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Introduction. This paper is the outgrowth of the author's Ph.D. thesis written
under the supervision of Professor A. Peyerimhoff, whose paper on zeros of power
series [4] has been the starting point.

§1 contains some lemmas due to A. Peyerimhoff, which are needed in §2.
In all theorems (with the exception of Theorem 4 only) of the remaining part of

this paper, real entire functions flz) of finite order with infinitely many real and
finitely many complex^) zeros are taken as starting point.

Then in §2 functions of the form g(z) = A(z)f(z) + B(z)f'(z) are considered where
A(z) and B(z) are real polynomials. In Theorem 1 upper bounds for the number of
zeros of g(z) in the complex plane with the exception of certain real intervals are
obtained. In certain instances the exact number of zeros is obtained. At the end of
§2 examples are given which show that the results of Theorem 1 are best possible.
Questions of this kind have been considered by Laguerre and Borel especially [1],
[2] for the particular case g(z) =f'(z). One of the results of [4] deals with functions
g(z) = af(z) + zf'(z) where a is real and/(z) of order < 1. The method of proof of
this result has been generalized in the present paper.

In §3 a couple of theorems (2, 3, 5, 6) which are derived from Theorem 1 are
partly slight generalizations of known theorems, especially of Laguerre [2], [3],
[5], [6]. These theorems deal with questions of the following kind. If one has some
information on the zeros of the entire function flz) = 2 anzn, one wants to gain
information on the zeros of F(z) = 2 anG(n)zn, where G(z) is an entire function of
a certain type.

For Theorem 4, which is known already, a short proof is given here which is
independent of Theorem 1. From this theorem follows immediately the well-
known fact that the Besselfunctions of real order > — 1 have real zeros only.

From Theorem 6 Hurwitz's Theorem on the complex zeros of the Besselfunctions
of real order < — 1 follows as a special case.

In Theorem 9 functions g(z) = af(z) + zlf'(z) are considered, where a is real, / odd,
and flz) is a real canonical product of finite genus. Then the exact number of
complex zeros of g(z) is obtained. Especially we find that for a>0 and / odd the
functions a sin z-l-z' cos z and a cos z—z' sin z have exactly I— 1 complex zeros.

1. In the proof of Lemma 1 we will need some elementary properties of differ-
ence quotients. In the following we suppose that flz) is a holomorphic function.
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Difference quotients which are undefined shall be defined by the corresponding
differential quotients.

Let

ASl/(z) = Í&ZJMz — z^

and recursively we define

A2i...Sl/(z) = A2l(A,1_)...2l/(z)).

This operation on functions f(z) is homogeneous and linear, and for products
f(z)=g(z)-h(z) we have AZí(g(z)h(z))=g(zx)AZlh(z)+h(z)AZíg(z) and, as can be
proved by induction on /:

ASl...2l(g(z)n(z)) = g(zx)Az¡,..Zíh(z) + h(z)Azl...Zíg(z)

(1) (-i
+ 2  (K...*i8{z))\*-z«+xK...*n+MZ)-

n=l

Let Cx denote the exterior of the interval [1, +oo) with respect to the finite
complex plane and C2 the exterior of the intervals ( — oo, —1] and [1, +oo) with
respect to the finite complex plane.

Then we can prove the following lemma due to A. Peyerimhoff [4] for which a
different proof is given here :

Lemma 1. Let f(z)=Pk_x(z) + zk ¡\x (1/(1 -zt))dg(t), where Pk-X(z) is a real
polynomial of degree k— 1 at most (Fte_1(z)=0 if k = 0) and g(t) is real and weakly
monotone on — 1 á*=s 1 with g(l)¥1g(— 1).

Thenf(z) is holomorphic and has at most k zeros in C2. Similarly iff(z)=Pk-x(z)
+ zk jl (1/(1 —zt)) dg(t), where g(t) is real and weakly monotone on Oá Iá 1, then

f(z) is holomorphic and has at most k zeros in Cx.

Proof. We give a proof for the first part, the proof for the second part being
similar.

If *=0, then/(z) = J1_1 (1/(1 -zt)) dg(t).
Ifzis real, z=x,/(x) = f_1 (1/(1 -xt)) dg(t) ¿0 for-I <x<l since g(l)^g(-l).
If z = x + iy with v t^ 0, consider

f1  z(l-zl) ...       f1   x-|z|2i ...    .   f1 1       ...

Then

Im (zf(z)) = yj1_í |I-L-p dg(t) * 0,

since y^O. Therefore z/(z)^0 for z^O and/(0)=g(l)-g(-1)^0. Therefore, if
k=0,f(z) has no zeros in C2.
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Assume now ki¡l. Then flz)=Pk_1(z)+zk j1_1 (l¡(l—zt)) dg(t) and we prove
by induction on k that for z, zu z2,..., zke C2 we have

(2) A- -/(Z) = L(l-zt)(l-zlt)...(l-zkt)d^-
This is trivial for k = 1 and AZk.. 2l(Ffc_1(z))=0 is trivial for any k.

Assume now that (2) holds for A:— 1 instead of k. Then

A*»-1-*U-2f)
1

(1-Z7)(l-Z17)---(1-Zfc_17)

Now apply (1) with h(z) = z and g(z) = zk~1j(l-zt). Then

A--(&) - (A----(S))L.2>(z)+zA----(S)
1 z7

: + ;(1 -zkt)(l -zxt)- ■ (1 -Zfc-iO   (1 -*0(I-*iO" • O -z&0

= 7i-tt;-^-r,-\    which proves (2).(l-zt)(l-zxt)--(l-zkt) v w

Now we assume that flz)=Pk_1(z) + zk j1_1 (1/(1 -zO) dg(t) has at least k zeros
zlf..., zk in C2. Then

<3>    *-■■»«» - (z-Z,)/(V;,) - 1, (■-„»-„O■■ d-,,0^"-
If & is even we may assume that zu ..., zk consists of pairs of conjugate complex
zeros and of real zeros of flz) in C2. Then (3) gives :

,-M-,=  f   j±-dy(t),   where y(t) =  f   .-**±-,(z-z1)---(z-zk)      J-il-zt J_1(l-zlT)---(l-zfcr)

is a real monotone function for — 1 ̂  7 ̂  1. According to what has been proved
already j1^ (1/(1—z7)) ¿y(7) has no zeros in C2 and so/(z) does not have more
zeros than zu ..., zk.

