YIK 517.927
https://doi.org/10.47533/2020.1606-146X.223

N. S. IMANBAEV

South Kazakhstan State Pedagogical University, Shymkent, Kazakhstan
Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan
e-mail: imanbaevnur@mail.ru

ZEROS OF AN ENTIRE FUNCTION CONNECTED BY
A LOADED FIRST-ORDER DIFFERENTIAL OPERATOR ON A SEGMENT

In the paper, we consider the problem on eigenvalues of a loaded differential operator of the first order
with a periodic boundary condition on the interval [-1; 1], that is, equation contains a load at the point
(—1) and the function of bounded variation @(t), with the condition q)(_]_) = (1)(1) =1. A characteristic
determinant of spectral problem is constructed for the considered loaded differentiation operator, which
is an entire analytical function on the spectral parameter. On the basis of the characteristic determinant
formula, conclusions are proved about the asymptotic behavior of the spectrum and eigenfunctions of
the loaded spectral problem for the differentiation operator, the characteristic determinant of which is
an entire analytic function of the spectral parameter A. A theorem on the location of eigenvalues on
the complex plane A is formulated, where the regular growth of an entire analytic function is indicated.
A theorem is proved on the asymptotics of the zeros of an entire function, that is, the eigenvalues of
the original considered spectral problem for a loaded differential operator of differentiation, and the
asymptotic properties of an entire function with distribution of roots are studied.

Keywords: loaded differential operator, perturbed, characteristic determinant, zeros of entire
functions, asymptotics, eigenvalues, spectrum, eigenfunctions, basis.

Introduction. It is well known that in the case of non-self-adjoint ordinary differential
operators, the basicity of root function systems, in addition to boundary conditions, can
also be influenced by the values of the coefficients of the differential operator. At the same
time, the basic properties of the root functions can change even with an arbitrarily small
change in the values of the coefficients. This result was first noted in the work of V.A.Ilyin
[1]. V.A.llyin's ideas were developed by A.S.Makin [2] in the case of a non-self-adjoint
perturbation of a self-adjoint periodic problem. The operator in [2] was changed due to
the perturbation of one of the boundary conditions. In [3, 4, 5], another variant of the
perturbation of the self-adjoint problem was considered, namely, the spectral problem for
a loaded second-order differential operator with periodic boundary conditions, which the
second term on the left side of the equation contains the value of the desired function at
zero. Such a problem is a non-self-adjoint perturbation of a self-adjoint periodic problem. In
contrast to [2], in [3, 4, 5], the perturbation occurs due to a change in the equation.

The issues of the basicity of the root functions of loaded differential operators were
studied in the works of I.S.Lomov [6, 7]. He extended the method of spectral expansions by
V.A.lIlyin [1] to the case of loaded differential operators. Another method investigated the
issues of unconditional basicity of functional differential equations in [8].

Problem statements. In the function space consider the eigenvalue problem of the
loaded differentiation operator

Ly=y'(t)+ay(-2)@(t) = Ay(t), -1<ts<i 2.1
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with a boundary condition

y(-1)=y(1), (2.2)
where @(t) is a function of bounded variation and ®(-1)=d(1)=1, A is a complex
number, a spectral parameter.

It is required to find those complex values of A for which the operator equation (2.1) has
nonzero solutions.

Construction of a characteristic determinant of a spectral problem (2.1) - (2.2)

Considering y(—l) to be some independent constant, we make sure that the general
solution of the equation (2.1) for A # 0 is representable as

y(t) = C&" - re" y(-1)J ®(&)e™dE. (3.1)

Hence, assuming first t = =1, and then satisfying (3.1) the boundary condition (2.2), we
obtain a system of two equations, which in vector-matrix form is representable as:

e e ke*-j‘(b(&,)e*&d&[ c ]z[o]

- -1 0
e’ -1 y(=1)

(3.2)

By simple calculations, we obtain that the characteristic determinant A, (1) of the
spectral problem (2.1 - (2.2) is represented as

A(M)=et—e"—r- [ o(t)dt (3.3)

Thus, it is proved.
Lemma 3.1 The characteristic determinant of the spectral problem for the loaded

differentiation operator (2.1), which is an integral analytical function of the variable [—1, 1]
with a boundary condition (2.2), is represented as (3.3), which is an integral analytical
function of the variable A=x+iy ReA=x Imk=y i= \/‘_1 , where d)(t) is a function
of bounded variation and CI)(—l) = CI)(l) =1.

A A

The main result. In the case when ®(t)=0, it turns out A (A)=e™ —e" is the

characteristic determinant of the “undisturbed” spectral problem
Ly=y'()=ay(t), -1st<i y(-1)=y(1). 4.1
The numbers Xﬁ =INT  n=+1 42 +3,... are eigenvalues, while VC >0, y,?o =C-e™

are eigenfunctions of the “undisturbed” operator L, , which forms a complete orthonormal

system and a Riesz basis in the space L, (—l, 1) .

