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Preface

Random configurations of points in space, also known as point processes, have

been studied in mathematics, statistics and physics for many decades. In mathe-

matics and statistics, the emphasis has been on the Poisson process, which can be

thought of as a limit of picking points independently and uniformly in a large region.

Taking a different perspective, a finite collection of points in the plane can always

be considered as the roots of a polynomial; in this coordinate system, taking the co-

efficients of the polynomial to be independent is natural. Limits of these random

polynomials and their zeros are a core subject of this book; the other class consists

of processes with joint intensities of determinantal form. The intersection of the two

classes receives special attention, in Chapter 5 for instance. Zeros of random poly-

nomials and determinantal processes have been studied primarily in mathematical

physics. In this book we adopt a probabilistic perspective, exploiting independence

whenever possible.

The book is designed for graduate students in probability, analysis, and mathe-

matical physics, and exercises are included. No familiarity with physics is assumed,

but we do assume that the reader is comfortable with complex analysis as in Ahlfors’

text (1) and with graduate probability as in Durrett (20) or Billingsley (6). Possible

ways to read the book are indicated graphically below, followed by an overview of the

various chapters.

The book is organized as follows:

Chapter 1 starts off with a quick look at how zeros of a random polynomial differ

from independently picked points, and the ubiquitous Vandermonde factor makes its

first appearance in the book. Following that, we give definitions of basic notions such

as point processes and their joint intensities.

Chapter 2 provides an introduction to the theory of Gaussian analytic functions

(GAFs) and gives a formula for the first intensity of zeros. We introduce three im-

portant classes of geometric GAFs: planar, hyperbolic and spherical GAFs, whose

zero sets are invariant in distribution under isometries preserving the underlying

geometric space. Further we show that the intensity of zeros of a GAF determines

the distribution of the GAF (Calabi’s rigidity).

Chapter 3 We prove a formula due to Hammersley for computing the joint intensi-

ties of zeros for an arbitrary GAF.

Chapter 4 introduces determinantal processes which are used to model fermions in

quantum mechanics and also arise naturally in many other settings. We show that

general determinantal processes may be realized as mixtures of “determinantal pro-

jection processes”, and use this result to give simple proofs of existence and central

limit theorems. We also present similar results for permanental processes, which

are used to model bosons in quantum mechanics.

vii
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Chapter 5 gives a deeper analysis of the hyperbolic GAF. Despite the many similar-

ities between determinantal processes and zeros of GAFs, this function provides the

only known link between the two fields. For a certain value of the parameter, the

zero set of the hyperbolic GAF is indeed a determinantal process and this discovery

allows one to say a great deal about its distribution. In particular, we give a simple

description of the distribution of the moduli of zeros and obtain sharp asymptotics

for the “hole probability" that a disk of radius r contains no zeros. We also obtain a

law of large numbers and reconstruction result for the hyperbolic GAFs, the proofs

of these do not rely on the determinantal property.

Chapter 6 studies a number of examples of determinantal point processes that arise

naturally in combinatorics and probability. This includes the classical Ginibre and

circular unitary ensembles from random matrix theory, as well as examples arising

from non-intersecting random walks and random spanning trees. We give proofs

that these point processes are determinantal.

Chapter 7 turns to the topic of large deviations. First we prove a very general

result due to Offord which may be applied to an arbitrary GAF. Next we present

more specialized techniques developed by Sodin and Tsirelson which can be used to

determine very precisely, the asymptotic decay of the hole probability for the zero set

of the planar GAF. The computation is more difficult in this setting, since this zero

set is not a determinantal process.

Chapter 8 touches on two advanced topics, dynamical Gaussian analytic functions

and allocation of area to zeros.

In the section on dynamics, we present a method by which the zero set of the

hyperbolic GAF can be made into a time-homogeneous Markov process. This con-

struction provides valuable insight into the nature of the repulsion between zeros,

and we give an SDE description for the evolution of a single zero. This description

can be generalized to simultaneously describe the evolution of all the zeros.

In the section on allocation, we introduce the reader to a beautiful scheme dis-

covered by Sodin and Tsirelson for allocating Lebesgue measure to the zero set of the

planar GAF. The allocation is obtained by constructing a random potential as a func-

tion of the planar GAF and then allowing points in the plane to flow along the gra-

dient curves of the potential in the direction of decay. This procedure partitions the

plane into basins of constant area, and we reproduce an argument due to Nazarov,

Sodin and Volberg that the diameter of a typical basin has super-exponentially de-

caying tails.

The inter-dependence of the chapters is shown in Figure 1 schematically.
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CHAPTER 1

Introduction

1.1. Random polynomials and their zeros

The primary objects of study in this book are point processes, which are random

variables taking values in the space of discrete subsets of a metric space, where,

by a discrete set we mean a countable set with no accumulation points. Precise

definitions of relevant notions will be given later. Many physical phenomena can

be modeled by random discrete sets. For example, the arrival times of people in a

queue, the arrangement of stars in a galaxy, energy levels of heavy nuclei of atoms

etc. This calls upon probabilists to find point processes that can be mathematically

analysed in some detail, as well as capture various qualitative properties of naturally

occurring random point sets.

The single most important such process, known as the Poisson process has

been widely studied and applied. The Poisson process is characterized by indepen-

dence of the process when restricted to disjoint subsets of the underlying space. More

precisely, for any collection of mutually disjoint measurable subsets of the underly-

ing space, the numbers of points of a Poisson process that fall in these subsets are

stochastically independent. The number of points that fall in A has Poisson distri-

bution with a certain mean µ(A) depending on A. Then, it is easy to see then that µ

must be a measure, and it is called the intensity measure of the Poisson process. This

assumption of independence is acceptable in some examples, but naturally, not all.

For instance if one looks at outbreaks of a rare disease in a province, then knowing

that there is a case in a particular location makes it more likely that there are more

such cases in a neighbourhood of that location. On the other hand, if one looks at the

distribution of like-charged particles confined by an external field (physicists call it

a “one component plasma”), then the opposite is true. Knowing that a particular lo-

cation holds a particle makes it unlikely for there to be any others close to it. These

two examples indicate two ways of breaking the independence assumption, induc-

ing more clumping (“positively correlated”) as in the first example or less clumping

(“negatively correlated”) as in the second.

A natural question is whether there are probabilistic mechanisms to generate

such clumping or anti-clumping behaviour? A simple recipe that gives rise to posi-

tively correlated point processes is well-known to statisticians: First sample X (·), a

continuous random function on the underlying space that takes values in R+, and

then, sample a Poisson process whose intensity measure has density X (·) with re-

spect to a fixed reference measure ν on the underlying space. These kinds of pro-

cesses are now called Cox processes, and it is clear why they exhibit clumping - more

points fall where X is large, and if X is large at one location in space, it is large in

a neighbourhood. We shall encounter a particular subclass of Cox processes, known

1
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FIGURE 1. Samples of translation invariant point processes in the

plane: Poisson (left), determinantal (center) and permanental for

K(z,w) = 1
π

ezw− 1
2

(|z|2+|w|2). Determinantal processes exhibit repul-

sion, while permanental processes exhibit clumping.

as permanental processes, in Chapter 4, only to compare their properties with deter-

minantal processes, one of two important classes of point processes having negative

correlations that we study in this book.

This brings us to the next natural question and that is of central importance

to this book. Are there interesting point processes that have less clumping than

Poisson processes? As we shall see, one natural way of getting such a process without

putting in the anti-clumping property by hand, is to extract zero sets of random

polynomials or analytic functions, for instance, zeros of random polynomials with

stochastically independent coefficients. On the other hand it is also possible to build

anti-clumping into the very definition. A particularly nice class of such processes,

known as determinantal point processes, is another important object of study in this

book.

We study these point processes only in the plane and give some examples on the

line, that is, we restrict ourselves to random analytic functions in one variable. One

can get point processes in R
2n by considering the joint zeros of n random analytic

functions on C
n, but we do not consider them in this book. Determinantal processes

have no dimensional barrier, but it should be admitted that most of the determi-

nantal processes studied have been in one and two dimensions. In contrast to Cox

processes that we described earlier, determinantal point processes seem mathemat-

ically more interesting to study because, for one, they are apparently not just built

out of Poisson processes1.

Next we turn to the reason why these processes (zeros of random polynomials

and determinantal processes) have less clustering of points than Poisson processes.

Determinantal processes have this anti-clustering or repulsion built into their defi-

nition (chapter 4, definition 4.2.1), and below we give an explanation as to why zeros

of random polynomials tend to repel in general. Before going into this, we invite

the reader to look at Figure 1. All the three samples shown are portions of certain

translation invariant point processes in the plane, with the same average number of

points per unit area. Nevertheless, they visibly differ from each other qualitatively,

in terms of the clustering they exhibit.

1“Do not listen to the prophets of doom who preach that every point process will eventually be found

out to be a Poisson process in disguise!” - Gian-Carlo Rota.
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Now we “explain” the repulsion of points in point processes arising from zeros of

random analytic functions (Of course, any point process in the plane is the zero set of

a random analytic function, and hence one may wonder if we are making an empty

or false claim. However, when we use the term random analytic function, we tacitly

mean that we have somehow specified the distribution of coefficients, and that there

is a certain amount of independence therein). Consider a polynomial

(1.1.1) p(z)= zn +an−1zn−1+ . . .+a1z+a0.

We let the coefficients be random variables and see how the (now random) roots

of the polynomial are distributed. This is just a matter of change of variables, from

coefficients to the roots, and the Jacobian determinant of this transformation is given

by the following well known fact (see the book (2) p. 411-412, for instance).

LEMMA 1.1.1. Let p(z)=
n
∏

k=1
(z−zk) have coefficients ak, 0≤ k ≤ n−1 as in (1.1.1).

Then the transformation T :Cn →C
n defined by

T(z1, . . . , zn)= (an−1, . . . ,a0),

has Jacobian determinant
∏

i< j
|zi − z j |2.

PROOF. Note that we are looking for the real Jacobian determinant, which is

equal to
∣

∣det

(

∂T(z1, . . . , zn)

∂(z1, . . . , zn)

)

∣

∣

2
.

To see this in the simplest case of one complex variable, observe that if f = u+ iv :

C→C, its Jacobian determinant is

det

[

ux uy

vx vy

]

,

which is equal to | f ′|2, provided f is complex analytic. See Exercise 1.1.2 for the

relationship between real and complex Jacobian determinants in general.

Let us write

Tn(k) = an−k = (−1)k
∑

1≤i1<...ik≤n

zi1
. . . zik

.

Tn(k) and all its partial derivatives are polynomials in z js. Moreover, by the sym-

metry of Tn(k) in the z js, it follows that if zi = z j for some i 6= j, then the ith and

jth columns of
∂T(z1,...,zn)
∂(z1,...,zn)

are equal, and hence the determinant vanishes. There-

fore, the polynomial det
(

∂Tn(k)
∂z j

)

1≤ j,k≤n
is divisible by

∏

i< j
(zi − z j). As the degree of

det
(

∂Tn(k)
∂z j

)

1≤ j,k≤n
is equal to

n
∑

k=1
(k−1) = 1

2
n(n−1), it must be that

det

(

∂T(z1, . . . , zn)

∂(z1, . . . , zn)

)

= Cn

∏

i< j

(zi − z j).

To find the constant Cn, we compute the coefficient of the monomial
∏

z
j−1

j
on both

sides. On the right hand side the coefficient is easily seen to be Dn := (−1)n(n−1)/2Cn.

On the left, we begin by observing that Tn(k)=−znTn−1(k−1)+Tn−1(k), whence

(1.1.2)
∂Tn(k)

∂z j

=−zn
∂Tn−1(k−1)

∂z j

+ ∂Tn−1(k)

∂z j

−δ jnTn−1(k−1).
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The first row in the Jacobian matrix of T has all entries equal to −1. Further, the

entries in the last column (when j = n) are just −Tn−1(k−1), in particular, indepen-

dent of zn. Thus when we expand det
(

∂Tn (k)
∂z j

)

by the first row, to get zn−1
n we must

take the (1,n) entry in the first row and in every other row we must use the first

summand in (1.1.2) to get a factor of zn. Therefore

Dn = coefficient of
n

∏

j=1

z
j−1

j
in det

(

∂Tn(k)

∂z j

)

1≤k, j≤n

= (−1)n coefficient of
n−1
∏

j=1

z
j−1

j
in det

(

−∂Tn−1(k−1)

∂z j

)

2≤k≤n
1≤ j≤n−1

= −Dn−1.

Thus Cn = (−1)nCn−1 = (−1)n(n+1)/2 because C1 = −1. Therefore the real Jacobian

determinant of T is
∏

i< j
|zi − z j |2. �

The following relationship between complex and real Jacobians was used in the

proof of the lemma.

EXERCISE 1.1.2. Let (T1, . . . ,Tn) : Cn → C
n be complex analytic in each argu-

ment. Let Ai j = ∂Re Ti (z)
∂x j

and Bi j = ∂Re Ti (z)
∂yj

where z j = x j+i yj. Then the real Jacobian

determinant of (ReT1, . . . ,ReTn,Im T1, . . . ,ImTn) at (x1, . . . ,xn, y1, . . . , yn), is

det

[

A B

−B A

]

which is equal to |det(A− iB)|2, the absolute square of the complex Jacobian deter-

minant.

We may state Lemma 1.1.1 in the reverse direction. But first a remark that will

be relevant throughout the book.

REMARK 1.1.3. Let zk, 1 ≤ k ≤ n be the zeros of a polynomial. Then zis do not

come with any natural order, and usually we do not care to order them. In that

case we identify the set {zk} with the measure
∑

δzk
. However sometimes we might

also arrange the zeros as a vector (zπ1
, . . . , zπk

) where π is any permutation. If we

randomly pick π with equal probability to be one of the n! permutations, we say that

the zeros are in exchangeable random order or uniform random order. We do this

when we want to present joint probability densities of zeros of a random polynomial.

Needless to say, the same applies to eigenvalues of matrices or any other (finite)

collection of unlabeled points.

Endow the coefficients of a monic polynomial with product Lebesgue measure.

The induced measure on the vector of zeros of the polynomial (taken in exchangeable

random order) is
(

∏

i< j

|zi − z j |2
)

n
∏

k=1

dm(zk).

Here dm denotes the Lebesgue measure on the complex plane.

One can get a probabilistic version of this by choosing the coefficients from

Lebesgue measure on a domain in C
n. Then the roots will be distributed with density

proportional to
∏

i< j
|zi − z j |2 for (z1, . . . , zn) in a certain symmetric domain of Cn.
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A similar phenomenon occurs in random matrix theory. We just informally state

the result here and refer the reader to (6.3.5) in chapter 6 for a precise statement

and proof.

FACT 1.1.4. Let (ai, j)i, j≤n be a matrix with complex entries and let z1, . . . , zn

be the eigenvalues of the matrix. Then it is possible to choose a set of auxiliary

variables which we just denote u (so that u has 2n(n−1) real parameters) so that

the transformation T(z,u)= (ai, j) is essentially one-to-one and onto and has Jacobian

determinant

f (u)
∏

i< j

|zi − z j |2

for some function f .

REMARK 1.1.5. Unlike in Lemma 1.1.1, to make a change of variables from the

entries of the matrix, we needed auxiliary variables in addition to eigenvalues. If

we impose product Lebesgue measure on ai, js, the measure induced on (z1, . . . , zn,u)

is a product of a measure on the eigenvalues and a measure on u. However, the

measures are infinite and hence it does not quite make sense to talk of "integrating

out the auxiliary variables" to obtain

(1.1.3)
∏

i< j

|zi − z j |2
n

∏

k=1

dm(zk)

as the "induced measure on the eigenvalues". We can however make sense of similar

statements as explained below.

Lemma 1.1.1 and Fact 1.1.4 give a technical intuition as to why zeros of random

analytic functions as well as eigenvalues of random matrices often exhibit repulsion.

To make genuine probability statements however, we would have to endow the coef-

ficients (or entries) with a probability distribution and use the Jacobian determinant

to compute the distribution of zeros (or eigenvalues). In very special cases, one can

get an explicit and useful answer, often of the kind

(1.1.4)
∏

i< j

|zi − z j |2
∏

k

e−V (zk)
n

∏

k=1

dm(zk)= exp

{

−
[

n
∑

k=1

V (zk)−
∑

i 6= j

log |zi − z j |
]}

n
∏

k=1

dm(zk).

This density may be regarded as a one component plasma with external potential

V and at a particular temperature (see Remark 1.1.6 below). Alternately one may

regard it as a “determinantal point process”. However it should be pointed out that in

most cases, the distribution of zeros (or eigenvalues) is not exactly of this form, and

then it is not to be hoped that one can get any explicit and tractable expression of the

density. Nevertheless the property of repulsion is generally valid at short distances.

Figure 2 shows a determinantal process and a process of zeros of a random analytic

function both having the same intensity (the average number of points per unit area).

REMARK 1.1.6. Let us make precise the notion of a one component plasma of n

particles with unit charge in the plane with potential V and temperature β−1. This

is just the probability density (with respect to Lebesgue measure on C
n) proportional

to

exp

{

−β

2

[

n
∑

k=1

V (zk)−
∑

j 6=k

log |z j − zk|
]}

n
∏

k=1

dm(zk).
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This expression fits the statistical mechanical paradigm, namely it is of the form

exp{−βH(x)}, where H has the interpretation of the energy of a configuration and

1/β has the physical interpretation of temperature. In our setting we have

(1.1.5) H(z1, . . . , zn)=
n
∑

k=1

V (zk)−
∑

j 6=k

log |z j − zk|.

If we consider n unit negative charges placed in an external potential V at locations

z1, . . . , zn, then the first term gives the total potential energy due the external field

and the second term the energy due to repulsion between the charges. According

to Coulomb’s law, in three dimensional space the electrical potential due to a point

charge is proportional to the inverse distance from the charge. Since we are in two

dimensions, the appropriate potential is log |z−w|, which is the Green’s function for

the Laplacian on R
2. However in the density (1.1.4) that (sometimes) comes from

random matrices, the temperature parameter is set equal to the particular value

β = 2, which correspond to determinantal processes. Surprisingly, this particular

case is much easier to analyse as compared to other values of β!

We study here two kinds of processes (determinantal and zero sets), focusing

particularly on specific examples that are invariant under a large group of transfor-

mations of the underlying space (translation-invariance in the plane, for instance).

Moreover there are certain very special cases of random analytic functions, whose

zero sets turn out to be determinantal and we study them in some detail. Finally,

apart from these questions of exact distributional calculations, we also present re-

sults on large deviations, central limit theorems and also (in a specific case) the

stochastic geometry of the zeros. In the rest of the chapter we define some basic

notions needed throughout, and give a more detailed overview of the contents of the

book.

1.2. Basic notions and definitions

Now we give precise definitions of the basic concepts that will be used through-

out the book. Let Λ be a locally compact Polish space (i.e., a topological space that

can be topologized by a complete and separable metric). Let µ be a Radon measure

on Λ (recall that a Radon measure is a Borel measure which is finite on compact

sets). For all examples of interest it suffices to keep the following two cases in mind.

• Λ is an open subset of Rd and µ is the d-dimensional Lebesgue measure

restricted to Λ.

• Λ is a finite or countable set and µ assigns unit mass to each element of Λ

(the counting measure on Λ).

Our point processes (to be defined) will have points in Λ and µ will be a reference

measure with respect to which we shall express the probability densities and other

similar quantities. So far we informally defined a point process to be a random

discrete subset of Λ. However the standard setting in probability theory is to have

a sample space that is a complete separable metric space and the set of all discrete

subsets of Λ is not such a space, in general. However, a discrete subset of Λ may

be identified with the counting measure on the subset (the Borel measure on Λ that

assigns unit mass to each element of the subset), and therefore we may define a point

process as a random variable taking values in the space M (Λ) of sigma-finite Borel

measures on Λ. This latter space is well-known to be a complete separable metric

space (see (69), for example).
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A point process X on Λ is a random integer-valued positive Radon measure

on Λ. If X almost surely assigns at most measure 1 to singletons, it is a simple

point process; in this case X can be identified with a random discrete subset of Λ,

and X (D) represents the number of points of this set that fall in D.

How does one describe the distribution of a point process? Given any m ≥ 1, any

Borel sets D1, . . . ,Dm of Λ, and open intervals I1, . . . , Im ⊂ [0,∞), we define a subset

of M (Λ) consisting of all measures θ such that θ(Dk) ∈ Ik, for each k ≤ m. These

are called cylinder sets and they generate the sigma field on M (Λ). Therefore, the

distribution of a point process X is determined by the probabilities of cylinder sets,

i.e., by the numbers P [X (Dk)= nk,1≤ k ≤ m] for Borel subsets D1, . . . ,Dm of Λ.

Conversely, one may define a point process by consistently assigning probabili-

ties to cylinder sets. Consistency means that
∑

0≤nm≤∞
P [X (Dk)= nk ,1≤ k ≤ m]

should be the same as P [X (Dk)= nk,1 ≤ k ≤ m−1]. (Of course, the usual properties

of finite additivity should hold as should the fact that these numbers are between

zero and one!). For example the Poisson process may be defined in this manner.

EXAMPLE 1.2.1. For m ≥ 1 and mutually disjoint Borel subsets Dk, 1 ≤ k ≤ m, of

Λ, let

p((D1,n1), . . . ,(Dm,nm))=
m
∏

k=1

e−µ(Dk) µ(Dk)nk

nk!
.

The right hand side is to be interpreted as zero if at least one of the Dks has infinite

µ-measure. Then Kolmogorov’s existence theorem asserts that there exists a point

process X such that

P [X (Dk)= nk,1 ≤ k ≤ m] = p((D1,n1), . . . ,(Dm,nm)).

This is exactly what we informally defined as the Poisson process with intensity

measure µ.

Nevertheless, specifying the joint distributions of the counts X (D), D ⊂Λ may

not be the simplest or the most useful way to define or to think about the distribution

of a point process. Alternately, the distribution of a point process can be described by

its joint intensities (also known as correlation functions). We give the definition

for simple point processes only, but see remark 1.2.3 for trick to extend the same to

general point processes.

DEFINITION 1.2.2. Let X be a simple point process. The joint intensities of a

point process X w.r.t. µ are functions (if any exist) ρk : Λk → [0,∞) for k ≥ 1, such

that for any family of mutually disjoint subsets D1, . . . ,Dk of Λ,

(1.2.1) E

[

k
∏

i=1

X (D i)

]

=
∫

∏

i D i

ρk(x1, . . . ,xk)dµ(x1) . . . dµ(xk).

In addition, we shall require that ρk(x1, . . . ,xk) vanish if xi = x j for some i 6= j.

As joint intensities are used extensively throughout the book, we spend the rest

of the section clarifying various points about their definition.

The first intensity is the easiest to understand - we just define the measure

µ1(D) := E[X (D)], we call it the first intensity measure of X . If it happens to be

absolutely continuous to the given measure µ, then the Radon Nikodym derivative



8 1. INTRODUCTION

ρ1 is called the first intensity function. From definition 1.2.2 it may appear that the

k-point intensity measure µk is the first intensity measure of X ⊗k (the k-fold prod-

uct measure on Λ
k) and that the k-point intensity function is the Radon Nikodym

derivative of µk with respect to µ⊗k, in cases when µk is absolutely continuous to µ⊗k.

However, this is incorrect, because (1.2.1) is valid only for pairwise disjoint D is. For

general subsets of Λk, for example, D1 × . . .×Dk with overlapping D is, the situation

is more complicated as we explain now.

REMARK 1.2.3. Restricting attention to simple point processes, ρk is not the

intensity measure of X k, but that of X ∧k, the set of ordered k-tuples of distinct

points of X . First note that (1.2.1) by itself does not say anything about ρk on the

diagonals, that is, for (x1, . . . ,xk) with xi = x j for some i 6= j. That is why we added

to the definition, the requirement that ρk vanish on the diagonal. Then, as we shall

explain, equation (1.2.1) implies that for any Borel set B ⊂Λ
k we have

(1.2.2) E#(B∩X ∧k)=
∫

B

ρk(x1, . . . ,xk)dµ(x1) . . . dµ(xk) .

When B = ∏

D
⊗ki

i
for a mutually disjoint family of subsets D1, . . . ,Dr of Λ, and k =

∑r
i=1

ki , the left hand side becomes

(1.2.3) E

[

r
∏

i=1

(

X (D i)

ki

)

ki!

]

.

For a general point process X , observe that it can be identified with a simple point

process X ∗ on Λ× {1,2,3, . . .} such that X ∗(D × {1,2,3, . . .}) = X (D) for Borel D ⊂Λ.

This way, one can deduce many facts about non-simple point processes from those

for simple ones.

But why are (1.2.2) and (1.2.3) valid for a simple point process? It suffices to

prove the latter. To make the idea transparent, we shall assume that Λ is a countable

set and that µ is the counting measure and leave the general case to the reader (con-

sult (55; 56; 70) for details). For simplicity, we restrict to r = 1 and k1 = 2 in (1.2.3))

and again leave the general case to the reader. We begin by computing E
[

X (D)2
]

.

E[X (D)2] = E

[(

∑

x∈D

X ({x})

)2]

= E

[

∑

x∈D

X ({x})

]

+
∑

x 6=y

E [X ({x})X ({y})]

= E [X (D)]+
∫

D×D

ρ2(x, y)dµ(x)dµ(y).

Here we used two facts. Firstly, X ({x}) is 0 or 1 (and 0 for all but finitely many

x ∈ D) and secondly, from (1.2.1), for x 6= y we get E[X ({x})X ({y})] = ρ2(x, y) while

ρ2(x,x)= 0 for all x. Thus

(1.2.4) E[X (D)(X (D)−1)]=
∫

D×D

ρ2(x, y)dµ(x)dµ(y)

as claimed.

Do joint intensities determine the distribution of a point process? The following

remark says yes, under certain restrictions.
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REMARK 1.2.4. Suppose that X (D) has exponential tails for all compact D ⊂Λ.

In other words, for every compact D, there is a constant c > 0 such that P[X (D) >
k] ≤ e−ck for all k ≥ 1. We claim that under this assumption, the joint intensities

(provided they exist) determine the law of X .

This is because exponential tails for X (D) for any compact D ensures that

for any compact D1, . . . ,Dk, the random vector (X (D1), . . . ,X (Dk)) has a conver-

gent Laplace transform in a neighbourhood of 0. That is, for some ǫ > 0 and any

s1, . . . ,sk ∈ (−ǫ,ǫ), we have

(1.2.5) E[exp{s1X (D1)+ . . .+ skX (Dk)}]<∞.

The Laplace transform determines the law of a random variable and is in turn deter-

mined by the moments, whence the conclusion. For these basic facts about moments

and Laplace transform consult Billingsley’s book (6).

Joint intensities are akin to densities: Assume that X is simple. Then, the joint

intensity functions may be interpreted as follows.

• If Λ is finite and µ is the counting measure on Λ, i.e., the measure that as-

signs unit mass to each element of Λ, then for distinct x1, . . . ,xk, the quan-

tity ρk(x1, . . . ,xk) is just the probability that x1, . . . ,xk ∈X .

• If Λ is open in R
d and µ is the Lebesgue measure, then for distinct x1, . . . ,xk,

and ǫ > 0 small enough so that the balls Bǫ(x j) are mutually disjoint, by

definition 1.2.2, we get

∫

∏k
j=1

Bǫ(x j)

ρk(y1, . . . , yk)
k

∏

j=1

dm(yj) = E

[

k
∏

j=1

X (Bǫ(x j))

]

=
∑

(n j )

n j≥1

P
(

X (Bǫ(x j))= n j , j ≤ k
)

k
∏

j=1

n j .(1.2.6)

In many examples the last sum is dominated by the term n1 = . . . = nk = 1.

For instance, if we assume that for any compact K , the power series

(1.2.7)
∑

(n j): j≤k

max{ρn1+...+nk
(t1, . . . , tn1+...,nk

) : ti ∈ K}
z

n1

1
. . . z

nk

k

n1! . . . nk!

converges for zi in a neighbourhood of 0, then it follows that for n j ≥ 1, by

(1.2.2) and (1.2.3) that if Bǫ(x j)⊂ K for j ≤ k, then

P
(

X (Bǫ(x j))= n j , j ≤ k
)

≤ E

[

k
∏

j=1

(

X (Bǫ(x j))

n j

)]

= 1

n1! . . . nk!

∫

Bǫ(x1)n1×...×Bǫ(xk)nk

ρn1+...+nk
(y1, . . . , yn1+...+nk

)
∏

j

dm(yj )

≤
max{ρn1+...+nk

(t1, . . . , tn1+...,nk
) : ti ∈ K}

n1! . . . nk!

k
∏

j=1

m(Bǫ)
n j .

Under our assumption 1.2.7, it follows that the term P
(

X (Bǫ(x j))= 1, j ≤ k
)

dominates the sum in (1.2.6). Further, as ρk is locally integrable, a.e.
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(x1, . . . ,xk) is a Lebesgue point and for such points we get

(1.2.8) ρk(x1, . . . ,xk)= lim
ǫ→0

P(X has a point in Bǫ(x j) for each j ≤ k)

m(Bǫ)k
.

If a continuous version of ρk exists, then (1.2.8) holds for every x1, . . . ,xk ∈Λ.

The following exercise demonstrates that for simple point processes with a deter-

ministic finite total number of points, the joint intensities are determined by the top

correlation (meaning k-point intensity for the largest k for which it is not identically

zero). This fails if the number of points is random or infinite.

EXERCISE 1.2.5. (1) Let X1, . . . , Xn be exchangeable real valued random

variables with joint density p(x1, . . . ,xn) with respect to Lebesgue measure

on R
n. Let X = ∑

δXk
be the point process on R that assigns unit mass to

each X i . Then show that the joint intensities of X are given by

(1.2.9) ρk(x1, . . . ,xk)=
n!

(n−k)!

∫

Rn−k

p(x1, . . . xn)dxk+1 . . . dxn.

(2) Construct two simple point process on Λ= {1,2,3} that have the same two-

point intensities but not the same one-point intensities.

Moments of linear statistics: Joint intensities will be used extensively throughout

the book. Therefore we give yet another way to understand them, this time in terms

of linear statistics. If X is a point process on Λ, and ϕ : Λ → R is a measurable

function, then the random variable

(1.2.10) X (ϕ) :=
∫

Λ

ϕdX =
∑

α∈Λ
ϕ(α)X ({α})

is called a linear statistic. If ϕ= 1D for some D ⊂Λ, then X (ϕ) is just X (D).

Knowing the joint distributions of X (ϕ) for a sufficiently rich class of test func-

tions ϕ, one can recover the distribution of the point process. For instance, the class

of all indicator functions of compact subsets of Λ is rich enough, as explained ear-

lier. Another example is the class of compactly supported continuous functions on Λ.

Joint intensities determine the moments of linear statistics corresponding to indica-

tor functions, as made clear in definition 1.2.2 and remark 1.2.4. Now we show how

moments of any linear statistics can be expressed in terms of joint intensities. This

is done below, but we state it so as to make it into an alternative definition of joint

intensities. This is really a more detailed explanation of remark 1.2.3.

Let X be a point process on Λ and let Cc(Λ) be the space of compactly supported

continuous functions on Λ. As always, we have a Radon measure µ on Λ.

(1) Define T1(ϕ) =E
[

X (ϕ)
]

. Then, T1 is a positive linear functional on Cc(Λ).

By Riesz’s representation theorem, there exists a unique positive regular

Borel measure µ1 such that

(1.2.11) T1(ϕ)=
∫

ϕdµ1.

The measure µ1 is called the first intensity measure of X .

If it happens that µ1 is absolutely continuous to µ, then we write dµ1 =
ρ1dµ and call ρ1 the first intensity function of X (with respect to the mea-

sure µ). We leave it to the reader to check that this coincides with ρ1 in

definition 1.2.2.
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(2) Define a positive bilinear functional on Cc(Λ)×Cc(Λ) by

T2(ϕ,ψ)=E
[

X (ϕ)X (ψ)
]

which induces a positive linear functional on Cc(Λ2). Hence, there is a

unique positive regular Borel measure µ̃2 on Λ
2 such that

T2(ϕ,ψ)=
∫

Λ2
ϕ(x)ψ(y)dµ̃2(x, y).

However, in general µ̃2 should not be expected to be absolutely continuous

to µ⊗µ. This is because the random measure X ⊗X has atoms on the

diagonal {(x,x) : x ∈Λ}. In fact,

(1.2.12) E
[

X (ϕ)X (ψ)
]

=E
[

X (ϕψ)
]

+E

[

∑

(x,y)∈Λ2

ϕ(x)ψ(y)1x 6=yX ({x})X ({y})

]

.

Both terms define positive bilinear functionals on Cc(Λ)×Cc(Λ) and are

represented by two measures µ̂2 and µ2 that are supported on the diagonal

D := {(x,x) : x ∈Λ} and Λ
2\D, respectively. Naturally, µ̃2 =µ2 + µ̂2.

The measure µ̂2 is singular with respect to µ⊗µ and is in fact the same

as the first intensity measure µ1, under the natural identification of D with

Λ. The second measure µ2 is called the two point intensity measure

of X and if it so happens that µ2 is absolutely continuous to µ⊗µ, then

its Radon-Nikodym derivative ρ2(x, y) is the called the two point intensity

function. The reader may check that this coincides with the earlier defini-

tion. For an example where the second intensity measure is not absolutely

continuous to µ⊗µ, look at the point process X = δa +δa+1 on R, where a

has N(0,1) distribution.

(3) Continuing, for any k ≥ 1 we define a positive multilinear functional on

Cc(Λ)k by

(1.2.13) Tk(ψ1, . . . ,ψk)=E

[

k
∏

i=1

X (ψi)

]

which induces a linear functional on Cc(Λ)⊗k and hence, is represented by

a unique positive regular Borel measure µ̃k on Λ
k. We write µ̃k as µ̂k +µk,

where µ̂k is supported on the diagonal Dk = {(x1, . . . ,xk) : xi = x j for some i 6=
j} and µk is supported on the complement of the diagonal in Λ

k. We call µk

the k point intensity measure and if it happens to be absolutely contin-

uous to µ⊗k, then we refer to its Radon Nikodym derivative as the k-point

intensity function. This agrees with our earlier definition.

1.3. Hints and solutions

Exercise 1.1.2 Consider

[

A B

−B A

]

. Multiply the second row by i and add to the first

to get

[

A− iB B+ iA

−B A

]

. Then multiply the first column by −i and add to the second to get

[

A− iB 0

−B A+ iB

]

. Since both these operations do not change the determinant, we see that

the original matrix has determinant equal to det(A− iB)det(A+ iB) = |det(A− iB)|2 .
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FIGURE 2. Samples of a translation invariant determinantal pro-

cess (left) and zeros of a Gaussian analytic function. Determinantal

processes exhibit repulsion at all distances, and the zeros repel at

short distances only. However, the distinction is not evident in the

pictures.



CHAPTER 2

Gaussian Analytic Functions

2.1. Complex Gaussian distribution

Throughout this book, we shall encounter complex Gaussian random variables.

As conventions vary, we begin by establishing our terminology. By N(µ,σ2), we

mean the distribution of the real-valued random variable with probability density

1

σ
p

2π
e
− (x−µ)2

2σ2 . Here µ ∈R and σ2 > 0 are the mean and variance respectively.

A standard complex Gaussian is a complex-valued random variable with

probability density 1
π

e−|z|
2

w.r.t the Lebesgue measure on the complex plane. Equiva-

lently, one may define it as X+ iY , where X and Y are i.i.d. N(0, 1
2
) random variables.

Let ak, 1 ≤ k ≤ n be i.i.d. standard complex Gaussians. Then we say that a :=
(a1, . . . ,an)t is a standard complex Gaussian vector. Then if B is a (complex) m×n

matrix, Ba+µ is said to be an m-dimensional complex Gaussian vector with mean µ

(an m×1 vector) and covariance Σ= BB∗ (an m×m matrix). We denote its distribu-

tion by Nm
C

(

µ,Σ
)

.

EXERCISE 2.1.1. i. Let U be an n×n unitary matrix, i.e. UU∗ = Id , (here

U∗ is the conjugate transpose of U), and a an n-dimensional standard com-

plex Gaussian vector. Show that Ua is also an n-dimensional standard

complex Gaussian vector.

ii. Show that the mean and covariance of a complex Gaussian random vector

determines its distribution.

REMARK 2.1.2. Although a complex Gaussian can be defined as one having

i.i.d. N(0, 1
2

) real and imaginary parts, we advocate thinking of it as a single entity,

if not to think of a real Gaussian as merely the real part of a complex Gaussian! In-

deed, one encounters the complex Gaussian variable in basic probability courses, for

instance in computing the normalizing constant for the density e−x2/2 on the line (by

computing the normalizing constant for a complex Gaussian and then taking square

roots); and also in generating a random normal on the computer (by generating a

complex Gaussian and taking its real part). The complex Gaussian is sometimes

easier to work with because it can be represented as a pair of independent random

variables in two co-ordinate systems, Cartesian as well as polar (as explained below

in more detail). At a higher level, in the theory of random analytic functions and ran-

dom matrix theory, it is again true that many more exact computations are possible

when we use complex Gaussian coefficients (or entries) than when real Gaussians

are used.

Here are some other basic properties of complex Gaussian random variables.

13
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• If a has Nm
C

(

µ,Σ
)

distribution, then for every j,k ≤ n (not necessarily dis-

tinct), we have

E
[

(ak −µk)(a j −µ j)
]

= 0 and E
[

(a j −µ j)(ak −µk)
]

=Σ j,k.

• If a is a standard complex Gaussian, then |a|2 and a
|a| are independent, and

have exponential distribution with mean 1 and uniform distribution on the

circle {z : |z| = 1}, respectively.