If k is odd and/(z) has at least k zeros in C2, then/(z) has at least 1 real zero in
C2. Otherwise flz) would have at least k+ 1 complex zeros zu..., zk, zk+1 in C2
which we can assume to consist of pairs of conjugate complex zeros. Especially
we assume that zk+l=zk. Then (3) gives .

(4) (z-Zl)---(z-zk) = J_! (l-z7)(l-zk7) dy(t)
where

(1-Zfc-lT)

is a real monotone function for — 1 s§ 7 g 1.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



346 H.-J. RUNCKEL [September

In (4) the left side is holomorphic in C2 and vanishes at z = zk+x=zk whereas the
right side is J1, j (1/| 1 -zkt \2) dy(t)^0. Therefore, if/(z) has at least k zeros in C2,
where k is odd, f(z) has at least one real zero in C2. Now we apply the same argu-
ment as in the case where k was even to the k zeros zx,..., zk in C2, where we now
can assume that zx,...,zk (k odd) consists of pairs of conjugate complex and of
real zeros (at least one) of/(z) in C2. This again shows that/(z) cannot have more
than k zeros in C2.

Lemma 2. If P¡(z) is a real polynomial of degree I and g(t) is real and weakly
monotone for — 1 S IS 1, then for zeC2

where P,_x(z) is a real polynomial of degree I—I at most.
A similar formula holds if the integrals from —I to I are replaced by integrals

from 0 to 1, and if C2 is replaced by  Cx.

Proof(2). h(z) = Pl(z)-zlt'Pl(llt) is a polynomial in z of degree / at most which
vanishes at z= 1/i. Therefore h(z)/(l—zt) is a real polynomial in z of degree /— 1
at most.

The same is true of j1_x (n(z)/(l -zt)) dg(t).

Lemma 3. If l<k and g(t) is real and weakly monotone for — 1 St ¿I then

21 ¡\ rhidg(t) = p*-^+zk j\ T^z\dg{t) for z e Ca-

A similar formula holds for zeCx if the integrals from —I to I are replaced by
integrals from 0 toi.

Proof(2). h(z) = z' — zktk~' is a real polynomial in z of degree k at most which
vanishes at z=l\t.

Therefore n(z)/(l— zt) is a real polynomial in z of degree k—l at most. The
same is true of \x_x (h(z)\(l-zt)) dg(t).

2. We assume that/(z) is an entire function of finite order p which is real for
real z and which has finitely many complex zeros and infinitely many real zeros.

If rn (n = 1, 2,... ) are the absolute values in increasing order of the zeros zn / 0
of/(z) then there exists a smallest nonnegative integer p (the genus of the sequence
rn) such that 2"=i l/r£ = oo and 2"=i l/r£+1<oo. Then always p^p and p = [p]
if p is not an integer [6]. The convergence exponent a of rn is the greatest lower
bound of positive numbers a such that 2™=i l/r£<oo. Then always p^a^p+l.

(2) I am indebted to the referee for simplifying the proofs of Lemmas 2 and 3.
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From Hadamard's factorization theorem [6] follows that f(z) can be written as

(1) f(z) = zke^ fi ( 1 - f ) exp [z\zn + (z/zn)2/2 + • • • + (z/zn)"//?]
n=l   \        znl

where Q(z) is a real polynomial of degree q with q ¿ [p] and

fj(l-|-)exp[z/zn+...+(z/znr7/?]

is the canonical product of genus/? associated with the zeros zn which, as an entire
function is of order a [6]. Then always p = max (q, a) [6].

Now we consider the entire function (of order S p).
g(z)=A(z)f(z) + B(z)f'(z) where A(z) and B(z) are real polynomials of degrees

a and b respectively, where we agree that always b^O and A(z)=0 if a= — 1.
With this notation we have the following

Theorem 1.
Case I. Let f(z) have infinitely many positive, finitely many negative and finitely

many complex zeros (f(z) may have a zero at z = 0).
Let ax denote a real zero off(z) with multiplicity ax such that all real zeros of B(z)

are less than ax. All real zeros of f(z) which are bigger than ax are denoted by an in
increasing order with multiplicities an (n = 2, 3,...). If B(z) does not have any real
zeros, ax can be any real zero of f(z).

Then at each point an (n= 1, 2,...), g(z) has a zero of multiplicity an— 1 exactly
and between each pair an, an+x (n=l, 2,...) g(z) has an odd number of zeros.

Let k be the number of zeros of f(z) which are different from an (n = l, 2,...).
Then the number of zeros of g(z) besides the trivial zeros at an and besides one zero
between each pair an, an+x (n= 1, 2,...) is

1. exactly   b+p+k       ifp^.p<p+l anda^b+p—l or
if p = a=p+ 1, q^p and a^b+p — 1,

2. at most   b + p + k       if p does not satisfy 1 and if a S b + p — 1,
3. a! most    a + k+l        if a does not satisfy 1 or 2.
(Alwaysp<p<p+l is true if p is not an integer.)
Case II. Letf(z) have infinitely many positive, infinitely many negative and finitely

many complex zeros (f(z) may have a zero at z = 0).
Let ax denote a real zero off(z) with multiplicity ax such that all real zeros of B(z)

are less than ax. All real zeros of f(z) which are bigger than ax are denoted by an in
increasing order and with multiplicities an (n = 2, 3,...). Similarly let —bx denote a
real zero of f(z) with multiplicity ßx such'that all real zeros of B(z) are bigger than
— bx. All real zeros of f(z) which are smaller than —bx are denoted by —bn in
decreasing order with multiplicities ßn (n = 2, 3,...). If B(z) does not have any real
zeros, —bx and ax can be arbitrary real zeros of f(z) with —bx<ax.

