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Abstract

CAD tools and research in the area of reduced-order
modeling of largelinear interconnect networkshave evol ved
from merely finding a Padé approximation for the given
network transfer function to finding an approximate trans-
fer function that preserves such circuit-theoretic properties
of the network as stability, passivity, and RLC synthesiz-
ability. In particular, preserving passivity guarantees that
the reduced-order models will be well-behaved when em-
bedded back in the circuit where the interconnect network
originated. While stability can be ascertained by studying
the poles of the reduced-order transfer function, passiv-
ity depends on both the poles and zeros of the network
driving-point impedance. In this paper, we present a novel
method for studying the zeros of reduced-order transfer
functions and show how it yields conclusions about pas-
sivity and synthesizability. Moreover, in order to obtain a
guaranteed-passive reduced-order model for multiport RC
networks, a new algorithmbased on the Arnoldi iterationis
presented. Thisalgorithmisascomputationallyefficient as
the one used to generate guaranteed-stable reduced-order
models[1].

1 Introduction

The use of reduced-order models to represent large,
linear interconnect networks has become a standard com-
ponent in computer-aided design methodologies for high-
density VLSI circuits. Model-order reduction is now used
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asamodel compaction step following the extraction of the
large RC netlistsneeded to performtiming and noiseanaly-
Sis. Itisaso used to model the RLC circuits representing
power buses, clock trees, and long off-chip interconnects
where important design issues such as AI noise, clock
skew, and EMI effects must, respectively, be addressed.

The basic theoretical concept for producing reduced-
order models for large linear circuits has been Padé ap-
proximation or its variations [2, 3, 4, 5, 6, 7]. While the
Padé approximation is mathematically simple to describe
and relatively easy to compute, it does not always generate
models that satisfy the fundamenta circuit-theoretic prop-
erties of interconnect networks. Arguably, the most glaring
shortcoming of Padé approximation algorithmsiis that the
reduced-order models they generate often fail to preserve
the stability of theinterconnect circuit. While some of the
stability problems are purely numerical [7], some others
are inherent in the Padé approximation concept itself [1].
A model-order reduction agorithm based on the Arnoldi
iteration was recently shown to generate provably stable
reduced-order transfer functionsfor RLC interconnect net-
works[1].

It is well known [8] that multiport RLC networks are
passive, in the sense that they are energy dissipators. Pas-
sivity and stability differ in thefollowing fundamental way:
while the connection of two stable networksis not neces-
sarily stable, any multiport connection of passive networks
is guaranteed to be passive.

This closure property is of paramount importance from
a practical point of view for the following reason. The
reduced order model is supposed to replace the original in-
terconnect inthegloba netlist. It will havethesamedrivers
and loads as the original model. The output impedances of
thedrivers and theinput impedances of theloads are repre-
sented with passive elements. If the reduced-order model
isjust stable but not passive, there is no guarantee that the
network composed of output impedances, reduced-order



model, and input impedances is stable. In the absence of
such a guarantee the simulation and anaysis of the circuit
might become problematic. The passivity of the reduced-
order model eliminates such aconcern.

In this paper, well-known results about the polesand ze-
ros of positiverea transfer functionsare used to show that
the stability-preserving model-order reduction agorithm
presented in [1] can fail to preserve passivity. Moreover,
using knowledge about the zeros of driving point imped-
ances of one-port RC networks, it can be shown that the
above mentioned agorithm can fail to generate a reduced-
order model that is RC synthesizablel

In order to remedy some of these shortcomings, a new
model-order reduction agorithm for multiport RC net-
worksisintroduced based on ablock version of thestability-
preserving Arnoldi iterationdescribed in[1]. It differsfrom
[9] inthat preliminary port-preserving congruencetransfor-
meations are not needed. The agorithmis applied directly
to the matrices provided by the modified noda anaysis
(MNA) of the circuit equations. The passivity of the re-
sulting reduced-order model is proved rigorously using the
positivereal characterization of passive networks.