• Suppose a and b are m and n-dimensional random vectors such that
[

a

b

]

∼ Nm+n
C

([

µ

ν

]

,

[

Σ11 Σ12

Σ21 Σ22

])

,

where the mean vector and covariance matrices are partitioned in the ob-

vious way. Then Σ11 and Σ22 are Hermitian, while Σ
∗
12

= Σ21. Assume that

Σ11 is non-singular. Then the distribution of a is Nm
C

(µ,Σ11) and the condi-

tional distribution of b given a is

Nn
C

(

ν+Σ21Σ
−1
11 (a−µ),Σ22 −Σ21Σ

−1
11Σ12

)

.

EXERCISE 2.1.3. Prove this.

• Weak limits of complex Gaussians are complex Gaussians. More precisely,

EXERCISE 2.1.4. If an has NC(µn,Σn) distribution and an
d→ a, then

{µn} and {Σn} must converge, say to µ and Σ, and a must have NC(µ,Σ)

distribution.

Conversely, if {µn} and {Σn} converge to µ and Σ, then an converges

weakly to NC(µ,Σ) distribution.

• The moments of products of complex Gaussians can by computed in terms

of the covariance matrix by the Wick or the Feynman diagram formula.

First we recall the notion of “permanent” of a matrix, well-known to combi-

natorists but less ubiquitous in mathematics than its more famous sibling,

the determinant.

DEFINITION 2.1.5. For an n× n matrix M, its permanent, denoted

per(M) is defined by

per(M)=
∑

π∈Sn

n
∏

k=1

Mkπk
.

The sum is over all permutations of {1,2, . . . ,n}.

REMARK 2.1.6. The analogy with the determinant is clear - the signs

of the permutations have been omitted in the definition. But note that

this makes a huge difference in that per(A−1MA) is not in general equal to

per(M). This means that the permanent is a basis-dependent notion and

thus has no geometric meaning unlike the determinant. As such, it can be

expected to occur only in those contexts where the entries of the matrices

themselves are important, as often happens in combinatorics and also in

probability.

Now we return to computing moments of products of complex Gaus-

sians. The books of Janson (40) or Simon (79) have such formulas, also in

the real Gaussian case.
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LEMMA 2.1.7 (Wick formula). Let (a,b) = (a1, . . . ,an,b1, . . . bn)t have

NC(0,Σ) distribution, where

(2.1.1) Σ=
[

Σ1,1 Σ1,2

Σ2,1 Σ2,2

]

.

Then,

(2.1.2) E
[

a1 · · ·anb1 . . . bn

]

= per(Σ1,2).

In particular

E
[

|a1 · · ·an|2
]

= per(Σ1,1).

PROOF. First we prove that

E[a1 · · ·anb1 · · ·bn]=
∑

π

k
∏

j=1

Ea jbπ( j) = per
(

Ea jbk

)

jk
,

where the sum is over all permutations π ∈ Sn. Both sides are linear in each

a j and b j , and we may assume that the a j , b j are complex linear combi-

nations of some finite i.i.d. standard complex Gaussian sequence {Vj}. The

formula is proved by induction on the total number of nonzero coefficients

that appear in the expression of the a j and b j in terms of the Vj . If the

number of nonzero coefficients is more than one for one of a j or b j , then we

may write that variable as a sum and use induction and linearity. If it is

1 or 0 for all a j , b j , then the formula is straightforward to verify; in fact,

using independence it suffices to check that V =Vj has EV nV
m = n!1{m=n}.

For n 6= m this follows from the fact that V has a rotationally symmetric

distribution. Otherwise, |V |2n has the distribution of the nth power of a

rate 1 exponential random variable, so its expectation equals n!.

The second statement follows immediately from the first, applied to the

vector (a,a). �

• If an, n≥ 1 are i.i.d. NC(0,1), then

(2.1.3) lim sup
n→∞

|an|
1
n = 1, almost surely.

In fact, equation (2.1.3) is valid for any i.i.d. sequence of complex valued

random variables an, such that

(2.1.4) E [max{log |a1|,0}]<∞, provided P[a1 = 0]< 1.

We leave the proof as a simple exercise for the reader not already familiar

with it. We shall need this fact later, to compute the radii of convergence of

random power series with independent coefficients.

2.2. Gaussian analytic functions

Endow the space of analytic functions on a region Λ ⊂ C with the topology of

uniform convergence on compact sets. This makes it a complete separable metric

space which is the standard setting for doing probability theory (To see completeness,

if {fn} is a Cauchy sequence, then fn converges uniformly on compact sets to some

continuous function f . Then Morera’s theorem assures that that f must be analytic

because its contour integral vanishes on any closed contour in Λ, since
∫

γ
f = lim

n→∞

∫

γ
fn

and the latter vanishes for every n by analyticity of fn).
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DEFINITION 2.2.1. Let f be a random variable on a probability space taking

values in the space of analytic functions on a region Λ ⊂ C. We say f is a Gaussian

analytic function (GAF) on Λ if (f(z1), . . . ,f(zn)) has a mean zero complex Gaussian

distribution for every n≥ 1 and every z1, . . . , zn ∈Λ.

It is easy to see the following properties of GAFs

• {f(k)} are jointly Gaussian, i.e., the joint distribution of f and finitely many

derivatives of f at finitely many points,
{

f(k)(z j) : 0≤ k ≤ n,1 ≤ j ≤ m
}

,

has a (mean zero) complex Gaussian distribution. (Hint: Weak limits of

Gaussians are Gaussians and derivatives are limits of difference coeffi-

cients).

• For any n ≥ 1 and any z1, . . . , zn ∈Λ, the random vector (f(z1), . . . ,f(zn)) has

a complex Gaussian distribution with mean zero and covariance matrix
(

K(zi , z j)
)

i, j≤n
. By Exercise 2.1.1 it follows that the covariance kernel K

determines all the finite dimensional marginals of f. Since f is almost surely

continuous, it follows that the distribution of f is determined by K .

• Analytic extensions of GAFs are GAFs.

EXERCISE 2.2.2. In other words, if f is a random analytic function on

Λ and is Gaussian when restricted to a domain D ⊂Λ, then f is a GAF on

the whole of Λ.

The following lemma gives a general recipe to construct Gaussian analytic functions.

LEMMA 2.2.3. Let ψn be holomorphic functions on Λ. Assume that
∑

n |ψn(z)|2
converges uniformly on compact sets in Λ. Let an be i.i.d. random variables with

zero mean and unit variance. Then, almost surely,
∑

n anψn(z) converges uniformly

on compact subsets of Λ and hence defines a random analytic function.

In particular, if an has standard complex Gaussian distribution, then f(z) :=
∑

n anψn(z) is a GAF with covariance kernel K(z,w)=∑

nψn(z)ψn(w).

If (cn) is any square summable sequence of complex numbers, and ans are i.i.d.

with zero mean and unit variance, then
∑

cnan converges almost surely, because by

Kolmogorov’s inequality

P

[

sup
k≥N

∣

∣

k
∑

j=N

c ja j

∣

∣≥ t

]

≤
1

t2

∞
∑

j=N

|c j |2

→ 0 as N →∞.

Thus, for fixed z, the series of partial sums for f(z) converge almost surely. However,

it is not clear that the series converges for all z simultaneously, even for a single

sample point. The idea of the proof is to regard
∑

anψn as a Hilbert space valued

series and prove a version of Kolmogorov’s inequality for such series. This part is

taken from chapter 3 of Kahane’s book (44). That gives convergence in the Hilbert

space, and by Cauchy’s formulas we may deduce uniform convergence on compacta.

PROOF. Let K be any compact subset of Λ. Regard the sequence Xn =
n
∑

k=1
akψk

as taking values in L2(K) (with respect to Lebesgue measure). Let ‖ · ‖2 denote the
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norm in L2(K). It is easy to check that for any k < n we have

(2.2.1) E
[

‖Xn‖2
∣

∣a j , j ≤ k
]

= ‖Xk‖2 +
n
∑

j=k+1

‖ψ j‖2.

Define the stopping time τ= inf{n : ‖Xn‖ > ǫ}. Then,

E
[

‖Xn‖2
]

≥
n
∑

k=1

E
[

‖Xn‖21τ=k

]

=
n
∑

k=1

E
[

1τ=kE[‖Xn‖2|a j , j ≤ k]
]

≥
n
∑

k=1

E
[

1τ=k‖Xk‖2
]

by (2.2.1)

≥ ǫ2P [τ≤ n] .

Thus

(2.2.2) P

[

sup
j≤n

‖X j‖ ≥ ǫ

]

≤ 1

ǫ2

n
∑

j=1

‖ψ j‖2.

We have just proved Kolmogorov’s inequality for Hilbert space valued random vari-

ables. Apply this to the sequence {XN+n − XN }n to get

(2.2.3) P

[

sup
m,n≥N

‖Xm − Xn‖ ≥ 2ǫ

]

≤P

[

sup
n≥1

‖XN+n − XN‖ ≥ ǫ

]

≤
1

ǫ2

∞
∑

j=N+1

‖ψ j‖2

which converges to zero as N →∞. Thus

P [∃N such that ∀n,‖XN+n − XN‖ ≤ ǫ]= 1.

In other words, almost surely Xn is a Cauchy sequence in L2(K).

To show uniform convergence on compact subsets, consider any disk D(z0,4R)

contained in Λ. Since Xn is an analytic function on Λ for each n, Cauchy’s formula

says

(2.2.4) Xn(z)= 1

2πi

∫

Cr

Xn(ζ)

ζ− z
dζ

where Cr(t) = z0 + reit, 0 ≤ t ≤ 2π and |z − z0| < r. For any z ∈ D(z0,R), average

equation (2.2.4) over r ∈ (2R,3R) to deduce that

Xn(z) = 1

2πiR

3R
∫

2R

2π
∫

0

Xn(z0+ reiθ )

z0 + reiθ − z
ieiθdθrdr

=
1

2π

∫

A

Xn(ζ)ϕz(ζ)dm(ζ)

where A denotes the annulus around z0 of radii 2R and 3R and ϕz(·) is defined by

the equality. The observation that we shall need is that the collection {ϕz}z∈D(z0,R) is

uniformly bounded in L2(A).

We proved that almost surely {Xn} is a Cauchy sequence in L2(K) where K :=
D(z0,4R). Therefore there exists X ∈ L2(K) such that Xn → X in L2(K). Therefore

the integral above converges to 1
2π

∫

A X (ζ)ϕz(ζ)dm(ζ) uniformly over z ∈ D(z0,R).
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Thus we conclude that Xn → X uniformly on compact sets in Λ and that X is an

analytic function on Λ.

If ans are complex Gaussian, it is clear that Xn is a GAF for each n. Since

limits of Gaussians are Gaussians, we see that X is also a GAF. The formula for the

covariance E[f(z)f(w)] is obvious. �

2.3. Isometry-invariant zero sets

As explained in Chapter 1, our interest is in the zero set of a random analytic

function. Unless one’s intention is to model a particular physical phenomenon by

a point process, there is one criterion that makes some point processes more in-

teresting than others, namely, invariance under a large group of transformations

(invariance of a measure means that its distribution does not change under the ac-

tion of a group, i.e., symmetry). There are three particular two dimensional domains

(up to conformal equivalence) on which the group of conformal automorphisms act

transitively (There are two others that we do not consider here, the cylinder or the

punctured plane, and the two dimensional torus). We introduce these domains now.

• The Complex Plane C: The group of transformations

(2.3.1) ϕλ,β(z)= λz+β, z ∈C

where |λ| = 1 and β ∈ C, is nothing but the Euclidean motion group. These

transformations preserve the Euclidean metric ds2 = dx2 + dy2 and the

Lebesgue measure dm(z) = dxdy on the plane.

• The Sphere S
2: The group of rotations act transitively on the two dimen-

sional sphere. Moreover the sphere inherits a complex structure from the

complex plane by stereographic projection which identifies the sphere with

the extended complex plane. In this book we shall always refer to C∪ {∞}

as the sphere. The rotations of the sphere become linear fractional trans-

formations mapping C∪ {∞} to itself bijectively. That is, they are given by

(2.3.2) ϕα,β(z)= αz+β

−βz+α
, z ∈C∪ {∞}

where α,β ∈C and |α|2+|β|2 = 1. These transformations preserve the spher-

ical metric ds2 = dx2+d y2

(1+|z|2)2
and the spherical measure dm(z)

(1+|z|2)2
. It is called the

spherical metric because it is the push forward of the usual metric (inher-

ited from R
3) on the sphere onto C∪{∞} under the stereographic projection,

and the measure is the push forward of the spherical area measure.

EXERCISE 2.3.1. (i) Show that the transformations ϕα,β defined by

(2.3.2) preserve the spherical metric and the spherical measure.

(ii) Show that the radius and area of the disk D(0,r) in the spherical metric

and spherical measure are arctan(r) and πr2

1+r2 , respectively.

• The Hyperbolic Plane D: The group of transformations

(2.3.3) ϕα,β(z)= αz+β

βz+α
, z ∈D

where α,β ∈ C and |α|2 −|β|2 = 1, is the group of linear fractional transfor-

mations mapping the unit disk D = {z : |z| < 1} to itself bijectively. These
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transformations preserve the hyperbolic metric ds2 = dx2+d y2

(1−|z|2)2
and the hy-

perbolic area measure dm(z)

(1−|z|2)2
(this normalization differs from the usual

one, with curvature −1, by a factor of 4, but it makes the analogy with the

other two cases more formally similar). This is one of the many models for

the hyperbolic geometry of Bolyai, Gauss and Lobachevsky (see (13) or (36)

for an introduction to hyperbolic geometry).

EXERCISE 2.3.2. (i) Show that ϕα,β defined in (2.3.3) preserves the

hyperbolic metric and the hyperbolic measure.

(ii) Show that the radius and area of the disk D(0,r), r < 1 in the hyper-

bolic metric and hyperbolic measure are arctanh(r) and πr2

1−r2 , respec-

tively.

Note that in each case, the group of transformations acts transitively on the cor-

responding space, i.e., for every z,w in the domain, there is a transformation ϕ such

that ϕ(z) = w. This means that in these spaces every point is just like every other

point. Now we introduce three families of GAFs whose relation to these symmetric

spaces will be made clear in Proposition 2.3.4.

In each case, the domain of the random analytic function can be found using

Lemma 2.2.3 or directly from equation (2.1.3).

• The Complex Plane C: Define for L > 0,

(2.3.4) f(z)=
∞
∑

n=0

an

p
Ln

p
n!

zn.

For every L > 0, this is a random analytic function in the entire plane with

covariance kernel exp{Lzw}.

• The Sphere S
2: Define for L ∈N= {1,2,3, . . .},

(2.3.5) f(z)=
L
∑

n=0

an

p
L(L−1) . . . (L−n+1)

p
n!

zn.

For every L ∈ N, this is a random analytic function on the complex plane

with covariance kernel (1+ zw)L. Since it is a polynomial, we may also

think of it as an analytic function on S
2 =C∪ {∞} with a pole at ∞.

• The Hyperbolic Plane D: Define for L > 0,

(2.3.6) f(z)=
∞
∑

n=0

an

p
L(L+1) . . . (L+n−1)

p
n!

zn.

For every L > 0, this is a random analytic function in the unit disk D = {z :

|z| < 1} with covariance kernel (1− zw)−L. When L is not an integer, the

question of what branch of the fractional power to take, is resolved by the

requirement that K(z, z) be positive.

It is natural to ask whether the unit disk is the natural domain for the

hyperbolic GAF or if it has an analytic continuation to a larger region. To

see that almost surely it does not extend to any larger open set, consider

an open disk D intersecting D but not contained in D, and let CD be the

event that there exists an analytic continuation of f to D∪ D. Note that

CD is a tail event, and therefore by Kolmogorov’s zero-one law, if it has

positive probability then it occurs almost surely. If P(CD) = 1 for some D,

then by the rotational symmetry of complex Gaussian distribution, we see
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that P(CeiθD) = 1 for any θ ∈ [0,2π]. Choose finitely many rotations of D so

that their union contains the unit circle. With probability 1, f extends to

all of these rotates of D, whence we get an extension of f to a disk of radius

strictly greater than 1. But the radius of convergence is 1 a.s. Therefore

P(CD)= 0 for any D, which establishes our claim.

Another argument is pointed out in the notes. However, these argu-

ments used the rotational invariance of complex Gaussian distribution very

strongly. One may adapt an argument given in Billingsley (6), p. 292 to

give a more robust proof that works for any symmetric distribution of the

coefficients (that is, −a
d= a).

LEMMA 2.3.3. Let an be i.i.d. random variables with a symmetric dis-

tribution in the complex plane. Assume that conditions (2.1.4) hold. Then
∑∞

n=0 an

p
L(L+1)...(L+n−1)p

n!
zn does not extend analytically to any domain larger

than the unit disk.

PROOF. Assuming (2.1.4), Borel-Cantelli lemmas show that the radius

of convergence is at most 1. We need to consider only the case when it is

equal to 1. As before, suppose that P(CD) = 1 for some disk D intersecting

the unit disk but not contained in it. Fix k large enough so that an arc of

the unit circle of length 2π
k

is contained in D and set

(2.3.7) ãn =
{

an if n 6= 0 mod k

−an if n= 0 mod k
.

Let

(2.3.8) f̃(z)=
∞
∑

n=0

ãn

p
L(L+1) . . . (L+n−1)

p
n!

zn

and define C̃D in the obvious way. Since f̃
d= f it follows that P(CD)=P(C̃D).

Now suppose both these events have probability one so that the function

(2.3.9) g(z)
def= f(z)− f̃(z)= 2

∞
∑

n=0

akn

p
L(L+1) . . . (L+kn−1)

p
(kn)!

zkn

may be analytically extended to D∪D almost surely. Replacing z by ze2πi/k

leaves g(z) unchanged, hence g can be extended to D∪ (∪ℓDℓ) where Dℓ =
e2πiℓ/kD. In particular, g can be analytically extended to (1+ ǫ)D for some

ǫ> 0 which is impossible since g has radius of convergence equal to one. We

conclude that CD has probability zero. �

Next we prove that the zero sets of the above analytic functions are isometry-

invariant.

PROPOSITION 2.3.4. The zero sets of the GAF f in equations (2.3.4), (2.3.5) and

(2.3.6) are invariant (in distribution) under the transformations defined in equations

(2.3.1), (2.3.2) and (2.3.3) respectively. This holds for every allowed value of the pa-

rameter L, namely L > 0 for the plane and the disk and L ∈N for the sphere.

PROOF. For definiteness, let us consider the case of the plane. Fix L > 0. Then

f(z)=
∞
∑

n=0

an

p
Ln

p
n!

zn,
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is a centered(mean zero) complex Gaussian process, and as such, its distribution is

characterized by its covariance kernel exp{Lzw}. Now consider the function obtained

by translating f by an isometry in (2.3.1), i.e., fix |λ| = 1 and β ∈C, and set

g(z)= f(λz+β).

g is also a centered complex Gaussian process with covariance kernel

Kg(z,w) = Kf(λz+β,λw+β)

= eLzw+Lzλβ+Lwβλ+L|β|2 .

If we set

h(z)= f(z)eLzλβ+ 1
2

L|β|2 ,

then it is again a centered complex Gaussian process. Its covariance kernel Kh(z,w)

is easily checked to be equal to Kg(z,w). This implies that

(2.3.10) f(λz+β)
d= f(z)eLzλβ+ 1

2
L|β|2 ,

where the equality in distribution is for the whole processes (functions), not just for

a fixed z. Since the exponential function on the right hand side has no zeros, it

follows that the zeros of f(λz+β) and the zeros of f(z) have the same distribution.

This proves that the zero set is translationally invariant in distribution.

The proof in the other two cases is exactly the same. If f is one of the GAFs under

consideration, and ϕ is an isometry of the corresponding domain, then by computing

the covariance kernels one can easily prove that

(2.3.11) f
(

ϕ(·)
) d= f(·)∆(ϕ, ·),

where, ∆(ϕ, z) is a deterministic nowhere vanishing analytic function of z. That

immediately implies the desired invariance of the zero set of f.

The function ∆(ϕ, z) is given explicitly by (we are using the expression for ϕ from

equations (2.3.1), (2.3.2) and (2.3.3) respectively).

∆(ϕ, z)=











eLzλβ+ 1
2

L|β|2 domain=C.

ϕ′(z)
L
2 domain=S

2.

ϕ′(z)−
L
2 domain=D.

It is important to notice the following two facts or else the above statements do not

make sense.

(1) In the case of the sphere, by explicit computation we can see that ϕ′(z)

is (−βz+α)−2. Therefore one may raise ϕ′ to half-integer powers and get

(single-valued) analytic functions.

(2) In the case of the disk, again by explicit computation we can see that ϕ′(z)

is (βz+α)−2, but since L is any positive number, to raise ϕ′ to the power L/2

we should notice that ϕ′(z) does not vanish for z in the unit disk (because

|α|2 − |β|2 = 1). And hence, a holomorphic branch of logϕ′ may be chosen

and thus we may define ϕ′ to the power L/2.

�

We shall see later (remark 2.4.5) that the first intensity of zero sets for these canon-

ical GAFs is not zero. Translation invariance implies that the expected number

of zeros of the planar and hyperbolic GAFs is almost surely infinite. However, mere

translation invariance leaves open the possibility that with positive probability there
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are no zeros at all! We rule out this ridiculous possibility by showing that the zero

set is in fact ergodic. We briefly recall the definition of ergodicity.

DEFINITION 2.3.5. Let (Ω,F ,P) be a probability space and let G be a group of

measure preserving transformations of Ω to itself, that is, P◦τ−1 =P for every τ ∈G.

An invariant event is a set A ∈ F such that τ(A) = A for every τ ∈ G. The action of

G is said to be ergodic if every invariant set has probability equal to zero or one. In

this case we may also say that P is ergodic under the transformations G.

EXAMPLE 2.3.6. Let P be the distribution of the zero set of the planar GAF f.

Then by Proposition 2.3.4 we know that the Euclidean motion group acts in a mea-

sure preserving manner. The event that f has infinitely many zeros is an invariant

set. Another example is the event that

(2.3.12) lim
a→∞

1

4a2
{Number of zeros of f in [−a,a]2}= c

where c is a fixed constant. In Proposition 2.3.7 below, we shall see that the action

of the translation group (and hence the whole motion group) is ergodic and hence

all these invariant events have probability zero or one. We shall see later that the

expected number of zeros is positive, which shows that the number of zeros is almost

surely infinite. Similarly, the event in (2.3.12) has probability 1 for c = 1/π and zero

for any other c.

PROPOSITION 2.3.7. The zero sets of the GAF f in equations (2.3.4), and (2.3.6)

are ergodic under the action of the corresponding isometry groups.

PROOF. We show the details in the planar case (Λ= C) with L = 1. The proof is

virtually identical in the hyperbolic case. For β ∈ C, let fβ(z)= f(z+β)e−zβ− 1
2
|β|2 . We

saw in the proof of Proposition 2.3.4 that fβ
d= f. We compute

E
[

fβ(z)f(w)
]

= e−zβ− 1
2
|β|2+zw+βw.

As β→∞ this goes to 0 uniformly for z,w in any compact set. By Cauchy’s formula,

the coefficients of the power series expansion of fβ around 0 are given by

1

2πi

∫

C

fβ(ζ)

ζn+1
dζ,

where C(t) = eit, 0 ≤ t≤ 2π. Therefore, for any n, the first n coefficients in the power

series of f and the first n coefficients in the power series of fβ become uncorrelated

and hence (by joint Gaussianity) independent, as β→∞.

Now let A be any invariant event. Then we can find an event An that depends

only on the first n power series coefficients and satisfies P[A△An]≤ ǫ. Then,
∣

∣E
[

1A(f)1A(fβ)
]

−E
[

1An
(f)1An

(fβ)
] ∣

∣ ≤ 2ǫ.

Further, by the asymptotic independence of the coefficients of f and fβ, as β→∞,

E
[

1An
(f)1An

(fβ)
]

→E
[

1An
(f)

]

E
[

1An
(fβ)

]

=
(

E
[

1An
(f)

])2
.

Thus we get

(2.3.13) limsup
β→∞

∣

∣E
[

1A(f)1A(fβ)
]

− (E [1A(f)])
2

∣

∣≤ 4ǫ.
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This is true for any ǫ> 0 and further, by the invariance of A, we have 1A(f)1A(fβ) =
1A(f). Therefore

(2.3.14) E [1A(f)]= (E [1A(f)])
2

showing that the probability of A is zero or one. Since the zeros of fβ are just trans-

lates of the zeros f, any invariant event that is a function of the zero set must have

probability zero or one. In other words, the zero set is ergodic under translations. �

REMARK 2.3.8. It is natural to ask whether these are the only GAFs on these

domains with isometry-invariant zero sets. The answer is essentially yes, but we

need to know a little more in general about zeros of GAFs before we can justify that

claim.

2.4. Distribution of zeros - The first intensity

In this section, we show how to compute the first intensity or the one-point cor-

relation function (see definition 1.2.2). The setting is that we have a GAF f and the

point process under consideration is the counting measure on f−1{0} with multiplici-

ties where f is a GAF. The following lemma from (70) shows that in great generality

almost surely each zero has multiplicity equal to 1.

LEMMA 2.4.1. Let f be a nonzero GAF in a domain Λ. Then f has no nondetermin-

istic zeros of multiplicity greater than 1. Furthermore, for any fixed complex number

w 6= 0, f−w has no zeros of multiplicity greater than 1 (there can be no deterministic

zeros for w 6= 0 since f has zero mean).

PROOF. To prove the first statement in the theorem, we must show that almost

surely, there is no z such that f(z) = f′(z) = 0. Fix z0 ∈ Λ such that K(z0, z0) 6= 0.

Then h(z) := f(z)− K(z,z0)
K(z0,z0)

f(z0) is a GAF that is independent of f(z0). For z such that

K(z, z0) 6= 0, we can also write

(2.4.1)
f(z)

K(z, z0)
= h(z)

K(z, z0)
+ f(z0)

K(z0, z0)
.

Thus if z is a multiple zero of f, then either K(z, z0)= 0 or z is also a multiple zero of

the right hand side of (2.4.1). Since K(·, z0) is an analytic function, its zeros constitute

a deterministic countable set. Therefore, f has no multiple zeros in that set unless it

has a deterministic one. Thus we only need to consider the complement of this set.

Now restrict to the reduced domain Λ
′ got by removing from Λ all z for which

K(z, z0) = 0. Condition on h. The double zeros of f in Λ
′ are those z for which the

right hand side of (2.4.1) as well as its derivative vanish. In other words, we must

have

(2.4.2)

(

h(z)

K(z, z0)

)′
= 0 and

f(z0)

K(z0, z0)
=− h(z)

K(z, z0)
.

Let S be the set of z such that
(

h(z)
K(z,z0)

)′
= 0. Almost surely, S is a countable set. Then

the second event in (2.4.2) occurs if and only if

f(z0)

K(z0, z0)
∈

{

−
h(z)

K(z, z0)
: z ∈ S

}

.

The probability of this event is zero because the set on the right is countable and the

conditional distribution of f(z0) given h(·) is not degenerate.

The same proof works with f replaced by f−w because the mean 0 nature of f

did not really play a role. �
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We give three different ways to find a formula for the first intensity of nf, the

counting measure (with multiplicities) on f−1{0}, when f is a Gaussian analytic func-

tion. Part of the outcome will be that the first intensity does exist, except at the

deterministic zeros (if any) of f. The expressions that we obtain in the end can be

easily seen to be equivalent.

2.4.1. First intensity by Green’s formula. The first step is to note that for

any analytic function f (not random), we have

(2.4.3) dn f (z)= 1

2π
∆ log | f (z)|.

Here the Laplacian ∆ on the right hand side should be interpreted in the distri-

butional sense. In other words, the meaning of (2.4.3) is just that for any smooth

function ϕ compactly supported in Λ,

(2.4.4)

∫

Λ

ϕ(z)dn f (z)=
∫

Λ

∆ϕ(z)
1

2π
log | f (z)|dm(z).

To see this, write f (z)= g(z)
∏

k(z−αk)mk , where αk are zeros of f (with multiplicities

mk) that are in the support of ϕ and g is an analytic function with no zeros in the

support of ϕ. Since ϕ is compactly supported, there are only finitely many αk. Thus

log | f (z)| = log |g(z)|+
∑

k

mk log |z−αk |.

Now, ∆ log |g| is identically zero on the support of ϕ because log |g| is, locally, the

real part of an analytic function (of any continuous branch of log(g)). Moreover,
1

2π log |z−αk | =G(αk, z), the Green’s function for the Laplacian in the plane implying

that
∫

Λ

∆ϕ(z)
1

2π
log |z−αk| =ϕ(αk).

Therefore (2.4.4) follows.

Now for a random analytic function f, we get

E





∫

Λ

ϕ(z)dnf(z)



 = E





∫

Λ

∆ϕ(z)
1

2π
log |f(z)|dm(z)



(2.4.5)

=
∫

Λ

∆ϕ(z)
1

2π
E [log |f(z)|]dm(z)(2.4.6)

by Fubini’s theorem. To justify applying Fubini’s theorem, note that

E





∫

Λ

|∆ϕ(z)| 1

2π

∣

∣ log |f(z)|
∣

∣dm(z)



=
∫

Λ

|∆ϕ(z)| 1

2π
E

[ ∣

∣ log |f(z)|
∣

∣

]

dm(z).

Now for a fixed z ∈Λ, f(z) is a complex Gaussian with mean zero and variance K(z, z).

Therefore, if a denotes a standard complex Gaussian, then

E
[ ∣

∣ log |f(z)|
∣

∣

]

≤ E
[ ∣

∣ log |a|
∣

∣

]

+
∣

∣ log
√

K(z, z)
∣

∣

= 1

2

∞
∫

0

| log(r)|e−rdr+ 1

2

∣

∣ logK(z, z)
∣

∣

= C+ 1

2

∣

∣ logK(z, z)
∣

∣
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for a finite constant C. Observe that | logK(z, z)| is locally integrable everywhere

in z. The only potential problem is at points z0 for which K(z0, z0) = 0. But then,

in a neighbourhood of z0 we may write K(z, z) = |z − z0|2pL(z, z) where L(z0, z0) is

not zero. Thus logK(z, z) grows as log |z− z0| as z → z0, whence it is integrable in a

neighbourhood of z0. Thus

E





∫

Λ

|∆ϕ(z)|
∣

∣ log |f(z)|
∣

∣

dm(z)

2π



<∞.

This justifies the use of Fubini’s theorem in (2.4.6) and we get

(2.4.7) E





∫

Λ

ϕ(z)dnf(z)



=
∫

Λ

ϕ(z)
1

2π
∆E [log |f(z)|]dm(z).

Again using the fact that f(z)p
K(z,z)

is a standard complex Gaussian, we deduce that

E[log |f(z)|] = E [log |a|]+
1

2
logK(z, z)

= −γ

2
+ log

√

K(z, z)

where

γ=−
∞
∫

0

log(r)e−rdr.

is in fact the negative of Euler’s constant, but for our purpose we need only observe

that it does not depend on z. Thus by comparing (2.4.7) which is valid for all C2
c

functions, with (1.2.11) we deduce that the first intensity of f−1{0} with respect to

Lebesgue measure is given by

(2.4.8) ρ1(z)= 1

4π
∆ logK(z, z).

This is sometimes known as the Edelman-Kostlan formula. There is no problem

with differentiating logK(z, z) which is real analytic. Exceptions are points where

K(z, z) vanish, and at such points the first intensity function does not exist and the

first intensity measure has an atom (f has a deterministic zero).

2.4.2. First intensity by linearization. This is a more probabilistic approach.

Let z ∈Λ. We want to estimate the probability that f(w) = 0 for some w ∈ D(z,ǫ), up

to order ǫ2. Expand f as a power series around z:

f(w)= f(z)+ f′(z)(w− z)+ f′′(z)
(w− z)2

2!
+ . . .

The idea is that up to an event of probability o(ǫ2), f and its linear approximant,

g(w) := f(z)+ (w− z)f′(z),
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have the same number of zeros in D(z,ǫ). Assuming this, it follows from (1.2.8) that

ρ1(z) = lim
ǫ→0

P [f has a zero in D(z,ǫ)]

πǫ2

= lim
ǫ→0

P
[

g has a zero in D(z,ǫ)
]

πǫ2

= lim
ǫ→0

P
[

−f(z)
f′(z)

∈ D(0,ǫ)
]

πǫ2

= Probability density of
−f(z)

f′(z)
at 0.

If a,b are complex-valued random variables then, by an elementary change of vari-

ables, we see that the density of a/b at 0 is equal to χa(0)E
[

|b|2
∣

∣a= 0
]

, where χa is

the density of a at 0 (assuming the density a and the second moment of b given a= 0

do exist).

When f is Gaussian, (f(z),f′(z)) is jointly complex Gaussian with mean zero and

covariance
[

K(z, z) ∂
∂z

K(z, z)
∂
∂z

K(z, z) ∂
∂z

∂
∂z

K(z, z)

]

.

Here we use the standard notation

∂

∂z
=

1

2

(

∂

∂x
− i

∂

∂y

)

and
∂

∂z
=

1

2

(

∂

∂x
+ i

∂

∂y

)

.

The density of f(z) at 0 is 1
πK(z,z)

. Moreover, f′(z)
∣

∣

f(z)=0 has

NC

(

0,
∂

∂z

∂

∂z
K(z, z)− 1

K(z, z)

(

∂

∂z
K(z, z)

)(

∂

∂z
K(z, z)

))

distribution. Thus we can write the first intensity as

ρ1(z)=
∂
∂z

∂
∂z

K(z, z)− 1
K(z,z)

∂
∂z

K(z, z) ∂
∂z

K(z, z)

πK(z, z)
.

This is equivalent to the Edelman-Kostlan formula (2.4.8) as can be seen by differ-

entiating logK(z, z) (since ∆= 4 ∂
∂z

∂
∂z

).

Now we justify replacing f by its linearization g. Without loss of generality, we

can assume that z = 0 and expand f as a power series. The following lemma is from

Peres and Virág (70).

LEMMA 2.4.2. Let f(z) = a0 +a1z+ . . . be a GAF. Assume that a0 is not constant.

Let Aǫ denote the event that the number of zeros of f in the disk D(0,ǫ) differs from the

number of zeros of g(z) := a0 +a1z in the same disk. Then for any δ > 0, there exists

c> 0 so that for all ǫ> 0 we have

P[Aǫ]≤ cǫ3−2δ.

PROOF. By Rouché’s theorem, if |g| > |f−g| on ∂D(0,ǫ), then f and g have the

same number of zeros in D(0,ǫ).

We bound the maximum of |f−g| by Lemma 2.4.4. For this we observe that for

small enough ǫ,

(2.4.9) max
|z|<2ǫ

E[|f(z)−g(z)|2]≤ Cǫ4
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since f−g has a double root at 0. Thus Lemma 2.4.4 gives a constant γ such that

(2.4.10) P
[

max{|f(z)−g(z)| : z ∈ D(0,ǫ)}> ǫ2−δ
]

< c0e−γǫ
−2δ

.

Now let Θ be the annulus ∂D(0, |a1|ǫ)+D(0,ǫ2−δ) (the Minkowski sum of the two

sets), and consider the following events:

D0 = {|a0| < 2ǫ1−δ},

E = {|a1| < ǫ−δ},

F = {min{|g(z)| : z ∈ ∂D(0,ǫ)}< ǫ2−δ}= {−a0 ∈Θ}.

Note that P[Ec] ≤ c2ǫ
3 and that E∩F ⊂ D0. Given D0, the distribution of a0 (recall

our assumption that a0 is not a constant) is approximately uniform on D(0,2ǫ1−δ) (in

particular, its conditional density is O(ǫ2δ−2)). Since P[E] tends to one as ǫ→ 0, this

implies that

P[F]≤P[F ∩E | D0]P[D0]+P[Ec]≤ c4ǫc5ǫ
2−2δ+ c2ǫ

3 ≤ c6ǫ
3−2δ.

In the first term, the factor of ǫ comes from the area of Θ (as a fraction of the area

of D0) and the factor of ǫ2−2δ from the probability of D0. Together with (2.4.10), this

gives the desired result. �

REMARK 2.4.3. In the proof we used Lemma 2.4.4 to bound the maximum mod-

ulus of a Gaussian analytic function on a disk. In the literature there are deep

and powerful theorems about the maximum of a general Gaussian process which

we could have used instead. For instance, Borell’s isoperimetric inequality (see

Pollard (71); the inequality was also shown independently by Tsirelson-Ibragimov-

Sudakov (88)) implies that for any collection of mean-zero (real) Gaussian variables

with maximal standard deviation σ, the maximum M of the collection satisfies

(2.4.11) P [M >median(M)+bσ] ≤P[χ> b],

where χ is standard normal. We could have arrived at (2.4.10) by an application of

(2.4.11) separately to the real and imaginary parts of
f(z)−g(z)

z2 (note that the median is

just a finite quantity). However we preferred to use Lemma 2.4.4 as it is elementary

and also exhibits some new tools for working with Gaussian analytic functions. One

idea in the proof below comes from the paper of Nazarov, Sodin and Volberg (61), see

Lemma 2.1 therein.

LEMMA 2.4.4. Let f be a Gaussian analytic function in a neighbourhood of the

unit disk with covariance kernel K . Then for r < 1
2
, we have

(2.4.12) P

[

max
|z|<r

|f(z)| > t

]

≤ 2e−t2/8σ2
2r

where σ2
2r

=max{K(z, z) : |z| ≤ 2r}.

