shaped (J shaped after an initial drop), using the relative spike definition. For

buildings, there is more evidence of an increasing hazard, after the initial drop, regardless of the

spike definition used. The fact that, at least with one of the spike definitions for equipment and

always for buildings, the hazard slopes upward at longer durations is consistent with the presence

of fixed costs that eventually dominate. The high value of the hazard in the period immediately

following a spike can be explained by the fact that several investment projects may give rise to

expenditures that are spread over many months, belonging to different years. It is also consistent

with a model of investment in which there are convex components to adjustment costs. The

presence of convex costs may also rationalize why the hazard continues to decrease for a while

before turning upward.
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The hazard approach adopts a discretization of the data that is, in some degree, arbitrary

and, in any case, is likely to lead to a loss of information. The switching regression approach

allows us to take into account jointly of the discrete-continuous nature of investment choices. The

estimation results suggest that equipment investment respond to fundamentals differently,

depending upon the value of fundamentals themselves. In particular the response is close to zero

for low values of fundamentals, but it increases sharply above a stochastic threshold. This is quite

supportive of a generalized adjustment cost function that combines fixed costs, irreversibilities

and convex adjustment costs, as in Abel and Eberly (1994).

What are the aggregate implications of our results? Simulation results for the hazard model

for equipment investment, using the relative spike definition, suggests that business cycle shocks

common to all firms play the crucial role in explaining the aggregate proportion of investment

spikes. Changes over time in the cross-sectional distribution of the interval since the last high

investment episode help in explaining such fluctuations, but their contribution is small, relative to

the one of common macro shocks. Similarly, using the switching regression model, there is only a

miniscule improvement in explaining aggregate investment, when one uses a two-regime model at

the level of the firm. In conclusion, the descriptive statistics and the econometric results provide

ample evidence in support of the importance of irreversibilities and non-convexities at the micro

level.  However, the gains generated by these departures from standard investment models in

explaining aggregate investment are small at best.
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DATA APPENDIX31

1. Criteria for Sample Selection

Firms with more than 50 percent of the equity owned by the central or local governments have

been excluded from the sample, as well as observations reported as copied from previous year .

This expression means that the information was missing. In an attempt to eliminate plants whose

capital stock has a negligible role in production, we deleted observations where the calculated

replacement value of equipment and/or buildings was less than 200,000 NOK (1980).32 We have

also deleted plants for which production was zero (or negative) and there were no other plants

within the firms with positive production. Finally, we only used plants for which four or more

consecutive observations were available. There were 5,280 different plants in the initial sample.

Our final sample contains 1866 production units for which there are no missing years and for

which the number of consecutive observations is greater or equal to four. The total number of

plant-year observations in the final sample is 22067 plant-year observations (18043 for

production units only). The firm level panel contains 1252 firms for a total of 10730

observations. In the balanced plant level panel for production units we have 362 plants with a

total of 5068 observations. The balanced firm level sample includes 144 firms with a total of 2016

firm-year observations.

2. Variable Definition and Construction 33

Investment (It
j ): Real (fixed price) investment at time t in type j of capital equals purchases

minus sales (dismissals) of fixed capital. Our definition of investment in equipment includes

machinery, office furniture, fittings and fixtures, and other transport equipment, excluding cars

and trucks (using the codes in Manufacturing Statistics, [501]+[521]+[531]-[641]-[661]-[671]).34

Data for buildings, in addition to those directly used for production, include also offices, and

inventory storage buildings ([561]-[601]). We will call the aggregate of these three categories

buildings used for production. Vehicles include cars and trucks ([511]-[651]). Other fixed assets

include housing for employees, building for spare-time activities, sites and property

([541]+[551]+[571]+[581]-[681]-[691]-[711]-[721]).