2 Stable Arnoldi Algorithm

Inthissectionwereview thestability-preserving Arnoldi
algorithmintroduced in [1]. The main motivation behind
this algorithm was to construct reduced-order models for
RLC circuitsthat are guaranteed to be stable.

To simplify the presentation, we deal with single-input,
single-output, linear, time-invariant circuit models of the
form .

L2 = -Gz +ru

y = Tz+du @

where, &, r,l, € R™ are, respectively, the state, input, and

output vectors, and £,G € R™*™ are, respectively, the

dynamic and static matrices obtained using modified nodal

analysis(MNA). ! The scalar d accounts for thedirect gain

from the input to the output. Applying g steps of the stable

Arnoldi process (Algorithm 1) to the system defined in (1)
resultsin the following reduced-order model of order g

H, & = &+é&u @
y = 1l &+du
where ¥ € R?,&; = (1,0,...,0)T € R?, and
H,=-UTLG™'CU, [=-heUIl. (3

The column vectors of the matrix U, are £-orthonormal,
ie U LU, =1L

 These matrices will be assumed nonsingular, which would exclude networks
with resistive meshes, capacitive loops, or inductive cutsets.

Algorithm1 (M odified £-orthogonal Arnoldi)

arnol di (i nput L,G,r,q; output
Upyugya, Hyy hgi,q)
{
Initialize:
Sol ve :
zZ0 = [,uo
hoo = \/ug'zo
zZ1 = Zo/hoo
U = uo/hoo
for (7j=1 j<=¢ j++) {
Sol ve Gw = —z;
for (i=1;, i<=7j; i++) {
hi,j = szi
w=w — hi,jui

}

zj11 = Lw

hiv1; = vVwlzin

it (hip1y #0) {
zj11 = Zip1/ bt
ujp1 =w/hji1,;

}

Uy = [ur---ug
Hy = (hy;), 4,5=1,---,q

Gug = —r

—

The reduced-order transfer function isthus given by
~T -
Gf(s):d—i—l (I—sH,) 'e;. 4

When the original system describes a driving-pointim-
pedance, the transfer function is symmetric, i.e, I = ».
Theimpact of thissymmetry on the transfer function of the
reduced-order model (4) isdescribed by thefollowing[10]:

Proposition 1 Theinput vector &; and the output vector
of thedriving-point impedancereduced-order model satisfy

1=hdUTGU,é,. (5)

Recall that the choice of the output vector of thereduced-
order model is imposed by the requirement of moment
matching. An Arnoldi-based reduced-order model of order
q matches the first ¢ moments of the origina model.

Comparing the driving-point impedance

Z(s) =d+17(G +sL)" ! (6)
with the reduced-order model

ZMs) = d+ haoeTUS G U(I —sH,y) 81 (7)



we can clearly see that the choice of the Arnoldi output
vector (5) makes the transfer function of the reduced order
model asymmetric.

It is important to note that even in the RC case, the
above Arnoldi agorithm does not reduce to the SyPVL
symmetric Lanczos algorithm [11]. Nor doesit reduce to
the Cholesky-Lanczos algorithm presented in[12].

The computational cost of Algorithm 1isthat of execut-
ing one sparse LU factorization for G, ¢ + 1 matrix-vector
products for computing the z; vectors, and ¢ + 1 back
substitutions for computing uo and the w vectors. It has
therefore about the same computational cost as PVL, as-
suming one back substitution to be roughly equivaent to
one matrix-vector product.

For multiport networks, a block version of the above
agorithm can be readily obtained. The coefficients ~; 11 ;
will haveto bereplaced by the unique, symmetric, positive-
definite matrix square roots of the matrices W Z; ., which
are symmetric positive-definite by construction. The net
result of the agorithm is a block Hessenberg matrix in
which each block is of size p x p where p isthe number of
ports. The numerical examples given in Section 5 use the
block implementation of Algorithm 1.