PROOF. Let γ(t) = 2reit, 0≤ t≤ 2π. By Cauchy’s integral formula, for |z| < r,

|f(z)| ≤
2π
∫

0

|f(γ(t))|
|z−γ(t)|

|γ′(t)| dt

2π

≤ 2σ

2π
∫

0

|f̂(2reit)| dt

2π
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where f̂(z)= f(z)/
√

K(z, z) and we have written just σ for σ2r.

P

[

max
|z|<r

|f(z)| > t

]

≤ P





2π
∫

0

|f̂(2reit)| dt

2π
> t

2σ





≤ e−t2/8σ2

E






exp











1

2





2π
∫

0

|f̂(2reit)| dt

2π





2
















≤ e−t2/8σ2

E



exp







1

2

2π
∫

0

|f̂(2reit)|2
dt

2π











by Cauchy-Schwarz inequality. Now use the convexity of the exponential function to

get

P

[

max
|z|<r

|f(z)| > t

]

≤ e−t2/8σ2

E





2π
∫

0

exp

{

1

2
|f̂(2reit)|2

}

dt

2π



 .

Since |f̂(w)|2 has exponential distribution with mean 1 for any w, the expectation of

exp{ 1
2
|f̂(2reit)|2} is 2. Thus we arrive at

P

[

max
|z|<r

|f(z)| > t

]

≤ 2e−t2/8σ2

.

�

2.4.3. First intensity by integral geometry. This is a geometric approach

to get the first intensity. We shall sketch the idea briefly. Interested readers are

recommended to read the beautiful paper (23) for more along these lines.

Let f be a GAF with covariance kernel K . Since K is Hermitian and positive def-

inite, we can write K(z,w)=∑

ψn(z)ψn(w), where ψn are analytic functions on some

domain in the plane. Then we see that f(z)=∑

anψn(z), where an are i.i.d. standard

complex Gaussians. (What we just said may be seen as a converse to Lemma 2.2.3).

First suppose that f(z) = ∑N
n=1 anψn(z), where N <∞. In the end let N →∞ to

get the general case. This is possible by Rouche’s theorem, for if the series fN (z) =
∑N

n=1 anψn(z) converges uniformly on compact sets to f(z) = ∑∞
n=1 anψn(z), then for

any compact set, the number of zeros of f and fN are equal, with high probability, for

large N.

When N is finite, setting ψ(z)= (ψ1(z), . . . ,ψN (z)), we may write

f(z)= 〈ψ(z) , (a1, . . . ,aN )〉

where 〈 , 〉 is the standard inner product in C
N . As z varies over Λ, ψ(z) defines a

complex curve in C
N . Also (a1, . . . ,aN ) has a spherically invariant distribution. Thus

asking for the number of zeros of f is equivalent to the following.

Choose a point uniformly at random on the unit sphere {(z1, . . . , zN ) :
∑ |zk|2 = 1}

in C
N and ask for the number of times (counted with multiplicities) the hyper plane

orthogonal to the chosen point intersects the fixed curve ψ.

Turning the problem around, fix z and let w vary over D(z,ǫ). Then the hyper-

plane orthogonal to ψ(w) sweeps out a certain portion of the unit sphere. The ex-

pected number of zeroes of f in D(z,ǫ) is precisely the area of the region swept out

(again counting multiplicities).
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FIGURE 1. The Buffon needle problem.

Now as w varies over D(z,ǫ), ψ(w) varies over a disk of radius approximately

‖ψ′(z)‖ǫ on the image of the curve ψ. However what matters to us is the projection

of this disk orthogonal to the radial vector ψ(z), and this projection has area
(

‖ψ′(z)‖2−
| ψ′(z) ·ψ(z) |2

‖ψ(z)‖2

)

πǫ2.

However this disk is located at a distance ‖ψ(z)‖ from the origin.

When a particle P moves a distance δ on a geodesic of the sphere of radius r,

the hyper-plane P⊥ orthogonal to P, rotates by an angle of δ
r
. When δ=π, the entire

sphere is swept out by P⊥ exactly once. Putting these together, we find that the

probability of having a zero in D(z,ǫ) is
(

‖ψ′(z)‖2− |ψ′(z)·ψ(z)|2
‖ψ(z)‖2

)

π‖ψ(z)‖2
ǫ2,

and this gives p(z). Since K(z,w)=ψ(z)·ψ(w), this is the same as what we got earlier.

REMARK 2.4.5. As a simple application of (2.4.8), one can check that the zero

sets of the GAFs described in equations (2.3.4), (2.3.5) and (2.3.6) have first inten-

sities equal to L
π

, w.r.t, the Lebesgue measure dm(z) on the plane, the Spherical

measure dm(z)

(1+|z|2)2
on S

2 = C∪ {∞} and the Hyperbolic measure dm(z)

(1−|z|2)2
on the unit

disk D, respectively.

EXERCISE 2.4.6. Follow the steps outlined below to give a geometric solution to

the classical Buffon needle problem: Consider a family of parallel lines in the plane

with adjacent lines separated by a distance d. Drop a needle of length ℓ “at random”

on the plane. What is the probability that the needle crosses one of the lines? See

figure 1.

i. Show that the probability of a crossing is cℓ for some constant c, provided

that ℓ< d.

ii. If a circle of circumference ℓ is dropped on the plane, deduce that the ex-

pected number of intersections of the circle with the family of parallel lines

is again cℓ. Use this to compute c.

2.5. Intensity of zeros determines the GAF

In this section we present the result of Sodin (80) that two GAFs on Λ having the

same intensity ρ1(z)dm(z) are essentially equal. In particular we get the remarkable

conclusion that the distribution of the zero set f−1{0} is completely determined by its

first intensity! We first prove a standard fact from complex analysis that will be used

in the proof of Theorem 2.5.2.
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LEMMA 2.5.1. Let K(z,w) be analytic in z and anti-analytic in w (i.e., analytic

in w) for (z,w)∈Λ×Λ. If K(z, z)= 0 ∀z ∈Λ, then K(z,w)= 0 ∀z,w ∈Λ.

PROOF. It is enough to prove that K vanishes in a neighbourhood of (z, z) for

every z ∈Λ. Without loss of generality take z = 0. Then around (0,0) we can expand

K as K(z,w) = ∑

m,n≥1
am,nzmwn. Then K(z, z) = ∑

m,n≥1
am,nzmzn. Let z = x+ i y. Note

that
∂m+n

∂zm∂zn zkzℓ
∣

∣

z=0
= δ(m,n),(k,ℓ)m!n!.

Returning to K(z, z) = ∑

k,ℓ≥1
ak,ℓzkzℓ, this gives (since we have assumed that K(z, z)

is identically zero)

0 = ∂m+n

∂zm∂zn K(z, z)
∣

∣

z=0

= m!n!am,n .

Thus K(z,w) vanishes identically in Λ×Λ. �

Sodin (80) discovered the following result and related it to Calabi’s rigidity the-

orem in complex geometry.

THEOREM 2.5.2 (Calabi’s rigidity). Suppose f and g are two GAFs in a region

Λ such that the first intensity measures of f−1{0} and g−1{0} are equal. Then there

exists a nonrandom analytic function ϕ on Λ that does not vanish anywhere, such

that f
d=ϕg. In particular f−1{0}

d=g−1{0}.

PROOF. For a z ∈Ω, we have Kf(z, z) = 0 if and only if z is almost surely a zero

of f (and the corresponding orders of vanishing of Kf and f at z match). Since f and g

are assumed to have the same first intensity of zeros, the set of deterministic zeros

of f must coincide and have the same order of vanishing for f and g. By omitting all

such zeros from Λ, we assume that Kf(z, z) and Kg(z, z) do not vanish anywhere in Λ.

It suffices to prove the theorem for this reduced domain, for suppose that f =ϕg on

Λ−D where D is the discrete set that we have omitted, where ϕ is a non-vanishing

analytic function on Λ−D. Since at each point z of D, the functions f and g vanish to

the same order, we see that ϕ is bounded in a neighbourhood of z and thus ϕ extends

as an analytic function to all of Λ. Again because f and g have the same order of

vanishing at points of D, it is clear that ϕ cannot vanish anywhere.

Hence we assume that Kf(z, z) and Kg(z, z) are non-vanishing on Λ. By (2.4.8),

the hypotheses imply that logKf(z, z)− logKg(z, z) is harmonic in Λ. Therefore we

can write

(2.5.1) Kf(z, z)= eu(z)Kg(z, z)

where u is a harmonic function in Λ.

If Λ is simply connected, we can find an analytic function ψ on Λ with 2Re(ψ)=
u. Set ϕ = eψ. Then the above equation says that the two functions Kf(z,w) and

ϕ(z)ϕ(w)Kg(z,w) are equal on the diagonal. As both of these are analytic in z and

anti-analytic in w, Lemma 2.5.1 shows that they are identically equal. Hence f
d=ϕg.

As ϕ does not vanish this shows that f−1{0} and g−1{0} have the same distribution.

If Λ is not simply connected, fix a z0 ∈ Λ and an r > 0 such that D(z0,r) ⊂ Λ.

Then there exists a non-vanishing analytic function ϕ on D(z0,r) such that

(2.5.2) Kf(z,w)=ϕ(z)ϕ(w)Kg(z,w)
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for every z,w ∈ D(z0,r). Then fix w ∈ D(z0,r) such that ϕ(w) 6= 0, and note that
Kf(z,w)

ϕ(w)Kg(z,w)
is an analytic function on Λ−{z : Kg(z,w)= 0} and is equal to ϕ on D(z0,r).

Taking the union over w ∈ D(z0,r) of all these analytic functions we get an analytic

extension of ϕ to the whole of

(2.5.3) Λ\{z : Kg(z,w)= 0 ∀w ∈ D(z0,r) s.t. ϕ(w) 6= 0}.

But if Kg(z,w)= 0 for all w in an open set, then Kg(z, z)= 0. By assumption this does

not happen. Thus ϕ extends to the whole of Λ and the relationship

Kf(z,w)=ϕ(z)ϕ(w)Kg(z,w)

persists. Thus ϕg and f have the same covariance kernel and by Gaussianity we get

f
d=ϕg and ϕ is analytic on Λ. By inverting the roles of f and g, we see that 1/ϕ must

also be analytic on Λ, which means that ϕ cannot vanish anywhere. �

REMARK 2.5.3. Alternately, for the non-simply connected case, one could use

the uniformization theorem to argue as follows. If Λ is a region of C, let π be

the covering map from D or C to Λ. Recall the definition of u from (2.5.1). Let

K∗
f

,K∗
g ,u∗ be pull backs of Kf and Kg and u to D. Then as before we can write

Kf(z,w) = ϕ∗(z)ϕ∗(w)K∗
g (z,w) for a non-vanishing analytic function ϕ∗ on D. If

π(z1) = π(z2), then ϕ∗(z1) = ϕ∗(z2) (Fix w and note that K∗
f

(z1,w) = K∗
f

(z2,w) and

K∗
g (z1,w) = K∗

g (z2,w)). Thus ϕ = ϕ∗π−1 is well defined, does not vanish on Λ and

satisfies, Kf(z,w)=ϕ(z)ϕ(w)Kg(z,w).

An immediate consequence is

COROLLARY 2.5.4. The random power series described in (2.3.4), (2.3.5) and

(2.3.6) are the only GAFs, up to multiplication by deterministic nowhere vanishing

analytic functions, whose zeros are isometry-invariant under the respective group of

isometries.

Unfortunately, Theorem 2.5.2 is not constructive in that it does not tell us how

to determine the k-point intensities of the zero set of a GAF if we know the first in-

tensity. However, in the next chapter we shall see that it is possible to write general,

although often intractable, formulas for the joint intensities of a GAF.

2.6. Notes

• The study of zeros of random polynomials goes back to Mark Kac (43) (but see also

Paley and Wiener (68) which preceded Kac). He obtained the density of real zeros of

various models of random polynomials, for example a0 +a1x+ . . .+an xn, where ak

are i.i.d. standard (real) Gaussians. These results can be obtained by the geometric

proof presented here due to Edelman and Kostlan. See (23) for details. Following

his papers, there was a significant amount of work done on this subject. Apart from

zeros, there are many other interesting questions about random powers series as

can be seen in the book of Kahane (44).

• The recent resurgence of interest in complex zeros is at least partly due to the

work of many physicists such as Bogomolny, Bohigas and Leboeuf (7),(8), Han-

nay (32) and others. Apart from the Probabilistic perspective of these notes, there

are other frameworks in which these objects are studied. For instance see Shiffman,

Zelditch (76) (and references therein) who study random sections of line bundles.
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• The planar GAF models were introduced (in parts) by Bogomolny, Bohigas and

Leboeuf (7) and (8), Kostlan (50), Shub and Smale (78). Some of them are natu-

ral generalizations to complex coefficients of random polynomials studied by Mark

Kac. A special case in the unit disk (L = 2) was found by Diaconis and Evans (19)

as the limit of the logarithmic derivative of characteristic polynomials of random

unitary matrices.

• Subhroshekhar Ghosh pointed to us another proof that the hyperbolic GAF does

not extend to any domain larger than the unit disk. If it did, the covariance kernel

would be an extension of (1−zw)−L and would remain analytic in z and anti-analytic

in w. This is clearly impossible, as (1−|z|2)−L does not extend continuously to any

point on the boundary of the unit disk.

• Theorem 2.5.2 is from Sodin (80), who found the result and related it to Calabi’s

rigidity theorem from differential geometry. A constructive way of recovering higher

intensities from the first one is not known, and would be very desirable to have.

2.7. Hints and solutions

Exercise 2.1.1

i. Note that X has density

(2.7.1) f (z1, . . . , zd )= 1

(2π)d/2
e|z|

2/2

where | · | denotes the Euclidean norm. By the transformation formula, the density

of AX is f (A−1x)|det(A−1)|2 (note that we use the real Jacobian here). The deter-

minant is 1 and unitary matrices preserve the Euclidean norm, hence the density

of X is invariant under A.

ii. It suffices to consider the case EX = EY = 0. By definition there are standard

Gaussian random vectors X̃ and Ỹ and matrices A and B with X = AX̃ and Y = BỸ .

By adding columns of zeros to A or B, if necessary, we can assume that X̃ and Ỹ

are both k-vectors, for some k, and A, B are both d×k matrices. Let A and B be

the vector subspaces of Ck generated by the row vectors of A and B, respectively.

Suppose, WLOG, that the first ℓ≤ d row vectors of A form a basis of A . Define the

linear map L : A →B by

(2.7.2) L(A i )= Bi for i = 1, . . . ,ℓ.

Here A i is the ith row vector of A, and Bi is the ith row vector of B. Our aim is to

show that L is an orthogonal isomorphism and then use the previous proposition.

Let us first show that L is an isomorphism. The covariance assumption implies

AA∗ = BB∗. Suppose there is a vector v1 A1 +·· · +vℓAℓ which maps to 0 under L.

Then the vector

(2.7.3) v = (v1, . . . ,vℓ,0, . . . ,0)

satisfies vB = 0. Hence

(2.7.4) |vA|2 = vAA∗v∗ = vBB∗v∗ = 0,

so vA = 0. Thus L is injective and dimA ≤ dimB. Interchanging the roles of A and

B shows that L is an isomorphism. The entry (i, j) of AA∗ = BB∗ is the inner

product of A i and A j as well as Bi and B j , so the mapping L preserves inner

products. Thus it can be extended on the orthocomplement of A to give a unitary

map L : Ck → C
k (or a unitary k× k matrix). Then X = AX̃ and Y = BỸ = AL∗Ỹ .

From part i. we know that L∗Ỹ is standard complex normal, hence X and Y have

the same distribution.
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Exercise 2.2.2 If z ∈ D and D(z,r) ⊂ Λ, then f has a power series expansion in D(z,r).

By virtue of it being Gaussian in D, the coefficients of the power series have a jointly complex

Gaussian distribution and hence f is Gaussian on the whole of D(z,r). In general, for any

w ∈ Λ\D, we can find a sequence of disks D(z1,r1), . . . ,D(zn ,rn) contained in Λ such that

D(z1,r1) ⊂ D, D(zn,rn) ∋ w and such that z j ∈ D(z j−1,r j ). Inductively, we apply our earlier

observation about concentric disks to conclude that f is Gaussian near z2, . . . , zn and hence

near w.

Exercise 2.4.6

i. Consider the needle as a union of shorter needles, use linearity of expectations.

Each of the shorter needles will give the same expected number of intersections,

provided that it is not too far from the center of mass of the original needle. And

lastly, for ℓ< d, the number of intersections is at most one, hence we get the proba-

bility of intersection.

ii. The same argument used in i. shows that if a polygonal path of length ℓ is dropped

uniformly between the two lines, the expected number of intersections is cℓ. Circles

can be approximated arbitrarily well by polygonal paths, so the same is true for

circles. A circle of diameter d has exactly two intersection, which yields c = 2
π d

.

Exercise 2.3.1

i. Direct calculation shows that for ϕ as in (2.3.2), we have

|ϕ′(z)|
1+|ϕ(z)|2

= 1

1+|z|2
.

This shows that the metric and area are preserved by ϕ.

ii. The radius of D(0,r) is given by
∫r

0
1

1+t2 dt and the area is given by
∫

D(0,r)
dm(z)

(1+|z|2)2
.

Straightforward calculations show that these integrals are equal to arctan(r) and
πr2

1+r2 , respectively.

Exercise 2.3.2

i. This time we check easily that for ϕ as in (2.3.3), we have

|ϕ′(z)|
1−|ϕ(z)|2

= 1

1−|z|2
.

This shows that the hyperbolic metric and area are preserved by ϕ.

ii. The radius of D(0,r) is given by
∫r

0
1

1−t2 dt and the area is given by
∫

D(0,r)
dm(z)

(1−|z|2)2
.

Straightforward calculations show that these integrals are equal arctanh(r) and
πr2

1−r2 , respectively.





CHAPTER 3

Joint Intensities

In chapter 2 we derived expressions for the first intensity of the zero set of a gen-

eral Gaussian analytic function. In this chapter, in section 3.1 we find the joint inten-

sities of zero sets. These are special cases of what are known as Kac-Rice formulas,

and can be used to obtain explicit answers for low order intensities. In section 3.5, we

find a different expressions for the two-point intensity of zeros and specialize them

to the canonical Gaussian analytic functions of section 2.3. However our aim will

not be to find the two-point intensities exactly, but to evaluate them asymptotically.

This will lead us to surprising facts about the fluctuations of smooth linear statistics

of zero sets. We shall also state asymptotic normality results on linear statistics due

to Sodin and Tsirelson.

3.1. Introduction – Random polynomials

The goal of this section is to prove the k-point intensity formula for random

analytic zeros which can be heuristically written as

(3.1.1) p(x1, . . . ,xk)=E
[

|f′(x1) · · ·f′(xk)|2; f(x1), . . . ,f(xk)= 0
]

in the strong and precise sense given in (3.1.2) below. For a random analytic function

f, let µk =µf,k denote the expectation of the k-fold product of counting measure of the

zero set. It is the measure satisfying
∫

ϕdµk =E
∑

Z k
f

ϕ(z1, . . . , zk)

for test functions ϕ. As discussed in text following definition 1.2.2, off the diagonals

(zi = z j for some i 6= j) µk agrees with the k-point intensity measure.

THEOREM 3.1.1. Let f be a random polynomial with a.s. bounded degree. Then

we have the following weak* limit

(3.1.2) µk = lim
ǫ→0

E
[

|f′(x1) · · ·f′(xk)|21(f(x1), . . . ,f(xk) ∈Bǫ)
]

Vol(Bǫ)k
dx1 · · ·dxk.

In particular, the limit exists. Note that if the density in (3.1.2) converges uniformly

on compact subsets of Ck to some function ρ, then µk has density ρ.

In Section 3.3 we will extend this theorem to random analytic functions satis-

fying a simple moment condition 3.3.1. We shall show that this moment condition

implies exponential tails for the number of zeros in any bounded set; this is proved

in Section 3.2. The Gaussian analytic function case is proved in Section 3.4.

Our strategy is as follows. First of all, we can always think of the joint intensity

of zeros of f as the off-diagonal single intensity of the zeros of (f, . . . ,f).

It would be nice to first prove a deterministic version of formula (3.1.1), and

take expectations. But such version would involve point mass measures and would

35



36 3. JOINT INTENSITIES

be difficult to analyze. So we introduce two extra sources of averaging: first, instead

of zeros, we consider near-zero values (or, more generally, values in a bounded set B).

Second, we integrate a smooth test function over the locations where F takes these

values.

After this averaging, we now have tractable deterministic version of (3.1.1),

namely Lemma 3.1.2 below. It is a non-bijective change-of-variables formula (also

called co-area formula) which we have not been able to find in the literature.

LEMMA 3.1.2 (Change of variables). Let F : Ck →C
k be a function with continu-

ous derivative. For any continuous function ϕ with compact support and any bounded

B ⊂C
k we have

∫

B

∑

x∈F−1(y)

ϕ(x)dy =
∫

Ck
ϕ(x)|F ′(x)|21B(F(x))dx.

here |F ′(x)| is the absolute value of the Jacobian determinant of F.

PROOF. We may assume that ϕ ≥ 0. Let S be the set of critical points of F, let

K be the compact support of ϕ, and let S′ be an open neighborhood of S∩K . For

each point x ∈ K \ S by the inverse mapping theorem there is a neighborhood of x so

that F is one-to-one. Using a finite subcover by such neighborhoods of K \S′ and the

usual change-of-variable formula for bijections, we get

(3.1.3)

∫

B

∑

x∈F−1(y)\S′
ϕ(x)dy =

∫

Ck\S′
ϕ(x)|F ′(x)|21B(F(x))dx,

Now we can let S′ ց S∩K , then by the monotone convergence theorem applied to

both sides we can replace S′ by S in (3.1.3). We can then drop “\S” on the right hand

side because the integrand vanishes on S. We can drop it on the left hand side as

well because of Sard’s Theorem ((37) p. 682), which states that for a differentiable

function F the image F(S) of the set of critical points S has measure 0. �

The following deterministic lemma shows that in the case when F = (f, . . . ,f) and

f is an analytic function, then some of the averaging from the formula of Lemma

3.1.2 can be removed. For such F and a test function ϕ :Ck →R use the shorthand

ϕ[F−1(y)]=
∑

x∈F−1(y)

ϕ(x)=
∑

zeros x of F−y

ϕ(x).

Let Bǫ denote the open disk of radius ǫ about 0.

LEMMA 3.1.3. Let f be an analytic function (f 6≡ 0) on a domain D, and let Z be

the multi-set of its zeros. For any continuous function ϕ with compact support in Dk

we have
1

Vol(Bk
ǫ )

∫

Bk
ǫ

ϕ[F−1(y)]dy→
∑

z∈Z k

ϕ(z1, . . . , zk).

PROOF. Let K be the union of the projection of supp(ϕ) in all coordinate direc-

tions. Let W denote the finite set (this time without multiplicity) of zeros of f in

K .

Consider a zero w ∈W with multiplicity m(w). Then there exists ǫ(w)> 0 so that

f restricted to a neighborhood of w has an inverse f−1
w that has exactly m-values on

Bǫ(w) \ {0}, see Ahlfors (1) p. 133. Moreover, each value of f−1
w (z) converges to w as

z → 0.
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When ǫ < minW ǫ(w), then for z ∈ Bǫ \ {0} the function f−1(z) has exactly m(w)

values for every w ∈W and they are close to the corresponding zero w. More precisely,

adding ϕ to the picture we have

sup
y∈(Bǫ\{0})k

∣

∣

∣

∣

∣

ϕ[F−1(y)]−
∑

Z k

ϕ(z1, . . . , zk)

∣

∣

∣

∣

∣

→ 0

as ǫ→ 0. The claim follows. �

Our proof of Theorem 3.1.1 works in the following, more general setting. It

includes the case of polynomials with a.s. bounded degree.

LEMMA 3.1.4. Theorem 3.1.1 holds for random analytic functions satisfying the

following condition. For every compact set K , the random variables

(

1

Vol(Bǫ)

∫

Bǫ

nf+z(K)dz

)k

(3.1.4)

are uniformly integrable as ǫ→ 0.

PROOF. Let ϕ : Ck → R be a continuous test function with compact support. By

Lemma 3.1.2 with the notation F = (f, . . . ,f) we have

1

Vol(Bk
ǫ )

∫

Ck
ϕ(x)|F ′(x)|21

Bk
ǫ
(F(x))dx= 1

Vol(Bk
ǫ )

∫

Bk
ǫ

ϕ[F−1(y)]dy.(3.1.5)

If we replace ϕ by sup |ϕ| on the right, the expression becomes

sup |ϕ|
[

1

Vol(Bǫ)

∫

Bǫ

nf+z(suppϕ)dz

]k

,(3.1.6)

which is uniformly integrable by assumption. Now take expectations of (3.1.5), let

ǫ→ 0 and use uniform integrability. The right hand side, by the bounded convergence

theorem and Lemma 3.1.3 converges to

(3.1.7) E
∑

z∈Z k

ϕ(z1, . . . , zk)=
∫

ϕdµk.

The left hand side, by the Fubini argument, becomes

∫

ϕ(x)
E

[

|F ′(x)|21(F(x)∈ Bk
ǫ )

]

Vol(Bk
ǫ )

dx

=
∫

ϕ(x)
E

[

|f′(x1) · · ·f′(xk)|21(f(x1), . . . ,f(xk) ∈ Bǫ)
]

Vol(Bǫ)k
dx

completing the proof. �

3.2. Exponential tail of the number of zeros

In order to extend Hammersley’s formula (Theorem 3.1.1) beyond polynomials

we need to control the moments of the number of zeros in a compact set. For this,

we will use the following tail bound which is interesting in itself. It is a variant of

Offord’s estimate for GAFs.

THEOREM 3.2.1. Let f(z) be a random analytic function on a domain D. Suppose

that there exists b,δ> 0 so that

E|f(z)|±δ < b for all z ∈ D.
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Then in any compact K ⊂ D the number nf(K) of zeros has exponential tail: there are

c,α> 0 depending on b,δ,K only so that for all λ> 0 we have

P(λ< nf(K))< ce−αλ.

The theorem hinges on the following lemma.

LEMMA 3.2.2. Let X be a nonnegative random variable satisfying E(Xδ) ≤ b for

some δ> 0. Then for any event A with p= P(A) we have

E(log+ X ; A) ≤ (1+ log+ b− log p)p/δ.

PROOF. It is convenient to use the standard representation X = G−1(U) where

U is a uniform [0,1] random variable and G−1 is the “inverse” of G(x) = P(X ≥ x) in

the following sense:

G−1(y)= sup{x : G(x)≥ y}.

We will use the fact that this inverse satisfies G(G−1(y))≥ y, and so G(X ) ≥U.

By Markov’s inequality xδG(x)≤EXδ ≤ b, and therefore

δ log+ x ≤ log+ b− logG(x).

Let q(X ) =P[A|X ]. We have G(X )≥U, and therefore

E[q(X )δ log+ X ] ≤ E[q(X )(log+ b− logG(X ))]

= p log+ b−E[r(U) logG(X )]

≤ p log+ b−E[r(U) logU],

where r(u) = q(G−1(u)) is a function with values in [0,1] and total integral p over

[0,1]. Thus the last term can be written as

−
∫1

0
r(u) log u du≤ −

∫p

0
logu du= p (1− log p),

where the inequality follows by rearranging the values of r within the given con-

straints so that large values of r correspond to large values of − log. The claim fol-

lows. �

PROOF. [Proof of Theorem 3.2.1] Let ϕ be a non-negative smooth function with

compact support in D so that ϕ≡ 1 on K . Then ‖∆ϕ‖L1 <∞, and by (2.4.4) we have

nf(K)≤
∫

D
ϕ(z)dnf(z)=

1

2π

∫

D
∆ϕ(z) log |f(z)|dm(z).

We now take expectation of both sides on the event A = {nf(K)> λ}, and let p=P(A).

Using Markov’s inequality and a Fubini argument we get

λp ≤ E[nf(K); A] ≤ 1

2π

∫

D
|∆ϕ(z)|E(|log |f(z)|| ; A)dm(z)

≤ 1

2π
‖∆ϕ‖L1

sup
z∈D

E(|log |f(z)|| ; A)

Lemma 3.2.2 with X = |f(z)|±1 provides the bound

E(|log |f(z)|| ; A) ≤ 2(1+ log+ b− log p)p/δ

and therefore

P(λ< nf(K))= p≤ e(b∨1)exp(−λδπ/‖∆ϕ‖L1 ). �
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3.3. Joint intensities for random analytic functions

The exponential tail estimate of the previous section allows us to extend Theo-

rem 3.1.1 to random analytic functions with bounded moments. More precisely, we

have the following theorem.

THEOREM 3.3.1 (Hammersley’s formula for analytic functions). Let f be a ran-

dom analytic function in a domain D satisfying f 6≡ 0 a.s. and

(3.3.1) E|f(z)|±δ < b for some b,δ> 0 and all z ∈ D.

Then we have the following weak* limit

(3.3.2) µk = lim
ǫ→0

E
[

|f′(x1) · · ·f′(xk)|21(f(x1), . . . ,f(xk) ∈Bǫ)
]

Vol(Bǫ)k
dx1 · · ·dxk.

In particular, the limit exists. Note that if the density in (3.3.2) converges uniformly

on compact subsets of Ck to some function ρ, then µk has density ρ.

In applications, we apply the theorem to restrictions of f to compact subsets of D,

since condition (3.3.1) is usually satisfied only locally. As a first step in the proof of

Theorem 3.3.1, we show that the moment condition (3.3.1) is inherited by randomly

shifted versions of f, that is, functions of the form z 7→ f(z)+ǫU where U ∼uniform(D).

Clearly, it suffices to prove this pointwise.

LEMMA 3.3.2. Let Z be a complex random variable, let U ∼ uniform(D) be inde-

pendent, and let δ ∈R. There exists cδ > 0 so that for all ǫ ∈ [0,1]:

E|Z+ǫU|δ ≤ cδ(1+E|Z|δ).

PROOF. For δ ≥ 0 the claim follows from the inequality |Z + ǫU|δ ≤ 2δ(|Z|δ +
|ǫU|δ).

Now let δ < 0, and set η = −δ > 0. If 3ǫ < |Z + ǫU|, then the triangle inequality

gives 2ǫ< |Z|, and so |Z+ǫU| > |Z|/2. Thus

|Z+ǫU|−η1(|Z+ǫU| > 3ǫ)≤ |Z/2|−η,

so we have

|Z+ǫU|−η ≤ |Z+ǫU|−η1(|Z+ǫU| ≤ 3ǫ)+|Z/2|−η.

After taking expectations we get

E|Z+ǫU|−η ≤
∫

B3ǫ

|z|−ηP(Z+ǫU ∈ dz)+E|Z/2|−η.

Given Z, the conditional probability that Z + ǫU ∈ dz is 1(z+ Z ∈ ǫD)/(πǫ2). So the

first term can be written as
∫

B3ǫ

P(Z ∈ z+ǫD)
|z|−ηdz

πǫ2
≤ P(|Z| < 4ǫ)

∫

B3ǫ

|z|−η dz

πǫ2

= cηP(|Z| < 4ǫ)(4ǫ)−η

≤ cηE|Z|−η,

the last inequality is Markov’s. We conclude E|Z+ǫU|−η ≤ c′ηE|Z|−η, as required. �

PROOF. [Proof of Theorem 3.3.1] Let U be an independent uniform(D) random

variable, and let conditional expectation given f mean that we are integrating over

U.
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By Lemma 3.1.4 it suffices to prove that

(

1

Vol(Bǫ)

∫

Bǫ

nf+z(K)dz

)k

=E[nf+ǫU (K)|f]k

is uniformly integrable as ǫ→ 0.

By Lemma 3.3.2, {f(z)+ǫU : ǫ< 1, z ∈ D} uniformly satisfy the moment condition

of Theorem 3.2.1, which then gives

(3.3.3) P(nf+ǫU (K)>λ)≤ ce−αλ

for some positive constants c,α which do not depend on ǫ. By Jensen’s inequality for

conditional expectations, we have

E
[

E [nf+ǫU (K)|f]2k
]

≤E
[

nf+ǫU (K)2k
]

≤ c′,

where c′ can be chosen not to depend on ǫ because of (3.3.3). To finish, note that if

Xǫ is a collection of random variables, and for some c > 0, α > 1 we have E|Xǫ|α < c

for all ǫ, then the Xǫ are uniformly integrable. �

3.4. Joint intensities – The Gaussian case

For Gaussian analytic functions on compact sets with strictly positive definite

covariance kernel the conditions of the general joint intensity Theorem 3.3.1 hold

trivially.

The following exercise together with the last sentence in the statement of Theo-

rem 3.3.1 gives a sufficient condition for Gaussian analytic functions to have k-point

intensity functions (as opposed to merely k-point intensity measures).

EXERCISE 3.4.1. Assume that det
[

(K(zi, z j))1≤i, j≤k

]

does not vanish anywhere

on a compact set L ⊂C
k. Show that

lim
ǫ→0

E
[

|f′(x1) · · ·f′(xk)|21(f(x1), . . . ,f(xk) ∈ Bǫ)
]

Vol(Bǫ)k
=

E
[

|f′(x1) · · ·f′(xk)|2
∣

∣ f(x1), . . . ,f(xk)= 0
]

πk det
[

(K(zi, z j))1≤i, j≤k

]

uniformly on L.

COROLLARY 3.4.2 (Density formula for Gaussian analytic functions). Let f be a

Gaussian analytic function on Λ with covariance kernel K . If detK(zi , z j)i, j≤k does

not vanish anywhere on Λ, then the k-point intensity function ρk exists and is given

by

(3.4.1) ρk(z1, . . . , zk)=
E

[

|f′(z1) · · ·f′(zk)|2
∣

∣f(z1)= . . . = f(zk)= 0
]

πk detK(zi , z j)i, j≤k

.

Equivalently,

(3.4.2) ρk(z1, . . . , zk)=
per

(

C−BA−1B∗)

det(πA)
,
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where A,B,C are k×k matrices defined by

A(i, j) = E
[

f(zi)f(z j)
]

B(i, j) = E
[

f′(zi)f(z j)
]

C(i, j) = E
[

f′(zi)f
′
(z j)

]

.

(Recall Definition 2.1.5 of per.)

PROOF. [Proof of Corollary 3.4.2] Exercise 3.4.1 yields (3.4.1). Exercise 2.1.3

tells us that given {f(zi)= 0,1≤ i ≤ k}, the conditional distribution of (f′(z1), . . . ,f′(zk))

is again complex Gaussian with zero mean and covariance C−BA−1B∗. Apply Wick

formula (Lemma 2.1.7) to obtain (3.4.2). �

3.4.1. Short-range repulsion. In chapter 1 we revealed that one of our moti-

vations for studying zeros of random analytic functions is that they seem to model

point processes with repulsion between points. Indeed, in Lemma 1.1.1 we saw that

for a monic polynomial, the Jacobian determinant of the transformation from coef-

ficients to roots is equal to
∏ |zi − z j |2, which clearly shows that under some fairly

general assumptions on the distribution of coefficients of a random polynomial, the

zeros must exhibit repulsive behaviour. However the phenomenon of short-range

negative correlations of zeros is so ubiquitous and important that we would like to

give another simple explanation.

Since for a Poisson process (or a finite collection of independent points) on the

plane we have

P[there are two points in D(z,ǫ)]≍ ǫ4,

by local repulsion of a point process we mean that this probability is o(ǫ4) (typically

O(ǫ6)). For point processes on the real line, the analogous quantity is o(ǫ2) (typically

O(ǫ3)). The following exercise shows that this is indeed true for a wide class of

random smooth real-valued functions on R.

EXERCISE 3.4.3. Let f :R→R be a random smooth function. Fix x ∈R.

(i) Let g(y) = a+ by+ cy2, where a = f(x),b = f′(x), c = 1
2
f′′(x). Show under fairly

general conditions on f that

P[f has at least two zeros in (x−ǫ,x+ǫ)]=P[g has two zeros in (−ǫ,ǫ)]+O(ǫ3).

For definiteness, we count zeros with multiplicity.

(ii) The graph of g is a parabola whose shape is determined by c, whose “tip” has

the horizontal location equal to ξ := − b
2c

and vertical location equal to η := a− b2

4c2 .

Condition on c. For g to have two zeros in (−ǫ,ǫ), we must have ξ ∈ (−ǫ,ǫ) and |η| <
|c|ǫ2. Deduce that

P[g has two zeros in (−ǫ,ǫ)]≍ ǫ3χ(a,b)(0,0)E
[

c2 | a= b = 0
]

,

where χ(a,b) is the density of (a,b) (which we assume to exist at (0,0)).

(As in the integral-geometric proof of Buffon’s needle problem 2.4.6, we can see

this pictorially as follows. Imagine the parabola to be fixed in the plane and the

origin of the coordinate axes to be random. Then the event under consideration is

that the origin should fall in a 2ǫ×|c|ǫ2 rectangle centered at the tip, and that is the

source of the ǫ3 factor).

(iii) Work out some sufficient conditions so that this probability is indeed O(ǫ3).

Adapt the proof to the case when f :C→C.
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3.5. Fluctuation behaviour of the zeros

Let f be one of the GAFs described in equations (2.3.4), (2.3.5) and (2.3.6) on

one of the three domains, which we denote by Λ. Fix a function ϕ : Λ→ R. Assume

ϕ∈ C2
c (Λ). We define

ZL(ϕ)=
∑

z∈f−1
L

{0}

ϕ(z).

Then we know that E
[

ZL(ϕ)
]

= 1
4π

∫

Λ

ϕ(z)∆ logKL(z, z)dm(z). Now we list a few re-

sults about the fluctuation behaviour of ZL(ϕ).