Then at each point an and — bn(n= 1,2,...) g(z) has a zero of exact multiplicity
an — 1 and ßn — 1 respectively and an odd number of zeros between each pair an, an+ x
and -bn+x, -bn (n=l,2,...).
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Let k be the number of zeros of flz) which are different from an and —bn (n = 1,
2,.. •).

Then the number of zeros ofg(z) besides the trivial zeros at an and —bn and besides
one zero between each pair an, an+1 and —bn+1, — bn («= 1, 2,...) is

1. exactly   p + b + k ifp is odd,p¿p<p+l anda^b+p—l, or
if p = a=p+l, p^q and a^b+p — 1,

2. exactly   p + b + k +1       ifpiseven,p^p^p+l,a^b+p,
3. at most   b + k + p if p is odd and does not satisfy 1 or 2, a á b + p — 1,
4. at most   b + k + p+l       ifp is even and does not satisfy 1 or 2, a^b + p,
5. at most   a + k+l if a —b is even and a does not satisfy 1-4,
6. at most   a + k + 2 if a —b is odd and a does not satisfy 1-4.
(Always p<p<p+l is true if p is not an integer.)

Remarks. A similar result as in Case I holds for functions flz) which have
infinitely many negative and finitely many positive zeros. One only has to replace
g(z) by g(-z).

The results in Cases I and II remain correct if B(z) does have real zeros of even
order between zeros an, an+1 and —bn+1, —bn as long as they are different from all
an and — bn.

Proof. In the following we assume that ax = 1 and —b1= — l. This can be assumed
without loss of generality, since we can replace the variable z by az + ß where
a, ß are suitable real constants.

From the assumptions made about flz) it follows that according to Hadamard's
factorization theorem in Case I/(z) can be written as/(z) = F(z)e0<2>n(z), where

and in Case II asf(z) = K(z)eWzmi(z)Tl2(z), where

and

In Case I K(z) is a real polynomial of degree k, whose zeros coincide with all
zeros of/(z) which are different from a„ («=1, 2,...). Q(z) is a real polynomial of
degree q with q^ [/>]. p is the genus of the sequence an.

In Case II K(z) is a real polynomial of degree k whose zeros coincide with all
zeros of/(z) which are different from an and -bn (n= 1, 2,...). Q(z) is as in Case I
and p is defined by

i 5+p=°°and ií^<-
rt=1 "n      °n n=l"" "»

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1969] ZEROS OF ENTIRE FUNCTIONS 349

Substituting the expressions for f(z) in g(z) = A(z)f(z) + B(z)f'(z) we obtain in
Case I

g = eQfl(AK+BK' + BKQ' + BK(W[n))
and in Case II

g = eQf\xfl2[AK+BK' + BKQ' + BK((f\'x¡flx) + (fl'2lf\2))].
Here

IF v   /    <*n /I Z'^W n' „v «n

Therefore in Case I

(2) g = em(AK+BK' + BKQ' + BKz>(g -^))

and similarly in Case II

(3, e = ̂ n^+i^ + W + ̂ î^^-l)' Î ^jj)).

Since in Case I B(z) and K(z) do not have zeros for z}¿ax it follows that g(z) has
an odd number of zeros between each pair an,an+x (n=l,2,...). Similarly in
Case II B(z) and K(z) do not have zeros for z^ax and z<. — è1; so that g(z) has an
odd number of zeros between each pair an, an+x and —bn+x,—bn (n= 1, 2,...).

From now on we assume without loss of generality that in Case I B(z)K(z) > 0
for z^ax (otherwise replace g(z) by — g(z)) and in Case II that (see the definition
of p in Case II) 2"=i anM = oo and 2ñ=i "nM+1<oo, and that at the same time
B(z)K(z) > 0 for z^ax (otherwise replace g(z) by g( — z) and/or g(z) by —g(z)).

Now in Case I

2 al(z-an) = ~ „2 l-z(l/0 [aT^J = ~ J0 I^7ldy{t)
with y(0 = 2i/o„Sí anlan + 1 for OSiSl, y(i) being nondecreasing for 0<.!<J.
This gives

g = eQflÍAK+BK'+ BKQ'-BKz* f   TZ^^))'

We now use Lemma 2 to obtain

mm £ _i_ «o . *.._,«„.« £ ''"WWW ^
where P6+fc_i(z) is a real polynomial of degree Z? + /c-l at most. With r¡(t) =
Jó Tb + kB(l¡T)K(l¡T) dy(r), 7j(t) being nondecreasing on 0<.l<. 1, we finally obtain
in Case I

(4)        g = em(AK+BK' + BKQ'-z»Pb+k_x(z)-z* + b + k Ç-L-ifâV
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In Case II we put

i, <ä5 - -r 1=3 +*> »th »<» - „2, #i *. o *. * i.
.1, «£« - 1 FS **>   ™'h "M - ¿ Sfe for 0 S , S ,,

7i(0> 72(0 being nondecreasing for 0^7^ 1.
Now

and from (3) follows

g = eQfl1Xl2ÍAK+BK' + BKQ'-BKz"

(5) ^íoT^^^Jlrb^-1^-')))-
Here (— l)py2(— 0 is increasing for —1^7^0 if p is odd and decreasing if p is
even. Define

y(0=-y2(-0   for -1 ^ / ^ 0       ..   .„ if o is odd
= 7l(7) for 0 g 7 ^ 1 y

and
y(0 = y2(-0   for-l s 7^0

if o is even.
= yi(7)       for 0 á ? ^ 1

Then (5) gives

(6) g = eQflJl2íAK+ BK' + BKQ'-BKzp f    y^— dy(t)\-

Using Lemma 2 again we have

mum £ ^ *w - >.«-.«+*•*• 1', ""TT'f" *«
where F^+^.^z) is a real polynomial of degree b + k-l at most.