In the case when A=0 we have y(t) =C#0, ie. A;=0 is the eigenvalue of the
loaded differentiation operator L.



126 Becmnux Hayuonanvhoti unsceneproi akademuu Pecnyonruxu Kazaxcman. 2023. Ne 1 (87)

In the case of @(t) is a function of bounded variation and @ (~1)=®(1)=1, equating
the characteristic determinant A1(7\,) to zero, we investigate the distribution of zeros of
the whole analytic function, which adequately determines the eigenvalues of the loaded
differentiation operator L.

The research of zeros of integer functions having an integral representation is devoted
to the works [9, 10, 11, 12].

The connection of zeros of exponential integer functions with spectral problems is
reflected in the works [13,14,15]. Eigenvalue problems for some classes of differential
operators on a segment are reduced to a similar problem. In particular, the problem under
consideration (2.1) is (2.2) of this article.

The questions of the location of the zeros of the whole function: on one ray, on a straight
line, on several rays, at an angle, or arbitrarily in the complex plane have been studied in
numerous works [16, 17].

There are the following

Theorem 4.1 [f ® (t) is a function of bounded variation and @(—1) = d)(l) =1, thenall
zeros of the entire function A1(7\,) , i.e. all eigenvalues of the loaded first-order differential
operator L belong to the strip [ReA|=[x| <k , for some k, where A= X+1y

Proof. There is a well-known theorem [ 18] that any function with bounded variation has
1

afinite derivative almost everywhere. By virtue of this theorem, the expression J e @ (t)dt
-1

can be integrated by parts. Then the function A, (1) will take the following form:

ok _ o=t
Al(k)zw_% 1J6 At dq) J‘em dq) )
-1

Next, we rely on the well-known Rouche theorem [19], and on the basis of this theorem

2.(e* —e*
%Z_%Ao(x) , and also the difference

g(r)=A,(A)— f (L) - Let us show that the function A (1) is outside the strip (Red|<k

for some k) has no zeros. To do this, we estimate the function A, (k) from below

we introduce the function f(x):

a0z Zet - Zen L f ()

Mt 4.2
5w W Jetden 62

|7~|
Therefore, the function f{A) is estimated from below, while the remaining terms of the
function g()) are estimated from above

—X

2 , 2
|f(k)|2me |Me,

o |_||[Jex‘ d[o(t) lle“-d|<l)(t)|).

(4.3)
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Let us separately consider the estimate of each integral from (4.3). To do this, we use the
boundedness of variations of the function ®(t) .
Then the first integral from (4.3) is evaluated as follows:

1-5 1-3 1
[ et dlo(t)<e [ do(t)|<e? [|do(t) = e H,
-1 -1 -1
1
Where H = I|d¢ (t)| is a constant value. Consider the estimate of the second integral
-1
1

je”- do(t)<e* [ |do(t)<e* £(3), (4.5)

1-3 1-3

where €(8) >0 for6—0.

So, taking into account (4.2) - (4.5), come to an estimate
2 1 1
A2 = (e —e) - e H - e g(8),
S0 =) g

A |A1 (7‘)| = |A(7‘)|

[ReA(R)[2

e —e* ~O(l)| > % for ReA=x2K, ie. A (L) has no zeros for these x

values. Similar reasoning for negative x, which completes the proof of Theorem 4.1.
Theorem 4.2 Let ®(t) be a function of bounded variation and ®(-1)=®(1)=1. Then

the zeros of the entire analytic function Al(X) , that is, the eigenvalues of the loaded first-
order differential operator L, form a countable set and have the asymptotic lf]l) =inn+ (=)(1)

asn—oo .
Proof. Calculating the zeros of the function f(A) gives Ay =imn , N==x1%2,...,

which are the same as the zeros of the function A, (1) , otherwise they coincide with the
eigenvalues of the operator L, that is, the “unperturbed” spectral problem (4.1).

Consider a square 7 with side 2¢ centered at the point Ay on the complex plane A. Let
us choose the minimal € > 0 so that the conditions of the Rouche theorem [19] are satisfied

for the function f(A), g(A) on the sides of the square 7, why do we compare the majorant of
the function g(A) with the minorant of the function f{A)

max|g (1) < min| f (1))

The function f{A) let's evaluate from below

2 2 2

f(A)=—-(e"—e*)=2min—|g* —e*|=—

| ()| |}L|( ) T|7L|| | 7”0

where A €T The last equality follows from the fact that| f (7\,)| is a continuous function,
and the square 7 is compact.

et —e

A" ‘
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Let us estimate the function g(A) on the sides of the square 7. The imaginary axis divides
the square 7 into two equal parts. Let us estimate from above the function g(A) on the right
half of the square

< eXt di@(t) += eXt d@(t
Let us consider the estimate for each term separately. Let us estimate the first term.
2 1 o
We choose HZ SZH , then, taking into account that Xx=20 , -1<t<1-8 , we get the
inequalities

1 e ool ot ot o ot
eXt dl@(t ) [ dlo(t)<s—-e* " [dl®)=—-C-e' ",

where C, = Id |CD (t)| is a constant value.