Extending a result of Forrester and Honner (24) who dealt with the planar case

only, Sodin and Tsirelson (82) showed that for all the three canonical models, for

ϕ∈ C2
c (Λ),

(3.5.1) Var
[

ZL(ϕ)
]

= κ

L
‖∆∗ϕ‖2

L2(m∗)
+ o(

1

L
), as L →∞.

Here κ is a numerical constant that is the same for all the three models while m∗ and

∆
∗ are the invariant measure and invariant laplacian on Λ, normalized as follows

dm∗(z)=















1
2π

dm(z) Λ=C,
1

2π(1+|z|2)2
dm(z) Λ=S

2,

1
2π(1−|z|2)2

dm(z) Λ=D,

∆
∗ =











∆ Λ=C,

(1+|z|2)2
∆ Λ=S

2,

(1−|z|2)2
∆ Λ=D.

The most remarkable feature of (3.5.1) is that the variance decreases to zero as L in-

creases! The dependence on the second derivative of ϕ is also novel. These reinforce

our intuition of the zero set as rigid and lattice-like. Given the decrease in variance,

it is surprising that asymptotic normality holds.

Asymptotic Normality [Sodin and Tsirelson] For each of the three models, for

ϕ∈ C2
c (Λ), as L →∞,

p
L

(

ZL(ϕ)−E
[

ZL(ϕ)
]) d→ N

(

0,κ‖∆∗ϕ‖2
L2(m∗)

)

,

where κ is a constant that is the same for all the three geometries.

Sodin and Tsirelson do not use the asymptotics of the variance in proving asymp-

totic normality. For details consult (82). Here we content ourselves with a derivation

of the variance of ZL(ϕ) for ϕ ∈C2
c (Λ). Write (from Edelman-Kostlan formula)

ZL(ϕ)−E
[

ZL(ϕ)
]

=
∫

Λ

∆ϕ(z) log |f̂(z)|dm(z)

2π
,

where f̂(z) = fL(z)p
KL (z,z)

. We usually omit the subscript L on the GAF f for simplicity

of notation. Then we get (justify the exchange of expectation and integral using

Fubini’s theorem as in (2.4.6))

(3.5.2) Var
[

ZL(ϕ)
]

=
∫

Λ2

∆ϕ(z)∆ϕ(w)E
[

log |f̂(z)| log |f̂(w)|
] dm(z)

2π

dm(w)

2π
.
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For any z,w fixed,
(

f̂(z), f̂(w)
)

has a joint complex Gaussian distribution with mean

zero and marginal variances equal to 1 and E[f̂L(z)f̂L(w)]= θ(z,w)L where

θ(z,w)= K1(z,w)
√

K1(z, z)
√

K1(w,w)
=



















ezw− 1
2
|z|2− 1

2
|w|2

Λ=C,
1+zwp

1+|z|2
p

1+|w|2
Λ=S

2,
p

1−|z|2
p

1−|w|2
1−zw

Λ=D.

It is also easy to see that |f̂L| is a random function invariant under the isometries of

Λ.

It is more convenient to write (3.5.2) in terms of the invariant measure and the

invariant Laplacian as

(3.5.3) Var
[

ZL(ϕ)
]

=
∫

Λ2

∆
∗ϕ(z)∆∗ϕ(w)E

[

log |f̂(z)| log |f̂(w)|
]

dm∗(z)dm∗(w).

Observe that E
[

log |f̂(z)|
]

is a constant and hence integrating it against ∆
∗ϕ yields

zero. Therefore we can rewrite (3.5.3) as

(3.5.4) Var
[

ZL(ϕ)
]

=
∫

Λ2

∆
∗ϕ(z)∆∗ϕ(w)ρL(z,w)dm∗(z)dm∗(w),

where ρL(z,w) = Cov
(

log |f̂L(z)|, log |f̂L(w)|
)

. From Lemma 3.5.2, we have in particu-

lar that ρL(z,w)≥ 0 and that

(3.5.5)
1

4
|θ(z,w)|2L ≤ ρL(z,w)≤ 1

2
|θ(z,w)|2L.

Now, write the right hand side of (3.5.4) as a sum of three integrals (AL to be chosen

appropriately later)

(1) I1 :=
∫

1{ρL(z,w)≤AL}∆
∗ϕ(z)∆∗ϕ(w)ρL(z,w)dm∗(z)dm∗(w).

(2) I2 :=
∫

1{ρL(z,w)>AL}(∆
∗ϕ(z)−∆

∗ϕ(w))∆∗ϕ(w)ρL(z,w)dm∗(z)dm∗(w).

(3) I3 :=
∫

1{ρL(z,w)>AL}(∆
∗ϕ(w))2ρL(z,w)dm∗(z)dm∗(w).

It is evident that

(3.5.6) |I1| ≤ AL‖∆∗ϕ‖2
L1(m∗)

.

To bound the second integral, first note that by uniform continuity of ∆∗ϕ, for all z,w,

we have |∆∗ϕ(z)−∆
∗ϕ(w)| ≤ ǫ(|θ(z,w)|2) where ǫ(t) ց 0 as t ր 1. From the bounds

(3.5.5)

(3.5.7) |I2| ≤ C(ϕ) ǫ
(

(2AL)
1
L

)

∫

1{ρL(z,0)>AL}ρL(z,0)dm∗(z).

The third integral may be evaluated exactly as follows.

(3.5.8) I3 = ‖∆∗ϕ‖2
L2(m∗)

∫

1{ρL(z,0)>AL}ρL(z,0)dm∗(z).

Again we used the invariance of ρL under isometries of Λ. Choose AL = L−2. Then,

by (3.5.6), we see that I1 = O(L−2). Further, A1/L
L

→ 1, whence ǫ
(

(2AL)1/L
)

→ 0 and

thus by (3.5.7) and (3.5.8) we get I2 = o(1)I3. Thus we conclude that

Var(ZL(ϕ))= I3(1+ o(1))+O(L−2).

and the remaining task is to compute
∫

1{ρL(z,0)>AL}ρL(z,0)dm∗(z).
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Invoking Lemma 3.5.2 again, we write

ρL(z,0)=
∞
∑

m=1

|θ(z,0)|2Lm(4m2)−1.

We show the details in the planar case when |θ(z,0)|2 = e−|z|
2
. The other two cases

are dealt with in an almost identical manner. From (3.5.5),
{

|z|2 ≤ 2logL− log4

Lm

}

⊂
{

ρL(z,0)> L−2
}

⊂
{

|z|2 ≤ 2logL− log2

Lm

}

and hence,

∣

∣

∫

1{ρL(z,0)>AL}ρL(z,0)dm∗(z)−
∫

1{

|z|2≤ 2logL
L

}ρL(z,0)dm∗(z)
∣

∣≤ c log L

L2m2
.

Thus,

I3 =
∞
∑

m=1

1

4m2

∫

1{

|z|2≤ 2logL
L

}e−Lm|z|2 dm∗(z) +O(L−2)

=
∞
∑

m=1

π

4m2

(2logL)/L
∫

0

e−Lmxdx + O(L−2)

=
∞
∑

m=1

π

4Lm3
(1− e−2m logL) + O(L−2)

= π

4L
ζ(3) + O(L−2).

Combine this with (3.5.8) to see that

Var
[

ZL(ϕ)
]

= πζ(3)

4L
‖∆∗ϕ‖2

L2(m∗)
+ o(L−1).

REMARK 3.5.1. Remember that m∗ has a non-standard normalization, for in-

stance in the planar case, written in terms of the usual Lebesgue measure, the vari-

ance is
πζ(3)

16 L
‖∆∗ϕ‖2

L2(m)
+ o(L−1).

It remains to prove the following lemma.

LEMMA 3.5.2. If (a,b) is complex Gaussian with E[aa]=E[bb]= 1 and E[ab]= θ,

then

Cov (log |a|, log |b|) =
∞
∑

m=1

|θ|2m

4m2
.

PROOF. It is well known that the Laguerre polynomials

Ln(x) := ex

n!

dn

dxn
(xne−x),

for n≥ 0, form an orthonormal basis for L2(R+, e−xdx). To see this, integrate by parts

to obtain,
∫

R+

Ln(x)Lm(x)e−xdx =
∫

R+

(−x)n

n!

dnLm(x)

dxn
e−xdx.

Thus if n > m, we get zero, since Lm is clearly a polynomial of degree m. If n = m,

then
dnLm(x)

dxn is n! times the leading coefficient of Ln. From the definition of Ln, the

leading coefficient is (−1)n

n!
, when we see that {Ln} is an orthonormal basis. (Further
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details can be found in (2) or any other book on special functions and orthogonal

polynomials).

Now, logx is in Lp(R+, e−xdx) for any p > 0, and therefore we can write the

expansion

logx =
∞
∑

n=0

CnLn(x),

in the L2 sense. The coefficients can be explicitly computed as follows. C0 can be

computed in terms of Euler’s constant γ, but will be irrelevant to us. For n≥ 1,

Cn =
∞
∫

0

log(x)
ex

n!

dn

dxn
(xne−x)e−xdx

=
(−1)n

n!

∞
∫

0

dn log(x)

dxn
xne−xdx

=
(−1)n

n!

∞
∫

0

(−1)n−1(n−1)!

xn
xne−xdx

= − 1

n
.

If a is a standard complex Gaussian, then |a|2 has density e−xdx on R+. Thus,

we can write (with Cn =− 1
n

, for n≥ 1)

log |a| =
∞
∑

n=0

Cn

2
Ln(|a|2), log |b| =

∞
∑

n=0

Cn

2
Ln(|b|2).

These expansions are valid in L2 of the probability space on which a,b are defined.

From this we firstly deduce that E[log |a|] = C0

2
. Hence

(3.5.9) Cov(log |a|, log |b|) =
∑

(n,m) 6=(0,0)

CnCm

4
E

[

Ln(|a|2)Lm(|b|2)
]

.

To compute E
[

Ln(|a|2)Ln(|b|2)
]

, we use the following explicit expression for Laguerre

polynomials, that follows easily from the definition (alternately, it suffices to prove

that the polynomials given here are orthonormal).

Ln(x)=
n
∑

k=0

(−1)kn!

k!k!(n−k)!
xk.

Therefore

E
[

Ln(|a|2)Lm(|b|2)
]

=
n
∑

k=0

m
∑

ℓ=0

(−1)k+ℓn!m!

(k!)2(n−k)!(ℓ!)2(m−ℓ)!
E[|a|2k |b|2ℓ].

Now from the Lemma 2.1.7, we get

E[|a|2k |b|2ℓ]=
k∧ℓ
∑

r=0

(

k

r

)2(

ℓ

r

)2

(r!)2(k− r)!(ℓ− r)!|θ|2r .

To get this from Lemma 2.1.7, consider the Gaussian vector (a, . . . a,b, . . . b), with k

many “a”s and ℓ many “b”s. Then group the permutations in the expansion of the

permanent, according to the number of 1 ≤ i ≤ k such that πi ≥ k+1. A permutation

with r such indices i gives the term |θ|2r .
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Thus we get

E
[

Ln(|a|2)Lm(|b|2)
]

=
n
∑

k=0

m
∑

ℓ=0

k∧ℓ
∑

r=0

(−1)k+ℓn!m!|θ|2r

(n−k)!(m−ℓ)!(k− r)!(ℓ− r)!(r!)2

=
∑

r≥0

n!m!|θ|2r

(r!)2

n
∑

k=r

m
∑

ℓ=r

(−1)k+ℓ

(n−k)!(m−ℓ)!(k− r)!(ℓ− r)!

=
∑

r≥0

n!m!|θ|2r

(r!)2

(1−1)n−r

(n− r)!

(1−1)m−r

(m− r)!
.

Thus the only term that does not vanish is the one with m = r = n. Thus we have

E
[

Ln(|a|2)Lm(|b|2)
]

= |θ|2nδn,m.

Thus from (3.5.9), and using Cn =− 1
n

for n≥ 1, it follows that

Cov(log |a|, log |b|) =
∑

n≥1

|θ|2n

4n2
.

�

.



CHAPTER 4

Determinantal Point Processes

4.1. Motivation

In this chapter we move away from zeros of random analytic functions and study

a different class of point processes known as determinantal point processes.

These arise surprisingly often, in random matrix theory, combinatorics and physics,

as our representative list of examples in section 4.3 will show. Many examples were

already known before Macchi introduced the general notion in 1975. To motivate

the definition, we remind the reader that in quantum mechanics, a physical quan-

tity, say the position of an electron, is represented by a complex valued function

(the wave function) ψ such that
∫

|ψ|2 = 1. Then |ψ|2 gives the probability density

function of the position. Now consider n individual wave functions ψ1, . . . ,ψn on Λ

. The most obvious way to construct an n-particle wave function out of the ψis is to

consider

(ψ1⊗ . . .⊗ψn)(x1, . . . ,xn)=
n

∏

i=1

ψi(xi),

which is tantamount to making the individual positions be independent random vari-

ables. This does not capture the physical reality, for electrons repel, and moreover

the particles are indistinguishable. For this reason, physicists symmetrize or anti-

symmetrize the wave-function ψ1⊗. . .⊗ψn, either of which leads to a symmetrization

of the probability density. We shall consider anti-symmetrization here. Symmetriz-

ing ψ1⊗ . . .⊗ψn would lead to permanental point processes, which are studied in

section 4.9.

For particles with repulsion (“fermions”), one should anti-symmetrize and this

yields the wave function

1
p

n!

∑

π∈Sn

sgn(π)
n

∏

i=1

ψπi
(xi)=

1
p

n!
det

(

ψ j(xi)
)

i, j≤n
.

If {ψi} is orthonormal, then the absolute square of this wave function is a probability

density, for, integrating
n
∏

i=1
ψπi

(xi) against
n
∏

i=1
ψσi

(xi) gives zero unless π = σ. Thus

we get the probability density on Λ
n

1

n!
det

(

ψ j(xi)
)

det
(

ψi(x j)
)

= 1

n!
det

(

K(xi,x j)
)

i, j≤n
,

where K(x, y) =
n
∑

i=1
ψi(x)ψi(y). Note that the probability density vanishes whenever

xi = x j for some i 6= j which indicates that the points tend to “repel”.

There is one more step required. If we want to define analogous point processes

with infinitely many points, or even to effectively study local properties of the finite

ones, we need to have the joint intensities (definition 1.2.2). Here a fortuitous sim-

plification occurs which is at the very heart of the virtues of a determinantal point

47
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process. It is that one can explicitly integrate out some of the variables and get

the joint intensities! We leave this as an exercise, whose purpose is to motivate the

definition that follows. Read the proof of Lemma 4.5.1 for a solution to this exercise.

EXERCISE 4.1.1. (1) Let ψk, 1 ≤ k ≤ n, be an orthonormal set of functions

in L2(Λ,µ). Set K(x, y)=∑n
k=1

ψk(x)ψk(y). From the identity

∫

Λ

K(x, y)K(y, z)dµ(y)=K(x, z),

show that for 1≤ m ≤ n,
∫

Λ

det
(

K(xi,x j)
)

i, j≤m
dµ(xm)= (n−m+1)det

(

K(xi,x j)
)

i, j≤m−1
.

(2) Consider a random vector in Λ
n with density 1

n!
det

(

K(xi ,x j)
)

i, j≤n
. Erase

the labels and regard it as a point process on Λ with n points. Deduce that

the joint intensities of this point process are given by

(4.1.1) ρk(x1, . . . ,xk)= det
(

K(xi,x j)
)

i, j≤k
.

4.2. Definitions

We now proceed with the formal definitions. Let Λ be a locally compact Polish

space and µ, a Radon measure on Λ (see section 1.2 for definitions). Let K(x, y) :Λ2 →
C be a measurable function.

DEFINITION 4.2.1. A point process X on Λ is said to be a determinantal pro-

cess with kernel K if it is simple and its joint intensities with respect to the measure

µ satisfy

(4.2.1) ρk(x1, . . . ,xk)= det
(

K(xi,x j)
)

1≤i, j≤k ,

for every k ≥ 1 and x1, . . . ,xk ∈Λ.

Note that no claim is made about the existence or uniqueness of a determinan-

tal point process for a given kernel K. The existence issue will be addressed in

section 4.5, and the uniqueness question is resolved in Lemma 4.2.6. We make a few

preliminary observations that restrict the kernels K that we may allow.

(1) Definition 4.2.1 says that the first intensity (with respect to µ) is K(x,x). If µ

has no atoms, then µ⊗µ{(x,x) : x ∈Λ} is zero. Thus for a general measurable

function K, which is only defined almost everywhere on Λ
2, it does not even

make sense to speak of the function K(x,x). Similarly, for k-point intensity

to make sense at (x1, . . . ,xk), we shall need K(xi,x j) to be well defined for

every pair (xi ,x j), and it is not always true that the set of such (x1, . . . ,xk)

has positive µ⊗k measure in Λ
k.

(2) According to definition 1.2.2, the kth joint intensity must be locally inte-

grable on Λ
k with respect to µ⊗k (locally integrable means that the integral

is finite on compact subsets of Λk). Thus for definition 4.2.1 to make sense,

we must have det(K(xi,x j))i, j≤k to be locally integrable on Λ
k.

(3) Joint intensities are non-negative. Thus, determinant of (K(xi,x j))i, j≤n

must not be negative.
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(4) Suppose X is determinantal with kernel K with respect to the background

measure µ. If h : Λ→ C is such that 1/h is locally in L2(µ), then we may

define the kernel Kh(x, y) = h(x)h(y)K(x, y) and dµh(x) = 1
|h(x)|2 dµ(x). It is

easy to see that X is determinantal also with kernel Kh with respect to the

measure µh, because

det
(

Kh(xi ,x j)
)

i, j≤k

k
∏

j=1

dµh(x j)= det
(

K(xi,x j)
)

i, j≤k

k
∏

j=1

dµ(x j).

Thus we have some freedom in changing the measure and the kernel to-

gether . In all our examples we may take µ to be the Lebesgue measure

(when Λ is a subset of R
d) or the counting measure (when Λ is finite or

countable). However we shall sometimes choose µ to be something natu-

rally associated to the underlying space (eg., Gaussian measure when Λ is

the complex plane),

Naturally, the first two problems do not arise if K is continuous. However, it is

natural to work under a much less restrictive assumption on the kernel and that is

what we explore next.

4.2.1. Integral kernels. Consider a kernel K that is locally square integrable

on Λ
2. This means that for any compact D ⊂Λ, we have

(4.2.2)

∫

D2

|K(x, y)|2dµ(x)dµ(y) <∞.

Then, we may use K as an integral kernel to define an associated integral operator

as

(4.2.3) K f (x)=
∫

Λ

K(x, y) f (y)dµ(y) for a.e. x ∈Λ

for functions f ∈ L2(Λ,µ) that vanish µ-a.e. outside a compact subset of Λ. For a

compact set D, the restriction of K to D is the bounded linear operator KD on

L2(D,µ) defined by

(4.2.4) KD f (x)=
∫

Λ

K(x, y) f (y)dµ(y) for a.e. x ∈ D.

By Cauchy-Schwarz inequality, the operator norm of KD is bounded by the square

root of the integral in (4.2.2), which shows boundedness. In fact, KD is a compact

operator, because it can be approximated in operator norm by operators with finite

dimensional range (to see this, approximate K by simple functions). Readers not

familiar with the notion of compact operators may consult the book (74). In particu-

lar, see exercise 13 of chapter 4 and Theorem 4.25 therein. The fact we need about

compact operators is this:

The spectrum is discrete, 0 is the only possible accumulation point and every non-

zero eigenvalue has finite multiplicity.

We now make one additional assumption that K is Hermitian, that is,

(4.2.5) K(x, y)=K(y,x) for every x, y ∈Λ.

Equivalently, we may say that KD is a self-adjoint operator for any D (compact

subset of Λ). The spectral theorem for self-adjoint operators, together with the com-

pactness of KD , yields the following fact.
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L2(D,µ) has an orthonormal basis {ϕD
j

} of eigenfunctions of KD . The correspond-

ing eigenvalues {λD
j

} have finite multiplicity (except possibly the zero eigenvalue)

and the only possible accumulation point of the eigenvalues is 0. We say that KD is

of trace class if

(4.2.6)
∑

j

|λD
j | <∞.

If KD is of trace class for every compact subset D, then we say that K is locally

of trace class. The following lemma relates the kernel to the eigenfunctions and

eigenvalues.

LEMMA 4.2.2. Let K be a Hermitian kernel in L2(Λ2,µ⊗µ). Assume that the

associated integral operator K is of trace class. Then, there exists Λ1 ⊂ Λ with

µ(Λ\Λ1)= 0 such that the following hold.

(1) The series

(4.2.7)
∑

j

λ jϕ j(x)ϕ j(y)

converges absolutely for x, y ∈Λ1.

(2) For each x ∈ Λ1, the series in (4.2.7) converges in L2(Λ) as a function of y.

The same is true with x and y interchanged. In addition, the series converges

in L2(Λ×Λ) as a function of (x, y).

(3) The resulting sum in (4.2.7) is equal to K(x, y) for a.e. (x, y) ∈Λ
2.

(4) Redefine K by the series (4.2.7). Then the function

(4.2.8) (x1, . . . ,xk)→
k

∏

j=1

K(x j,x j+1), where k+1 = 1,

is well-defined a.s. on Λ
k with respect to µ⊗k. Moreover the resulting func-

tion is integrable on Λ
k.

PROOF. (1) By assumption of trace class,

∫

Λ

(

∑

j

|λ j ||ϕ j(x)|2
)

dµ(x) =
∑

j

|λ j |

is finite. This shows that the series
∑ |λ j ||ϕ j(x)|2 converges in L2(Λ) and

also that it converges pointwise for every x ∈ Λ1 for some Λ1 ⊂ Λ with

µ(Λ\Λ1)= 0. By Cauchy-Schwarz inequality,

(4.2.9)
∣

∣

∑

j≥N

λ jϕ j(x)ϕ j(y)
∣

∣

2 ≤
(

∑

j≥N

|λ j ||ϕ j(x)|2
)(

∑

j≥N

|λ j ||ϕ j(y)|2
)

.

Hence, if x, y ∈Λ1, then the series

(4.2.10)
∑

j

λ jϕ j(x)ϕ j(y)

converges absolutely.

(2) For fixed x ∈Λ1, we see from (4.2.9) that

∫

∣

∣

∑

j≥N

λ jϕ j(x)ϕ j(y)
∣

∣

2
dµ(y) ≤

(

∑

j

|λ j ||ϕ j(x)|2
)

∑

j≥N

|λ j |
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which implies that
∑

λ jϕ j(x)ϕ j(y) is Cauchy in L2(Λ). Obviously we may

interchange the roles of x and y. Further, again using (4.2.9) we get

∫

Λ2

∣

∣

∑

j≥N

λ jϕ j(x)ϕ j(y)
∣

∣

2
dµ(y)dµ(x) ≤





∫

Λ

∑

j≥N

|λ j ||ϕ j(x)|2dµ(x)





2

≤
(

∑

j≥N

|λ j |
)2

.

This proves that as a function of (x, y), the series is Cauchy in L2(Λ2).

(3) Let f ∈ L2(Λ,µ). Write f in terms of the orthonormal basis {ϕ j} to get for

any x ∈Λ1,

K f (x) =
∑

j





∫

Λ

f (y)ϕ j(y)dµ(y)



λ jϕ j(x)

=
∫

Λ

[

∑

j

λ jϕ j(x)ϕ j(y)

]

f (y)dµ(y)

where the interchange of integral and sum is justified by the L2(Λ) conver-

gence of y → ∑

λ jϕ j(x)ϕ j(y) for each x ∈Λ1. But then
∑

λ jϕ j(x)ϕ j(y) must

be a kernel for the integral operator K that also has kernel K. This implies

that we must have

(4.2.11)
∑

j

λ jϕ j(x)ϕ j(y)=K(x, y)

for µ⊗µ-a.e. (x, y)

(4) Note that the redefinition changes K only on a set of µ⊗µ measure zero. By

part (1) it follows that K(x1,x2) . . .K(xk,x1) is well-defined for any x1, . . . ,xk ∈
Λ1, hence a.e. in Λ

k. Integrability follows from (here k+1 should be inter-

preted as 1)

∫

Λk

k
∏

i=1

|K(xi ,xi+1)|dµ(x1) . . . dµ(xk) ≤
∑

j1,..., jk

k
∏

i=1

|λ ji
|

k
∏

i=1

∫

Λ

ϕ ji
(xi)ϕ ji−1

(xi)dµ(xi)

≤
∑

ji ,i≤k

k
∏

i=1

|λ ji
|.

The last line used Cauchy-Schwarz inequality. This sum is just (
∑ |λ j |)k

and hence is finite.

�

Now we return to determinantal processes.

ASSUMPTION 4.2.3. We assume henceforth that the kernel K ∈Λ
2 →C is locally

square integrable and that the the associated integral operator K is Hermitian,

non-negative definite and locally of trace class. In the notations that we have been

using, this is equivalent to saying that

• K(x, y)=K(y,x) a.s.(µ⊗µ),

• det(K(xi,x j))i, j≤k ≥ 0 a.s.(µ⊗k),

• for any compact D ⊂Λ, we have λD
j
≥ 0 for every j and

∑

j
λD

j
<∞.
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By Lemma 4.2.2, we redefine K on a set of measure zero so that

(4.2.12) K(x, y)=
∑

j

λD
j ϕ

D
j (x)ϕD

j (y)

for all x, y ∈ D1, where µ(D\D1) = 0. The series converges in all the senses stated in

the lemma.

REMARK 4.2.4. A word about our assumptions on K. There is no loss of gener-

ality in assuming that the kernel is locally in L2, for, the two-point intensity must

be locally integrable on Λ
2. Non-negativity of the determinants of K is similarly

forced upon us. However the Hermitian assumption is not essential and indeed,

there are interesting examples of determinantal processes with non-Hermitian ker-

nels (particularly those that involve “time” or “dynamics”, see (41) for some exam-

ples). Nevertheless, most of the general properties that we prove do not hold true for

non-Hermitian kernels and we do not consider them in this book.

A particularly important case is when KΛ itself is a bounded operator with all

non-zero eigenvalues equal to 1. In this case we say that K is a projection kernel,

since K turns out to be the projection operator onto the closed span of its eigen-

functions. If the latter space is finite dimensional, we also say that K is a finite

dimensional or finite rank projection kernel.

REMARK 4.2.5. It is evident that if X is a determinantal point process on Λ,

then for any D ⊂Λ, the point process X ∩D is also determinantal, its kernel being

just the restriction of the original kernel to D×D. If the kernel (more precisely, the

associated operator) on Λ is locally of trace class, then the corresponding kernel on

D is of trace class. The reader should keep this in mind as most of our theorems will

be stated under the apparently less general assumption of a trace class kernel, but

remain valid for X ∩D for determinantal processes with a locally trace class kernel.

Now consider a determinantal point process with kernel K (with respect to a

Radon measure µ) that satisfies assumption 4.2.3 (from now on, this will be tac-

itly assumed). By virtue of Lemma 4.2.2, the first three issues raised after defini-

tion 4.2.1 are taken care of. In other words, for such kernels, det(K(xi,x j))i, j≤k is

well-defined for µ-a.e. x1, . . . ,xk, is non-negative and is locally integrable on Λ
k. All

these are essential if they are to be joint intensities of a point process.

This in itself does not imply the existence of a point process with these joint

intensities, of course. In fact Theorem 4.5.5 will show that not all kernels are kernels

of determinantal processes. We show uniqueness (of determinantal point process

for a given kernel) now. We must do this because, in general, specifying the joint

intensity functions for a point process is not enough to specify the distribution of

the process. However, as we noted in chapter remark 1.2.4, the joint intensities do

determine the law of the point process if the number of points in any compact set

has finite exponential moments. This we verify for determinantal processes in the

following lemma.

LEMMA 4.2.6. Assume that a point process X with joint intensities as in (4.2.1)

does exist. Then for any compact D ⊂Λ, there exist constants c(D),C(D) such that

(4.2.13) P[X (D)> k] ≤ C(D)e−c(D)k.
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Therefore, for a given kernel K, there exists at most one point process whose joint

intensities are given by

(4.2.14) ρk(x1, . . . ,xk)= det
(

K(xi,x j)
)

i, j≤k
.

PROOF. We shall use Hadamard’s inequality which states that for any k × k

matrix A = [v1 . . .vk],

(4.2.15) det(A∗A)≤
k

∏

i=1

‖vi‖2 =
k

∏

i=1

(A∗A)i,i .

In our case, for µ-a.e. x1, . . . ,xk, the matrix
(

K(xi,x j)
)

i, j≤k
is a non-negative definite

matrix, whence it is of the form A∗A. By (1.2.3), for any compact Borel set D ⊂ Λ,

we must have

E

[(

X (D)

k

)

k!

]

=
∫

Dk

det
(

K(xi,x j)
)

1≤i, j≤k
dµ(x1) . . . dµ(xk)

≤
∫

Dk

k
∏

i=1

K(xi,xi)dµ(x1) . . . dµ(xk)

=





∫

D

K(x,x)dµ(x)





k

.

Set κ(D)=
∫

D

K(x,x)dµ(x) (finite because D is compact) and deduce that for s> 0

E
[

(1+ s)X (D)
]

=
∑

k≥0

E

[(

X (D)

k

)]

sk

≤
∑

k≥0

κ(D)ksk

k!

= esκ(D).

This shows that

P[X (D)> k] ≤ (1+ s)−kE
[

(1+ s)X (D)
]

≤ C(D)e−c(D)k

with C(D)= esκ(D) and c(D)= log(1+ s).

In particular, the distribution of X (D) is determined by its moments, which are

in turn determined by the joint intensities. Since this is valid for every compact D,

and Λ is locally compact, it follows that the distribution of X is uniquely determined.

�

4.3. Examples of determinantal processes

In this section we give a slew of examples of determinantal point processes.

Proving that any of these processes is determinantal is not trivial, and there is no

single method that works for all examples. In view of this, we only list the examples

here, and proceed to the general theory. Only for the first example do we give a proof

in this chapter. Other proofs, where we do give them, are postponed to chapter 6.

In Theorem 4.5.5 we shall see necessary and sufficient conditions on a Hermitian

integral kernel for it to define a determinatal process. The point here is not to give
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a list of kernels satisfying those conditions, but instead, to show how a motley col-

lection of point processes that arise naturally in probability theory turn out to be

determinantal.

4.3.1. Non-intersecting random walks. Karlin and McGregor (45) provide

the first result we know related to determinantal processes. The following theorem

has the fundamental calculation, but does not say what is a determinantal process

here. That we describe as a corollary to the theorem.

THEOREM 4.3.1 (Karlin and McGregor (1959)). Consider n i.i.d. Markov chains

on Z started from i1 < i2 < . . . < in where all the i js are even. Let Pi, j(s,s+ t) be

the t-step transition probabilities between times s and s+ t for each of the chains. The

chains are not assumed to be time homogeneous.1 Suppose that the one-step transition

probabilities satisfy Pi,i+1(t, t+1)+Pi,i−1 (t, t+1) = 1 for all t. Then the probability that

at time t, the Markov chains are at j1 < j2 < . . . < jn, and that no two of the chains

intersect up to time t, is

(4.3.1) det





Pi1, j1
(0, t) . . . Pi1, jn

(0, t)

. . . . . . . . .

Pin, j1
(0, t) . . . Pin, jn

(0, t)



 .

REMARK 4.3.2. Observe that if the Markov chains in Theorem 4.3.1 are simple

symmetric random walks, then Pi, j(0, t) = 1
2t

(

t
j−i+t

2

)

if j− i+ t is even and Pi, j(0, t) = 0

otherwise. In this case, scaling the matrix in (4.3.1) by a factor of 2nt we obtain an

expression for the number of non-intersecting paths between i1 < i2 < ·· · < in and

j1 < j2 < ·· · < jn. This observation and further extensions are described by Gessel

and Viennot in (30).

The Karlin-McGregor formula does express a certain nonintersection probability

as a determinant. But where is a determinantal process in all this? The following

corollary describes one special case of a far more general theorem in Johansson’s

paper (42). Below, the Markov chains are time homogeneous, and we use the notation

Pt(x, y) and Px,y(0, t) interchangeably.

COROLLARY 4.3.3. Let X p, 1 ≤ p ≤ n be independent time-homogeneous Markov

chains with one-step transition probabilities {Pi, j} satisfying Pi,i+1 +Pi,i−1 = 1. We

shall assume that the random walk is reversible with respect to the measure π on Z,

so that π(x)Pt(x, y) = π(y)Pt(y,x) for all x, y ∈ Z and t ∈ Z+. Condition on the event

that for each p ≤ n, the chain X p is at location xp at times 0 and 2t, and that no

two of the chains intersect in the duration from 0 to 2t. Then the configuration of

the particles midway, {X p(t) : 1 ≤ p ≤ n}, is a determinantal point process on Z with

kernel

K(u,v) =
n
∑

j=1

ψ j(u)ψ j(v)

with respect to the background measure π on Z. Here, ψ j :Z→R are defined by

ψ j(r) =
n
∑

k=1

(

A− 1
2

)

j,k

1

π(r)
Pt(xk,r)

1A time homogeneous Markov chain is one for which the transition probability P[Xt+1 = j
∣

∣

∣ Xt = i]

does not depend on t.
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with A j,k = 1
π(xk)

P2t(x j,xk).

REMARK 4.3.4. K is indeed a Hermitian projection kernel since ψ j are orthonor-

mal in L2(π). To see this, use reversibility and Markov property to see that

∑

r∈Z

Pt(x,r)

π(r)

Pt(y,r)

π(r)
π(r) =

1

π(y)

∑

r∈Z
Pt(x,r)Pt(r, y) =

P2t(x, y)

π(y)

which shows that A is the Gram matrix (in L2(π)) of the functions Pt(xp, ·)π(·)−1,

p≤ n. Therefore, ψ j are orthonormal.

Now we give Karlin and McGregor’s original proof of Theorem 4.3.1. A second

proof is outlined in the exercise at the end of this section.

Proof of Theorem 4.3.1. Let us define for~i = (i1, . . . , in) and ~j = ( j1, . . . , jn),

(4.3.2) Γ(~i,~j, t) =
{

Paths ~γ(s) : γk(0)= ik and γk(t) = jk ∀k ∈ [n]
}

where [n] = {1,2, . . . ,n}, so that

(4.3.3) P(~γ)=
n
∏

k=1

t−1
∏

s=0

Pγk(s),γk(s+1)(s,s+1).

Given ~γ ∈ Γ(~i,~j, t), write coin(~γ) to denote the number of times the trajectories γk

coincide:

(4.3.4) coin(~γ)= #
{

(α,β,s) : 0< s< t, α 6=β, and γα(s) = γβ(s)
}

.

Now given a permutation σ ∈ Sn, let us write σ(~j)= ( jσ(1), . . . , jσ(n)) and introduce the

notation

Γ+(~i,~j, t) = {~γ ∈Γ(~i,σ(~j), t) : coin(~γ)> 0, sign(σ)= 1}.

Γ−(~i,~j, t) = {~γ ∈Γ(~i,σ(~j), t) : sign(σ)=−1}.

Γ0(~i,~j, t) = {~γ ∈Γ(~i,σ(~j), t) : coin(~γ)= 0}.

Observe that if coin(~γ) is zero, then σ is the identity permutation. Thus the determi-

nant of interest can be decomposed as follows:

det





Pi1, j1
(0, t) . . . Pi1, jn

(0, t)

. . . . . . . . .

Pin, j1
(0, t) . . . Pin, jn

(0, t)



 =
∑

σ∈Sn

sign(σ)
∑

~γ∈Γ(~i,σ(~j),t)

P(~γ)

=
∑

~γ∈Γ0(~i,~j,t)

P(~γ)+
∑

~γ∈Γ+(~i,~j,t)

P(~γ)−
∑

~γ∈Γ−(~i,~j,t)

P(~γ).

We will construct a bijective and measure-preserving mapping from Γ+(~i,~j, t)

onto Γ−(~i,~j, t). Let ~γ ∈ Γ+(~i,~j, t). By construction, at least two of the particles whose

trajectories are defined by~γ must be coincident at some time. Let t′ be the first such

time, and in case multiple pairs of particles are coincident at t′, choose the smallest

coincident pair (k,ℓ) according to the dictionary order. Now imagine switching the

labels of particles k and ℓ at time t′, and define Φ(~γ) to be the resulting set of tra-

jectories. By construction, it is clear that Φ maps Γ+(~i,~j, t) bijectively onto Γ−(~i,~j, t)

and P(Φ(~γ))=P(~γ). Hence

(4.3.5)
∑

~γ∈Γ+(~i,~j,t)

P(~γ)−
∑

~γ∈Γ−(~i,~j,t)

P(~γ)= 0
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and we deduce that

det





Pi1, j1
(0, t) . . . Pi1, jn

(0, t)

. . . . . . . . .

Pin , j1
(0, t) . . . Pin , jn

(0, t)



 =
∑

~γ∈Γ0(~i,~j,t)

P(~γ),

as claimed. �

Now we derive the corollary.

Proof of Corollary 4.3.3. Fix integers u1 < u2 < . . . < un and consider the con-

ditioned Markov chains as in the statement of the corollary. The event that {X p(t) :

1 ≤ p ≤ n} = {up : p ≤ n} is the same as the event {X p(t) = up : p ≤ n}, because of the

non-crossing condition. By applying Theorem 4.3.1 three times (from time 0 to time

t, from time t to 2t and from time 0 to 2t), the probability distribution of the time-t

locations is given by

P
[

X p(t) = up ∀p
]

=
det

(

Pt(xp,uq)
)

p,q≤n
det

(

Pt(up,xq)
)

p,q≤n

det
(

P2t(xp,xq)
)

=
det

(

1
π(uq)

Pt(xp,uq)
)

p,q≤n
det

(

1
π(xq)

Pt(up,xq)
)

p,q≤n

det
(

1
π(xq)

P2t(xp,xq)
)

n
∏

q=1

π(uq)

=
det

(

1
π(uq)

Pt(xp,uq)
)

p,q≤n
det

(

1
π(up)

Pt(xq,up)
)

p,q≤n

det
(

1
π(xq)

P2t(xp,xq)
)

n
∏

q=1

π(uq).