If p is even we use Lemma 3 in addition to obtain

p qww#). c+z r /—fd/w/o^)
J-i 1—z7 J_! 1—Z7

where c is a real constant.
Finally we put

v(t) m   i     Ti, + fcF(l/r)F(l/T)¿y(r)        for -1 ^ 7 ^ 1 if p is odd,

,(/) = i    ri'+'c + 1F(l/T)F(l/T)¿y(T)   far -1 ¿ t £ 1 ifj> is even.
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Then we obtain from (6)

g = emin2^AK+BK' + BKQ'-z"Pb+k.1-z^b + k J"*   ^-L. <*,(/)J

if p is odd,
(7) g = emin2(AK+BK' + BKQ'-z*Pb+k-1-cz>> + >> + k

_2p+b+K+i f      i^^jA  if/,is even.

From the assumptions made about F(z)F(z) without loss of generality it follows
that t](t) is an increasing function for — 1 á 7 S 1.

In Case I we obtain

g = ̂ n(F(z)-z'Jo1T4-7¿^(o)
and in Case II

g = e°n1n2ÍF(z)-z' f   j4¡? <*?('))   »*> is odd
and

g = eQn1nip(z)-z, + 1 f    y"I^ <*î(0)   ifP 's even.

Here l=p + b + k and in all three cases P(z) is a real polynomial.
To these three expressions we apply Lemma 3, if necessary, and then Lemma 1

in order to obtain that in d and in C2 respectively g(z) has at most as many zeros
as stated in Theorem 1.

If now the same proof is carried out with a2 instead of au so that k has to be
replaced by k + a1, the upper bound of zeros of g(z) in Cf and C* respectively,
which is given by Lemma 1, is increased by ax. But in the statement of Theorem 1
these additional ay zeros are already counted with the trivial (<x1 — l)-fold zero of
g(z) at íZj and with one zero of g(z) between ax and a2. Here the * in Cf and C$
refers to the fact that now we assume without loss of generality that a2 = 1.

This argument can be repeated with all an(n = 3, 4,...) and all — bn(n = 2, 3,...),
which shows that besides the trivial zeros g(z) has at most as many zeros as stated
in Theorem 1.

It remains to show that in some special cases listed in Theorem 1 the upper
bound for the number of zeros of g(z) actually is the exact number of zeros.

In Case I with l=p + b + kwe obtained in (4) that

g(z)  =   e^>n(z)(F¡_1(z)-Z¡ £   j-L; <*,(/))

if p^p<p+l  and a^b+p-l, or a = p=p + l, q^p, and a^b+p-l. Here
Pi-i(z) is a real polynomial of degree /— 1 at most.
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Then

h(z, r) = rFi_1(z)-Z¡ J' j±jf (hit)    forOSrSl.

h(z, r) = rF1_1(z) + z"Fb+k_1(z) + Zi(z)Z:(z)z'' ¿
¿?i<in(z-an)

which shows that for each r, OStS 1, n(z, t) has a simple pole at an and an odd
number of zeros between each pair an, an+x (n= 1, 2,...).

We now want to determine a circle S around the origin such that h(z, t)^0 for
zeS and 0<r^l. With z = rem we have for r > 1 and all 0 < t < 1

«(z, t) lm%í > taffeS'*' Im Pi-ijz)

r sin ^ir^)*'^*1^^*«*)
>r sin

11-zF2

'*    dy(t
Ö'(C2 Jo (1+rO5 ~^)    WÍth Cu C2 > °'

using the fact that tb + kB(l¡t)K(ljt)^c2>0 for O^ig 1.
Here

f1 dy(t)      r1   ¿y(0   > f1 M) > J- f1 M)
Jo (1 + ")2 = Ji/r (1 +rt)2 - J1/r (2rl)2 = 4r2 J1/r    I

Therefore

l^^lèlzl'-lsinol^J^^-c,)-
From the definition of y(t) follows

(8) rm„z2
Jllr     t r|^n an

and therefore lim^o, j\lr dy(t)¡t = co. This shows that for O^t^ 1

(9) \h(z, t)| > 0   if r is sufficiently large and sin 8^0.

If z=-r then for all r^l andO^r^l

\h(-r,r)\ Z r^ll^AtO-c.) à r^(c2 [ j^MO-Cs)

which is > 0 if r is sufficiently large according to (8)(3). The constants c2, c3 are > 0.

(3) Since r JJ (dy(t)IO + rt))ä* ¡llr(dY(t)lt).
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If z = r, we choose rx large enough and close to, but < am for some m ä 1, so that
(9) holds for 0< 9<2tr and such that

W'.'H"!^ \P,-i(r)\ > 0   for rx á r < am and 0 ¿ r á 1.

This is possible since h(z, t) has a simple pole at each point an (« = 1, 2,...).
Let now S be the circle around the origin with this radius rv Then \h(z, t)\ >0 for
all z e 5 and O^rá 1 so that \h(z, t)\ S:c4>0 for these z and t, since |«(z, t)\ is
continuous as a function of (z, t) e Sx [0, 1].

Therefore (1/2tti) js («'(z, t)/«(z, t)) ¿z is continuous as a function of t for
0i£ t^ 1 and therefore a constant. Since h(z, 0) has an /-fold 0 at z = 0 and at least
one zero between each pair of poles an, an+1 and since h(z, t) has at least one zero
between each pair an, an+1 («= 1,..., m— 1) for all Oár^ 1, we have

2m Js h(z, t)

Together with what has been proved earlier we obtain that h(z, 1) or g(z) =
e0(2)n(z)«(z, 1) has exactly / zeros besides one zero between each pair an, an+1
(«=1,2,...) and besides trivial zeros at an of multiplicity an— 1.