Let's evaluate the second term. Since max(xt) =X , we have
1 1 1
e .d[o(1)|< dlo(t) < dlo(t) < xu(_], L
|7»| J- | | |X| j | | |k| J. | | |7»| n>>

Obviously,

when n — « . Now the function g(A) let's estimate from above on the left half of the

square
-1+8

lg(n)|< _|7¥| _[ex‘ d|o(t) _[ex‘ d|®(t).
-1+8

|7»|

The estimate for the first term has the following form:

-1+8 -1+8
1 1

X - L - L
2 e dowis 2o Tamulsd o [atoulsd e n(2) ot

1 I o 1 s 1 1 X*1+% ! 1 x—l+%
L epols ke | ot [ ajoupst e,
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1
where C, = Id | (t)| is a constant value.
1

Taking these inequalities into account, we choose € >0 so that the following inequality
holds on the sides of the square 7

1
2* "e”—e‘”‘>i-e‘x‘-0 u(l)+e”X .
A, 7| n

To the left side of the inequality, we apply Lagrange's theorem on finite increments [20],
then it is sufficient to fulfill the inequality

2 1 1) -
_*.H.€>_,e‘x‘,c (_)+en ,
AT [“ n

where H is a constant value the derivative (ex — e“) from below on the sides of the square

o A . . 0
T; e - is limited because —€ <ReA <& implies €~ <€" <€° _Since the difference A ~An

1
Y 1
is limited. Since € " > H(;) ,

%

A - 7b2 1s bounded, it follows that for n — « relation

therefore, we get € = 2(1) . Theorem 2 is proved.

Remark 4.1 One of the features of the problem under consideration is that the conjugate
to (2.1) - (2.2) is the spectral problem in Wzl(—l, 1) for the differentiation operator on a
segment with a linear occurrence of the spectral parameter in the boundary condition with
an integral perturbation

Lv=v'(t)=Av(t), -1<ts<l

V(1) -v{1)= )_\j'lv(t)db(t)dt,

(4.6)

where ®(t) is a function of bounded variation and ®(-1)=®(1)=1, » is a complex
number, a spectral parameter.
Remark 4.2 According to the result of Theorem 2, the system of eigenfunctions of

spectral problems (2.1)-(2.2) and (4.6) has an asymptotic representation: yr(]l) = V,(]l) = Ce'™e"
forn—oe, e= 2 (1),‘V’C >0 . In this case, such a system is not orthonormal, but forms a
Riesz basis in L, (—1,1) . Tak xax J0.>0,3>0 : € does not tend to zero, nor does it
tend to infinity, & < e" <P , 1.e. there is a bounded reversible transformation, so the system
yr(]l) = Vgl) forms a Riesz basis in L, (—l, 1) .
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H. C. UMAHBAEB

Oymycmix Kazaxcman memnekemmik nedazo2ukanvl ynusepcumemi, Lllvimkenm Kanacol
Mamemamuxra s#cane Mamemamukaivbly Mooerboey UHCImumymsl, Aimamol Kaiacol

KECIHAIAEI'T ’)KYKTEJIT'EH BIPIHIUI PETTI AU®PEPEHLIUAJIIBIK
OIIEPATOPMEH BAWJIAHBICTBI BYTIH ®YHKIUAHBIH HOJIJIEPI

byn maxkanaoa [-1; 1] kecindicindeei nepuoOmuls wapmnen Oepiieen Oipinwi pemmi
oughepenyuandviy onepamopovly MeHWiKmi MaHOepin 3epmmeyee KOUblieaH ecen Kapacmbulpuliaobl.
Kapacmuipvinein omuvipzan sicykmenzen oudgepenyuanday onepamopviibly Cnekmpanovlx eceOiniy
CUNAMMAMAanslK, AHbIKMAYbIUbl KYPLLIbIN, OHbIY CHEeKMPAanoblk napamempoen mayenoi 6onamuin Oymin
ananumuKanvlx QyHKyus 601amuinobizel Kopcemineen. Cunammamansly AHbIKMAybluimsly He2izinoe
JIcyKmeneeH (MoaKblmbliean) meyoeyoiy KypamvlHoa O (—1) =0 (1) =1 wapmoli KAHA2AMMAHOLIPAMBIH
e32epyi weHeneen QyHkyusAcyl bap ougpepenyuanday onepamopviHbly CNeKMpIHiY ACUMNIMOMUKACH
MeH MeHWIKmMI YHKYUSAIapbl Mypaivl KOPLIMbIHObLIAP dcacanzan. Menuixmi mMoHOepdiy Komniekcmi
JHCAZLIKMBIKMARLL OPHANACYbL MYPAlbl meopema 021e10eHin, Oymin aHATUMUKANLIK GYHKYUAHbIY pe-
2ynApavl ocimi kopceminzen. Bymin ananumuxanviy QyHKYUAHBIY ACUMRIMOMUKATLIK KACUemmepi MeH
myo6ipiepiniy mapaisiMvl 3epmmencen.