Let B, A be the n×n matrices with Bp,q = 1
π(uq)

Pt(xp,uq) and Ap,q = 1
π(xq)

P2t(xp,xq)

(this A is the same as in the statement of the corollary). Then the above equation

may be written succinctly as

P
[

X p(t) = up ∀p
]

= det
(

Bt A−1B
)

n
∏

q=1

π(uq)

= det

(

(

A− 1
2 B

)t (

A− 1
2 B

)

) n
∏

q=1

π(uq).

Observe that (A− 1
2 B)r,q is precisely what we defined as ψr(uq). This shows that

P
[

X p(t) = up ∀p
]

= det
(

(

ψr(up)
)

p,r≤n

(

ψr(uq)
)

r,q≤n

) n
∏

q=1

π(uq)

= det
(

K(up,uq)
)

p,q≤n

n
∏

q=1

π(uq).

This shows that the top intensities are that of a determinantal point process. As

demonstrated in remark 4.3.4, K is a Hermitian projection kernel on L2(π). There-

fore, by exercise 4.1.1, we can integrate out variables one by one and show that

k-point intensities for k < n are also determinantal. Since there are only n points,

for k > n the joint intensities must be zero, as indeed they are because K is a kernel

of rank n. �

An alternate proof of the Karlin-McGregor formula (Theorem 4.3.1) is outlined in the

exercise that follows. We learned this proof from S.R.S. Varadhan (personal commu-

nication).
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EXERCISE 4.3.5. Let X p, 1≤ p≤ n, be i.i.d. Markov chains on Z with transition

probabilities satisfying Pi,i+1(s,s+1)+Pi,i−1(s,s+1) = 1. Let X p(0) = i p, where i1 <
. . . < in. Also fix integers j1 < . . . < jp. Then

(1) Fix a permutation σ ∈ Sn. For s≤ t, define

(4.3.6) Mσ(s) :=
n

∏

p=1

P
[

X p(t) = jσ(p)

∣

∣ X p(s)
]

.

Then Mσ is a martingale with respect to the filtration generated by Fs :=
{X p(u) : u≤ s,1 ≤ p≤ n}. Hence M := ∑

σ∈Sn

sgn(σ)Mσ is also a martingale.

(2) Let τ = inf{s : X p(s) = Xq(s) for some p 6= q}. Apply the optional stopping

theorem to the martingale M(·) and the stopping time τ∧ t to deduce the

Karlin-McGregor formula.

4.3.2. Uniform spanning trees. Let G be a finite undirected connected graph

and let E be the set of oriented edges (an undirected edge connecting vertices x, y

in G appears in E with both orientations xy and yx). A spanning tree of G is a

subgraph that is connected, has no cycles and contains every vertex of G . Let T be

chosen uniformly at random from the set of spanning trees of G. For each directed

edge e = vw, let χe : E → R be the function defined as χe := 1vw −1wv denote the unit

flow along e. Consider the measure on E that gives mass 1/2 to each oriented edge

and let ℓ2(E) be the Hilbert space with inner products taken with respect to this

measure. Thus χe has unit norm. Define the following subspaces of ℓ2(E). For each

vertex v, we call
∑

w
χvw the “star at the vertex v”. Similarly, for each oriented cycle

e1, . . . , en, we refer to
∑n

i=1
χe i also as a cycle.

H = {f : E →R : f (vw)=− f (wv)∀v,w}= span{χe}.

⋆ = span{
∑

w

χvw : v is a vertex}.

♦ = span{
n

∑

i=1

χe i : e1, . . . , en is an oriented cycle}.

Any oriented cycle enters each vertex of G exactly as many times as it leaves the

vertex. This shows that ⋆ ⊥ ♦. On the other hand, suppose f ∈ H is orthogonal

to ⋆ as well as ♦. From orthogonality with ♦, one can define a new function F

on the vertex set of G by integrating f along oriented paths starting from a fixed

vertex. Thus if u,v are adjacent vertices in the graph, then F(u)− F(v) = f (vu).

Orthogonality with ⋆ shows that F is discrete harmonic, i.e., at any vertex v, it has

the mean value property

(4.3.7) F(v)= 1

deg(v)

∑

u∼v

F(u)

where the sum is over all vertices adjacent to v. Therefore, F is constant and hence

f must be identically zero. In fact, it is easy to see that H=⋆⊕♦.

For e ∈ E, define Ie := K⋆
χe, where K⋆ denotes orthogonal projection onto

⋆. Now, for each undirected edge in G, choose one of the two possible oriented

representatives in E. Which orientation we choose does not matter, but once made,

the choices will stay fixed throughout. Then for each pair of undirected edges e, f in

G, define K(e, f ) := (Ie, I f ), where on the right, we use the chosen orientations. Note

that if we had chosen the opposite orientation for an edge e, then K(e, f ) changes sign
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for each f 6= e. This does not change the determinants that occur in (4.3.8) because,

both a row and column change sign.

The following result was proved by Burton and Pemantle (11), who represented

K(e, f ) as the current flowing through f when a unit of current is sent from the tail

to the head of e. The Hilbert space formulation above, as well as the proof of the

Burton-Pemantle theorem presented in chapter 6 are from the paper of Benjamini,

Lyons, Peres and Schramm (5).

THEOREM 4.3.6 (Burton and Pemantle). The set of edges in the uniform span-

ning tree T forms a determinantal process with kernel K with respect to counting

measure on the set of unoriented edges. That is, for any (unoriented) edges e1, . . . , ek

of G, we have

(4.3.8) P [e1, . . . , ek ∈ T]= det
(

K(e i , e j)
)

i, j≤k
.

4.3.3. Uniform perfect matching of a planar graph. Let R = {(m,n) : 1 ≤
m ≤ M,1 ≤ n ≤ N} be a rectangular region in the lattice Z

2. A perfect matching of

R is a subgraph of R such that each vertex of R is incident to exactly one edge in the

subgraph. In other words, a perfect matching divides the vertices of R into pairs in

such a way that each pair of vertices is connected by an edge in the graph. Assume

that MN is even, so that perfect matchings do exist.

Colour the vertices of R in white and black in a chess board fashion. Then define

a matrix K with complex entries whose rows and columns are labeled by vertices of

R as follows.

K(x, y) :=







1 if y is horizontally adjacent to x.

i if y is vertically adjacent to x.

0 in all other cases.

K is a modification of the adjacency matrix of R and is known as the Kastelyn

matrix.

From the set of all perfect matchings of R, pick one uniformly at random and

denote it by P . We state without proof the following theorem of Richard Kenyon (47).

THEOREM 4.3.7 (Kenyon). Let (w1,b1), . . . ,(wk,bk) be distinct edges of the graph

R, where wi are white vertices and bi are black. Then

P [(wi,bi ) ∈P ,1 ≤ i ≤ k] =
∣

∣det
(

K−1(wi,b j)
)

i, j≤k

∣

∣ .

Kenyon proved this in greater generality for planar bipartite graphs. Note the

absolute value on the determinant, the matrix K is not positive definite. More accu-

rately what we have here is a “Pfaffian process”, a close relative of the determinantal

process. The interested reader may consult the survey (48) for more on the subject

of perfect matchings.

4.3.4. Gaussian unitary ensemble. The most well known example of a deter-

minantal point process is the Gaussian unitary ensemble, introduced by Wigner

in his statistical approach to energy levels in heavy nuclei. The wonderful book (58)

by Mehta is the standard reference for this and most other random matrix examples

that we shall see later.

THEOREM 4.3.8 (Wigner). Let A be an n×n matrix with i.i.d. standard com-

plex Gaussian entries and set H = A+A∗
p

2
. Then, the set of eigenvalues of H form a
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determinantal point process on R with kernel

Kn(x, y)=
n−1
∑

k=0

Hk(x)Hk(y).

with respect to the Gaussian measure dµ(x) = 1p
2π

e−x2/2dx on R. Here Hk(·) are Her-

mite polynomials, obtained by applying Gram-Schmidt orthogonalization procedure

to {1,x,x2, . . .} in L2(R,µ). In particular,
∫

HkHℓdµ = δk,ℓ. Equivalently, the vector of

eigenvalues (put in a uniformly chosen random order) has joint density

1

(2π)
n
2

n
∏

j=1
j!

exp

{

−1

2

n
∑

k=1

λ2
k

}

∏

i< j

(λi −λ j)
2

with respect to Lebesgue measure on R
n.

The associated operator K is easily seen to be the projection from L2(R,µ) onto

span{Hk : 0 ≤ k ≤ n−1}. We will not go into the proof of Wigner’s result but direct the

interested reader to chapter 3 of (58) or chapter 1 of (26).

4.3.5. Sine kernel process. Now we define a translation invariant determi-

nantal point process on the real line that arises as the limit of very many interesting

point processes. For example, the Gaussian unitary ensembles, when scaled appro-

priately, converge to this point process.

The sine kernel process is the determinantal point process on R with the kernel

K(x, y)= sinπ(x− y)

π(x− y)
.

This kernel is not square integrable on R
2, but only on compact subsets thereof. Thus

the associated operator K is not of trace class but locally of trace class. What is K ?

Clearly, it is a convolution operator because, K(x, y) depends only on x− y, and hence

is more simply represented in the Fourier domain. We define the Fourier transform

f̂ by

f̂ (t) = 1
p

2π

∫

R

f (x)e−itxdx, for f ∈ L1(R)∩L2(R),

and by extension to all of L2. It is well-known that f → f̂ is a unitary transformation

of L2(R). Returning to the sine kernel, write K(x, y) as 1
2π

π
∫

−π
ei(x−y)udu to see that

∫

R

K(x, y) f (y)dy =
∫

R





1

2π

π
∫

−π

ei(x−y)udu



 f (y)dy

=
1

p
2π

π
∫

−π

f̂ (u)eixudu

=
(

1[−π,π] f̂
)ˆ
(−x).

Fourier inversion formula says that
ˆ̂
f (−x) = f (x). Thus the integral operator K

is the operator in L2 described as follows: Apply Fourier transform, multiply by

the indicator function of [−π,π], then apply the inverse Fourier transform. Since

Fourier transform is a unitary transformation, another way to put it is that K is the
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projector onto the space of functions in L2(R) whose Fourier transform is supported

in [−π,π].

4.3.6. Circular Unitary Ensemble. Let U (n) denote the group of n×n unitary

matrices. There is a unique Borel probability measure on U (n) that is invariant

under left multiplication by unitary matrices. This measure is also invariant under

right multiplication by unitary matrices, as well as under inversion. This measure is

called Haar measure. See Theorem 5.14 of the book (74) for a proof of the existence

and uniqueness of Haar measure on compact topological groups (which U (n) is, of

course).

Dyson (21) introduced the circular unitary ensemble which is the set of eigen-

values of a random unitary matrix sampled from the Haar measure on U (n). The

measure induced on eigenvalues was, however, known from Weyl.

THEOREM 4.3.9 (Weyl, Dyson). With U as above, let {eiθ j : 1 ≤ j ≤ n} be the set

of its eigenvalues. The counting measure of eigenvalues is a the determinantal point

process on S1 with kernel

K(eiθ , eiϕ)= 1

2π

n−1
∑

k=0

eikθ−ikϕ.

with respect to Lebesgue measure on S1 (with total measure 2π). Equivalently, the

vector of eigenvalues (in uniform random order) has density

1

n!(2π)n

∏

j<k

|eiθ j − eiθk |2

with respect to Lebesgue measure on (S1)n.

The associated operator to K is the projection operator from L2(S1) onto the

subspace spanned by {eikθ : 0≤ k ≤ n−1}.

4.3.7. Ginibre ensemble. Ginibre (31) introduced three ensembles of matrices

with i.i.d. Gaussian entries without imposing a Hermitian condition. In the three

cases, the Gaussians were real, complex or quaternion. Here we consider the com-

plex case. This example is an important one, as the eigenvalues are in the complex

plane and are similar to, yet different from zeros of Gaussian analytic functions.

THEOREM 4.3.10 (Ginibre (1965)). Let M be an n×n matrix with i.i.d. standard

complex Gaussian entries. Then the eigenvalues of M form a determinantal point

process on the complex plane with kernel

(4.3.9) Kn(z,w)=
n−1
∑

k=0

(zw)k

k!

with respect to the background measure 1
π e−|z|

2
dm(z). Equivalently, the vector of

eigenvalues (in uniform random order) has density

(4.3.10)
1

πn
∏n

k=1
k!

e
−

n
∑

k=1
|zk |2 ∏

i< j

|zi − z j |2

with respect to Lebesgue measure on C
n.
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The projection operator associated to the kernel projects from L2(C,µ) onto the

span of {zk : 0 ≤ k ≤ n−1}. As n→∞, this converges to the projection onto the space

of all entire functions in L2(µ). The kernel is

(4.3.11) K(z,w)= ezw,

and the associated determinantal point process is invariant in distribution under

isometries of the plane. Hence it will be instructive to compare the properties of this

determinantal process with the corresponding properties of the zeros of the planar

Gaussian analytic function (2.3.4).

4.3.8. Spherical Ensemble. In this section we discuss a random matrix en-

semble introduced in (52). The determinantal process it gives rise to, and related

point processes were studied earlier by Caillol (12) and by Forrester, Jancovici and

Madore (25), without this connection to random matrices.

THEOREM 4.3.11 (Krishnapur). Let A,B be independent n×n random matrices

with i.i.d. standard complex Gaussian entries. Then the eigenvalues of A−1B form a

determinantal point process on the complex plane with kernel

(4.3.12) K(z,w)= (1+ zw)n−1

with respect to the background measure n
π(1+|z|2)n+1 dm(z). Equivalently, one may say

that the vector of eigenvalues (in uniform order) has density

(4.3.13)
1

n!

(n

π

)n n
∏

k=1

(

n−1

k

)

n
∏

k=1

1

(1+|zk|2)n+1

∏

i< j

|zi − z j |2

with respect to Lebesgue measure on C
n.

REMARK 4.3.12. These eigenvalues are best thought of as points on the two

dimensional sphere S
2, using stereographic projection from the plane. A simple

calculation shows that the density of the vector of points (w.r.t. the n-fold product of

the area measure on the sphere) is simply

Const.
∏

i< j

‖Pi −P j‖2
R3 ,

where ‖ · ‖
R3 is the Euclidean norm on R

3. From this it is evident that the point

process is invariant in distribution under isometries of the sphere. Note also the

similarity of this density to that of the circular unitary ensemble.

4.3.9. Truncated unitary matrices. Let U be a matrix drawn from the Haar

distribution on U (N +m). Partition U as

(4.3.14) U =
[

A C∗

B D

]

where A has size N ×N. Życzkowski and Sommers (90) found the exact distribution

of eigenvalues of A. Incidentally, permuting the rows or columns of U does not

change its distribution, by the invariance of Haar measure. Therefore, any N × N

submatrix of U - not necessarily a principal submatrix - has the same eigenvalue

distribution as A.
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THEOREM 4.3.13 (Życzkowski and Sommers(2000)). The eigenvalues of A form

a determinantal point process on D with kernel

(4.3.15) K(z,w)=
N−1
∑

k=0

(m+1) . . . (m+k)

k!
(zw)k

with respect to the background measure dµ(z)= m
π

(1−|z|2)m−1dm(z) on D.

Equivalently, we may say that the vector of eigenvalues (in uniform random or-

der) has density

(4.3.16)
1

N!

( m

π

) N−1
∏

k=0

(

m+k

k

)

N
∏

k=1

(1−|zk|2)m−1
∏

i< j

|zi − z j |2

with respect to Lebesgue measure on D
N .

4.3.10. Zero set of a hyperbolic GAF. Recall the one parameter family of

hyperbolic GAFs from (2.3.6). When L = 1, we have the i.i.d. power series f(z) :=
∑∞

n=0 anzn where an are i.i.d. standard complex normals. This defines a random

analytic function in the unit disk almost surely. Peres and Virág (70) discovered the

following result which is of central importance to us, as it connects the two topics in

the title of this book. We give a proof in chapter 5.

THEOREM 4.3.14 (Peres and Virág). The zero set of f1 is a determinantal process

in the disk with the Bergman kernel

K(z,w) = 1

π(1− zw)2
= 1

π

∞
∑

k=0

(k+1)(zw)k,(4.3.17)

with respect to Lebesgue measure in the unit disk.

The Bergman kernel of a domain Λ ⊂ C is the projection kernel from L2(Λ, dm
π

)

onto the subspace of holomorphic functions. For the unit disk this is easily seen to

be given by (4.3.17).

4.3.11. Singular points of matrix-valued GAFs. When m = 1 in (4.3.15), we

get precisely the truncation of the Bergman kernel of (4.3.17) to the first N sum-

mands (it was just whimsical that the factor of π−1 was absorbed into the kernel in

one case and into the background measure in the other). We may also let N →∞ in

(4.3.15) for any real number m > 0 to get the kernels

Km(z,w)=
1

(1− zw)m+1

for z,w ∈ D. In view of example 4.3.10 which is the case L = 1 in (2.3.6), one might

expect that the zero set of the canonical hyperbolic GAF for any L > 0 in (2.3.6),

is determinantal with kernel Km with respect to dµm(z) = m
π

(1− |z|2)m−1dm(z) on

D where we must take m = L so as to match the first intensity. This is false, for

except the case L = 1, none of the GAFs in (2.3.6) have a determinantal zero set,

as we shall see in chapter 5. The correct generalization of Theorem 4.3.14 is the

following result from ((54)), which however makes sense only for integer values of

m. The determinantal processes featured here were studied earlier by Jancovici and

Tellez (39) but without the connection to zeros of analytic functions.

THEOREM 4.3.15 (Krishnapur). Let Gk, k ≥ 0, be i.i.d. m×m matrices, each with

i.i.d. standard complex Gaussian entries. Then for each m ≥ 1, the singular points

of G0 + zG1 + z2G2 + . . ., that is to say, the zeros of det
(

G0 + zG1 + z2G2 + . . .
)

, form
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a determinantal point process on the unit disk, with kernel Km with respect to the

measure µm.

The kernels here are projection kernels onto the subspace of holomorphic func-

tions in L2(D,µm).

4.4. How to generate determinantal processes

As we shall see in Theorem 4.5.3, the most general determinantal processes with

Hermitian kernels (we do not consider non-Hermitian kernels in this book) are mix-

tures of determinantal projection processes. Mixture means a convex combination of

measures. Projection determinantal processes are determinantal processes whose

kernel KH defines a projection operator KH to a subspace H ⊂ L2(Λ,µ) or, equiva-

lently, KH(x, y)=∑

ϕk(x)ϕk(y) where
{

ϕk

}

is any orthonormal basis for H.

LEMMA 4.4.1. Suppose X is a determinantal projection process on Λ, with kernel

K(x, y) = ∑n
k=1

ϕk(x)ϕk(y) where
{

ϕk : 1≤ k ≤ n
}

is a finite orthonormal set in L2(Λ).

Then the number of points in X is equal to n, almost surely.

PROOF. The conditions imply that the matrix

(

K(xi,x j)
)

1≤i, j≤k
=

(

ϕ j(xi)
)

i≤k
j≤n

(

ϕi(x j)
)

i≤n

j≤k

has rank at most n for any k ≥ 1. From (1.2.3), we see that E
[

(X (Λ)
k

)

]

= 0 for k > n.

This shows that X (Λ)≤ n almost surely. However, the first intensity ρ1(x) =K(x,x),

which imples that

E [X (Λ)] =
∫

Λ

K(x,x)dµ(x)

=
n
∑

k=1

∫

Λ

|ϕk(x)|2dµ(x)

= n.

Therefore X (Λ)= n, almost surely. �

Despite the fact that determinantal processes arise naturally and many important

statistics can be computed, the standard definition 4.2.1 is lacking in direct prob-

abilistic intuition. Below we present an algorithm that is somewhat more natural

from a probabilist’s point of view, and can also be used for modelling determinantal

processes.

In the discrete case (i.e., if µ is an atomic measure), the projection operator KH

can be applied to the delta function at a point, where,

(4.4.1) δx(y) :=
{ 1

µ{x}
if y= x.

0 otherwise.

Then, KHδx(·) = K(·,x). In the general case we define KHδx := K(·,x). Neverthe-

less, in greater generality than the discrete setting, KHδx does have an independent

meaning as the “closest thing to δx in the Hilbert space H”. For, if the evaluation

f → f (x) is a bounded linear functional on H, then this functional is represented by

inner product with KHδx. In physics, KHδx is often called a coherent state.
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Being a projection kernel, K has the reproducing property
∫

K(x, y)K(y, z)dµ(y)=
K(x, z), which implies that K(x,x)= ‖KHδx‖2. Now, let ‖·‖ denote the norm of L2(µ).

The intensity measure of the process is given by

(4.4.2) dµH (x)= ρ1(x)dµ(x)= ‖KHδx‖2dµ(x).

When µ is supported on countably many points, we have ‖KHδx‖ = dist(δx,H⊥)

(where ⊥ denotes orthogonal complement), giving a natural interpretation of the

intensity ρ1.

Note that µH (Λ) = dim(H), so µH /dim(H) is a probability measure on Λ. We

construct the determinantal process as follows. Start with n= dim(H), and Hn = H.

ALGORITHM 4.4.2.

• If n= 0, stop.

• Pick a random point Xn from the probability measure 1
n
µHn

.

• Let Hn−1 ⊂ Hn be the orthogonal complement of the function KHn
δXn

in

Hn. In the discrete case (or if evaluations, f → f (x), are bounded linear

functionals for all x ∈ Λ), then Hn−1 = {f ∈ Hn : f (Xn) = 0}. Note that

dim(Hn−1)= n−1 a.s.

• Decrease n by 1 and iterate.

PROPOSITION 4.4.3. The points (X1, . . . , Xn) constructed by Algorithm 4.4.2 are

distributed as a uniform random ordering of the points in a determinantal process X

with kernel K.

PROOF. Construct the random vector (X1, . . . , Xn) using the algorithm. We want

to find its density at (x1, . . . ,xn) ∈Λ
n (where xi are distinct).

Let ψ j =KHδx j
. Projecting to H j is equivalent to first projecting to H and then

to H j , and it is easy to check that KH j
δx j

= KH j
ψ j . Thus, by (4.4.2), the density of

the random vector (X1, . . . , Xn) equals

pn(x1, . . . ,xn)=
n

∏

j=1

‖KH j
ψ j‖2

j
.

Note that H j = H ∩〈ψ j+1, . . . ,ψn〉⊥, and therefore V = ∏n
j=1

‖KH j
ψ j‖ is exactly

the repeated “base times height” formula for the volume of the parallelepiped deter-

mined by the vectors ψ1, . . . ,ψn in the finite-dimensional vector space H ⊂ L2(Λ). It

is well-known that V 2 equals the determinant of the Gram matrix whose i, j entry

is given by the scalar product of ψi ,ψ j . But
∫

ψiψ jdµ = K(xi,x j) by definition of

KHδx j
. Thus, we get

pn(x1, . . . ,xn)= 1

n!
det(K(xi,x j)).

The set {X1, . . . , Xn}, viewed as a point process, has the n-point joint intensity

(4.4.3)
∑

π∈Sn

pn(xπ1
, . . . ,xπn )= n!pn(x1, . . . ,xn),

which agrees with that of the determinantal process X . By Lemma 4.4.1 the claim

follows. �

EXAMPLE 4.4.4 (Uniform spanning trees). We continue the discussion of Exam-

ple 4.3.2. Let Gn+1 be an undirected graph on n+1 vertices. For every edge e, the

effective resistance of e is the current that flows through e, when a total of one unit

of current is sent from the tail of e to the tip of e. It is given by R(e)= (Ie, Ie). To use

our algorithm to choose a uniform spanning tree, proceed as follows:
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• If n= 0, stop.

• Take Xn to be a random edge, chosen so that P(Xn = e i)= 1
n

R(e i).

• Construct Gn from Gn+1 by contracting the edge Xn (which means that we

identify the end points), and update the effective resistances {R(e)}.

• Decrease n by one and iterate.

For sampling uniform spanning trees, more efficient algorithms are known, but

for general determinantal processes, the above procedure is the most efficient we are

aware of. In fact, recently Scardicchio, Zachary and Torquato (75) have implemented

this algorithm with various additional tricks and found it to be quite efficient in

practice.

4.5. Existence and basic properties

In this section we present necessary and sufficient conditions for the existence of

a determinantal point process with a specified Hermitian kernel and then study the

basic properties of such processes. Here is a brief guide to the theorems presented in

this section.

We start with the Lemma 4.5.1 which shows that when K is a finite dimensional

projection kernel, then a determinantal process with kernel K does exist. In fact,

Proposition 4.4.3 already showed this, but we give another proof. Then, in Theo-

rem 4.5.3 we show that a determinantal point process with a trace-class kernel is

a mixture of projection determinantal processes. In the process, we also prove the

existence of a determinantal point process for kernels that are dominated by a fi-

nite dimensional projection. These are put together in Theorem 4.5.5 to show that a

necessary and sufficient condition for a locally trace-class operator to define a deter-

minantal point process is that its spectrum must be contained in [0,1].

LEMMA 4.5.1. Suppose {ϕk}n
k=1

is an orthonormal set in L2(Λ). Then there exists

a determinantal process with kernel K(x, y)=∑n
k=1

ϕk(x)ϕk(y).

PROOF. For any x1, . . . ,xn we have
(

K(xi,x j)
)

1≤i, j≤n
= A A∗, where Ai,k =ϕk(xi).

Therefore, det
(

K(xi,x j)
)

is non-negative. Moreover,

∫

Λn
det

(

K(xi ,x j)
)

i, j

n
∏

k=1

dµ(xk) =
∫

Λn
det

(

ϕ j(xi)
)

i, j det
(

ϕi(x j)
)

i, j

n
∏

k=1

dµ(xk)

=
∫

Λn

∑

π,τ∈Sn

sgn(πτ)
n

∏

k=1

ϕπ(k)(xk)ϕτ(k)(xk)
n

∏

k=1

dµ(xk).

In the sum, if π(k) 6= τ(k), then
∫

Λ
ϕπ(k)(xk)ϕτ(k)(xk)dxk = 0, and when π(k)= τ(k), this

integral is 1. Thus, only the terms with π= τ contribute. We get
∫

Λn
det

(

K(xi,x j)
)

1≤i, j≤n
dµ(x1) . . . dµ(xn)= n!.

Since K is non-negative definite, we conclude that 1
n!

det
(

K(xi ,x j)
)

1≤i, j≤n is a proba-

bility density on Λ
n. If we look at the resulting random variable as a set of unlabelled

points in Λ, we get the desired n-point joint intensity ρn. Lower joint intensities are

obtained by integrating over some of the xis:

(4.5.1) ρk(x1, . . . ,xk)= 1

(n−k)!

∫

Λn−k

ρn(x1, . . . ,xn)
∏

j>k

dµ(x j).
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We caution that (4.5.1) is valid only for a point process that has n points almost

surely. In general, there is no way to get lower joint intensities from higher ones.

We now show how to get ρn−1. The others can be got in exactly the same manner,

or inductively. Set k = n−1 in (4.5.1) and expand ρn(x1, . . . ,xn)= det
(

K(xi,x j)
)

1≤i, j≤n

as we did before to get

ρn−1(x1, . . . ,xn−1) =
∫

Λ

ρn(x1, . . . ,xn)dµ(xn)

=
∑

π,τ

sgn(π τ)
n−1
∏

k=1

ϕπ(k)(xk)ϕτ(k)(xk)

∫

Λ

ϕπ(n)(xn)ϕτ(n)(xn)dµ(xn).

If π(n) 6= τ(n), the integral vanishes. And if π(n) = τ(n) = j, π and τ map {1, . . . ,n−1}

to {1,2, . . . ,n}− { j}. Preserving the ordering of both the latter set, π and τ may be

regarded as permutations, say π̃ and τ̃, of the set {1,2, . . . ,n−1} in the obvious way.

Evidently, sgn(π̃)sgn(τ̃)= sgn(π)sgn(τ), because π(n)= τ(n). This gives us

ρn−1(x1, . . . ,xn−1) =
n
∑

j=1

det
(

ϕk(xi)
)

1≤i≤n−1,k 6= j det
(

ϕk(xi)
)

k 6= j,1≤i≤n−1 .

We must show that this quantity is equal to det
(

K(xi,x j)
)

i, j≤n−1
. For this note that

(

K(xi,x j)
)

i, j≤n−1 =
(

ϕk(xi)
)

1≤i≤n−1,k≤n

(

ϕk(xi)
)

k≤n,i≤n−1 ,

and apply the Cauchy-Binet formula. Recall that for matrices A,B of orders m×n

and n×m respectively, where n≥ m, the Cauchy-Binet formula says

(4.5.2) det(AB)=
∑

1≤i1,...,im≤n

det(A[i1, . . . , im])det(B{i1, . . . , im}) ,

where we let A[i1, . . . , im] stand for the matrix formed by taking the columns num-

bered i1, . . . , im and B{i1, . . . im} for the matrix formed by the corresponding rows of

B. This completes the proof. �

Note that the last step of the proof, where we applied Cauchy-Binet formula, is es-

sentially the solution to exercise 4.1.1.

EXERCISE 4.5.2. The Janossy density of a point process X is defined to be

(4.5.3) Jk(z1, . . . , zk)= lim
ǫ→0

P(X has exactly k points, one in each of B(z j,ǫ))

k
∏

j=1
µ(B(z j,ǫ))

.

(There is a definition by integrals, analogous to that for joint intensities, but we

restrict ourselves to the above definition).

Given S ⊂ [n]
def= {1, . . . ,n} write λS def= ∏

j∈S λ j . Let X be a point process con-

taining no more than n<∞ points with Janossy densities

(4.5.4) Jk(z1, . . . , zk)= (1−λ)[n]

Zk

det(L(zi, z j)1≤i, j≤k)

for 1 ≤ k ≤ n where L(z,w) = ∑n
j=1

λ j

1−λ j
ϕ j(z)ϕ j(w) and Zk = ∑

S⊂[n]:|S|=kλ
S (1−λ)Sc

.

Suppose that Zk is also the probability that X contains exactly k points. Check that

X is a determinantal process with kernel K(z,w)=∑n
j=1

λ jϕ j(z)ϕ j(w).
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Now we state the main theorems. The most common application of the following

theorem is to describe the behavior of a determinantal process already restricted to

a subset.

THEOREM 4.5.3. Suppose X is a determinantal process with a Hermitian, non-

negative definite, trace-class kernel K. Write

K(x, y)=
n
∑

k=1

λkϕk(x)ϕk(y),

where {ϕk} is an orthonormal set of eigenfunctions of the integral operator K with

eigenvalues λk ∈ [0,1]. (Here n = ∞ is allowed). Let Ik, 1 ≤ k ≤ n be independent

random variables with Ik ∼Bernoulli(λk). Set

KI (x, y)=
n
∑

k=1

Ikϕk(x)ϕk(y).

KI is a random analogue of the kernel K. Let XI be the determinantal process with

kernel KI (i.e., first choose the Ik ’s and then independently sample a discrete set that

is determinantal with kernel KI ). Then

(4.5.5) X
d=XI .

In particular, the total number of points in the process X has the distribution of a

sum of independent Bernoulli(λk) random variables.

REMARK 4.5.4. In many examples the kernel K defines a projection operator,

i.e, λk = 1 for all k. Then Ik = 1 for all k, almost surely, and the theorem is trivial.

Nevertheless, the theorem has interesting consequences when applied to the restric-

tion of the process X to D for any compact subset D ⊂ Λ, as already mentioned in

remark 4.2.5.

Proof of Theorem 4.5.3. First assume that K is a finite-dimensional opera-

tor:

K(x, y)=
n
∑

k=1

λkϕk(x)ϕk(y)

for some finite n. We show that the processes on the left and right side of (4.5.5) have

the same joint intensities. By Lemma 4.2.6, this implies that these processes have

the same distribution.

Note that the process XI exists by Lemma 4.5.1. For m > n, the m-point joint

intensities of both X and XI are clearly zero. Now consider m ≤ n and x1, . . . ,xm ∈Λ.

We claim that:

(4.5.6) E
[

det
(

KI (xi,x j)
)

1≤i, j≤m

]

= det
(

K(xi,x j)
)

1≤i, j≤m
.

To prove (4.5.6), note that

(4.5.7)
(

KI (xi ,x j)
)

1≤i, j≤m
= A B,

where A is the m× n matrix with Ai,k = Ikϕk(xi) and B is the n× m matrix with

Bk, j =ϕk(x j).

For A,B of orders m×n and n×m recall that the Cauchy-Binet formula says

det(AB)=
∑

1≤i1,...,im≤n

det(A[i1, . . . , im])det(B{i1, . . . , im}) ,

where A[i1, . . . , im] stand for the matrix formed by taking the columns numbered

i1, . . . , im and B{i1, . . . im} for the matrix formed by the corresponding rows of B.
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Apply this to A,B defined above and take expectations. Observe that B{i1, . . . im}

is non-random and

E [det (A[i1, . . . , im])]= det(C[i1, . . . , im])

where C is the m×n matrix Ci,k =λkϕk(xi). Since the determinant involves products

of entries, independence of Iks is being used crucially. Now, applying the Cauchy-

Binet formula in the reverse direction to C and B, we obtain (4.5.6) and hence also

(4.5.5). Given {Ik}k≥1, Lemma 4.5.1 shows that the process XI is well defined and

Lemma 4.4.1 shows that XI has
∑

k Ik points, almost surely. Therefore,

X (Λ)
d=

∑

k

Ik.

So far we assumed that the operator K determined by the kernel K is finite

dimensional. Now suppose K is a general trace class operator. Then
∑

kλk < ∞
and hence, almost surely,

∑

k Ik <∞. By Lemma 4.5.1 again, XI exists and (4.5.7) is

valid by the same reasoning. Taking expectations and observing that the summands

in the Cauchy-Binet formula (for the matrices A and B at hand) are non-negative,

we obtain

E
[

det
(

KI (xi,x j)
)

1≤i, j≤m

]

=
∑

1≤i1,...,im

det(C[i1, . . . , im])det(B{i1, . . . , im}) ,

where C is the same as before. To conclude that the right hand side is equal to

det
(

K(xi ,x j)
)

1≤i, j≤m
, we first apply the Cauchy-Binet formula to the finite approxi-

mation
(

KN(xi ,x j)
)

1≤i, j≤m
, where KN (x, y)=∑N

k=1
λkϕk(x)ϕk(y). Use Lemma 4.2.2 to

see for µ-a.e. x, y ∈Λ that KN(x, y) converges to K(x, y) as N →∞. Hence, for µ-a.e.

x1, . . . ,xm ∈Λ, we have

E
[

det
(

KI (xi,x j)
)

1≤i, j≤m

]

= det
(

K(xi,x j)
)

1≤i, j≤m
,

as was required to show. (In short, the proof for the infinite case is exactly the same

as before, only we cautiously avoided applying Cauchy-Binet formula to the product

of two infinite rectangular matrices).

�

Now we give a probabilistic proof of the following criterion for a Hermitian integral

kernel to define a determinantal process.

THEOREM 4.5.5 (Macchi (57), Soshnikov (85)). Let K determine a self-adjoint in-

tegral operator K on L2(Λ) that is locally trace class. Then K defines a determinantal

process on Λ if and only if the spectrum of K is contained in [0,1].

PROOF. If Λ is compact and K is of trace class, then K has point spectrum and

we may write

(4.5.8) K(x, y)=
∑

k

λkϕk(x)ϕk(y)

where {ϕk} is an orthonormal set in L2(Λ,µ) and λk ≥ 0 and
∑

λk <∞.

In general, it suffices to construct the point process restricted to an arbitrary

compact subset of Λ with kernel, the restriction of K to the compact subset. What is

more, the spectrum of K is contained in [0,1] if, and only if, the eigenvalues of K

restricted to any compact set are in [0,1]. Thus we may assume that Λ is compact,

that K is of trace class and that (4.5.8) holds.
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Sufficiency: If K is a projection operator, this is precisely Lemma 4.5.1. If the

eigenvalues are {λk}, with λk ≤ 1, then as in the proof of Theorem 4.5.3, we construct

the process XI . The proof there shows that XI is determinantal with kernel K.

Necessity: Suppose that X is determinantal with kernel K. Since the joint

intensities of X are non-negative, K must be non-negative definite. Now suppose

that the largest eigenvalue of K is λ > 1. Let X1 be the process obtained by first

sampling X and then independently deleting each point of X with probability 1− 1
λ

.

Computing the joint intensities shows that X1 is determinantal with kernel 1
λ
K.

Now X has finitely many points (we assumed that K is trace class) and λ > 1.

Hence, P [X1(Λ)= 0]> 0. However, 1
λK has all eigenvalues in [0,1], with at least one

eigenvalue equal to 1, whence by Theorem 4.5.3, P [X1(Λ)≥ 1] = 1, a contradiction.

�

EXAMPLE 4.5.6 (Non-measurability of the Bernoullis). A natural question that

arises from Theorem 4.5.3 is whether, given a realization of the determinantal pro-

cess X , we can determine the values of the Ik ’s. This is not always possible, i.e., the

Ik ’s are not measurable w.r.t. the process X in general.