In Case II with l=p + b + k we have obtained in (7)

g(z) = em.U^P^^-z' j*  ^ ¿y«)    iff is odd,

g(z) = em.Yl^P^-z'^ J^ ^ <*,(,))    if p iis even

and if the additional conditions of 1 or 2 in Case II of Theorem 1 are satisfied. Here
P¡~i(z) and P¡(z) are real polynomials of degrees /— 1 and / at most.

We now consider, similarly as in Case I for O^t^ 1

«(z, r) = rF,_1(z)-z' J1    jl~ dr,(t)

(10) = rPl^(z) + zpPh+k.y+z^B(z)K(z)

X I?! al(z-an)+ (~ 1)P 2 «(z + ôj
if/) is odd and

h(z,r) = tF,(z)-z' + 1 J1 iT-^^(?)

(ID = rFi(z) + czi + z"Fi,+fc.1 + z"F(z)F(z)

x („2 <ft^)+(- !)p 2 bJ&Tbj)
ifp is even.
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In both cases h(z, r) has for each r, O^t^I, a simple pole at an and — bn
(«=1,2,...) and an odd number of zeros between each pair an, an+x and —bn+1,
— bn. Similarly as in Case I we now want to determine a curve S around the origin
such that h(z, t)^0 for z e S and O^t^I.

With z = reiB we have

(12)

(13)

h(z, r)
z1"1

Kz, r)

Im

Im

h(z, r)
z''1-

h(z, r)

S r|sinc?|^J ^ ^(r)-^    if/7 is odd,

^ r|sin 0|(J  ^ n_z,i2 Ht)-^J    ifP is even.

This holds for all rä 1 and all O^t^ 1 with constants C! and c2 which are >0.
Now we use the fact that (w.l.o.g.) we have assumed 2?= i anlon = °o and

2"=ictn/ii£+1<°o and that tb+kB(llt)K(llt)^c3>0 for -l£t£l. Then in both
expressions (12), (13) we have if p is odd

ji

Similarly if p is even

tb + kB(llt)K(l¡t)
ll-zll2 ™**j:3**£<fcrtf

1 4ki(0 ->   c3   f1 ^(0
i„ (2r/)2 4r Jl/r

Lirâp^-îx* iB{\¡t)K(\\t) 1 '¿n(0
11-zH <M0   *   *   f     Ä

Jo   I t ~ zr

and now this is
> _£a_ f1 ftfofr) = _£a_ f1 fWO
= 4r2J1/r     I2 4r2J1/r     I

Consequently we obtain for all 0¿ t^ 1 and r^ 1 from (12), (13)

\h(z, t)| 2; r'-2|sin 0|(^ T ^^-Cl)    ifp is odd,

|n(z, t)| ä r'-^sin fl|fe f* ^£)_caj    if/? is even.

Similarly as in Case I JJ/r cZy1(l)/l = 2a„sr «n/a« and therefore lim,.-,«, ¡\irdyx(t)lt
= oo so that

(14)       |n(z, t)| > 0   for all 0 g t ^ 1 if r is sufficiently large and sin 0^0.

We then choose rx large enough and close to, but <amx for some mx^ 1, such
that for all Ogr^ 1, |A(z, t)| >0 for rx^z<ami and such that (14) holds for all
r^rx.

Similarly we choose r2^rx such that —r2 is close enough to but > — bm2 for
some m2â 1 with \h(z, t)\ >0 for — bm2<zfí —r2 and all O^t^ 1.
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Now we can define the curve S as follows :

S : z = r^6      for -tt/2 ú 6 ^ w/2,     z = r2ew        for n/2 ^ 9 ^ 3tt/2,

2 = reic"2)   for ri ^ r ^ r2, z = /-g-«11'2)   for rx ¿ r g r2.

Then |«(z, t)| > 0 for z e S and 0 ¿ t ^ 1 and since |«(z, t)| is continuous as a function
of (z, t) e 5x [0, 1] we actually have |«(z, t)| ^c4>0 so that

27TI Js \n(z, t)/

is constant with respect to t for O^t^ 1. Similarly as in Case I this integral is
^/ if p is odd and ^/+1 if p is even. Together with what has been proved
earlier it follows that g(z) has exactly / zeros (exactly /+1 zeros) besides at least
one zero between each pair an,an+1 and —bn+1, —bn and besides the trivial
zeros at an and — bn of multiplicities an— 1 and ßn— 1 respectively if p is odd (ifp is
even).

Finally we want to end this section by giving some examples which show that
the results of Theorem 1, Case II cannot be sharpened.

Let <p(z) = eißl2u2 cos z with real /MO. Here p = 2 and p= 1. Furthermore let

y(z) = acp(z)+zcp'(z) = eißl2)::2((a+ßz2) cos z—z sin z)   with real a j= 0.

We now apply Theorem 1, Case II, 1 to g(z) = z sin z—(a+ßz2) cos z, where in the
notation of Theorem 1 /(z) = sinz, a=l, b = 2, a1 = n, —b1=—-n. From this
theorem and from g(—z)=g(z) follows that g(z) has exactly one zero between
each pair of consecutive positive and negative zeros of sin z and that g(z) has
exactly two complex zeros and exactly two real zeros in (—w, -n) if a, ß have the
same sign. In particular in ( — -n\2, -n\2) g(z) has no zero if a,ß<0 and exactly two
zeros if a, ß > 0.

We now apply Theorem 1, Case 11,6 to g(z)= — (a + ßz2) cos z + z sin z where
we consider cos z as flz), a = 2, 6=1, and a1 = n¡2, —bx= —-n\2. Then g(z) also
has exactly one zero between each pair of consecutive positive and negative zeros
of cos z. Besides these zeros g(z) has exactly four zeros (2 complex and 2 in
( — 7r/2,7r/2)) if a, ß > 0 and exactly two zeros (2 complex and no zeros in
(-tt/2, tt/2)) if a, ß<0.