Tyuin co3dep: oicykmeneen OupgepeHyuandvlx onepamop, MOAKbIMbLLY, CUNAMMAMATbIK
aHbIKmayvld, Oymin yHKYUAHbIY HOLOEPT, ACUMNIMOMUKA, MEHWIKMI MaHOep, CNeKmp, MeHUIKmi (hyHK-
yusinap, basuc.

H. C. UMAHBAEB

[Ooicno-Kasaxcmanckuii eocyoapecmeenuviii nedazozuyeckuili ynusepcumem, 2. Lllvimxenm
Huemumym mamemamuxu u Mamemamuiecko2o MoOoenuposanus, 2. Aimamol

HYJIH LEJIOW ®YHKIUU, CBA3AHHOM HATPYKEHHBIM
JUODPEPEHIIUMAJIBHBIM OITIEPATOPOM ITEPBOI'O ITIOPAJIKA HA OTPE3KE

B cmamve paccmampusaemcsi 3a0aua na cobcmeeHHble 3HAYEHUS HAZPYIHCEHHO2O Oupdepenyu-
AIbHO20 ONEpPamopa Nepeoco NOPOKA ¢ NEPUOOUUECKUM KPAegblM ycaosuem Ha ompeske [ — 1; 1], mo
ecmb ypasHenue cooepocum Hazpysky 6 mouxe (- 1) u gyukyuu (I)(t) — 02PAHUYEHHOU 8apuayuu, ¢
yenosuem cI)(—l) = (1)(1) =1. Ilocmpoen xapakmepucmuueckuii onpederumend CReKMPAIbHOU 3a0ayu
0I5l PACCMAMPUBACMO20 HASPYICEHHO20 ONepamopa Oudgepenyuposanusi, KOmopulii A6Isemcs Yeiol
aHanumMuYecKkoll ynKyueli om cnekmpanibHo2o napamempa. Ha ocnose popmynvl xapaxmepucmuueckozo
onpeodenumeist O0KA3aHbL 8b1800bL 06 ACUMNMOMUKE CNEKMpA U COOCMBEHHBIX QYHKYULL HA2PYHCEHHOU
(«B03MYUEHHOLY) CNEKMPATLHOU 3a0ayu O onepamopa Oup@eperyuposanus, Xapakmepucmuyeckuil
onpeodenumeinb KOMopo2o AGIACMCsl Yelol AHAIUMUYECKOl (DYHKYUel Om CReKmpaibHO20 napamempa
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. Chopmynuposana meopema o pacnonodlceuu COOCMEEHHbIX 3HAUEHUT HA KOMNAEKCHOU NIOCKOCMU A,
20e yKasan pe2ynapHulil pocm yenou anaiumudeckol gyukyuu. Hccneoyromes mepomopduvle GyHkyuu
6N0TIHE Pe2YNAPHO20 POCMA 8 GePXHEll NOIYNIOCKOCIU OMHOCUMENbHO (PYHKYUU pOCMa U dCUMRmMomue-
CcKue colicmea Yenvix QyHKyull ¢ 3a0anHbIM 3aKOHOM pacnpedenenus Kopuetl. [oxazvieaemcs meopema
00 acumnmomuxe Hyieu Yeiol QyHKyuu, mo ecnv COOCMECHHbIX 3HAYEHUL UCXOOHOU PACCMAMPUBAEMOTL
CNEeKMPANbHOlU 3a0adu 018 HASPYHCEHHO20 OuphepenyuanbHo2o onepamopa ouggeperyuposanus, npu
IMOM UZYHAIOMCS ACUMNINOMUYECKUE CEOUCMBA Yeloll yHKyul ¢ pacnpedeneHuem KopHell.

Knioueswie cnosa: nazpysicennulii Ougepenyuanvrulii Onepamop, 603myiujeHHblll, Xapakmepucmu-
yecKull onpeoenumens, Hyau yenot QyHKYuY, acuMnmomurd, COOCmeennvle 3HaueHus, CHeKmp, cooCmeen-
Hble QyHKYUl, basuc.