Consider the graph G with vertices {a,b, c,d} and edges e1 = (a,b), e2 = (b, c), e3 =
(c,d), e4 = (d,a), e5 = (a, c). By the Burton-Pemantle Theorem (11) (Example 4.3.2),

the edge-set of a uniformly chosen spanning tree of G is a determinantal process. In

this case, the kernel restricted to the set D = {e1, e2, e3} is turns out to be

(K(e i, e j ))1≤i, j≤3 =
1

8





5 −3 −1

−3 5 −1

−1 −1 −1



 .

This matrix has eigenvalues 1
8

, 7−
p

17
16

, 7+
p

17
16

. But G has eight spanning trees, and

hence, all measurable events have probabilities that are multiples of 1
8
, it follows

that the Bernoullis cannot be measurable.

Theorem 4.5.3 gives us the distribution of the number of points X (D) in any

subset of Λ. Given several regions D1, . . . ,Dr , can we find the joint distribution of

X (D1), . . . ,X (Dr)? It seems that a simple probabilistic description of the joint distri-

bution exists only in the special case when D i ’s are related as follows.

DEFINITION 4.5.7. Let K be a standard integral kernel and K the associated

integral operator acting on L2(Λ). We say that the subsets D1, . . . ,Dr of Λ are simul-

taneously observable if the following happens. Let D =∪iD i .

There is an orthogonal basis {ϕk} of L2(D) consisting of eigenfunctions of KD

such that for each i ≤ r, the set {ϕk|D i
} of the restricted functions is an orthogonal

basis of L2(D i) consisting of eigenfunctions of KD i
.

The motivation for this terminology comes from quantum mechanics, where two

physical quantities can be simultaneously measured if the corresponding operators

commute. Commuting is the same as having common eigenfunctions, of course.

EXAMPLE 4.5.8. Consider the infinite Ginibre process described under exam-

ple 4.3.7 which is determinatal on the complex plane with kernel

(4.5.9) K(z,w)=
∞
∑

k=0

(zw)k

k!
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with respect to dµ(z) =π−1 exp{−|z|2} dm(z). Then if S = {z : r < |z| < R} is an annulus

centered at zero, then

∫

S

K(z,w)wkdµ(w) =
∫

S

zk|w|2k

k!

1

π
e−|w|2 dm(w)

= zk

k!

R2
∫

r2

tk e−tdt,

which shows that {zk : k ≥ 0} is an orthogonal basis of eigenfunctions of KS . Thus,

if D i are arbitrary annuli centered at the origin, then they satisfy the conditions of

definition 4.5.7. The interesting examples we know are all of this kind, based on the

orthogonality of {zk} on any annulus centered at the origin. We shall say more about

these processes in section 4.7.

PROPOSITION 4.5.9. Under the assumptions of Theorem 4.5.3, let D i ⊂Λ, 1≤ i ≤
r be mutually disjoint and simultaneously observable. Let ei be the standard basis

vectors in R
r. Denote by ϕk, the common eigenfunctions of K on the D i ’s and by λk,i

the corresponding eigenvalues. Then λk := ∑

i λk,i are the eigenvalues of K∪D i
and

hence λk ≤ 1. Then

(4.5.10) (X (D1), . . . ,X (Dr))
d=

∑

k

(

ξk,1, . . . ,ξk,r

)

,

where ~ξk =
(

ξk,1, . . . ,ξk,r

)

are independent for different values of k, with P(~ξk = ei) =
λk,i for 1 ≤ i ≤ r and P(~ξk = 0) = 1−λk. In words, (X (D1), . . . ,X (Dr)) has the same

distribution as the vector of counts in r cells, if we pick n balls and assign the kth

ball to the ith cell with probability λk,i (there may be a positive probability of not

assigning it to any of the cells).

PROOF. At first we make the following assumptions.

(1) ∪iD i =Λ.

(2) K defines a finite dimensional projection operator. That is,

K(x, y)=
n
∑

k=1

ϕk(x)ϕk(y) for x, y ∈Λ,

where {ϕk} is an orthonormal set in L2(Λ) and n<∞.

By our assumption, {ϕk|D i
} is an orthogonal (but not orthonormal) basis of L2(D i) of

eigenfunctions of KD i
, for 1≤ i ≤ r. Thus for x, y ∈ D i, we may write

(4.5.11) K(x, y)=
∑

k

λk,i

ϕk(x)ϕk(y)
∫

D i
|ϕk|2dµ

.

Comparing with the expansion of K on Λ, we see that λk,i =
∫

D i
|ϕk|2dµ.

We write

(4.5.12)




K(x1,x1) . . . K(x1,xn)

. . . . . . . . .

K(xn,x1) . . . K(xn,xn)



=





ϕ1(x1) . . . ϕn(x1)

. . . . . . . . .

ϕ1(xn) . . . ϕn(xn)









ϕ1(x1) . . . ϕ1(xn)

. . . . . . . . .

ϕn(x1) . . . ϕn(xn)



 .
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In particular,

(4.5.13) det
(

K(xi,x j)
)

1≤i, j≤n
=

(

∑

σ∈Sn

sgn(σ)
n

∏

i=1

ϕσi
(xi)

)(

∑

τ∈Sn

sgn(τ)
n

∏

i=1

ϕτi
(xi)

)

.

Now if ki are non-negative integers with
∑

i ki = n, note that

{X (D i)≥ ki for all 1≤ i ≤ r} = {X (D i)= ki for all 1 ≤ i ≤ r},

since by Lemma 4.4.1, a determinantal process whose kernel defines a rank-n pro-

jection operator has exactly n points, almost surely. Thus, we have

P [X (D i)= ki for all 1≤ i ≤ r] = E

[

r
∏

i=1

(

X (D i)

ki

)]

= 1

k1! · · ·kr !

∫

∏r
i=1

D
ki
i

det(K(xk,xℓ))1≤k,ℓ≤n dµ(x1) . . . dµ(xn)

= 1

k1! · · ·kr !

∫

∏r
i=1

D
ki
i

∑

σ,τ

sgn(σ)sgn(τ)
n

∏

m=1

ϕσm (xm)ϕτm
(xm)dµ(x1) . . . dµ(xn).

Any term with σ 6= τ vanishes upon integrating. Indeed, if σ(m) 6= τ(m) for some m,

then
∫

D j(m)

ϕσm (xm)ϕτm
(xm)dµ(xm)= 0

where j(m) is the index for which

k1 + . . .+k j(m)−1 < m ≤ k1 + . . .+k j(m).

Therefore,

E

[

r
∏

i=1

(

X (D i)

ki

)]

= 1

k1! · · ·kr !

∑

σ

n
∏

m=1

∫

D j(m)

|ϕσm (x)|2dx

= 1

k1! · · ·kr !

∑

σ

n
∏

m=1

λσm , j(m).

Now consider (4.5.10) and set Mi =
∑

k ξk,i for 1 ≤ i ≤ r. We want P
[

M j = k j , j ≤ r
]

.

This problem is the same as putting n balls into r cells, where the probability for

the jth ball to fall in cell i is λ j,i . To have ki balls in cell i for each i, we first take

a permutation σ of {1,2, . . . ,n} and then put the σth
m ball into cell j(m) if k1 + . . .+

k j(m)−1 < m ≤ k1 + . . .+ k j(m). However, this counts each assignment of balls
∏r

i=1
ki !

times. This implies that

P [M1 = k1, . . . ,Mr = kr] = 1

k1! · · ·kr !

∑

σ

n
∏

m=1

λσm , j(m).

Thus,

(4.5.14) (X (D1), . . . ,X (Dr))
d= (M1, . . . ,Mr),

which is precisely what we wanted to show. It remains to deal with the two assump-

tions that we made at the beginning.

First, if the kernel does not define a projection, apply Theorem 4.5.3 to write

X as a mixture of determinantal projection processes. Since the eigenfunctions of
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these projection kernels are a subset of eigenfunctions of the original kernel, D i are

simultaneously observable for each projection kernel that appears in the mixture

also. Applying (4.5.14) to each component in the mixture we obtain the theorem. Ap-

plying the theorem for these projection determinantal processes, we get the theorem

for the original determinantal processes.

Second, if ∪iD i 6= Λ, we could restrict the point process to ∪iD i to obtain a de-

terminantal process whose kernel may or may not be a projection. The theorem thus

follows. �

4.6. Central limit theorems

As an application of Theorem 4.5.3 we can derive the following central limit

theorem for determinantal processes due to Costin and Lebowitz (16) in case of the

sine kernel, and due to Soshnikov (86) for general determinantal processes.

THEOREM 4.6.1. Let Xn be a sequence of determinantal processes on Λn with

kernels Kn. Let Dn be a Borel subset of Λn such that Xn(Dn) is finite almost surely

and such that V ar (Xn(Dn))→∞ as n→∞.

Then

(4.6.1)
Xn(Dn)−E [Xn (Dn)]

√

Var(Xn(Dn))

d→ N(0,1).

PROOF. By Theorem 4.5.3, Xn(Dn) has the same distribution as a sum of inde-

pendent Bernoullis with parameters being the eigenvalues of the integral operators

associated with Kn restricted to Dn. A straightforward application of Lindeberg-

Feller CLT for triangular arrays gives the result. �

REMARK 4.6.2. Earlier proofs of results of the kind of Theorem 4.6.1 ((16), (86))

used the moment generating function for particle counts. Indeed, one standard way

to prove central limit theorems (including the Lindeberg-Feller theorem) uses gen-

erating functions. The advantage of this proof is that the reason for the validity

of the CLT is more transparent and a repetition of well known computations are

avoided. Moreover, by applying the classical theory of sums of independent vari-

ables, local limit theorems, large deviation principles and extreme value asymptotics

follow without any extra effort.

4.7. Radially symmetric processes on the complex plane

Proposition 4.5.9 implies that when a determinantal process with kernel of the

form K(z,w)=∑

k ck(zw)k, with respect to a radially symmetric measure µ, then the

set of absolute values of the points of the process, has the same distribution as a set

of independent random variables. More precisely, we have

THEOREM 4.7.1. Let X be a determinantal process with kernel K with respect

to a radially symmetric finite measure µ on C. Write K(z,w) = ∑

kλka2
k
(zw)k, where

akzk, 0≤ k ≤ n−1 are the normalized eigenfunctions for K. The following construction

describes the distribution of {|z|2 : z ∈X }.

• Let Z be picked from the probability distribution
µ

µ(C)
, and let Q0 = |Z|2.

• For 1 ≤ k ≤ n−1 let Qk be an independent size-biased version of Qk−1 (i.e.,

Qk has density fk(q)= a2
k

a2
k−1

q with respect to the law of Qk−1).
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• Consider the point process in which each point Qk, 0≤ k ≤ n−1, is included

with probability λk independently of everything else.

When µ has density ϕ(|z|), then Qk has density

(4.7.1) πa2
kqkϕ(

p
q).

Theorem 4.7.1 (and its higher dimensional analogues) is the only kind of exam-

ple that we know for interesting simultaneously observable counts.

PROOF. Let ν be the measure of the squared modulus of a point picked from µ.

In particular, if µ has density ϕ(|z|), then we have dν(q) =πϕ(
p

q)dq.

For 1 ≤ i ≤ r, let D i be mutually disjoint open annuli centered at 0 with inner

and outer radii r i and Ri respectively. Since the functions zk are orthogonal on any

annulus centered at zero, it follows that the D i ’s are simultaneously observable. To

compute the eigenvalues, we integrate these functions against the restricted kernel;

clearly, all terms but one cancel, and we get that for z ∈ D i

zkλk,i =
∫

D i

λka2
k(zw)kwkdµ(w), and so

λk,i = λka2
k

∫

D i

|w|2kdµ(w)

= λka2
k

R2
i

∫

r2
i

qkdν(q).

As r i ,Ri change, the last expression remains proportional to the probability that the

k times size-biased random variable Qk falls in (r2
i
,R2

i
). When we set (r i ,Ri)= (0,∞),

the result is λk because akwk has norm 1. Thus the constant of proportionality

equals λk. The theorem now follows from Proposition 4.5.9. �

EXAMPLE 4.7.2 (Ginibre ensemble revisited). Recall that the nth Ginibre en-

semble described in Example 4.3.7 is the determinantal process Gn on C with ker-

nel Kn(z,w) = ∑n−1
k=0

λka2
k
(zw)k with respect to the Gaussian measure 1

π e−|z|
2
dm(z),

where a2
k
= 1/k!, and λk = 1. The modulus-squared of a complex Gaussian is a

Gamma(1,1) random variable, and its k-times size-biased version has Gamma(k+
1,1) distribution (see (4.7.1)). Theorem 4.7.1 immediately yields the following result.

THEOREM 4.7.3 (Kostlan (51)). The set of absolute values of the points of Gn has

the same distribution as {Y1, . . . ,Yn} where Yi are independent and Y 2
i
∼Gamma(i,1).

All of the above holds for n=∞ also (see example 4.5.8), in which case we have a

determinantal process with kernel ezw with respect to dµ= 1
π e−|z|

2
dm(z). This case

is also of interest as G∞ is a translation invariant process in the plane.

EXAMPLE 4.7.4 (Zero set of a Gaussian analytic function). Recall from exam-

ple 4.3.10 that the zero set of f1(z) := ∑∞
n=0 anzn is a determinantal process in the

disk with the Bergman kernel

K(z,w)= 1

π(1− zw)2
= 1

π

∞
∑

k=0

(k+1)(zw)k,

with respect to Lebesgue measure in the unit disk. This fact will be proved in chap-

ter 5. Theorem 4.7.1 applies to this example, with a2
k
= (k+1)/π and λk = 1 (to make K
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trace class, we first have to restrict it to the disk of radius r < 1 and let r → 1). From

(4.7.1) we immediately see that Qk has Beta(k+1,1) distribution. Equivalently, we

get the following.

THEOREM 4.7.5 (Peres and Virág (70)). The set of absolute values of the points

in the zero set of f1 has the same distribution as {U1/2
1

,U1/4
2

,U1/6
3

, . . .} where Ui are

i.i.d. uniform[0,1] random variables.

We can of course consider the determinantal process with kernel Kn(z,w) =
1
π

n−1
∑

k=0
(k + 1)(zw)k (truncated Bergman kernel). The set of absolute values of this

process has the same distribution as {U1/2k
k

: 1≤ k ≤ n}.

4.8. High powers of complex polynomial processes

Rains (72) showed that sufficiently high powers of eigenvalues of a random uni-

tary matrix are independent.

THEOREM 4.8.1 (Rains (72)). Let {z1, . . . , zn} be the set of eigenvalues of a ran-

dom unitary matrix chosen according to Haar measure on U (n). Then for every k ≥ n,

{zk
1
, . . . , zk

n} has the same distribution as a set of n points chosen independently accord-

ing to uniform measure on the unit circle in the complex plane.

In the following propostition, we point out that this theorem holds whenever the

angular distribution of the points is a trigonometric polynomial.

PROPOSITION 4.8.2. Let (z1, . . . , zn) ∈ (S1)⊗n have density P(z1, . . . , zn, z1, . . . , zn)

with respect to uniform measure on (S1)⊗n, where P is a polynomial of degree d or

less in each variable. Then for every k > d the vector (zk
1
, . . . , zk

n) has the distribution

of n points chosen independently according to uniform measure on S1.

PROOF. Fix k > d and consider any joint moment of (zk
1
, . . . , zk

n),

E

[

n
∏

i=1

(

z
kmi

i
zi

kℓi

)

]

=
∫

(S1)⊗n

n
∏

i=1

(

z
kmi

i
zi

kℓi

)

P(z1, . . . , zn, z1, . . . , zn)dλ,

where λ denotes the uniform measure on (S1)⊗n. If mi 6= ℓi for some i then the

integral vanishes. To see this, note that the average of a monomial over (S1)⊗n is

either 1 or 0 depending on whether the exponent of every zi matches that of zi .

Suppose without loss of generality that m1 > ℓ1. Thus, if P is written as a sum of

monomials, in each term, we have an excess of zk
1

which cannot be matched by an

equal power of z1 because P has degree less than k as a polynomial in z1.

We conclude that the joint moments are zero unless mi = ℓi for all i. If mi = ℓi

for all i, then the expectation equals 1. Thus, the joint moments of (zk
1
, . . . , zk

n) are

the same as those of n i.i.d. points chosen uniformly on the unit circle. This proves

the proposition. �

More generally, by conditioning on the absolute values we get the following.

COROLLARY 4.8.3. Let ζ1, . . . ,ζk be complex random variables with distribution

given by

P(z1, . . . , zn, z1, . . . , zn)dµ1(z1) · · ·dµn(zn),
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where P is a polynomial of degree d or less in each variable, and the measures µi

are radially symmetric. Then for every k > d, the angles arg(ζk
1
), . . . ,arg(ζk

n) are in-

dependent, have uniform distribution on [0,2π], and are independent of the moduli

{|ζ1|, . . . , |ζn|}.
Corollary 4.8.3 applies to powers of points of determinantal processes with ker-

nels of the form K(z,w)=∑d
k=0

ck(zw)k with respect to a radially symmetric measure

µ on the complex plane. Combining this observation with our earlier results on the

independence of the absolute values of the points, we get the following result.

THEOREM 4.8.4. Let X = {z1, . . . , zn} be a determinantal process on the complex

plane with kernel K(z,w)=∑d−1
ℓ=0

ck(zw)ℓ (satisfying # {k ≥ 0 : ck 6= 0}= n) with respect

to a radially symmetric measure µ. Then for every ℓ ≥ d, the set {zℓ
1
, . . . , zℓn} is dis-

tributed as a set of independent random variables with radially symmetric distribu-

tion.

4.9. Permanental processes

In this section we introduce permanental point processes, to show the anal-

ogy and to contrast their properties with determinantal processes. Permanental pro-

cesses are positively correlated, meaning that they have even more clumps and va-

cant regions than Poisson processes, see figure 1. In physics, they correspond bosons

as opposed to determinantal processes that correspond to fermions.

DEFINITION 4.9.1. A point process X on Λ is said to be a permanental pro-

cess with kernel K if its joint intensities satisfy:

(4.9.1) ρk(x1, . . . ,xk)= per
(

K(xi,x j)
)

1≤i, j≤k
,

for every k ≥ 1 and x1, . . . ,xk ∈Λ.

We continue to make our standard assumptions on the kernel K (Assumption

4.2.3). While analogous theorems to those for determinantal processes hold, as

we shall show, probabilistically permanental processes are much simpler. Indeed,

Proposition 4.9.2 characterizes all permanental point processes in terms of Poisson

processes, an analogous probabilistic characterization of determinantal processes

seems not to exist.

PROPOSITION 4.9.2. Let F be a mean zero complex Gaussian process on Λ. Given

F, let X be a Poisson process in Λ with intensity |F|2. Then X is a permanental

process with kernel K(x, y)=E
[

F(x)F(y)
]

.

PROOF. Given F, the joint intensities of X are ρ̃k(x1, . . . ,xk) = ∏k
i=1

|F(xi)|2.

Hence it follows that the unconditional joint intensities of X are ρk(x1, . . . ,xk) =
E

[
∏k

i=1
|F(xi)|2

]

. Now apply the Wick formula Lemma 2.1.7. �

COROLLARY 4.9.3. If K determines a self-adjoint non-negative definite locally

trace-class integral operator K , then there exists a permanental process with kernel

K.

PROOF. Proposition 4.9.2 shows existence. Uniqueness is proved analogously to

Theorem 4.2.6. We just sketch the changes to be made in that proof, . For a Hermit-

ian positive definite matrix M, we have |Mi, j |2 ≤ Mi,i M j, j for any i, j. Therefore

per(M)≤
∑

σ

n
∏

k=1

|Mk,πk
| ≤ n!

n
∏

k=1

Mk,k.
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Use this in place of inequality (4.2.15) for the determinant to deduce that for any

compact set D

E[(1+ s)X (D)]≤
∞
∑

k=0

κ(D)ksk

where κ(D) =
∫

D K(x,x)dµ(x). Thus the series converges for |s| < κ(D)−1 and the mo-

ments of X (D) determine the distribution of X (D). This is exactly what we needed

to show that the joint intensities determine the distribution of X . �

PROOF. Let
{

ϕk

}

be an orthonormal set of eigenfunctions for K with eigenval-

ues λk, and write K(x, y) = ∑n
k=1

λkϕk(x)ϕk(y), we allow n =∞. Let ak be indepen-

dent standard complex Gaussian random variables and define

F(z)=
n
∑

k=1

√

λkakϕk(z).

Then F is a complex Gaussian process on Λ with covariance kernel K, and we use

Proposition 4.9.2 to construct the required permanental process. �

Next we give the analogue of Theorem 4.5.3 for permanental processes. It is

much simpler to prove thanks to Proposition 4.9.2. As always, densities on Λ
ℓ are

expressed with respect to the background measure µ⊗ℓ.

THEOREM 4.9.4. (Hough et al. (35)) Suppose X is a permanental process in

Λ with a Hermitian, non-negative definite, trace-class kernel K. Write K(x, y) =
∑n

k=1
λkϕk(x)ϕk(y), where ϕk are orthonormal eigenfunctions of K with eigenvalues

λk (n =∞ is allowed). Let ~α = (α1, . . . ,αn), where αi are non-negative integers such

that ℓ= ℓ(~α)=α1 +·· ·+αn <∞ and let Z~α be the random vector in Λ
ℓ with density:

(4.9.2) pℓ(z1, . . . , zℓ)= 1

ℓ!α1! · · ·αn!

∣

∣

∣

∣

∣

∣

per





{

ϕ1(z1) · · · ϕ1(zℓ)
}

α1

· · · · · · · · ·
{

ϕn(z1) · · · ϕn(zℓ)
}

αn





∣

∣

∣

∣

∣

∣

2

,

where the notation
{

ϕi(z1) · · ·ϕi(zℓ)
}

αi indicates that the row ϕi(z1) · · ·ϕi(zℓ) is re-

peated αi times. Let X ~α be the point process determined by Z~α, i.e., X ~α(D) is the

number of j ≤ ℓ such that Z~α
j
∈ D. Let γ1, . . . ,γn be independent geometric random

variables with P (γk = s) =
(

λk

λk+1

)s (

1
λk+1

)

, for s= 0,1,2, . . . . Then

X
d=X~γ,

where ~γ = (γ1, . . . ,γn). In particular, X (Λ) has the distribution of a sum of indepen-

dent Geometric random variables with parameters 1
λk+1

.

REMARK 4.9.5. The density given in (4.9.2) has physical significance. Inter-

preting the functions ϕk as eigenstates of a one-particle Hamiltonian, (4.9.2) gives

the distribution for ℓ non-interacting bosons in a common potential given that αi of

them lie in the eigenstate ϕi . This density is the exact analogue of the density for

the determinantal projection process with kernel whose eigenfunctions are (ψi j
):

(4.9.3) p(z1, . . . , zℓ)= 1

ℓ!

∣

∣

∣

∣

∣

∣

det





ϕi1
(z1) · · · ϕi1

(zℓ)

· · · · · · · · ·
ϕiℓ (z1) · · · ϕiℓ (zℓ)





∣

∣

∣

∣

∣

∣

2

.

Physically, (4.9.3) gives the distribution for ℓ non-interacting fermions in a common

potential given that one fermion lies in each of the eigenstates ϕi1
, . . . ,ϕiℓ . The fact
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that (4.9.3) vanishes if a row is repeated illustrates Pauli’s exclusion principle, which

states that multiple fermions cannot occupy the same eigenstate. See (29) for more

details.

We shall make use of the following fact in proving Theorem 4.9.4.

FACT 4.9.6. Let Y be a Poisson process on Λ with intensity measure ν. Assume

that ν(Λ)<∞ and ν is absolutely continuous with respect to µ (the reference measure

of Λ). Let Y be the random vector of length Y (Λ) obtained from a uniform random

ordering of the points of Y . For k ≥ 1, the law of Y on the event that Y (Λ) = k is a

sub-probability measure on Λ
k with density

(4.9.4) gk(z1, . . . , zk)= 1

k!

[

e−ν(Λ)
k

∏

i=1

dν

dµ
(zi)

]

with respect to µk.

Proof of Theorem 4.9.4. We use Proposition 4.9.2 to construct X as a Poisson

process with intensity |F|2 where F(z) = ∑n
k=1

√

λkakϕk(z) and ak are independent

standard complex Gaussian random variables. Note that

E(X (Λ))=E

∫

Λ

|F(z)|2dµ(z)=
n
∑

k=1

λk <∞,

hence X contains a finite number of points a.s. Let X be the random vector obtained

from a uniform random ordering of the points of X . If we first condition on F, then

by Fact 4.9.6 the joint density of the random vector X on the event {X (Λ) = ℓ} is

given by

jF,ℓ(z1, . . . , zℓ)= 1

ℓ!

[

e
−

∫

Λ

|F(x)|2dµ(x) ℓ
∏

i=1

|F(zi)|2
]

,

which is a sub-probability measure with total weight P
[

X (Λ) = ℓ
∣

∣F
]

. Integrating

over the distribution of F we get that on the event {X (Λ)= ℓ} the density of X is

jℓ(z1, . . . , zℓ) =
1

ℓ!
E

[

e
−

∫

Λ

|F(x)|2dµ(x) ℓ
∏

i=1

|F(zi)|2
]

= 1

ℓ!
E

[

e
−

∑

m
λm|am|2 ∣

∣

ℓ
∏

i=1

(

∑

m

√

λmamϕm(zi)

)

∣

∣

2

]

,(4.9.5)

which is also a sub-probability measure with total weight P
[

X (Λ) = ℓ
]

. We now

expand the product inside the expectation (4.9.5) as a sum indexed by ordered set

partitions (S1, . . . ,Sn) and (T1, . . . ,Tn) of {1,2, . . . ,ℓ}. The set partitions corresponding

to a summand q are constructed by letting Sk be the set of indices i for which q

contains the term
√

λkakϕk(zi) and Tk be the set of indices i for which q contains

the term
√

λkakϕk(zi). The summand corresponding to the partitions (Sk),(Tk) is

thus:

E

[

e
−

∑

m
λm|am|2

(

∏

k

a
|Sk |
k

ak
|Tk |

)(

∏

k

∏

i∈Sk

λ
|Sk |/2
k

ϕk(zi)

)(

∏

k

∏

i∈Tk

λ
|Tk |/2
k

ϕk(zi)

)]

,

which clearly vanishes unless |Sk| = |Tk| for every k. Also note that for a standard

complex normal random variable a,

(4.9.6) E
[

e−λ|a|
2

|a|2α
]

= α!

(1+λ)α+1
.
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Therefore by fixing an ordered partition of the integer ℓ with n parts (some of the

parts may be zero) and then summing over all ordered set partitions (Sk),(Tk) with

those sizes, we find that

(4.9.7)

jℓ(z1, . . . , zℓ)=
1

ℓ!

∑

(α1,...,αn):
∑

αi=ℓ

(

n
∏

i=1

λ
αi

i
αi!

(1+λi)
αi+1

)

∣

∣

∑

(Sm)n
m=1

:|Sm |=αm

n
∏

k=1

∏

i∈Sk

ϕk(zi)
∣

∣

2
.

Now it is easy to see that

∑

(Si):|Si |=αi

∏

k≥1

∏

i∈Sk

ϕk(zi)=
(

n
∏

i=1

1

αi!

)

per





{

ϕ1(z1) · · · ϕ1(zℓ)
}

α1

· · · · · · · · ·
{

ϕn(z1) · · · ϕn(zℓ)
}

αn



 .

Recall that the geometric random variables γi in the statement of the theorem have

the distributions P
[

γi =α
]

= λα
i

(1+λi)
1+α . Therefore we obtain

(4.9.8)

jℓ(z1, . . . , zℓ)=
∑

(α1,...,αn):
∑

αi=ℓ

(
∏n

i=1
P

[

γi =αi

]

ℓ!
∏n

i=1
αi!

)

∣

∣

∣

∣

∣

∣

per





{

ϕ1(z1) · · · ϕ1(zℓ)
}

α1

· · · · · · · · ·
{

ϕn(z1) · · · ϕn(zℓ)
}

αn





∣

∣

∣

∣

∣

∣

2

.

Now we integrate (4.9.8) over all the variables zi . Write the absolute square of the

permanent on the right as

per





{

ϕ1(z1) · · · ϕ1(zℓ)
}

α1

· · · · · · · · ·
{

ϕn(z1) · · · ϕn(zℓ)
}

αn



per





{

ϕ1(z1) · · · ϕ1(zℓ)
}

α1

· · · · · · · · ·
{

ϕn(z1) · · · ϕn(zℓ)
}

αn





and expand these two factors over permutations π and σ of {1,2, . . . ,k}. Letting I j

denote the interval of integers {1+
j−1
∑

r=1
αr, . . . ,

j
∑

r=1
αr} we get a sum of terms of the form





n
∏

j=1

∏

i∈π−1(I j)

ϕ j(zi)









n
∏

j=1

∏

i∈σ−1(I j )

ϕ j(zi)



 .

By orthogonality of ϕ js, this term vanishes upon integration unless π−1(I j)=σ−1(I j)

for every 1≤ j ≤ n. For a given π, there are
∏n

j=1
α j! choices of σ that satisfy this. For

each such σ, we get 1 upon integration over zis. Summing over all ℓ! choices for π,

we get

∫

Λk

jℓ dµℓ =P
[

X (Λ)= ℓ
]

=
∑

(α1,...,αn):
∑

αi=ℓ

n
∏

i=1

P
[

γi =αi

]

=P

[

n
∑

i=1

γi = ℓ

]

,

which proves the claim about the number of points in Λ. Thus by (4.9.8) X is a

mixture of the processes X ~α(D), with weights given by
∏n

i=1
P

[

γi =αi

]

, where ~α =
(α1, . . . ,αn) with αi being non-negative integers. This is what we wanted to prove. �

The analogue of Proposition 4.5.9 is also true.

THEOREM 4.9.7. (Hough et al. (35)) Under the assumptions of Theorem 4.9.4,

suppose D1, . . . ,Dr are simultaneously observable as in definition 4.5.7. Denote by ϕk

the common eigenfunctions of K on the D i ’s and by λk,i the corresponding eigenvalues.

Then

(4.9.9) (X (D1), . . . ,X (Dr))
d=

∑

k

(

ηk,1, . . . ,ηk,r

)

,
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where
(

ηk,1, . . . ,ηk,r

)

are independent for different values of k, for each k, the sum ηk =
∑

i ηk,i has a geometric distribution with mean λk :=∑

i λk,i and given
∑

i ηk,i = ηk,

(

ηk,1, . . . ,ηk,r

) d=Multinomial

(

ηk;
λk,1

λk

, . . . ,
λk,r

λk

)

.

As before, we remark that this result is applicable to the restriction X ∩D, for

any Borel set D ⊂Λ.

PROOF. Suppose D1, . . . ,Dr are simultaneously observable as in the statement of

the theorem. Use Proposition 4.9.2 to write the restriction of X to ∪r
i=1

D i as a Pois-

son process with intensity |F(x)|2 where F is a Gaussian process with covariance ker-

nel K. Explicitly, F(z) = ∑

k ak

√

λkϕk(z) for z ∈ ∪r
i=1

D i , where ak are i.i.d. standard

complex Gaussians, i.e., the real and imaginary parts of ak are i.i.d. N(0, 1
2
). Then

given {ak}, we know that X (D i), 1 ≤ i ≤ r are independent Poisson(
∫

D i
|F(x)|2dµ(x)).

Writing
∫

D i
|F(x)|2dµ(x)=∑

kλk,i |ak |2, we see that conditionally given {ak}, the vari-

ables X (D i) for 1 ≤ i ≤ r have the same distribution as
∑

k(ηk,1, . . . ,ηk,r ), where
{

ηk,i

}

1≤i≤r
are chosen by sampling ηk according to Poisson(λk|ak|2) distribution and

then assigning ηk points to the cells D i multinomially with probabilities
λk,i

λk
.

Integrating over the randomness in {ak}, we see that

P(ηk = m) =E

[

e−λk |ak |2λm
k
|ak |2m

m!

]

=
λm

k

(1+λk)m+1
,

where we have used (4.9.6) to deduce the second equality. Hence ηk has a Geo-

metric distribution with mean λk, and given ηk, the vector
(

ηk,1, . . . ,ηk,r

)

is still

Multinomial(ηk;
λk,1

λk
, . . . ,

λk,r

λk
). This completes the proof. �

4.10. Notes

• The algorithm 4.4.3 was introduced in the survey paper (35). It was implemented

in practice by Scardicchio, Zachary and Torquato in (75) who provide various en-

hancements to the algorithm for efficient implementation.

• One way to generalize the concept of determinantal and permanental processes is

to consider point processes with joint intensities given by

(4.10.1) ρn(x1, . . . , xn)= detα(K(xi, x j))
def=

∑

π∈Sn

αn−ν(π)
n
∏

i=1

K(xi , xπ(i)),

where ν(π) is the number of cycles in the permutation π.

Such point processes are called α-determinantal processes in Shirai and Taka-

hashi (77). The values α=−1 and α=+1 correspond to determinantal and perma-

nental processes, respectively. It is easy to check that the proof of Theorem 4.5.3

can be modified to get:

PROPOSITION 4.10.1. Suppose there exists a point process X on Λ with joint

intensities given by (4.10.1), where K is a Hermitian, non-negative definite, trace

class kernel. Write

(4.10.2) K(x, y)=
n
∑

k=1

λkϕk(x)ϕk(y),

where
{

ϕk

}

is an orthonormal set of eigenfunctions for the integral operator K with

eigenvalues λk. Then X (Λ) is:

– a sum of independent Binomial(− 1
α ,−αλk) random variables, if − 1

α is a posi-

tive integer.
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– a sum of independent Negative Binomial( 1
α , 1

αλk+1
) random variables, if α> 0.

In fact, if − 1
α is a positive integer, this process is just a union of − 1

α i.i.d. copies

of the determinantal process with kernel −αK. Similarly, if 1
α is a positive inte-

ger, this process is a union of 1
α i.i.d. copies of the permanental process with kernel

αK. More generally, the union of m i.i.d. copies of the process corresponding to

α and kernel K gives a process distributed according to αm and kernel 1
mK. If

K is real, and defines a bounded, non-negative definite, symmetric, locally trace

class integral operator K on Λ, and the measure µ on Λ is non-atomic, then 2
m -

determinantal processes also exist (77). For α > 0, little is known about the ex-

istence of α-determinantal processes beyond these examples. Shirai and Taka-

hashi (77) conjecture the following:

CONJECTURE 4.10.2. If K is a (real) kernel defining a self-adjoint, non-negative

integral operator on L2(Λ) and 0 ≤ α ≤ 2, then the α-determinantal process with

kernel K exists. However, if α> 2, then there exists such a kernel K for which there is

no corresponding α-determinantal process.

We verify this conjecture for α> 4. Let Λ be a discrete space consisting of three

points, and consider the 3×3 matrix

K=





2 −1 −1

−1 2 −1

−1 −1 2



 .

It is easy to check that the eigenvalues of K are 3,3,0 and

detα(K(i, j))1≤i, j≤3 = 2(4−α)(α+1),

which is negative for α > 4. Since point processes must have non-negative joint

intensities, we conclude that no α-determinantal processes with this kernel can

exist for α> 4.

4.11. Hints and solutions

Exercise 4.3.5 The first part is obvious. For the second, applying the optional sampling

theorem as suggested in the exercise, we get

(4.11.1) M(0)=E [M(τ)1τ≤t]+E [M(t)1τ>t] .

Note that M(s)= det
(

PX p (s), jq

)

p,q≤n
. In particular, M(τ)1τ≤t = 0 because if τ≤ t, then at time

τ two rows of the matrix are equal. Also, M(0) = det
(

Pi p , jq
(t)

)

p,q≤n
is the right hand side of

the Karlin-McGregor formula. On the other hand, M(t)1τ>t is precisely the indicator of the

event that the random walks X p arrive at locations jp respectively at time t, and that no two

walks meet up to and including time t. Thus E [M(t)1τ>t] is the probability of the event asked

for in the Karlin-McGregor formula. This completes the proof.

Exercise 4.5.2 Given S ⊂ [n], write KS(z,w) =
∑

j∈S ϕ j(z)ϕ j(w). By assumption X has

conditional joint intensity functions

ρk(z1, . . . , zk | |X | = k) =
(1−λ)[n]

Zk
det(L(zi , z j)1≤i, j≤k)

=
1

Zk

∑

S⊂[n]:|S|=k

λS(1−λ)S
c
det(KS(zi , z j)1≤i, j≤k).(4.11.2)

Since equation (4.11.2) gives the joint intensity for a point process containing k points a.s.,

we may integrate to obtain lower order joint intensity functions as in equation (4.5.1). Since
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each term det(KS(zi, z j)1≤i, j≤k) gives the joint intensity function for a determinantal process

containing exactly k points, we see immediately that for ℓ≤ k:

ρℓ(z1, . . . , zℓ | |X | = k) = 1

Zk

∑

S⊂[n]:|S|=k

λS(1−λ)S
c
det(KS(zi , z j)1≤i, j≤ℓ)

= 1

Zk

∑

S⊂[n]:|S|=ℓ
det(KS(zi , z j)1≤i, j≤ℓ)

∑

S̃⊂[n]

S̃⊃S:|S̃|=k

λS̃(1−λ)S̃
c
.

Considering now the probability that X contains k points, we compute the unconditional joint

intensity functions as follows:

ρℓ(z1, . . . , zℓ) =
n
∑

k=ℓ
ρℓ(z1, . . . , zℓ | |X | = ℓ)P(|X | = ℓ)(4.11.3)

=
n
∑

k=ℓ

∑

S⊂[n]:|S|=ℓ
det(KS(zi, z j)1≤i, j≤ℓ)

∑

S̃⊂[n]

S̃⊃S:|S̃|=k

λS̃(1−λ)S̃
c
.(4.11.4)

An easy inductive argument gives

(4.11.5) λS =
∑

S̃⊆[n]

S̃⊇S

λS̃(1−λ)S̃
c
.