Therefore if a, ß>0 the upper bound, as given in Case 11,6 is reached by g(z)
and if a, ß<0 it is not.

At the same time <p(z) and y(z) are examples which show that Case 11,1 and
Case 11,4 are best possible.

In Case II, 1 the condition páp<p +1 cannot be replaced by p áp?£p +1, since
in the above example p = 2, p= 1, but if a, ß>0, y(z) has exactly four zeros besides
one between each pair of consecutive positive and negative zeros of <p(z).

In addition this example shows that the upper bound, as given by Case 11,4 is
reached. On the other hand if a, ß<0 this upper bound is not reached.
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Finally we want to show that Case 11,3 and Case 11,5 are best possible also. Let
9>(z) = e(ßl3)^ cos z with real ß/0. Here p = 3, p= 1. Furthermore let y(z) = A(z)<p(z)
+ B(z)<p'(z), where A(z) and B(z) are real polynomials of exact degrees 3 and 1
respectively.

Then y(z) = e{m)z3g(z) with g(z) = (^(z)+j8z2Zi(z)) cos z-B(z) sin z and we also
assume that P(z) = A(z)+ßz2B(z) shall have degree 3 exactly. From Theorem 1,
Case 11,1, applied to g(z) with f(z) = sin z, a=l, b = 3, ax=tr, —bx = —7T, follows
that g(z) has exactly five zeros besides one between each pair of consecutive positive
and negative zeros of sin z if P(z) has its real zeros in (—n, w). If we choose B(z)
and P(z) such that B(-tt¡2)>0, ZÍ(tt/2)<0 and F(0)>0, F(tt/4) - Zi(7r/4) < 0,
F(-7r/4) + Zi(-7r/4)<0, P(-7r)<0, P(ir)>0, then g(z) has exactly four zeros in
(—7r/2, 7t/2) and exactly five zeros in ( — n, n).

If we choose B(z) and P(z) such that ZJ(-tt/2)<0, 5(tt/2)>0 and P(z) = 0
then g(z) has exactly two zeros in ( —w/2, tt/2).

Now Theorem 1, Case 11,5 applied to g(z) with f(z) = cos z, a = 3, b=l, ax = -n\2,
— bx=— tt\2 shows that g(z), for both choices of the pair B(z), P(z) also has exactly
one zero between each pair of consecutive positive and negative zeros of cos z.
In addition the upper bound, as given by Case 11,5 is reached by g(z) if g(z) has
four zeros in ( — tt\2, w/2).

At the same time <p(z) and y(z) are examples which show that the upper bound,
as given by Case 11,3 is reached in one case, while it is not reached in the other
case.

In a similar way one can find examples which show that Cases 1,2 and 3 are
best possible by using cos \/z or \/z sin y/z.

3. In the following let f(z) = 2n = o anzn denote a real, nonconstant, entire
function of finite order p and with /(O) ^ 0. Especially we want to restrict f(z) to
the following two types (for the definition of p and q see the beginning of §2):

(1) /(z) =  Cfl(l-f)      With   2   knl-^CO
n=l   \ Lnl n=l

(i.e. either p< 1 or p=l andp=q = 0),

(2) f(z) = cebz fi (l--)e2/c«   with J |c„|-2 < co
n=l V cnl n=l

(i.e. either p<2 or p = 2 and qt¿p = l).
Here b and c shall be real and c J= 0. Furthermore let F(z) = 2ñ= o onG(n)zn,

where G(z) is a real entire function of the following two types :
(A) G(z) = e"2 un = i ( 1 + z/ce„)e " z/% where each an > 0, |3 real and 2 "= i «ñ2 < °o •

It is also allowed that G(z) has finitely many (negative) zeros only.
(B) G(z) = (z-ot1).(z-am), where ax,.. .,«m>0.
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Then always F(z) is a real entire function of order á p. Having some information
on the zeros of/(z) we want to gain information on the zeros of F(z). The following
theorems, with the exception of Theorem 4, can be deduced from Theorem 1.
The proof of Theorem 4 is independent of Theorem 1.

Theorem 2. Let flz) have infinitely many zeros but only k zeros which are not > 0.
(a) If flz) is of type (1) a«¿ G(z) of type (A) then F(z) has at most k zeros which

are not > 0.
(h) If flz) is of type (1) a«¿ G(z) of type (B) then F(z) has at most k + m zeros

which are not > 0.
If flz) is of type (2) and G(z) of type (B) then F(z) has at most k + 2m zeros which

are not > 0. Besides F(z) is of the same type as flz) and has infinitely many positive
zeros. A corresponding result can be obtained if flz) has k zeros which are not < 0.

Theorem 3. Let flz) be of type (2) with infinitely many real zeros of both signs
and 2k complex zeros.

(a) If G(z) is of type (A) then F(z) has at most 2k complex zeros.
(b) If G(z) is of type (B) then F(z) has at most 2k + 2m complex zeros and is of

the same type as flz). Besides F(z) has infinitely many real zeros of both signs.

Theorem 4. Let flz) = exp (az2)h(z) where h(z) is of type (2) a«¿ a á 0. Furthermore
let flz) have real zeros only (or no zeros at all). If ' G(z) is of type (A) then F(z) has
real zeros only.

Theorem 5. Let flz) have infinitely many zeros but only k zeros which are not > 0.
Furthermore assume that G(z) is of type (B) having the positive zeros ax,. .., am.
With f0(z)= flz) andfj(z)=-ajf_1(z) + zfl„l(z)forj=l,...,m we assume that

for each j, f(z) has exactly one zero between each pair of consecutive positive zeros
°ffi-i(z) and no zero between z = 0 and the smallest positive zero off-i(z).

If flz) is of type (1) then F(z) has exactly k + m zeros which are not >0. If flz)
is of type (2) and p= 1 then F(z) has exactly k + 2m zeros which are not >0.