3 Passivity in a Nutshéll

Passive networks are networks whose net electrical en-
ergy balanceisnonpositive, i.e., theenergy that isdissipated
by the network is at least equa to the energy supplied by
the sources. The network is strictly passive when the dis-
sipated energy is strictly larger than the supplied energy.
The fundamental theorem relating passivity to the linear
network mathematical description, be it in the impedance
or admittance form, isthefollowing [8]:

Theorem 2 A one port-networkis passive if and only if its
driving-point impedance (admittance), denoted by F (o +
Jw), ispositivereal, i.e,

(prl) Vo € R,F(c)€R
(pr2) VYo > 0, Re{F(c+ jw)} >0

Using standard arguments from complex function theory,
itisnot difficult to prove that [8]:

Proposition 3 The poles and zeros of a positive real func-
tion are all in theleft-half plane.

The above proposition means that a one-port network can
be stablewithout being passive. Itaso meansthat apassive
one-port network is stable whether it is driven, at its port,
by an independent voltage source or an independent current
source.

Arnoldi zeros
-65.8236
-1.2073

0.0033 + 0.4190i
0.0033 - 0.4190i
-0.0590 + 0.2745i
-0.0590 - 0.2745i

Table 1: The first six zeros of the Arnoldi reduced-order
model of a one-port RLC circuit. Note the generation of
zeros with positive real parts. The reduced-order model
cannot be a passive one-port network.

There are two fundamental properties satisfied by pas-
sive networks but not by stable networks. They are the
closure property and the RLC realizability property [8]:

Proposition 4 The connection of any two passive multiport
networksis passive.

Proposition 5 A linear, time-invariant, multiport network
ispassiveif and only if it can be synthesized exactly using
positiveR, C, L, and M elements.

Note that if the interconnect reduced-order model is
to be incorporated into the original circuit for simulation
or timing analysis, passivity is a more relevant property
than stability. For instance, it is important to ensure that
adding (passive) capacitive and resistive loads at the out-
put of thereduced-order model cannot makethetotal circuit
(reduced-order model plusloads) unstable. Thiscan been-
sured if it can be guaranteed that the reduced-order model
is passive whenever the original moddl is.

4 Zerosof the Arnoldi M odél

The passivity of a one-port network implies that both
the poles and zeros of the driving-point transfer function
(impedance or admittance) arein theleft-half plane (Propo-
sition 3). It followsthat one way of disproving passivity is
to show that the driving-pointtransfer function has zerosin
theright half plane.

Let

Z(s) =d+17(G +sL)" ! (8)
bethetransfer impedance of some one-port network. Since
at infinitefrequency the one-port network behaves asatwo-
terminal resistor, d > 0. The polesof Z(s) are the roots of
the polynomid ¢(s) = det[G + sL].

Thezerosof Z(s) arethepolesof theadmittanceY (s) =
1/Z(s). Interms of the matrices and vectors in (8), the
admittanceis given by [10]

1 0T rT 1y
Y(s)= 773 <g+ p +s£> 9)

The following comments are a direct result of (9):



Arnoldi zeros
-46.4754

-1.0819 + 0.0972i
-1.0819 + 0.0972i
-0.5103

-0.0857

-0.0179

Table 2: The six zeros of the Arnoldi reduced-order model
of aone-port RC circuit. Notethe generation of zeros with
imaginary parts. The reduced-order mode! is therefore not
synthesizable as a one-port RC network.

1. Thezeros of Z(s) are theroots of the polynomial
IrT
p(s) = det g+7+s£ .

The above polynomial shows clearly the effect of the
input vector, the output vector, and the resistor at
infinite frequency on the zeros of Z(s).