Replacement value of capital stock (PIt
jKt

j ): The replacement value of capital is calculated

separately for equipment and buildings using the perpetual inventory formula

( ) ( ) j
t

j
t

j
t

jj
t

j
t

j
t

j
t IPIKPIKPI +Π+?−?= −− 11

11
δ

                                    
31 See also Halvorsen et al (1991) for further details.

32 Approximately 30,000 US$.

33 See also Halvorsen et al. (1991).

34 Other transport equipment includes railroads internal to the plant, funiculars, transport cranes, conveyer belts, etc.
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where superscript j indicates the different types of capital. PIj
t denotes the price of investment

goods (from the Norwegian national accounts) and _ j
t the corresponding inflation rates between

t-1 and t. The depreciation rates, ____  j, are also taken from the Norwegian National Accounts (0.06

and 0.02 for equipment and buildings, respectively). In the calculation of the replacement value of

capital we use the fire insurance value of the capital stock. This variable is available only for the

sum of machinery, fixtures and fittings, and other means of transport, one the one hand, and for

buildings used for production, on the other. For each of these types of capital we use the first

reported fire insurance value ([871] and [881] for equipment and buildings, respectively) greater

than or equal to 200,000 NOK in 1980 prices as a bench-mark. From these initial values we

calculate the replacement value backwards and forwards, using the investment figures.35

Investment rate (It
j/Kt-1

j): The investment rate for equipment and buildings is calculated by

normalizing real investment in year t by the real replacement value of the capital stock in the

beginning of the year.

                                    
35 If the replacement value of capital became negative, it was set equal to zero. When calculating the capital stock

forward it may happen that the replacement value becomes negative because of large sales of capital goods. When

calculating it backwards the replacement value becomes negative if the net purchase of fixed capital is larger than the

replacement value in year t+1.
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Table 1. Distribution of investment rates (plant level, unbalanced panel)

Investment Equipment Buildings Equipment+Buildings
rates # obs. percent share # obs. percent share # obs. percent share

< 0 385 2% -0.018 329 2% -0.093 457 3% -0.030
= 0 3788 21% 0.000 11062 61% 0.000 3637 20% 0.000

0 <  < 0.05 5993 33% 0.159 4265 24% 0.180 8752 49% 0.261
0.05 ≤  < 0.10 3092 17% 0.215 825 5% 0.155 2649 15% 0.247
0.10 ≤  < 0.20 2650 15% 0.264 659 4% 0.196 1520 8% 0.240
0.20 ≤  < 0.30 955 5% 0.121 291 2% 0.128 434 2% 0.105

0.30 ≤ 1180 7% 0.258 612 3% 0.434 594 3% 0.177
Total 18043 100% 1.000 18043 100% 1.000 18043 100% 1.000

Notes: Percent refers to the frequency of observations in each interval. Share refers to the ratio 
          of real investment in each interval to total real investment (net of assets sales)

Table 2. Frequency of zero investment and investment shares by plant type and size

All plants Small Large
Nbr. of Equipment Buildings Nbr. of Equip. Build. Nbr. of Equip. Build.

obs. freq. share freq. share obs. freq. freq. obs. freq. freq.

All prod. plants 18043 21 % 61 % 11688 29% 70% 6355 7% 45%

Single 4489 7 % 0.200 55 % 0.221 2608 9% 62% 1881 5% 47%
Multi 13554 26 % 63 % 9080 34% 73% 4474 7% 44%
  Main 6105 6 % 0.559 49 % 0.576 2961 10% 59% 3144 3% 39%
  Second 7449 41 % 0.241 75 % 0.203 6119 46% 80% 1330 18% 54%

Firms 10730 6% 49% 4768 9% 60% 5962 4% 40%

Notes: Share refers to the ratio of real investment for each type of plant to 
          total real investment (net of assets sales)
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Table 3. Lumpiness of investment: mean of ranked investment rates (balanced panel)

All Plants All Firms Small Plants Large Plants
Equipment I/K (t) share I/K (t) share I/K (t) share I/K (t) share

1 -0.010 0.00 0.002 0.02 -0.020 -0.00 -0.004 0.00
2 0.015 0.02 0.023 0.03 0.011 0.00 0.018 0.02
3 0.020 0.02 0.030 0.03 0.015 0.01 0.025 0.02
4 0.025 0.03 0.041 0.03 0.018 0.02 0.034 0.03
5 0.031 0.03 0.047 0.04 0.024 0.03 0.040 0.04
6 0.035 0.04 0.052 0.05 0.025 0.03 0.047 0.04
7 0.045 0.05 0.066 0.05 0.040 0.04 0.051 0.05
8 0.035 0.05 0.076 0.06 0.023 0.04 0.059 0.06
9 0.082 0.06 0.089 0.07 0.083 0.05 0.081 0.06