In both cases F(z) is of the same type as flz). A corresponding result holds if flz)
has k zeros which are not < 0.

Theorem 6. Let flz) be of type (2) with infinitely many real zeros of both signs
and with exactly 2k complex zeros. Furthermore assume that G(z) is of type (B)
having the positive zeros a1;..., am. Withf0(z) =f(z) andf(z) = — a}f¡ _ x(z) + z//_ x(z)
for y'= 1,..., «i we assume that for each j, f(z) has exactly one zero between each
pair of consecutive positive and negative zeros off-^z) and that f(z) has no zero
between the smallest positive and the smallest negative zero off^^z).

Under these conditions F(z) has exactly 2k + 2m complex zeros. Besides F(z) is
of the same type as flz).

In order to prove Theorems 2-6 we need the following

Lemma 4. Let g(z) = af(z) + zf'(z) with real a^0, a, b and flz) real.
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(1) Iff(z) = ebzh(z) where h(z) is of type (1), then g(z) = ebsh*(z) where h*(z) is of
type (1).

(2) Iff(z) = eaz2h(z) where h(z) is of type (2), then g(z) = eaz2h*(z) where h*(z) is
of type (2).

In both cases we assume that all but finitely many zeros ofh(z) are real. Then the
same is true for h*(z). It is allowed that h(z) has finitely many zeros only.

Proof. (1) We have/'(z)//(z) = Z» + 2"=i l/(z-cn) where all but finitely many c„
are real. As z tends to infinity along the imaginary axis/'(z)//(z) tends to b. Accord-
ing to Hadamard's factorization theorem g(z) is of the same form as/(z). It remains
to show that g'(z)jg(z) also tends to b as z tends to infinity along the imaginary axis.
We have

(3) g'     f ,if'lf) + z(f'!f)'
g   r «+z(fjf)

Here z(J'\f)' tends to 0 as z tends to infinity along the imaginary axis. In addition
we have for z = iy, y real :

/'
a + Zf S?   z *+     I 1 JV 1

2
where we assume that cx,..., cN consist of all complex zeros off(z). Here the first
term on the right side is

z z\ Im    J 1
z-c = r I i

*-•    v2 + c2n = N + l X     <  un

and this tends to infinity with y. Therefore g'jg also tends to b as y tends to infinity.
(2) Here we have

1/'
z
L . 2„+*_+I % (_L-+JL)
/ z   z^x\z-cn   cj

where again all but finitely many cn are real. Therefore/'/z/tends to 2a as z tends
to infinity along the imaginary axis. We divide equation (3) by z and observe that
now (/'//)' tends to 2a as z tends to infinity along the imaginary axis and that for
the denominator a+z(f'\f) we have for a=0 (the case a^O being trivial because
of (3)):

(4) a + z *+if+ i (¿4)1-1 in=l un        n = N + l   \¿      Ln      c-n/ n=l

Here again we assume that cx,..., cN consists of all complex zeros of f(z). Now if
z=/y is purely imaginary, the first term on the right side of (4) is

H\z\ Im    2 1
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which similarly as in the proof of (1) tends to infinity with y. This shows that
g'\zg also tends to 2a as y tends to infinity.

Proof of Theorems 2 and 3. Let a be real and ^0. Observing that with/(z) =
In=o anzn one has g(z) = aflz) + zf'(z) = 2ñ= o an(a + n)zn we first prove the state-
ment of the Theorem for the function g(z).

From g(z) = aflz) + zf'(z) we see that always g(z) has an odd (even) number of
zeros between z = 0 and the smallest positive and the smallest negative zero of
/(z)ifa>0(«<0).

To prove Theorem 2(a) we apply Theorem 1, Case 1,1 to g(z) with a>0. Since
g(z) has at least one zero between z = 0 and the smallest positive zero of/(z) it
follows that g(z) has at most k zeros which are not >0.

In order to prove part (b) of Theorem 2 we apply Theorem 1, Case 1,1 to g(z)
again but now with a<0, so that g(z) has at most k + l (k + 2) zeros which are not
>0if/(z)isoftype(l)(type(2)).

In all cases g(z) has infinitely many real zeros >0 and according to Lemma 4
g(z) is of the same type as flz). Therefore g(z) satisfies the same conditions of
Theorem 2 as/(z) does, the only difference being that in part (b) k has to be replaced
by k+l (k + 2) if flz) is of type (1) (type (2)).

In order to finish the proof of part (b) we apply the above arguments m times
where successively a is replaced by — a¡ (y'= 1,..., m). Then we obtain that

00 00

2 a»(»-«i).(n-ccm)zn   or   F(z) = £ anG(ri)zn
n=0 n=0

has at most k + m (k + 2m) zeros which are not >0 if/(z) is of type (1) (type (2)).
To finish the proof of part (a) we repeat the above arguments with al7..., a¡ > 0

and obtain that

oo

2 aÁ*i+n).(a, + n)zn
n=0

for each / has at most k zeros which are not > 0. This remains true if we divide
this series by ax.«, and replace z by z exp (ß—2}=i a,"1) which gives the
function gt(z) = 2™= o onG,(n)zn where Gt(z) converges to G(z) for each z as / tends to
infinity. Since |anC,(«)| and |a„G(«)| are ^|a„|eÄn it follows that g¡(z) converges,
uniformly on compact domains, to the entire function F(z) = 2"=o anG(n)zn, which
according to a theorem of Hurwitz [6] still has at most k zeros which are not > 0.

Theorem 3 is proved in a similar way. The only difference is that now Theorem 1,
Case II has to be applied instead of Case I.