Combining equations (4.11.3) and (4.11.5) we deduce

ρℓ(z1, . . . , zℓ) =
∑

S⊂[n]:|S|=ℓ
det(KS(zi, z j )1≤i, j≤ℓ)(4.11.6)

= det(K(zi, z j)1≤i, j≤ℓ)(4.11.7)

as claimed.





CHAPTER 5

The Hyperbolic GAF

In chapter 4 we presented many eigenvalue ensembles in random matrix the-

ory that happened to be determinantal point processes. In this chapter we return to

Gaussian analytic functions and show that zeros of the i.i.d. power series (L = 1 in

5.1.1) form a determinantal process. Curiously enough, this is the only non-trivial

example of a Gaussian analytic functions whose zero set is known to be determinan-

tal! In particular, among the canonical models of zeros of Gaussian analytic functions

introduced in chapter 2, all of which were treated on equal footing so far, the case

Λ=D, L = 1, is alone rather special. In this chapter we only consider the hyperbolic

Gaussian analytic functions, and hence simply write fL for fD,L.

5.1. A determinantal formula

Let an be i.i.d. standard complex Gaussian random variables. Recall the hyper-

bolic Gaussian analytic function

(5.1.1) fL(z)=
∞
∑

n=0

an

p
L(L+1) . . . (L+n−1)

p
n!

zn

that converge on the unit disk and have zero sets invariant in distribution under

isometries of the hyperbolic plane.

THEOREM 5.1.1 (Peres and Virág). The joint intensity of zeros for the i.i.d. Gauss-

ian power series f1(z) in the unit disk exists, and satisfies

(5.1.2) ρn(z1, . . . , zn)= π−n det

[

1

(1− zi z j)
2

]

i, j

.

In view of this theorem, it is natural to ask whether the other canonical models

of Gaussian analytic functions introduced in section 2.3 also have determinantal

zero sets. The answer is no, because one can check that ρ2(z,w)> ρ1(z)ρ1(w) for the

zero sets of these Gaussian analytic functions for sufficiently distant pairs of points

z,w. Since a determinantal point process (with a hermitian kernel) has negative

correlations (meaning ρ2(z,w)< ρ1(z)ρ1(w), ∀z,w), it follows that these zero sets are

not determinantal. Figure 1 shows a picture of the two-point intensity for (5.1.1) for

several values of L. Only in the case L = 1 is the relative intensity,
ρ2(0,r)

ρ1(0)ρ1(r)
bounded

by 1 (By invariance, it is sufficient to consider z = 0 and w = r > 0).

EXERCISE 5.1.2. Show that for general L, the quantity
ρ2(0,r)

ρ1(0)ρ1(r)
is equal to

(notation:s= 1− r2):

(5.1.3)
1+

(

L2−2L−2
) (

sL + s2+2L
)

+ (L+1)2
(

s2L + s2+L
)

−2L2
(

s1+L + s1+2L
)

+ s2+3L

(

1− sL
)3

83
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FIGURE 1. Relative intensity at z = 0 and z = r as a function of r

for L = 1, 1
2

, 1
3

, 1
4
, 1

5
and for L = 1,4,9,16,25.

In the case L = 1 it simplifies to r2(2− r2).

For every distance r, the correlation is minimal when L = 1 (see Figure 1). For all

values of L different than 1, for small distance zeros are negatively correlated, while

for large distances the correlation is positive. Since the points in a determinantal

process are always negatively correlated (which is clear from the determinantal form

of the pairwise joint intensity) it follows that none of the zero sets ZL for L 6= 1 can

be determinantal processes.

The fact that the zero set of f is determinantal, allows us to apply all the ma-

chinery developed in Chapter 4 to this point process making certain computations

especially easy. In particular, we apply Theorem 4.7.1 to determine the joint distri-

bution of the moduli of the zeros and also the asymptotics of the “hole probability"

that the disk D(0,r) contains no zeros as r ↑ 1.

5.1.1. Proof of determinantal formula. We now give the proof of Theorem

5.1.1, which relies on the i.i.d. nature of the coefficients of f= fD, Möbius invariance,

Hammersley’s formula and an old identity relating permanents and determinants

due to Borchardt (1855). Hammersley’s formula (3.4.1) provides us with an explicit

expression for the joint intensity of the zero set ZD,1, namely,

(5.1.4) ρn(z1, . . . , zn)=
E

(

|f′(z1) · · ·f′(zn)|2
∣

∣

∣f(z1), . . . ,f(zn)= 0
)

πn det(A)
.

where A is the covariance matrix A jk =Ef(z j)f(zk)= (1−z j zk)−1. The difficulty in ap-

plying this formula lies in understanding the conditional distribution of f given that

f(z1) = ·· · = f(zk) = 0. However, note that the conditional distribution of f(z) given

that f(0)= 0 is especially easy to understand. Conditioning f(0)= 0 simply stipulates

that a0 = 0, and since the coefficients ak are i.i.d., the conditional distribution of f(z)
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given f(0)= 0 is the same as the unconditional distribution of zf(z). Amazingly, this

simple observation generalizes, as explained in the following proposition:

PROPOSITION 5.1.3. Let f= f1 and z1, . . . , zn ∈D. The distribution of the random

function

(5.1.5) Tz1
(z) · · ·Tzn(z)f(z),

where

(5.1.6) Tβ(z)=
z−β

1−βz

denotes a Möbius transformation fixing the unit disk, is the same as the conditional

distribution of f(z) given f(z1)= . . . = f(zn)= 0.

PROOF. We have already remarked that the assertion is clear when n = 1 and

z1 = 0. More generally, for z1 = β, we claim that the random function f̃ = τβ · (f◦Tβ)

has the same distribution as f, where

(5.1.7) τβ(z)= (1−|β|2)1/2

1−βz

satisfies τ2
β
(z)= T ′

β
(z). Indeed, we verify this assertion by computing:

E
[

f̃(z)f̃(w)
]

= E
[

τβ(z)f◦Tβ(z)τβ(w)f◦Tβ(w)
]

= τβ(z)τβ(w)
(

1−Tβ(z)Tβ(w)
)−1

= 1

1− zw

= E(f(z)f(w)).

Now, since Tβ(β)= 0, from the formula

f̃(z)= τβ(z)
∞
∑

k=0

ak

(

Tβ(z)
)k

it is clear that the distribution of Tβ · f̃ is identical to the conditional distribution of f̃

given f̃(β)= 0, whence the same must hold for f in place of f̃.

The proposition for n> 1 follows by induction: to go from n to n+1, we must con-

dition (f |f(z1) = . . . = f(zn) = 0) on f(zn+1) = 0. By the assumed identity for n points,

this is equivalent to conditioning (Tz1
· · ·Tzn · f)(z) on f(zn+1) = 0. It remains to ob-

serve that conditioning is a linear operator that commutes with multiplication by

the deterministic functions Tzi
. Indeed, for two jointly complex Gaussian random

vectors X ,Y , the distribution of Y given X = 0 is the same as the distribution of Y

with each entry projected to the orthocomplement (in L2 of the underlying probabil-

ity space) of the subspace spanned by the components X i of X . Hence, applying the

equality of distributions (f(z) |f(zn+1)= 0)
d= Tzn+1

(z)f(z) completes the proof. �

This result makes it easy to compute the joint distribution of f′(zk) given that

f(z1) = ·· · = f(zn) = 0, which is needed to apply Hammersley’s formula. For fixed

z1, . . . , zn ∈D set

(5.1.8) Υ(z)=
n

∏

j=1

Tz j
(z) .
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and observed that since Tzk
(zk)= 0 and T ′

zk
(zk)= 1/(1− zkzk):

(5.1.9) Υ
′(zk)= T ′

zk
(zk) ·

∏

j: j 6=k

Tz j
(zk)=

n
∏

j=1

1

1− z j zk

·
∏

j: j 6=k

(z j − zk)

for each k ≤ n. Now from Proposition 5.1.3 we have:

COROLLARY 5.1.4. Let f= fD and z1, . . . , zn ∈D. The conditional joint distribution

of the random variables
(

f′(zk) : k = 1, . . . ,n
)

given that f(z1) = . . . = f(zn) = 0, is the

same as the unconditional joint distribution of
(

Υ
′(zk)f(zk) : k = 1, . . . ,n

)

.

PROOF. The conditional distribution of f given that f(z j) = 0 for 1 ≤ j ≤ n, is the

same as the unconditional distribution of Υ · f. Since Υ(zk) = 0, the derivative of

Υ(z)f(z) at z = zk equals Υ
′(zk)f(zk). �

It follows from Corollary 5.1.4 that

(5.1.10) E
(

|f′(z1) · · ·f′(zn)|2
∣

∣

∣f(z1), . . . ,f(zn)= 0
)

=E
(

|f(z1) · · ·f(zn)|2
)
∏

k

|Υ′(zk)|2.

and hence Hammersley’s formula (3.4.1) now gives

(5.1.11) ρ(z1, . . . , zn)=
E

(

|f(z1) · · ·f(zn)|2
)
∏

k |Υ′(zk)|2

πn det A

where we recall that A is the covariance matrix A jk =E(f(z j)f(zk))= (1− z j zk)−1. By

Wick’s formula 2.1.7 we know that per(A)=E
(

|f(z1) · · ·f(zn)|2
)

, and hence

(5.1.12) ρ(z1, . . . , zn)= per(A)
∏

k |Υ′(zk)|2

πn det A
.

From the Cauchy determinant formula we obtain:

(5.1.13) det(A) =
∏

k, j

1

1− z j zk

∏

k< j

(z j − zk)(z j − zk) .

Comparing this to (5.1.9), we see that

(5.1.14) det(A)=
n
∏

k=1

|Υ′(zk)| .

To complete the proof we need to apply Borchardt’s identity:

PROPOSITION 5.1.5 (Borchardt’s identity). Let xi, yi , 1≤ i ≤ n, be complex num-

bers such that xi yj 6= 1 for any i, j. Then

(5.1.15) per

(

1

1− xi yj

)

i, j≤n

det

(

1

1− xi yj

)

i, j≤n

= det

(

1

(1− xi yj)
2

)

i, j≤n

.

We shall give a proof of this classical result in the next subsection. Borchardt’s

identity implies:

(5.1.16) per(A)det(A)= det(M)

where M jk = (1− z j zk)−2. Now combining (5.1.12), (5.1.14) and (5.1.16) we deduce

(5.1.17) ρ(z1, . . . , zn)= π−n det(M)

which proves Theorem 5.1.1.
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5.1.2. Borchardt’s identity. In this section we shall prove Borchardt’s Iden-

tity (Proposition 5.1.5) dating back to 1855 (9). First, we prove an identity due to

Carlitz and Levine (14) that gives Borchardt’s identity as a special case. The proof

we present is the original proof of Carlitz and Levine.

Notation: In this section, if A is a matrix with entries ai j and m is any integer,

then A(m) denotes the matrix whose entries are am
i j

.

THEOREM 5.1.6 (Carlitz and Levine). Let A be an n× n matrix with non-zero

entries, such that the matrix A(−1) =
(

a−1
i j

)

has rank 2. Then

(5.1.18) per(A)det(A)= det
(

A(2)
)

.

Assuming this result, we easily obtain Borchardt’s Identity.

Proof of Proposition 5.1.5. First assume that xi 6= 0 ∀i. Then set ai j = 1
1
xi
−yj

for i, j ≤ n. Clearly A(−1) has rank 2. Thus (5.1.18) holds. Dividing both sides of the

resulting equation by
n
∏

i=1
xi gives (5.1.15). By continuity, this is valid even if some of

the xis are equal to zero. �

Proof of Theorem 5.1.6. Let A,B be arbitrary matrices. Expanding the per-

manent and the determinant over the permutation group Sn, we get

per(A)det(B) =
∑

π∈Sn

∑

σ∈Sn

sgn(σ)
n
∏

k=1

akπk
bkσk

=
∑

π

∑

σ

sgn(σπ)
n

∏

k=1

akπk
bkσ(πk )

=
∑

σ

sgn(σ)
∑

π

sgn(π)
n

∏

k=1

akπk
bkσ(πk ).

Now for a fixed σ let Bσ be the matrix obtained by permuting the columns of B

according to the permutation σ. More precisely, (Bσ)i j = biσ j
. Let ∗ denote the

Hadamard product, i.e., (A∗B)i j = ai j bi j . Then

det(A∗Bσ)=
∑

π

sgn(π)
n
∏

k=1

akπk
bkσ(πk )

is precisely the inner summand in the earlier expression for per(A)det(B). Thus we

get

(5.1.19) per(A)det(B)=
∑

σ

sgn(σ)det(A∗Bσ),

which is a formula due to Muir (see the book by Minc (59)).

When B = A, the summand on the right hand side of (5.1.19) corresponding to

the identity permutation is precisely the term on the right hand side of (5.1.18)

We shall prove that under the assumptions of the theorem, when B = A, each

term in (5.1.19) corresponding to a non-identity permutation separately vanishes.

To see this, note that if σ 6=identity, then it has a cycle of length at least two. If it has

a cycle of length exactly 2, say σ(1)=σ−1(1)= 2, then the first and second columns of

A∗ Aσ are identical and thus det(A∗ Aσ)= 0.

Now suppose that σ has a cycle of length greater than or equal to 3. Without

loss of generality, assume that σ contains the cycle (1,2 . . . ,k). Then we claim that

the matrix formed by the first k columns of A ∗ Aσ has rank at most k− 1, which
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obviously implies that det(A∗Aσ)= 0. To see this claim, note that the matrix formed

by the first k columns of A∗ Aσ is











a11a12 a12a13 . . . a1ka11

a21a22 a22a23 . . . a2ka21

...
...

...
...

an1an2 an2an3 . . . ankan1











.

Factoring out
k
∏

j=1
ai j from the ith row does not affect the rank. The resulting matrix

C has entries

ci j =
∏

r 6= j, j+1

a−1
ir ,

where k+1 is to be interpreted as 1.

Now by the assumptions on the rank of A(−1), we can assume without loss of

generality that the column space of the matrix formed by the first k columns of A(−1)

is spanned by the pth and qth columns. In symbols,

a−1
i j =α ja

−1
ip +β ja

−1
iq ,

for some constants α j ,β j , 1≤ j ≤ k. Thus

ci j =
∏

r 6= j, j+1

(

αra−1
ip +βra−1

iq

)

=
k−2
∑

m=0

γi,ma−m
ip a−(k−2−m)

iq
,

where γi,m are constants. This means that the columns of C are spanned by the k−1

vectors vm, 0≤ m ≤ k−2, where vim = a−m
ip

a−(k−2−m)
iq

. This completes the proof of the

theorem. �

5.1.3. The number of zeros in a disk. Using results from Chapter 4, the de-

terminant formula for the joint intensity of ZD,1 allows us to determine the distribu-

tion of the number of zeros of f1 in a disk, and identify the law of the set of absolute

values of the zeros.

COROLLARY 5.1.7. : (i) The number Nr = |ZD,1 ∩Br(0)| of zeros of fD in

the disk of Euclidean radius r about 0, satisfies

(5.1.20) E(1+ s)Nr =
∞
∏

k=1

(1+ r2ks)

for all real s. Thus Nr has the same distribution as
∑∞

k=1
Xk where {Xk} is

a sequence of independent {0,1}-valued random variables with P(Xk = 1) =
r2k.

: (ii) Moreover, the set of moduli {|z| : f1(z) = 0} has the same law as the set

{U1/(2k)
k

}, where U1,U2, . . . are i.i.d. random variables uniform in [0,1].

PROOF. Writing the Bergman kernel as K(z,w) = ∑∞
k=1

k(zw)k−1, we see that

this corollary is an immediate consequence of Theorem 4.7.1, where a2
k
= k and µ is

the uniform measure in the unit disk. �
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From Corollary 5.1.7 we readily obtain the asymptotics of the hole probability

P(Nr = 0). Furthermore, the infinite product in (5.1.20) occurs in one of Euler’s

partition identities, see (5.1.22), and this connection yields part (ii) of the next corol-

lary. Observe that the normalization of hyperbolic area below differs from the one in

chapter 2 by a factor of 4. This agrees with the usual convention, as remarked in the

paragraph following (2.3.3).

COROLLARY 5.1.8. : (i) Let h= 4πr2/(1− r2), the hyperbolic area of Br(0).

As r ↑ 1, we have

P(Nr = 0)= exp
(−πh+ o(h)

24

)

= exp
(−π2 + o(1)

12(1− r)

)

.

: (ii) The binomial moments of Nr equal

E

(

Nr

k

)

= rk(k+1)

(1− r2)(1− r4) · · · (1− r2k)
.

: (iii) The ratio (Nr −µr)/σr converges in law to standard normal as r ↑ 1,

where

µr =ENr =
r2

1− r2
, and σ2

r =Var Nr =
r2

1− r4
.

PROOF. (i) Corollary 5.1.7 implies that P(Nr = 0) = ∏∞
k=1

(1− r2k) and the asymp-

totics for the right hand side are classical, see Newman (63), p. 19. For the reader’s

convenience we indicate the argument. Let L = logP(Nr = 0)=∑∞
k=1

log(1−r2k) which

we compare to the integral

(5.1.21) I =
∞
∫

1

log(1− r2k)dk = 1

−2log r

∞
∫

−2log r

log(1− e−x)dx.

We have I + log(1− r2) < L < I, so L = I + o(h). Since − log(1− e−x) = ∑∞
n=1

e−nx

n
, the

integral in (5.1.21) converges to −π2/6. But −1
2log r

= 1/2+o(1)
1−r

= h
4π

+ o(h), and we get

L =−π2/12+o(1)
1−r

=−πh
24

+ o(h) , as claimed.

(ii) Let q = r2. Theorem 5.1.7 implies that:

E
∞
∑

k=0

(

Nr

k

)

sk = E(1+ s)Nr

=
∞
∏

k=0

(1+ qks).

One of Euler’s partition identities (see Pak (67), section 2.3.4) gives

(5.1.22)
∞
∏

k=1

(1+ qks) =
∞
∑

k=0

q(k+1
2 )sk

(1− q) · · · (1− qk)
.

and the claim follows.

(iii) This result is obtained by applying Lindeberg’s triangular array central limit

theorem to the representation of Nr as the sum of independent random variables, as

given in Corollary 5.1.7(i). �
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5.2. Law of large numbers

Our next result is a law of large numbers for the zero set ZL. For L = 1, one could

of course readily use Corollary 5.1.7 to prove the following proposition, although the

conclusion would only be of convergence in probability and not almost surely. We

give a more general argument which is valid for any L > 0.

PROPOSITION 5.2.1. Let L > 0, and suppose that {Λh}h>0 is an increasing family

of Borel sets in D, parameterized by hyperbolic area h = A(Λh). Then the number

N(h) = |ZL ∩Λh| of zeros of fL in Λh satisfies

lim
h→∞

N(h)

h
= L

4π
a.s.

We will use the following lemma in the proof.

LEMMA 5.2.2. Let µ be a Borel measure on a metric space S, and assume that

all balls of the same radius have the same measure. Let ψ : [0,∞) → [0,∞) be a non-

increasing function. Let A ⊂ S be a Borel set, and let B = BR(x) be a ball centered at

x ∈ S with µ(A)=µ(BR(x)). Then for all y ∈ S
∫

A

ψ(dist(y, z))dµ(z)≤
∫

B

ψ(dist(x, z))dµ(z).

PROOF. It suffices to check this claim for indicator functions ψ(s) = 1{s≤r}. In

this case, the inequality reduces to

µ(A∩Br(y))≤µ(BR(x)∩Br(x)),

which is clearly true both for r ≤ R and for r > R. �

Proof of Proposition 5.2.1. Write Λ = Λh. The density of zeros with respect

to hyperbolic measure is L/4π (recall the difference by a factor of 4 in normalization

of hyperbolic measure). Hence we get

EN(h) =
∫

Λ

ρ1(z)dm(z) = L

4π
h .

Let Q(z,w)= ρ2(z,w)/(ρ1(z)ρ1(w)). Then by formula (5.1.3) we have

Q(0,w)−1≤ C(1−|w|2)L .

we denote the right hand side by ψ(0,w) and extend ψ to D
2 so that it only depends

on hyperbolic distance.

E(N(h)(N(h)−1))− (EN(h))2 =
∫

Λ

∫

Λ

(

ρ2(z,w)−ρ1(z)ρ1(w)
)

dm(w)dm(z)

=
∫

Λ

∫

Λ

(Q(z,w)−1)ρ1(w)dm(w)ρ1(z)dm(z)

≤
∫

Λ

∫

Λ

ψ(z,w)ρ1(w)dm(w)ρ1(z)dm(z)

Let BR(0) be a ball with hyperbolic area h = 4πR2/(1−R2). Note that ρ1(w)dm(w)

is constant times the hyperbolic area element, so we may use Lemma 5.2.2 to bound
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the inner integral by

∫

BR (0)

ψ(0,w)ρ1(w)dm(w) = c

R
∫

0

(1− r2)L(1− r2)−2r dr

= c

2

1
∫

S

sL−2 ds

with S = 1−R2. Thus we get

(5.2.1) Var N(h) =EN(h)+E(N(h)(N(h)−1))− (EN(h))2 ≤
hL

4π
+

chL

8π

1
∫

S

sL−2 ds.

For L > 1 this is integrable, so Var N(h) ≤ O(h). For L < 1 we can bound the right

hand side of (5.2.1) by O(hSL−1)=O(h2−L). Thus in both cases, as well as when L = 1

(see Corollary 5.1.8(iii)), we have

Var N(h) ≤ c(EN(h))2−β

with β= L∧1> 0. For η> 1/β, we find that

Yk = N(kη)−EN(kη)

EN(kη)

satisfies EY 2
k
=O(k−ηβ), whence E

∑

k Y 2
k
<∞, so Yk → 0 a.s. Now, given h satisfying

(k−1)η < h≤ kη monotonicity implies that

(5.2.2)
N(kη)

EN(kη)

EN(kη)

EN((k−1)η)
> N(h)

EN(h)
> N((k−1)η)

EN((k−1)η)

EN((k−1)η)

EN(kη)
.

Since the left and right hand sides of equation 5.2.2 converge to 1 a.s., we deduce

that N(h)

EN(h)
converges to 1 a.s. as well, and the result follows. �

5.3. Reconstruction from the zero set

Next we show that with probability one we can recover |fL | from its zero set,

ZL. The following theorem gives a recipe for reconstructing |fL(0)|, almost surely.

Translation invariance then implies that |fL| can be reconstructed from ZL on a

dense subset of C a.s., and hence by continuity ZL determines |fL| with probability

one. Note that this result holds for arbitrary L > 0, and does not depend on the

determinantal formula which only holds for L = 1.

THEOREM 5.3.1. : (i) Let L > 0. Consider the random function fL , and

order its zero set ZL in increasing absolute value, as {zk}∞
k=1

. Then

(5.3.1) |fL(0)| = cL

∞
∏

k=1

eL/(2k)|zk| a.s.

where cL = e(L−γ−γL)/2L−L/2 and γ= limn

(

∑n
k=1

1
k
− logn

)

is Euler’s constant.

: (ii) More generally, given ζ ∈ D, let {ζk}∞
k=1

be ZL , ordered in increasing hy-

perbolic distance from ζ. Then

(5.3.2) |fL(ζ)| = cL(1−|ζ|2)−L/2
∞
∏

k=1

eL/(2k)
∣

∣

∣

ζk −ζ

1−ζζk

∣

∣

∣ .
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Thus the analytic function fL(z) is determined by its zero set, up to multiplication

by a constant of modulus 1.

The main step in the proof of Theorem 5.3.1 is the following.

PROPOSITION 5.3.2. Let c′
L
= eL/2−γ/2. We have

|fL(0)| = c′L lim
r→1

(1− r2)−L/2
∏

z∈ZL
|z|<r

|z| a.s.

We first need a simple lemma.

LEMMA 5.3.3. If X , Y are jointly complex Gaussian with variance 1, then for

some absolute constant c we have

(5.3.3)
∣

∣

∣Cov
(

log |X | , log |Y |
)∣

∣

∣≤ c
∣

∣

∣E(XY )
∣

∣

∣.

PROOF. Since |E(XY )| ≤ 1, lemma 3.5.2, implies that:

(5.3.4)
∣

∣

∣Cov
(

log |X | , log |Y |
)∣

∣

∣≤ |E(XY )|
∞
∑

m=1

1

4m2
≤ c|E(XY )|

�

Proof of Proposition 5.3.2. Assume that f = fL has no zeros at 0 or on the

circle of radius r. Then Jensen’s formula (Ahlfors (1), Section 5.3.1) gives

log |f(0)| = 1

2π

2π
∫

0

log |f(reiα)| dα+
∑

z∈Z, |z|<r

log
|z|
r

,

where Z = ZL. Let |f(reiα)|2 =σ2
rY , where

σ2
r =Varf(reiα)= (1− r2)−L

and Y is an exponential random variable with mean 1. We have

E log |f(reiα)| =
logσ2

r +E logY

2
=

−L log(1− r2)−γ

2
,

where the second equality follows from the integral formula for Euler’s constant

γ=−
∞
∫

0

e−x logx dx.

Introduce the notation

gr(α)= log |f(eiαr)|+
L log(1− r2)+γ

2

so that the distribution of gr(α) does not depend on r and α, and Egr(α)= 0. Let

Lr =
1

2π

2π
∫

0

gr(α)dα.

We first prove that Lr → 0 a.s. over a suitable deterministic sequence rn ↑ 1. We

compute:

Var Lr =E





1

(2π)2

2π
∫

0

2π
∫

0

gr(α)gr(β)dβdα



 .
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Since the above is absolutely integrable, we can exchange integral and expected

value to get

Var Lr =
1

(2π)2

2π
∫

0

2π
∫

0

E(gr(α)gr(β))dβdα= 1

2π

2π
∫

0

E(gr(α)gr(0))dα.

where the second equality follows from rotational invariance. By Lemma 5.3.3, we

have

E
(

gr(α)gr(0)
)

≤ c

∣

∣E
(

f(reiα)f(r)
)

∣

∣

∣

Varf(r)
= c

∣

∣

∣

1− r2

1− r2eiα

∣

∣

∣

L
.

Let ǫ= 1− r2 < 1/2. Then for α ∈ [0,π] we can bound

|1− r2eiα| ≥







ǫ |α| ≤ ǫ

2rsin α
2
≥ α

2
ǫ<α<π/2

1 π/2≤α≤ π,

which gives

1

c2ǫL
Var Lr ≤

π
∫

0

dα

|1− r2eiα|L
≤ ǫ1−L + 1

2

π/2
∫

ǫ

dα

αL
+π/2 ≤







c′ L < 1

c′| logǫ| L = 1

c′ǫ1−L L > 1.

By Chebyshev’s inequality and the Borel-Cantelli lemma, this shows that, as r → 1

over the sequence rn = 1−n−(1∨(1/L)+δ), we have a.s. Lrn → 0 and

∑

z∈Z,|z|<r

log
|z|
r

− L log(1− r2)+γ

2
→ log |f(0)|,

or, exponentiating:

(5.3.5) e−γ/2(1− r2)−L/2
∏

z∈ZL
|z|<r

|z|
r

−→ |f(0)|.

Since the product is monotone decreasing and the ratio (1− r2
n)/(1− r2

n+1
) converges

to 1, it follows that the limit is the same over every sequence rn → 1 a.s.

Finally, by the law of large numbers (Proposition 5.2.1), the number of zeros Nr

in the ball of Euclidean radius r satisfies

(5.3.6) Nr =
r2L

1− r2
(1+ o(1))= L+ o(1)

1− r2
a.s.,

whence

rNr = exp(Nr log r) = e−L/2+o(1) a.s.

Multiplying this with (5.3.5) yields the claim. �

Proof of Theorem 5.3.1. (i) By the law of large numbers for Nr (see (5.3.6)),

(5.3.7)
∑

|zk |≤r

1

k
= γ+ log Nr + o(1) = γ+ logL− log(1− r2)+ o(1) .

Multiplying by L/2 and exponentiating, we get that

(5.3.8)
∏

|zk |≤r

eL/(2k) = eγL/2LL/2(1− r2)−L/2(1+ o(1)) .

In conjunction with Proposition 5.3.2, this yields (5.3.1).
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(ii) Let f= fL and

T(z)=
z−ζ

1−ζz
.

By (5.4.5), f has the same law as

(5.3.9) f̃= (T ′)L/2 · (f◦T) .

Now T ′(ζ)= (1−|ζ|2)−1. Therefore

|f̃(ζ)| = (1−|ζ|2)−L/2|f(0)| = cL

∞
∏

k=1

eL/(2k)|zk| a.s.,

where {zk} are the zeros of f in increasing modulus. If T(ζk) = zk then {ζk} are the

zeros of f̃ in increasing hyperbolic distance from ζ. We conclude that

|f̃(ζ)| = cL(1−|ζ|2)−L/2
∞
∏

k=1

eL/(2k)|T(ζk)| a.s.

�

5.3.1. Reconstruction under conditioning. For our study of the dynamics

of zeros in Chapter 8, section 8.1.1, we will need a reconstruction formula for |f′
L

(0)|
when we condition that 0 ∈ ZL. The method is to show that if we condition fL so

that 0 ∈ ZL, then the distribution of fL(z)/z is mutually absolutely continuous to

the unconditional distribution of fL. It is important to note that the distribution

of fL given that its value is zero at 0 is different from the conditional distribution

of fL given that its zero set has a point at 0. In particular, in the second case the

conditional distribution of the coefficient a1 is not Gaussian. The reason for this is

that the two ways of conditioning are defined by the limits as ǫ→ 0 of two different

conditional distributions. In the first case, we condition on |fD(0)| < ǫ. In the second,

we condition on fD having a zero in the disk Bǫ(0) of radius ǫ about 0; the latter

conditioning affects the distribution of a1.

We wish to approximate fL by its linearization near the origin. The first part of

the following lemma, valid for general GAFs, is the same as Lemma 2.4.2 but the

second part is a slight extension of it.

LEMMA 5.3.4. Let f(z) = a0 +a1z+ . . . be a Gaussian analytic function. Assume

that a0 is nonconstant. Let Aǫ denote the event that the number of zeros of f(z) in the

disk Bǫ about 0, differs from the number of zeros of h(z)= a0 +a1z in Bǫ.

(i) For all δ > 0 there is c > 0 (depending continuously on the mean and covariance

functions of f) so that for all ǫ> 0 we have

P(Aǫ)≤ cǫ3−2δ.

(ii) P(Aǫ | a1,a2, . . .) ≤ Cǫ3, where C may depend on (a1,a2, . . .) but is finite almost

surely.

PROOF. The first statement is precisely Lemma 2.4.2. To prove the second we

refer the reader back to the notations used in the proof of that lemma.

The argument used to bound P(F) in Lemma 2.4.2 also yields that

P
(

min
z∈∂Bǫ

|h(z)| < 2|a2|ǫ2
∣

∣

∣ {a j} j≥1

)

≤ c7ǫ
3 .

An application of Rouché’s Theorem concludes the proof. �
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LEMMA 5.3.5. Denote by Ωǫ the event that the power series fL of (5.1.1) has a zero

in Bǫ(0). As ǫ→ 0, the conditional distribution of the coefficients a1,a2,a3, . . . given

Ωǫ, converges to a product law where a1 is rotationally symmetric, |a1| has density

2r3e−r2
, and a2,a3, . . . are standard complex Gaussian.

PROOF. Let a0, a1 be i.i.d. standard complex normal random variables, and L >
0. Consider first the limiting distribution, as ǫ → 0, of a1 given that the equation

a0 +a1

p
Lz = 0 has a root Z in Bǫ(0). The limiting distribution must be rotationally

symmetric, so it suffices to compute its radial part. If S = |a0|2 and T = |a1|2, set

U = L|Z|2 = S/T. The joint density of (S,T) is e−s−t, so the joint density of (U,T)

is e−ut−tt. Thus as ǫ → 0, the conditional density of T given U < Lǫ2 converges to

the conditional density given U = 0, that is te−t. This means that the conditional

distribution of a1 is not normal, rather, its radial part has density 2r3e−r2
.

We can now prove the lemma. The conditional density of the coefficients a1,a2, . . .

given Ωǫ, with respect to their original product law, is given by the ratio P(Ωǫ |
a1,a2, . . .)/P(Ωǫ). By Lemma 5.3.4, the limit of this ratio is not affected if we replace

fL by its linearization a0 +a1

p
Lz. This yields the statement of the lemma. �

Kakutani’s absolute continuity criterion (see Williams (89), Theorem 14.17) ap-

plied to the coefficients gives the following

LEMMA 5.3.6. The distributions of the random functions fL(z) and (fL(z)−a0)/z

are mutually absolutely continuous.

By Lemma 5.3.5, conditioning on 0 ∈ ZL amounts to setting a0 = 0 and changing

the distribution of a1 in an absolutely continuous manner. Thus, by Lemma 5.3.6,

given 0 ∈ ZL the distribution of the random function g(z) = fL(z)/z is absolutely con-

tinuous with respect to the distribution of the unconditioned fL(z). Hence we may

apply Theorem 5.3.1 to g(z) and get that given 0 ∈ ZL, if we order the other zeros of

fL in increasing absolute value as {zk}∞
k=1

, then

(5.3.10) |f′
D,L(0)| = |g(0)| = cL

∞
∏

k=1

eL/(2k)|zk| a.s.

5.4. Notes

5.4.1. Extensions of the determinantal formula. It is natural to ask if the results

in this chapter can be extended to random functions on more general domains. The answer

is affirmative. We begin by explaining how the Szegő and Bergman kernels are defined for

general domains and then describe the the random analytic function which replaces the i.i.d.

power series of (5.1.1). Let D be a bounded planar domain with a C∞ smooth boundary (the

regularity assumption can be weakened). Consider the set of complex analytic functions in

D which extend continuously to the boundary ∂D. The classical Hardy space H2(D) is given

by the L2-closure of this set with respect to length measure on ∂D. Every element of H2(D)

can be identified with a unique analytic function in D via the Cauchy integral (see Bell (4),

Section 6).

Consider an orthonormal basis {ψn}n≥0 for H2(D); e.g. in the unit disk, take ψn(z)= zn
p

2π
for n≥ 0. The Szegő kernel SD is given by the expression

(5.4.1) SD (z,w) =
∞
∑

n=0

ψn(z)ψn(w)

is the Szegő kernel in D. It does not depend on the choice of orthonormal basis and is positive

definite (i.e. for points z j ∈D the matrix (SD (z j, zk)) j,k is positive definite). Now let T :Λ→D
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be a conformal homeomorphism between two bounded domains with C∞ smooth boundary.

The derivative T ′ of the conformal map has a well-defined square root, see (4) p. 43. If {ψn}n≥0

is an orthonormal basis for H2(D), then {
p

T ′ · (ψn ◦T)}n≥0 forms an orthonormal basis for

H2(Λ). Hence, the Szegő kernels satisfy the transformation rule

(5.4.2) SΛ(z,w) = T ′(z)1/2T ′(w)1/2SD (T(z),T(w)).

When D is a simply connected domain, it follows from (5.4.2) that SD does not vanish in the

interior of D, so for arbitrary α> 0 powers Sα
D

are defined.

To define the Bergman kernel, let {ηn}n≥0 be an orthonormal basis of the subspace of

complex analytic functions in L2(D) with respect to Lebesgue area measure. The Bergman

kernel is defined to be

KD (z,w)=
∞
∑

n=0

ηn(z)ηn(w)

and is independent of the basis chosen, see Nehari (62), formula (132).

Now use i.i.d. complex Gaussians {an}n≥0 to define the random analytic function

(5.4.3) fD,1(z)=
p

2π
∞
∑

n=0

anψn(z) .

(cf. (6) in Shiffman and Zelditch (76)). The factor of
p

2π is included just to simplify formulas

in the case where D is the unit disk. The covariance function of fD,1 is given by 2πSD (z,w),

and one can prove the following corollary to Theorem 5.1.1

COROLLARY 5.4.1. Let D be a simply connected bounded planar domain, with a C∞

smooth boundary. The joint intensity of zeros for the Gaussian analytic function fD is given by

the determinant of the Bergman kernel

ρn(z1, . . . , zn)= det[KD (zi , z j)]i, j .

Note that for simply connected domains as in the corollary, the Bergman and Szegő ker-

nels satisfy KD (z,w)= 4πSD (z,w)2, see Bell (4), Theorem 23.1.

5.4.2. The Szegő random functions. Recall the one-parameter family of Gaussian an-

alytic functions fL defined in (5.1.1), whose zero sets are invariant in distribution under con-

formal maps preserving the unit disk (Möbius transformations). Using the binomial expan-

sion we compute the covariance structure

E
(

fL(z)fL(w)
)

=
∞
∑

n=0

∣

∣

∣

(

−L

n

)

∣

∣

∣ znwn

=
∞
∑

n=0

(

−L

n

)

(−zw)n = (1− zw)−L = [2πSD(z,w)]L .(5.4.4)

The random function fD,1 defined in 5.4.3 provides a generalization of fD,1 to more general

domains. The following proposition explains that appropriate generalizations for other values

of L also exist.

PROPOSITION 5.4.2. Let D be a bounded planar domain with a C∞ boundary and let

L > 0. Suppose that either (i) D is simply connected or (ii) L is an integer. Then there is a

mean zero Gaussian analytic function fD,L in D with covariance structure

E
(

fD,L(z)fD,L(w)
)

= [2πSD (z,w)]L for z,w ∈ D.