10 0.099 0.08 0.105 0.08 0.101 0.07 0.096 0.08
11 0.118 0.09 0.129 0.09 0.123 0.08 0.114 0.09
12 0.158 0.11 0.163 0.11 0.171 0.11 0.146 0.11
13 0.229 0.16 0.213 0.14 0.264 0.20 0.198 0.16
14 0.610 0.26 0.408 0.21 0.853 0.32 0.385 0.25

Overall 0.102 1.00 0.103 1.01 0.113 1.00 0.092 1.01
Freq. of 
zeroes 18% 3% 31% 6%

All Plants All Firms Small Plants Large Plants
Buildings I/K (t) share I/K (t) share I/K (t) share I/K (t) share

1 -0.103 -0.06 -0.088 -0.05 -0.077 -0.02 -0.115 -0.07
2 -0.013 -0.00 -0.016 -0.00 -0.002 -0.00 -0.017 -0.00
3 0.000 0.00 0.001 0.00 0.001 0.00 0.000 0.00
4 0.001 0.00 0.002 0.01 0.000 0.00 0.001 0.00
5 0.001 0.01 0.003 0.01 0.000 0.00 0.002 0.01
6 0.001 0.01 0.005 0.02 0.000 0.00 0.002 0.01
7 0.002 0.02 0.006 0.03 0.001 0.01 0.003 0.02
8 0.003 0.03 0.011 0.04 0.001 0.01 0.006 0.03
9 0.021 0.04 0.026 0.05 0.021 0.02 0.021 0.05

10 0.030 0.06 0.037 0.07 0.030 0.04 0.031 0.06
11 0.048 0.09 0.054 0.10 0.047 0.06 0.049 0.09
12 0.076 0.13 0.089 0.13 0.069 0.09 0.082 0.14
13 0.153 0.22 0.154 0.19 0.165 0.21 0.143 0.23
14 0.461 0.05 0.460 0.39 0.605 0.57 0.335 0.42

Overall 0.046 1.00 0.054 0.99 0.050 0.99 0.041 0.99
Freq. of 
zeroes 55% 36% 67% 44%

Nobs. 5068 2016 2562 2506
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Table 4a. Hazard Models results for equipment

High spikes Relative spikes
Kaplan Logit Fixed Logit Mass Kaplan Logit Fixed Logit Mass
Meier effects smaller points Meier effects smaller points

logit sample logit logit sample logit

duration 0 0.288 0.276
(33.492) (34.017)

duration 1 0.152 -0.767 -0.172 -0.472 -0.721 0.134 -0.841 -0.410 -0.537 -0.841
(14.162) (-7.703) (-1.465) (-4.441) (7.164) (13.237) (-8.715) (-3.738) (-5.236) (-8.715)

duration 2 0.123 -0.919 0.208 -0.427 -0.835 0.122 -0.828 -0.033 -0.386 -0.828
(9.688) (-7.515) (1.420) (-3.279) (-6.759) (10.472) (-7.338) (-0.256) (-3.220) (-7.338)

duration 3 0.106 -1.113 0.434 -0.492 -0.966 0.105 -1.059 -0.032 -0.534 -1.059
(6.877) (7.312) (2.355) (-3.036) (-6.475) (7.308) (-7.482) (-0.200) (-3.582) (-7.482)

duration 4 0.117 -1.034 0.944 -0.300 -0.891 0.141 -0.721 0.565 -0.150 -0.721
(6.366) (-5.998) (4.361) (-1.622) (-5.104) (8.139) (-4.730) (3.130) (-0.921) (-4.730)

duration 5 0.111 -1.304 1.078 -0.490 -1.137 0.146 -0.848 0.745 -0.187 -0.848
(4.933) (-6.193) (4.030) (-2.170) (-5.343) (6.632) (-4.597) (3.352) (-0.954) (-4.597)