Proof of Theorem 4.   From the assumptions made about flz) it follows that

£ = 2az + b+ f (—+ 1)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



360 H.-J. RUNCKEL [September

where all cn are real. Then we have g(z) = of(z)+zf'(z) = zf(z)cp(z) where

rfz) = î + £ = l + 2az + b+l{-JTy7}
Suppose that z is not real, then

cp(z)-cp(z)
z — z

= -j?r2+2a- 2 T-S
Kl n=l  r      cn|

which is <0 if a^O and ce>0. Consequently g(z) does not have complex zeros if
a>0. According to Lemma 4 g(z) is of the same type as/(z) (with a¿0!) and in
order to finish the proof one only has to repeat the arguments of the proof of
Theorem 2.

Theorems 5 and 6 finally are proved in the same way as Theorem 2(b). In
addition one has to use the fact that Theorem 1 gives the exact number of zeros
which, under the assumptions made in Theorems 5 and 6, cannot be > 0 in Theorem
5 and which cannot be real in Theorem 6.

Next we want to apply the previous theorems in order to obtain Hurwitz's
theorem on the zeros of Besselfunctions.

Let

F(z) (z_y ^ (-i)"(z/2)2"
~\2) n4o *!!>+«+!)

denote the Besselfunction of order v, which is defined for all z/0 and with
— 77<arg z<77. We assume that v is real and # — I, — 2,.... The zeros of Jv(z)
are determined by the zeros of the entire function

^  (-l)"(z/2)
<0n\r(y+n+l)

This entire function is of order 1 as can be seen from the coefficients of the series.
Therefore according to Hadamard's factorization theoremp-¿l (in fact/>=l, but
this is not needed here). Furthermore <f>v(z) satisfies: </>v(0)^0 and

(Ï) <f>'v(z)=-(z/2)cpv+1(z),
(ii) 2¿v(z) = 2(v + l)<pv+1(z) + z<pl + i(z),

(iii) zcf>l(z) + (2v + 1 )<t>'v(z) + zcf>v(z) = 0.
Since cpv(z) = cf>v(2^z) is an entire function of order 1/2, again according to Hada-
mard's factorization theorem <f>v(z) has infinitely many zeros, which are simple
because of (iii).

Theorem 7 (Hurwitz's Theorem), (a) </>v(z) has real zeros only ifv>-l.
(b) If m is a natural number and — (m+l)<v< -m then <pv(z) has exactly 2m

complex zeros.
(c) If m is odd <f>v(z) has exactly 2 purely imaginary zeros and if m is even <f>v(z)

has no purely imaginary zeros.
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Proof, (a) follows from Theorem 4 with/(z) = e-<2,2)2, (P=2, /? = 0) and G(z) =
\¡T(z¡2 + v+1) which for v> - 1 is of type (A).

(b) follows from Theorem 6 with

and G(z) = (v +1 + z/2).(v+m+zß) which is of type (B). The remaining con-
ditions made in Theorem 6 are satisfied here because of the properties (i) and (ii)
with a}= -2(v+j),j=l, ...,m.

(c) follows from sign <¿v(0) = sign (l/r(i> +1)) and by using (i) and (ii) for purely
imaginary z.

More generally we consider for arbitrary real a, aj ¿z)+zJ\(z) = (z\2y$m(z) with
0v«(z) = (a + v)<f>v(z) + z(f>'v(z). If, for the moment, we put g(z) = zaJv(z), then

g' = z^-^aJ. + zJÇ),

and from the differential equation for Jv(z) or civ(z) follows

(5) (z1"2^')' = -z1-2a(l+(a2-u2)lz2)g.

If |v| ;£ |a| (5) shows that g'(z) or </>Vff(z) has exactly one zero between each pair of
consecutive positive zeros of g(z) or <f>v(z) and that g'(z) has exactly one (has no)
zero between z = 0 and the smallest positive zero of c&v(z) if (a+v) > 0 (if (a + v) < 0).

With these results Theorem 1, Case 11,1 gives the following

Theorem 8. Let civ(z) have exactly 2m complex zeros (nzäO). Then for any real a
t/»va(z) has exactly 2m+ 2 zeros besides one zero between each pair of consecutive
positive and negative zeros of<f>v(z).

Especially t/>va(z) has at most 2m (2m + 2) complex zeros if(a + v)>0 (if (a + v) < 0).
If furthermore \v\ á |a|, then >bva(z) has exactly 2m (exactly 2m+ 2) complex zeros

if (a + v)>0 (if (a + v)<0).

The following theorem again is an application of Theorem 1, Case II.

Theorem 9. Let fl(z) be a canonical product of genus p with infinitely many real
zeros of both signs, no complex zeros and no zero at z = 0. Furthermore consider
g(z) = af(z) + z'f'(z), where f(z) = zmfl(z) with mäO,« real and äO and I odd.

(a) If a>0 and w^O then g(z) has exactly p + l—2 (p + l—l) complex zeros
when p is odd (even).

(b) If a = 0 andm>0 then g(z) has exactlyp— 1 (p) complex zeros whenp is odd
(even).

(c) lfa = m = 0 then g(z) has no complex zeros.

Remark. A similar result can be obtained if II(z) still has infinitely many real
zeros but not infinitely many of both signs. One has to apply Theorem 1, Case I
instead of Case II.
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Proof. g(z) = zl + pf(z)cp1(z) if p is even and g(z) = z' + p  1/(z)oj2(z) ifp is odd. Here
CO i

^«-¡fe+pn+^gpzçj   where/; is even,

and

9>2(z) =   ,, „  , -\—r+ y I  „  .,-H—-1    where p is odd.

Next we form the derivatives and see that cp\(z) and <p'2(z) are <0 for real z^O
and =£an. Consequently g(z) has exactly one zero between each pair of consecutive
positive and negative zeros of/(z). Furthermore if <x>0 and m^Og(z) has exactly
one zero between z = 0 and the smallest positive and negative zero of flz). In
addition g(z) has an «î-fold zero at z = 0 and thus according to Theorem 1, Case II
we obtain (a).

Cases (b) and (c) are proved similarly.

Corollary. Let a > 0 a«¿ / odd, then the functions a sin z + z' cos z and a cos z
— zl sin z have exactly I— 1 complex zeros.
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