2. The admittan%e function behaves asif it had a matrix
G' = G+ &~ where g’ is arank-one perturbation
of G.

3. Notethat thematrix £ isalwayssymmetric, positive-
definite. Thus the poles and zeros of Z(s) are also
given by the eigenvalues of the matrices

Kl = _£1/2g£1/2
1/2 < lT’T> 1/2
K2 = —L g—|— T L y

respectively, the latter matrix being a rank one per-
turbation of the former.

4. Since £/ is symmetric, K, and K, are obtained
by congruence transformation from —G and —(G +
“’TT), respectively, which preserves the signs of the
real parts of the matrix eigenvalues ([13], Theorem

2.4.10).

It follows then that the locations of the zeros of Z(s)
depend on the effect of the rank-one perturbation of G on
theeigenvaluesof G.

Applicationtoreduced-order models:  Applying(9)
tothetransfer function ZZ(s) (7), we conclude that the ze-
ros of the reduced order model of a (symmetric) driving
point impedance Z (s) are obtained as theroots of the poly-
nomial

- =T
€1
pf;(s):det I+ ho 1d1

UlG'U, - sH,

At this stage we shall treat the RLC case and RC case
Separately.

1. The RLC case: The matrix H, has all its eigenval-
ues in the (closed) left half plane. However, due to
the asymmetric rank-one perturbation of the identity
matrix, some of the roots of p#(s) might moveto the
right-half plane. This is indeed the case of the the
example shown in Table 1 where thefirst six zeros of
the Arnoldi reduced-order model of an RLC circuit
are shown. The RLC circuit isarandomly generated
RLC network with 225 capacitors, 225 resistors, and
196 inductors. The order of the reduced-order model
isq = 14. Note that two of the zeros have positive
rea parts. By Proposition 3, the reduced-order model
cannot be that of a one-port passive RLC network.

2. TheRCcase: Thematrix H ; isasymmetric, tridiago-
nal, negative-definite matrix, with al its eigenvalues
on the negative rea axis [1]. However, the asym-
metric rank-one perturbation might cause some zeros
to be complex conjugates. Thisisillustrated in Ta
ble 2 which liststhe 6 zeros of the 6th-order Arnoldi
reduced-order model of arandom one-port RC circuit
with 100 resistors and 100 capacitors. It isaclassical
result of linear circuit theory ([8], p. 66) that the poles
and zeros of a one-port RC network are aternating
negativereas. Since the reduced-order model of this
one-port RC network has complex zeros, it cannot be
synthesized as a one-port RC circuit.

The appearance of complex conjugate zeros in the RC
case is due to the fact that although the system matrix is
symmetric, the rank-one perturbation is not. The reader
should also note that, unlike SyPVL [11] and Cholesky-
Lanczos [12], the stable Arnoldi algorithm 1 destroys the
symmetry of driving-point impedances, which could result
in the generation of complex conjugate zeros.

5 Passive Arnoldi Algorithm

Inthissection, apassivity-preserving reduced-order model
for multiport RC circuits is derived from the stability-
preserving Arnoldi iteration reviewed in Section 2.

The results described in Section 4 illustrate the crucia
role played by the input and output vectors in controlling
the passivity behavior of the reduced-order mode.

Consider the multiport driving-point impedance

Z(s)=D+ET(G+sL)'E (10)

where D isasymmetric, positive-definite matrix since the
multiport network behaves purely resistively at infinitefre-
quency. The port-node incidence matrix E is assumed to
be full rank with p columns (p < n). In the RC case, the
meatrix G is symmetric positive definite.
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Figure 1. Risetime: Response of port 1 to a step input at
port 1.

Running the block Arnoldi algorithm for ¢ iterations
resultsin the block tridiagonal system matrix H , of order
pg X pq. Instead of defining the input and output matrices
asin (3), welet E beap x pg matrix such that the reduced-
order driving-point matrix impedance is given by

Z4s)=D+ E (I, sH)™'E (1)

Moreover, we constrain E to be of the form B =
[F'|O] where F' is a symmetric p x p matrix and O is a
block of zeros. To compute F', weimposethe DC constraint
Z2(0) = Z(0), whichyields

F?=-ETG'E.