duration 6 0.138 -1.047 1.995 -0.048 -0.846 0.176 -0.634 1.408 0.140 -0.634
(5.148) (-4.537) (6.544) (-0.192) (-3.630) (6.666) (-3.103) (5.528) (0.640) (-3.103)

duration 7 0.110 -1.350 2.387 -0.152 -1.125 0.143 -0.837 1.578 0.055 -0.837
(3.425) (-4.537) (6.037) (-0.465) (-3.739) (4.357) (-3.126) (4.721) (0.195) (-3.126)

duration 8 0.141 -0.788 3.604 0.742 -0.540 0.175 -0.412 2.559 0.651 -0.412
(3.747) (-2.514) (8.181) (2.093) (-1.708) (4.565) (-1.425) (6.802) (2.079) (-1.425)

duration 9, higher 0.063 -1.580 4.414 0.548 -1.276 0.207 0.009 4.026 1.600 0.009
(2.004) (-4.242) (7.706) (1.320) (-3.401) (5.239) (0.030) (9.077) (4.775) (0.030)

Const.1 -- -- -0.959 -1.246
 (probability) [0.384]) [0.554]

Const.2 -1.025 -1.247
 (probability) [0.470] [0.446]

Const.3 -0.125
 (probability) [0.146]

Number of
observations: 5884 5884 3905 3905 5884 6609 6609 4732 4732 6609

R2,Pseudo R2 0.211 0.076 -- 0.007 -- -- -- -- -- --
χ2

year
(12) 96.33 207.24 141.60 -- -- -- -- --

Notes: Duration ’I’ denotes ’I’ years since the last spike. t -ratios in brackets. Additional regressors in ’Logit’,
’Logit smaller sample, and ’Mass points logit’ include year dummies and firm characteris tics (see pg. 20 in the main text)
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Table 4b. Hazard Models results for buildings

High spikes Relative spikes
Kaplan Logit Fixed Logit Mass Kaplan Logit Fixed Logit Mass
Meier effects smaller points Meier effects smaller points

logit sample logit logit sample logit

duration 0 0.185 0.442
(19.566) (41.804)

duration 1 0.060 -1.149 -0.384 -0.722 -1.149 0.174 -1.240 0.662 0.794 -1.240
(5.355) (-5.621) (-1.494) (-3.174) (-5.621) (11.294) (-11.658) (-5.513) (-7.023) (-11.658)

duration 2 0.046 -1.128 3.866 -0.389 -1.128 0.185 -1.090 -0.285 -0.600 -1.090
(3.767) (-5.121) (1.171) (-1.393) (-5.121) (9.969) (-8.821) (-2.037) (-4.600) (-8.821)

duration 3 0.031 -1.590 0.826 -0.387 -1.590 0.207 -0.867 0.087 -0.395 -0.867
(2.215) (-4.779) (1.820) (-1.038) (-4.779) (8.694) (-5.825) (0.516) (-2.534) (-5.825)

duration 4 0.067 -0.714 2.482 0.914 -0.714 0.261 -0.525 0.693 -0.035 -0.525
(4.232) (-2.392) (5.057) (2.490) (-2.392) (8.367) (-2.949) (3.357) (-0.187) (-2.949)

duration 5 0.066 -0.632 3.431 1.391 -0.632 0.189 -0.940 0.531 -0.413 -0.940
(3.634) (-1.811) (5.768) (3.161) (-1.811) (4.484) (-3.629) (1.803) (-1.549) (-3.629)

duration 6 0.087 -0.290 4.843 2.247 -0.290 0.301 -0.286 1.598 0.302 -0.286
(4.315) (-0.793) (7.178) (4.641) (-0.793) (5.792) (-1.038) (4.856) (1.048) (-1.038)

duration 7 0.058 -0.600 5.743 2.456 -0.600 0.242 -0.575 1.825 0.097 -0.575
(2.483) (-1.290) (7.137) (4.129) (-1.290) (3.133) (-1.350) (3.599) (0.219) (-1.350)

duration 8 0.047 -0.609 6.938 3.103 -0.609 0.238 -0.475 2.290 0.105 -0.475
(1.777) (-1.080) (7.311) (4.319) (-1.080) (2.454) (-0.893) (3.648) (0.194) (-0.893)

duration 9, higher 0.029 -0.490 8.746 4.292 -0.490 0.333 0.365 4.021 1.228 0.365
(1.387) (-0.811) (8.082) (5.416) (-0.811) (3.181) (0.701) (5.545) (2.179) (0.701)