In other words, the matrix F' is the unique, symmetric,
positive-definite square root of the symmetric positive-
definitematrix ETGE.

Note that in the RLC case, such a definition of the in-
put/output matrix is not possible as G is not symmetric,
positive-definite.

We now claim the following:

Proposition 6 The reduced-order modd (11) defined with
~ 1/2
ET = [F|O] F= [ETg—lE]

ispassive.

Proof. See[10]. 0

Inorder toillustratethetime-domain behavior of thispassivity-

preserving algorithm, we consider the case of alarge two-
port RC network. The network is built out of two random,
fully connected one-port RC networksthat are capacitively

x 107 Response at port 2 to a step input at port 1
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Figure 2: Coupling noise: Response of port 2 to a step
input at port 1.

coupled. The first network has 20100 capacitors while the
second has 5050 capacitors. The network was reduced
using the block Arnoldi agorithm to a two-port network
with just four states. Figure 1 shows the step response of
port 1 to an input a port 1. Three curves are compared:
the response of the origina network, the response of the
stability-preserving block Arnoldi, and the response of the
passivity-preserving block Arnoldi. Figure 2 shows the ef-
fect of capacitive coupling and how it is approximated by
thereduced-order model. Althoughthe reduced-order two-
port network has only four poles, the direct and crosstalk
step responses are quite satisfactory. The difference be-
tween the two block-Arnoldi models, the stable and the
passive, is due to the fact that the input/output matrix of
the passive network contains no information about the ca-
pacitance matrix C. In the case of stable-Arnoldi the C
matrix isused to computethe matrix H o0, the block matrix
equivalent of hgg in Algorithm 1. This results in a better
match, at higher frequencies, between the stable-Arnoldi
step response and the origina-system step response than
between the latter and the passive-Arnoldi step response.

The computationa efficiency of the passive Arnoldi al-
gorithmisvery closetothat of the stable Arnoldi a gorithm,
the latter being comparable to block PVL [7]. The addi-
tional computation in passive Arnoldi isthat of the matrix
F asthematrix squareroot of EZ G E. Thisisequivalent to
solving a symmetric elgenvalue problem whose order is p,
the number of ports, which is typically much smaller than
the number of network nodes.

6 Conclusions

This paper investigated two circuit-theoretic properties
pertai ning to reduced-order model sgenerated by the stability-



preserving Arnoldi algorithm of [1], namely passivity and
synthesizability. Onceit hasbeen understood how theinput
and output vectors that result from the Arnoldi agorithm
affect the zeros of the reduced-order transfer function, itis
relatively straightforward to understand the mechanism by
which thealgorithm fail sto produce passive reduced-order
models for RLC networks or RC-synthesizable reduced-
order models for RC networks. We have also shown how
to modify the output matrix of the Arnoldi algorithm so
that the passivity of RC circuit reduced-order models is
provably guaranteed.

After thispaper had been submitted, Reference [14] was
communicated to us, in which the authors use a “vanilla’
version of the block Arnoldi agorithm to construct prov-
ably passive reduced-order models of RLC interconnects.
We note that their algorithm, which was developed for
single-point expansions, can be readily extended to ded
with the case of multipoint expansions [5]. The result-
ing multipoint algorithm yields reduced-order models for
RL C inteconnectsthat are provably passive and guaranteed
accurate for any finite number of frequency points[10].

Theauthorswould liketo acknowledge many useful dis-
cussionswith Eli Chiprout, Eric Grimme, Ken Shepard, L.
Miguel Silveira, Chandu Visweswariah, and Jacob White.
They would aso liketo thank Altan Odabasioglu for com-
municating [14] and Chandu Visweswariah for proofread-
ing this paper.
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