Const.1 -1.231 -0.251
 (probability) [0.294]) [0.815]

Const.2 -1.239 -0.252
 (probability) [0.680] [0.185]

Const.3 -1.231
 (probability) [0.027]

Number of
observations: 3467 3467 3467 1644 3467 3978 3978 3214 3214 3978
R2,Pseudo R2 0.122 0.104 0.166
χ2

year(12) 33.19 109.45 91.98

Notes: See Table 4a.
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Table 5. Conditional probability of an investment spike (equipment,relative spike definition)

1983 1986
duration 0 11.6 39.7
duration 1 5.4 22.1
duration 2 5.4 22.4
duration 3 4.4 18.6
duration 4 6.0 24.2
duration 5 5.3 22.0
duration 6 6.5 25.9
duration 7 5.4 22.2
duration 8 8.0 30.4
duration 9 11.7 39.9

Notes: The probabilities are calculated for the main plant in a multi-plant firm in sector
’Metal Products and Machinery (381-382)’, with 150 employees, age of 14 years
in 1978, and with its first investment spike taking place in 1978. 
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Table 6. Switching regression results
(1) (2) (3) (4) (5) (6) (7)

Regime 1
(π/K)it-1 0.082 0.172

(4.347) (4.932)
(π/K)2 it-1 -0.102

(-2.799)
(S/K)it-1 0.012 0.035

(4.642) (5.219)
(S/K)2

it-1 -0.003
(-4.028)

(qπ)it 0.946
(4.898)

(qπ)2
it-1 -3.086

(-2.764)
(qS)it 0.048 0.149

(5.219) (22.084)
(qS)2

it -0.006 -0.016
(4.028) (-10.184)

Regime 2
(π/K)it-1 0.026 0.052

(10.600) (13.438)
(π/K)2 it-1 -0.048

(-8.996)
(S/K)it-1 0.004 0.013

(10.577) (14.051)
(S/K)2

it-1 -0.002
(-10.361)

(qπ)it 0.289
(13.443)

(qπ)2
it-1 -1.488

(-9.005)
(qS)it 0.017 0.019

(14.051) (13.687)
(qS)2

it -0.003 -0.005
(-10.361) (-10.227)

Switching
(π/K)it-1 1.433 1.401

(15.746) (16.423)
(S/K)it-1 0.210 0.225

(16.433) (17.471)
(qπ)it 7.799

(16.466)
(qS)it 0.305 0.388

(17.471) (27.542)
σ11 0.206 0.205 0.205 0.206 0.205 0.206 0.254

(79.878) (80.057) (80.233) (80.032) (80.191) (80.032) (.)
σ22 0.028 0.028 0.028 0.028 0.028 0.028 0.019

(52.740) (52.630) (52.772) (52.803) (52.661) (52.803) (-236.871)

Log L 17661.2 17674.0 17703.8 17754.0 17703.9 17754.0 19540.0
Nbr of obs 14453 14453 14453 14453 14453 14453 14453
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Figure 1a: Distribution of investment rates for Equipment (plant level,
unbalanced panel)

0

5

10

15

20

25

30

35

40

45

    
-0

.10
0

   
  0

.00
0

   
  0

.10
0

   
  0

.20
0

   
  0

.30
0

   
  0

.40
0

   
  0

.50
0

Figure 1b: Distribution of investment rates for Buildings (plant level,
unbalanced panel)
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Figure 2: Simulated Relative Spike Frequencies for Equipmen
(logit model)
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Figure 3: Aggregate investment rates for equipment
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