The zero set ZD,L of fD,L has a conformally invariant distribution: if Λ is another bounded

domain with a smooth boundary, and T :Λ→ D is a conformal homeomorphism, then T(ZΛ,L)

has the same distribution as ZD,L . Moreover, the following two random functions have the

same distribution:

(5.4.5) fΛ,L(z)
d= T ′(z)L/2 · (fD,L ◦T)(z) .
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We call the Gaussian analytic function fD,L described in the proposition the Szegő ran-

dom function with parameter L in D.

PROOF. Case (i): D is simply connected. Let Ψ : D → D be a conformal map onto D, and let

{an} be i.i.d. standard complex Gaussians. We claim that

(5.4.6) f(z)=Ψ
′(z)L/2

∞
∑

n=0

(

−L

n

) 1
2

anΨ(z)n

is a suitable candidate for fD,L. Indeed, repeating the calculation in (5.4.4), we find that

E
(

f(z)f(w)
)

= [Ψ′(z)Ψ′(w)]L/2(1−Ψ(z)Ψ(w))−L

= [Ψ′(z)Ψ′(w)]L/2 · [2πSD(Ψ(z),Ψ(w))]L .

The last expression equals [2πSD (z,w)]L by the transformation formula (5.4.2). Thus we may

define fD,L by the right hand side of (5.4.6). If T : Λ → D is a conformal homeomorphism,

then Ψ◦T is a conformal map from Λ to D, so (5.4.6) and the chain rule give the equality in

law (5.4.5). Since T ′ does not have zeros in Λ, multiplying fD,L ◦T by a power of T ′ does not

change its zero set in Λ, and it follows that T(ZΛ,L) and ZD,L have the same distribution.

Case (ii): L is an integer. Let {ψn}n≥0 be an orthonormal basis for H2(D). Use i.i.d. complex

Gaussians {an1,...,nL
: n1, . . . ,nL ≥ 0} to define the random analytic function

(5.4.7) fD,L(z)= (2π)L/2
∑

n1,...,nL≥0

an1,...,nL
ψn1 (z) · · ·ψnL

(z) ;

see Sodin (80) for convergence. A direct calculation shows that fD,L, thus defined, satisfies

E
(

fD,L(z)fD,L(w)
)

= (2π)L
∑

n1,...,nL≥0

ψn1 (z)ψn1 (w) · · ·ψnL
(z)ψnL

(w) = [2πSD (z,w)]L .

The transformation formula (5.4.2) implies that the two sides of (5.4.5) have the same co-

variance structure, [2πSΛ(z,w)]L . This establishes (5.4.5) and completes the proof of the

proposition. �

5.4.3. The analytic extension of white noise. Here we show that up to the constant

term, the power series f1 has the same distribution as the analytic extension of white noise

on the unit circle. Let B(·) be a standard real Brownian motion, and let

u(z) =
∫2π

0
Poi(z, eit)dB(t) .

The integral with respect to B can be interpreted either as a stochastic integral, or as a

Riemann-Stieltjes integral, using integration by parts and the smoothness of the Poisson ker-

nel. Recall that the Poisson kernel

Poi(z,w) =
1

2π
Re

(

1+ zw

1− zw

)

=
1

2π
Re

(

2

1− zw
−1

)

= 2ReSD(z,w)−
1

2π

has the kernel property

Poi(z,w) =
∫2π

0
Poi(z, eit)Poi(eit,w)dt .

(This follows from the Poisson formula for harmonic functions, see Ahlfors (1), Section 6.3).

The white noise dB has the property that if f1, f2 are smooth functions on an interval and f#
i
=

∫

f i(t)dB(t) then E[f#
1
f#
2
]=

∫

f1(t)f2(t)dt. By this and the kernel property we get E
(

u(z)u(w)
)

=
Poi(z,w). Therefore if b is a standard real Gaussian independent of B(·), then

(5.4.8) ũ(z)=
√

π

2
u(z)+

b

2
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has covariance structure E[ũ(z)ũ(w)] = πRe SD(z,w). Now if ν, ν′ are mean 0 complex Gaus-

sians, then ReEνν′ = 2E(ReνReν′); thus

(5.4.9) E
(

fD(z)fD(w)
)

=
∞
∑

n=0

(zw)n = (1− zw)−1.

implies that ũ has the same distribution as Re f1.

Remark. Similarly, since fD,2 is the derivative of
∑∞

m=1
am zm/

p
m, the zero set ZD,2 can be

interpreted as the set of saddle points of the random harmonic function

u(z)=
∞
∑

m=1

Re(am zm)/
p

m

in D. More generally, in any domain D, the zero set ZD,2 can be interpreted as the set of

saddle points of the Gaussian free field (with free boundary conditions) restricted to harmonic

functions.

5.5. Hints and solutions

Exercise 5.1.2 Computing

EfL(z)fD,L(w) =
1

(1− zw)L

Ef′
D,L(z)fD,L(w) = Lw

(1− zw)L+1

Ef′
D,L(z)f′D,L(w) =

L2zw+L

(1− zw)L+2

and applying (3.4.2) we see that

(5.5.1) ρ2(0,r)=
per(C−BA−1B∗)

det(πA)

where

A =
(

1 1

1 s−L

)

(5.5.2)

B =
(

0 Lr

0 Lrs−(L+1)

)

(5.5.3)

C =
(

L L

L (L2r2+L)s−(L+2)

)

.(5.5.4)

Also, by (2.4.8) we have that

ρ1(z)=
L

π

1

(1− zz)2

so ρ1(0)= Lπ−1 and ρ1(r)= L(πs2)−1.



CHAPTER 6

A Determinantal Zoo

In chapter 4 we saw the general theory of determinantal point processes and in

chapter 5 we saw one prime example of a determinantal process that was also the

zero set of a Gaussian analytic function. In this chapter we delve more deeply into

examples. Of particular interest to us is the example of matrix-analytic functions,

introduced in section 4.3.11, to be proved in section 6.7. This example lies at the

intersection of determinantal processes and zeros of random analytic functions and is

a natural generalization of the i.i.d. power series. However the proof we give is quite

different from the one in chapter 5 and makes use of random matrix ensembles of the

earlier sections of this chapter. In particular, it gives a new proof of Theorem 5.1.1.

How does one check if a given point process is determinantal or not? If it happens

that ρ2(x, y) > ρ1(x)ρ1(y) for even a single pair of points x, y ∈Λ, then the process is

definitely not determinantal (caution: this applies only if we restrict ourselves to

Hermitian kernels, as we do). One can often calculate the first two joint intensi-

ties, at least numerically, and hence, this is a valuable check that can rule out false

guesses. In chapter 5, this criterion showed us that zero sets of many Gaussian an-

alytic functions are not determinantal (see Figure 1). But when it comes to checking

that a point process is indeed determinantal, there is no single method, nor is it a

trivial exercise (usually). All the examples considered in this chapter were stated

in section 4.3, but not all examples listed there will be given proofs. In each section

of this chapter, we use the notations of the corresponding subsection in chapter 4,

section 4.3 without further comment.

6.1. Uniform spanning trees

We outline the proof of Burton-Pemantle theorem as given in BLPS (5).

Sketch of proof: In proving (4.3.8), we assume that {e1, . . . , ek} does not contain any

cycle. For, if it did, the left hand side is obviously zero, by definition of tree, and the

right hand side vanishes because the matrix under consideration is a Gram matrix

with entries (Ie i , Ie j ) and because for any cycle e1, . . . , er , the sum ǫ1Ie1 + . . .+ ǫrIer

is zero where the ǫi = ±1 are orientations chosen so that ǫ1e1, . . . ,ǫr er is a directed

cycle.

Again, because the right hand side of (4.3.8) is a Gram determinant, its value is

the squared volume of the parallelepiped spanned by its determining vectors. Thus

(6.1.1) det
(

K(e i , e j)
)

1≤i, j≤k =
k

∏

i=1

∥

∥

∥P⊥
Zi

Ie i

∥

∥

∥

2
,

99
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where Zi is the linear span of Ie1 , . . . , Ie i−1 and P⊥
Zi

is the projection onto Z⊥
i

. The left

hand side of (4.3.8) can also be written as a product

P [e1, . . . , ek ∈ T] =
k

∏

i=1

P
[

e i ∈ T
∣

∣ e j ∈ T for j < i
]

=
k

∏

i=1

P [e i ∈ Ti]

where Ti is the uniform spanning tree on a new graph got by identifying every pair

of vertices connected by e1, . . . , e i−1 and denoted G/{e1, . . . , e i−1}. Comparison with

(6.1.1) shows that to establish (4.3.8), it suffices to prove

(6.1.2) P[e i ∈ Ti]=
∥

∥

∥P⊥
Zi

Ie i

∥

∥

∥

2
.

This leads us to examine the effect of contracting edges in G, in terms of the inner

product space H. Fix a finite set F of edges, and let h⋆ denote the subspace of H

spanned by the stars of G/F, and let h♦ denote the space of cycles (including loops) of

G/F. It is easy to see that h♦=♦+〈χF〉, where 〈χF〉 is the linear span of {χ f : f ∈ F}.

Consequently, h♦ ⊃ ♦ and h⋆ ⊂ ⋆. Let Z := P⋆〈χF〉, which is the linear span of

{I f : f ∈ F}. Since h⋆ ⊂ ⋆ and h⋆ is the orthogonal complement of h♦, we have

P⋆h♦=⋆∩h♦. Consequently,

⋆∩h♦= P⋆h♦= P⋆♦+P⋆〈χF〉 = Z ,

and we obtain the orthogonal decomposition

H=h⋆⊕ Z⊕♦ ,

where ⋆=h⋆⊕ Z and h♦=♦⊕ Z.

Let e be an edge that does not form a cycle together with edges in F. Set hIe :=
Ph⋆

χe; this is the analogue of Ie in the network G/F. The above decomposition tells

us that

hIe = Ph⋆
χe = P⊥

Z P⋆
χe = P⊥

Z Ie .

From (6.1.2), all that is left to prove is that for any graph G,

P[e ∈ T]=
∥

∥Ie
∥

∥

2
.

(Then we apply it to G/{e1, . . . , e i−1} for each i). This is exactly (4.3.8) with k = 1 and

was proved by Kirchoff (49) in 1847. We omit the proof and direct the interested

reader to Thomassen (87) for a short combinatorial argument (see the notes).

6.2. Circular unitary ensemble

We give the proof of Theorem 4.3.9 in three steps. In the first, we write the Haar

measure on U (n) in a workable explicit form. In the second step, we represent a

unitary matrix in terms of its eigenvalues and auxiliary variables. Finally, in the

third step, we compute the Jacobian determinant of this change of variables and

integrate out the auxiliary variables to get the distribution of eigenvalues.

Haar measure on U (n): The Haar measure on U (n) is the unique Borel probability

measure on U (n) that is invariant under left and right multiplication by unitary

matrices. Our first task is to write this measure more explicitly. On U (n), we have

the following n2 smooth functions

ui, j (U)=Ui, j ,
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where Ui, j is the (i, j) entry of the matrix U. Define the matrix-valued one form

Ω(U)=U∗dU. This just means that we define n2 one-forms on U (n), by

Ωi, j(U)=
n
∑

k=1

uk,i(U)duk, j(U),

and put them together in a matrix. The matrix notation is for convenience. One

property of Ω is that it is skew-Hermitian, that is Ωi, j =−Ω j,i. Another property is

its invariance, in the following sense.

For a fixed W ∈ U (n), consider the left-translation map LW : U (n) → U (n) de-

fined as LW (U)=WU. The pullback of Ω under LW is

L∗
WΩ(U) = Ω(WU)

= (WU)∗d(WU)

= U∗W∗WdU

= Ω(U).

Thus Ω is a left-invariant, Hermitian matrix-valued one-form on U (n) (called the

“left Maurer-Cartan” form of U (n)). Analogously, the form UdU∗ is right-invariant.

Now we define the n2-form on U (n)

ω :=
(

∧

i

Ωi,i

)

∧
(

∧

i< j

(Ωi, j ∧Ωi, j)

)

.

To prevent ambiguity, let us fix the order in the first wedge product as i = 1,2, . . . ,n

and in the second as (i, j)= (1,2),(1,3), . . . ,(1,n),(2,3), . . . ,(n−1,n). This is not impor-

tant, as a change in order may only change the overall sign. Now, ω is left-invariant,

i.e., L∗
W
ω=ω, since Ω has the same property. Also, the dimension of U (n) is n2 and

ω is clearly not zero. Thus for each U, up to scalar multiplication, ω(U) is the unique

n2-form in the tangent space to U (n) at U. Therefore integration against ω is the

unique (up to constant) left-invariant bounded linear functional on the space of con-

tinuous functions on U (n). It is important to note that ω is not zero! See remark 6.2.1

below. That is, for any continuous function f : U (n) →U (n) and W ∈U (n), we have

ω( f ◦LW ) = ω( f ), where LWU = WU. We may scale ω by a constant κ so that it is

positive (in other words, if f ≥ 0, then κ
∫

f ω ≥ 0) and so that κ
∫

ω = 1. To see that

it can be made positive, note that for any S ⊂ U (n), and any W ∈ U (n), we have
∫

S ω=
∫

L−1
W

(S)ω, whence ω is everywhere positive or everywhere negative.

Then we can define the left-Haar measure of U (n) as the measure µ such that

for any continuous function f : U (n) →R,
∫

U (n)
f (U)dµ(U)= κ

∫

U (n)
f (U)ω(U).

It is a fact that the left-Haar measure is also right-invariant for any compact group

(see the first paragraph of 4.3.6 and the reference therein). Hence, µ is a bi-invariant

probability measure and ω is bi-invariant. In effect, we have constructed the Haar

measure on U (n).

REMARK 6.2.1. Naturally, one must check that ω is not zero. By invariance,

it suffices to check this at the identity, that is, ω(I) 6= 0. Indeed, the exponential

map X → eX , from the Lie algebra of skew Hermitian matrices su(n) to the unitary

group U (n), is a diffeomorphism of some neighbourhood of 0 in su(n) onto some

neighbourhood of the identity in U (n). On the Lie algebra side, X i,i , i ≤ n and the
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real and imaginary parts of X i, j , i < j, form a co-ordinate system and hence ω̃ =
∧idX i,i ∧i< j (dX i, j ∧dX j,i ) is not zero. And ω(I) is easily see to be nothing but the

push forward of ω̃ under the exponential map.

Choosing eigenvectors and eigenvalues: Now let U be a unitary matrix. By the

spectral theorem for normal matrices, we may write

U =V∆V∗

where ∆= diagonal(λ1, . . . ,λn) is the diagonal matrix of eigenvalues of U, and V is a

unitary matrix whose jth column is an eigenvector of U with eigenvalue λ j . To have

a unique representation of U in terms of its eigenvalues and eigenvectors, we must

impose extra constraints.

Eigenvalues are uniquely defined only as a set. To define ∆ uniquely, we order

the eigenvalues so that λ j = eiα j , with 0 < α1 < α2 . . . < αn < 2π. (We may omit the

lower-dimensional sub-manifold of matrices with two or more equal eigenvalues or

having eigenvalue equal to 1). Once ∆ is fixed, V is determined up to right multi-

plication by a diagonal unitary matrix Θ= diagonal(eiθ1 , . . . , eiθn ), where θ j ∈ R. We

impose the conditions Vi,i ≥ 0, which then determine V uniquely. Then ∆ and V are

smooth functions of U, outside of the submanifold of matrices that we omitted.

Eigenvalue density: Write U = V∆V∗, where ∆ = ∆(U) and V = V (U) are chosen

as above. Then

dU = V (d∆)V∗+ (dV )∆V∗+V∆d(V ∗)

= V (d∆)V∗+ (dV )∆V∗−V∆V∗dVV∗,

where we used the fact that dV∗ =−V∗(dV )V∗ (because VV∗ = I). Thus

(6.2.1) V∗U∗(dU)V =∆
∗d∆+∆

∗V∗dV∆−V∗(dV ).

From the alternating property dx∧dy =−dy∧dx, recall that if dyj =
∑n

k=1
a j,kdxk,

for 1≤ j ≤ n, then

(6.2.2) dy1 ∧dy2 . . .∧dyn = det
(

a j,k

)

j,k≤n
dx1 ∧dx2 . . .∧dxn.

We apply this to both sides of (6.2.1). For brevity, call the matrix-valued one-forms

on the left and right of (6.2.1) as L and M, respectively. Then, by (6.2.2),

(6.2.3)

(

∧

i

L i,i

)

∧
(

∧

i< j

(L i, j ∧L j,i)

)

=ω(U)

because, for V ∈U (n), the linear transformation X →V∗XV on the space of matrices

is also unitary. Next, rewrite the right hand side of (6.2.1) as

M j,k =
{

idα j if j = k.

(e−iα j eiαk −1)(V∗dV ) j,k if j 6= k.

Equality (6.2.1) asserts that L = M, and hence by (6.2.3) it follows that

(6.2.4) ω(U)= in

(

∧

j

dα j

)

∧
(

∧

j<k

|e−iα j eiαk −1|2(V∗dV ) j,k ∧ (V∗dV )k, j

)

.

Recalling that κω is what defines the Haar measure, we see that we have decomposed

the Haar measure into a product of two measures, one on ∆ and the other on V .

Integrating out the V part gives the eigenvalue density as proportional to

(6.2.5)
∏

j<k

|eiα j − eiαk |2
n
∧

j=1

dα j .
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Since eiθk are orthogonal in L2(S1), by writing the density as the determinant of

BB∗ where, B =
(

eirαs
)

r,s and expanding the determinanants as usual, we get the

normalizing factor. The kernel is also read off from BB∗.

REMARK 6.2.2. From 6.2.4, we see that the measure on V is given by the n(n−1)-

form

(6.2.6)
∧

i< j

((V∗dV )i, j ∧ (V∗dV ) j,i).

Had there been an extra factor of ∧ j(V
∗dV ) j, j, this would have been the Haar mea-

sure on U (n). But constraints such as Vj, j > 0, that we imposed to define V uniquely,

prevent this. We may avoid this irksomeness by stating Theorem 4.3.9 in the re-

verse direction: If V is sampled from Haar distribution on U (n) and ∆ is sampled

according to density (6.2.5) independently of V , then the matrix U = V∆V∗ has Haar

distribution on U (n).

6.3. Non-normal matrices, Schur decomposition and a change of measure

For unitary and Hermitian matrix models, to find the law of eigenvalues, we

always take auxiliary variables to be the eigenvectors of the matrix. This is because

the eigenvectors may be normalized to form an orthonormal basis, or what is the

same, the matrix can be diagonalized by a unitary matrix. The GUE and CUE are

examples of this.

However, the case of non-normal matrix models (means A and A∗ do not com-

mute) is completely different. This applies to the examples of sections 4.3.7, 4.3.8

and 4.3.9. The eigenvectors do not form an orthonormal basis, but only a linear ba-

sis (almost surely, in all our examples). This complicates the relationship between

the entries of the matrix and the eigenvalues. In fact it is remarkable that the eigen-

value density for these three models can be found explicitly. We are not aware of any

other non-normal random matrix models that have been solved exactly.

A non-normal matrix is not unitarily equivalent to a diagonal matrix, but can

be diagonalized by a non-unitary matrix (Ginibre’s approach) or triangularized by a

unitary matrix (Dyson’s approach). We take the latter route, which is considerably

simpler than the former. In this section we deduce a fundamental Jacobian determi-

nant formula for the change of variables from a matrix to its triangular form. In the

next three sections to follow, we shall apply this formula to three non-normal matrix

models. The deduction of the Jacobian determinant is due to Dyson and appears in

the appendices of Mehta’s book (58). However, there seems to be a slight problem

with the proof given there, which we have corrected below (see the notes at the end

of the chapter for a discussion of this point).

Schur decomposition: Any matrix M ∈ gℓ(n,C) can be written as

(6.3.1) M =V (Z+T)V∗,

where V is unitary, T is strictly upper triangular and Z is diagonal. The decomposi-

tion is not unique for the following reasons.

Firstly, Z = diagonal(z1, . . . , zn) has the eigenvalues of M along its diagonal, and

hence is determined only up to a permutation. Use the lexicographic order on com-

plex numbers (u+ iv ≤ u′ + iv′ if u < u′ or if u = u′ and v ≤ v′) to arrange the eigen-

values in increasing order. Thus, z1 ≤ z2 ≤ . . . ≤ zn. But we shall omit all matrices

with two or more equal eigenvalues (a lower dimensional set and hence also of zero

Lebesgue measure), and then strict inequalities hold.
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Once Z is fixed, V ,T may be replaced by VΘ,Θ∗TΘ where Θ is any diagonal

unitary matrix diagonal(eiθ1 , . . . , eiθn ). If the eigenvalues are distinct, this is the only

source of non-uniqueness. We restore uniqueness of the decomposition by requiring

that Vi,i ≥ 0.

From (6.3.1) we get

dM = (dV )(Z+T)V∗+V (dZ+dT)V∗+V (Z+T)d(V∗)

= (dV )(Z+T)V∗+V (dZ+dT)V∗−V (Z+T)V∗(dV )V∗

= V
[

(V∗dV )(Z+T)− (Z+T)(V∗dV )+dZ+dT
]

V∗.

It will be convenient to introduce the notations Λ := V∗(dM)V , Ω := V∗dV and S =
Z + T so that dS = dZ + dT. Thus Λ = (λi, j) and Ω = (ωi, j) are n× n matrices of

one-forms. Moreover, Ω is skew-Hermitian as we saw in section 6.2. Then the above

equation may be written succintly as

(6.3.2) Λ=ΩS−SΩ+dS.

Integration of a function of M with respect to Lebesgue measure is the same as

integrating against the 2n2-form
∧

i, j

(dMi, j ∧dM i, j).

Actually, there should be a factor of 2n2
in2

, but to make life less painful for ourselves

and our readers, we shall omit constants at will in all Jacobian determinant compu-

tations to follow. Where probability measures are involved, these constants can be

reclaimed at the end by finding normalization constants.

We want to write the Lebesgue measure on M in terms of Z,V ,T. For this we

must find the Jacobian determinant for the change of variables from {dMi, j ,dM i, j}

to dzi ,1 ≤ i ≤ n, dTi, j , i < j, and Ω. Since for any fixed unitary matrix W , the trans-

formation M →WMW∗ is unitary on gℓ(n,C), we have

(6.3.3)
∧

i, j

(dMi, j ∧dM i, j)=
∧

i, j

(λi, j ∧λi, j).

Thus we only need to find the Jacobian determinant for change of variables from Λ

to Ω,dS (and their conjugates). We write equation (6.3.2) in the following manner.

λi, j =
j

∑

k=1

Sk, jωi,k −
n
∑

k=i

Si,kωk, j +dSi, j

=



































(S j, j −Si,i )ωi, j +
[

j−1
∑

k=1
Sk, jωi,k −

n
∑

k=i+1
Si,kωk, j

]

if i > j.

dSi, j +Si, j (ωi,i −ω j, j)+







j
∑

k=1

k 6=i

Sk, jωi,k −
n
∑

k=i+1

k 6= j

Si,kωk, j





 if i ≤ j.

Now arrange {λi, j ,λi, j} in the order

λn,1,λn,1, . . . ,λn,n,λn,n,λn−1,1,λn−1,1 . . .λn−1,n,λn−1,n, . . . ,λ1,1,λ1,1 . . . ,λ1,n,λ1,n.

Return to the transformation rules given above for λi, j in terms of Ω,dS. The

expressions inside square brackets involve only one-forms that have already ap-

peared before (in the given ordering of one-forms). Here it is necessary to recall
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that ωi, j = −ω j,i . Therefore, upon taking wedge products, we arrive at (for brevity

we write |ω|2 for ω∧ω)

(6.3.4)
∧

i, j

|λi, j |2 =
(

∏

i> j

|zi − z j |2
)

∧

i> j

|ωi, j |2
∧

i

|dzi |2
∧

i< j

|dti, j + ti, j (ωi,i −ω j, j)|2.

Here we have reverted to Z and T in place of S. We make the following claim.

CLAIM 6.3.1. For any k ≤ n, we have ωk,k ∧i> j |ωi, j |2 = 0.

PROOF. Let M = {V : V∗V = I,Vi,i ≥ 0} be the set of unitary matrices with non-

negative diagonal entries. If we omit all V that have at least one zero entry on

the diagonal, M is a smooth manifold of dimension n2 − n. This is because U (n)

is a manifold of dimension n2 and M is a sub-manifold thereof, got by imposing

n constraints. (Alternately, just observe that {Vj,k : j > k} parameterize M . This

is because given {Vj,k : j > k}, using orthonormality of the columns of V , we may

inductively solve for V1,1,{V1,2,V2,2}, . . . ,{V1,n, . . . ,Vn,n} in that order).

Since the dimension of M is only n2−n whereas ωk,k∧i> j |ωi, j |2 is an (n2−n+1)-

form, it must be zero. �

From the claim, thanks to (6.3.4) and (6.3.3), we arrive at the following Jacobian de-

terminant formula, which we shall also refer to as Ginibre’s measure decomposition.

(6.3.5)
∧

i, j

(dMi, j ∧dM i, j)=
(

∏

i> j

|zi − z j |2
)

∧

i> j

|ωi, j |2
∧

i

|dzi |2
∧

i< j

|dti, j |2.

This Jacobian determinant formula will be of vital importance to us in the three

examples to follow.

REMARK 6.3.2. In place of Vi,i ≥ 0, we may impose constraints of the form

arg Vi,i =αi , for some fixed αis and arrive at the same formula (6.3.5).

6.4. Ginibre ensemble

Proof of Theorem 4.3.10. If the entries of M are i.i.d. standard complex Gaus-

sians, then the joint density is proportional to

e−tr(M∗M)
∧

i, j

(dMi, j ∧dM i, j).

Now use the Schur decomposition of M as V (Z+T)V∗, with Vi,i ≥ 0 and observe that

tr(M∗M) = tr
[

(Z+T)∗(Z+T)
]

= tr(Z∗Z)+ tr(T∗T)

because Z∗T and T∗Z have zeros on the diagonal. From the Jacobian determinant

formula (6.3.5), we see that the probability density of Z,V ,T is proportional to
(

e−tr(Z∗Z)
∏

i< j

|zi − z j|2
∧

i

(dzi ∧dz i)

)(

e−tr(T∗T)
∧

i< j

(dTi, j ∧dT i, j)

)(

∧

i> j

ωi, j ∧ωi, j

)

where ωi, j := (V∗dV )i, j . Thus Z,T,V are independent, and integrating over V ,T,

we conclude that the density of Z with respect to Lebesgue measure on C
n is propor-

tional to
n

∏

k=1

e−|zk |2
∏

i< j

|zi − z j |2.
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The normalization constant is found in the usual manner, by orthogonalizing {zk}

with respect to e−|z|
2
dm(z). �

6.5. Spherical ensemble

Proof of Theorem 4.3.11. (A,B) has density

1

π2n2
exp

{

−trAA∗− trBB∗}∧

i, j

|dAi, j |2
∧

i, j

|dBi, j |2.

Hence with M = A−1B, the joint density of (M, A) is

1

π2n2
|det(A)|2n exp

{

−trA∗(I+MM∗)A
}∧

i, j

|dAi, j |2
∧

i, j

|dMi, j |2.

Now, for any fixed positive definite matrix Σ, a standard Gaussian integral compu-

tation shows that
∫

gℓ(n,C)

|det(A)|2n exp
{

−trA∗
ΣA

}∧

i, j

|dAi, j |2 = πn2

Cn|det(Σ)|−2n.

In fact one may show that Cn =
n
∏

k=1

(k+n−1)!
(k−1)!

, but we shall not need this. Thus, the

density of M is found to be

Cn

πn2

1

det(I+MM∗)2n

∧

i, j

|dMi, j |2.

Let M = V (Z + T)V∗, with Vi,i ≥ 0, be the Schur decomposition (6.3.1) of M. By

Ginibre’s measure decomposition (6.3.5), we get the measure of Z,V ,T to be

(6.5.1)
Cn

πn2

∏

i< j

|zi − z j|2
1

det(I+ (Z+T)(Z+T)∗)2n

∧

i< j

|dTi, j |2
∧

i> j

|ωV
i, j |

2
∧

i

|dzi |2.

As usual ωV = V∗dV . The density does not depend on V , and hence, to get the

density of eigenvalues of M, all we need is to compute the integral over T. Unlike in

the Ginibre ensemble, here T and Z not independent. Define

I(n, p) =
∫

Tn

1

det(I+ (Z+T)(Z+T)∗)p

∧

i< j

|dTi, j |2.

where Tn is the space of n×n strictly upper triangular matrices. We compute I(n, p)

recursively. Write Sn = Z+T so that

I+SnS∗
n =

[

I+Sn−1S∗
n−1

+uu∗ znu

znu∗ 1+|zn|2
]

where u= [T1,n . . .Tn−1,n]t. We want to integrate over u first. For this, observe that

det(I+SnS∗
n) = (1+|zn|2)det

(

I+Sn−1S∗
n−1+uu∗− |zn|2

1+|zn|2
uu∗

)

= (1+|zn|2)det

(

I+Sn−1S∗
n−1−

1

1+|zn|2
uu∗

)

= (1+|zn|2)det
(

I+Sn−1S∗
n−1

)

(

1−
u∗(I+Sn−1S∗

n−1
)−1u

1+|zn|2

)
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where in the last line we made the following observation. For any An×n and u ∈ C
n,

the matrix A−1uu∗ has rank one, and hence its only eigenvalues is its trace, which

is u∗A−1u. Therefore,

det(A+uu∗)= det(A)det(I+ A−1uu∗)= det(A) (1+u∗A−1u).

Hence
∫

Cn−1

∧

i<n |dTi,n|2

det
(

I+SnS∗
n

)p = (1+|zn|2)−p

det
(

I+Sn−1S∗
n−1

)p

∫

Cn−1

∧|dui |2
(

1− 1
1+|zn|2

u∗(I+Sn−1S∗
n−1

)−1u
)p

= C(n, p)

(1+|zn|2)p−n+1 det
(

I+Sn−1S∗
n−1

)p−1

where the last line results from making the change of variables v = 1p
1+|zn|2

(I +

Sn−1S∗
n−1

)−
1
2 u. Again, one may compute that

C(n, p) =
∫

Cn−1

∧

i |dvi |2

(1+v∗v)p
= π

2
Beta(p−n+1,n−1)

but we shall not need it. Thus we get the recursion

I(n, p) = C(n, p)

(1+|zn|2)p−n+1
I(n−1, p−1).

What we need is I(n,2n), which by the recursion gives

I(n,2n) = C′
n

n
∏

k=1

1

(1+|zk|2)n+1
.

Using this result back in (6.5.1), we see that the density of eigenvalues of M is

C′′
n

n
∏

k=1

1

(1+|zk|2)n+1

∏

i< j

|zi − z j |2.

To compute the constant, note that






√

√

√

√

n

π

(

n−1

k

)

zk

(1+|z|2)
n+1

2







0≤k≤n−1

is an orthonormal set in L2(C). The projection operator on the Hilbert space gener-

ated by these functions defines a determinantal process whose kernel is as given in

(4.3.12). Writing out the density of this determinantal process shows that it has the

same form as the eigenvalue density that we have determined. Hence the constants

must match and we obtain C′
n. �

6.6. Truncated unitary matrices

We give a proof of Theorem 4.3.13 for the case m = 1. The general case follows

the same ideas but the notations are somewhat more complicated (see notes).

Consider an (n+1)× (n+1) complex matrix

M =
[

X c

b∗ a

]

and assume that M and X are non-singular and that the eigenvalues of X are all

distinct. Our first step will be to transform Lebesgue measure on the entires of
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M into co-ordinates involving eigenvalues of X and some auxiliary variables. The

situation in Theorem 4.3.13 is that we want to find the measure on eigenvalues of

X , but when M is chosen from the submanifold U (n+1) of gℓ(n+1,C). Therefore,

some further work will be required to use the Jacobian determinant from Lebesgue

measure on M to the latter case when M has Haar measure on U (n+1).

We shall need the following decompositions of M.

(1) Polar decomposition: M =UP1/2, where U is unitary and P1/2 is the pos-

itive definite square root of a positive definite matrix P. The decomposition

is unique, the only choice being P = M∗M and U = P−1/2M.

(2) Schur decomposition of X : Write M =WYW∗ where

W =
[

V 0

0 1

]

, Y =
[

Z+T v

u∗ a

]

,

where V is unitary with Vi,i ≥ 0, T is strictly upper triangular, Z is the

diagonal matrix diag(z1, . . . , zn) where zi are eigenvalues of X , and u= V∗b,

v = V∗c. Since zi are distinct, if we fix their order in some manner, then

this decomposition is unique (see 6.3.1).

(3) Modified Schur decomposition: Use the notations in the previous two

decompositions. As our final goal is to take M to be unitary, we want to

find a new set of co-ordinates for M with the property that the submanifold

U (n+1) is represented in a simple way in these co-ordinates. An obvious

choice is to use P, since U (n+1) is the same as {P = I}. Obviously we want

Z to be part of our co-ordinates. Thus we have (n+1)2 degrees of freedom in

P and 2n degrees of freedom in Z and need co-ordinates for n2 +1 further

degrees of freedom (the total being 2(n+ 1)2 for M). The matrix V will

furnish n2 −n of them and the angular parts of u and a will provide the

remaining n+1. We now delve into the details.

Write uk = rk eiαk , 1 ≤ k ≤ n and a = reiθ . Set Q = W∗PW , so that

Y ∗Y = Q. Let Ak and Qk be the submatrices consisting of the first k

rows and columns of Y and Q respectively. Let uk = [u1 . . . uk]t and vk =
[v1 . . . vk]t denote the vectors consisting of the first k co-ordinates of u and v

respectively. In particular un = u and vn = v. Let tk = [T1,k,T2,k . . . Tk−1,k]t

and qk = [Q1,k,Q2,k . . .Qk−1,k]t for k ≥ 2.

Then from the off-diagonal equations of Y ∗Y =Q, we get

A ∗
k tk+1 +uk+1uk =qk+1 for 1≤ k ≤ n−1, A ∗

n v+au =qn+1.

The matrices Ak are upper triangular their diagonal entries are zis which

are all assumed non-zero. Therefore, we can inductively solve for t2, . . . ,tn

and v in terms of Q,Z,u and a. Thus we get

tk+1 = A ∗−1
k (qk+1−uk+1uk),(6.6.1)

v = A ∗−1
n (qn+1−au).(6.6.2)

From the diagonal equations of Y ∗Y =Q, we get

r2
1 =Q1,1 −|z1|2, r2

k +‖tk‖2 =Qk,k −|zk|2, for 2≤ k ≤ n, r2 +‖v‖2 =Qn+1,n+1.

As equations (6.6.1) show, tk+1 depends only on z j , j ≤ k, and u j , j ≤ k+1,

and Q, it is possible to successively solve for r1, . . . ,rn and r in terms of

Q,Z,θ and αk, 1≤ k ≤ n. This is done as follows.
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The first equation r2
1
= Q1,1 − |z1|2 can be solved uniquely for r1 > 0,

provided Q1,1 ≥ |z1|2. Substitute from (6.6.1) for tk+1 in the equation for

r2
k+1

to get

Qk+1,k+1 −|zk+1|2 = r2
k+1 + (qk+1 −uk+1uk)∗(A ∗

k Ak)−1(qk+1 −uk+1uk)

= r2
k+1{1+u∗

k(A ∗
k Ak)−1uk}−2rk+1 Re{e−iαk+1 u∗

k(A ∗
k Ak)−1qk+1}

+q∗
k+1(A ∗

k Ak)−1qk+1.(6.6.3)

An identical consideration applies to the equation for r and we get

(6.6.4)

r2{1+u∗(A ∗
n An)−1u}−2rRe{e−iθu∗(A ∗

n An)−1qn+1}=Qn+1,n+1−q∗
n+1(A ∗

n An)−1qn+1.

A quadratic ax2 + bx + c with a > 0 and b, c real, has a unique positive

solution if and only if c< 0. Thus, the constraints under which we can solve

for positive numbers rk and r, uniquely in terms of Q,Z and αk, 1 ≤ k ≤ n,

are (interpret q1 = 0,A0 = 0)

(6.6.5) |zk|2 <Qk,k −q∗
k(A ∗

k−1Ak−1)−1qk, q∗
n+1(A ∗

n An)−1qn+1 <Qn+1,n+1.

Thus we may take our independent variables to be Z,V ,P,θ and αk, k ≤ n,

subject to the constraints (6.6.5). Then we decompose M as WYW∗, where

we now regard T,v,r and rk, k ≤ n as functions of Z,V ,P,θ and αks, got

from equations (6.6.1)-(6.6.4). Clearly this decomposition is also unique,

because Schur decomposition is.

The following lemmas express the Lebesgue measure in terms of the variables in

polar decomposition and modified Schur decompositions, respectively.

LEMMA 6.6.1. Let UP1/2 be the polar decomposition of M. Then
∧

i, j

|dMi, j |2 = f (P)
∧

i, j

dPi, j

∧

i, j

ωU
i, j

where f is some smooth function of P while dP = (dPi, j) and ωU =U∗dU are Hermit-

ian and skew Hermitian, respectively.

LEMMA 6.6.2. Let WYW∗, with T,v,r and rk, k ≤ n being functions of Z,V ,P,θ

and αk, k ≤ n, be the modified Schur decomposition of M. Then

(6.6.6)

∧

i, j

|dMi, j |2 =

(

∏

i< j
|zi − z j |2

)

1(6.6.5)
∧

i |dzi |2
∧

i, j dPi, j
∧

i 6= j ω
V
i, j

∧

k dαk

∧

dθ

n
∏

k=1
|det(Ak)|2

(

1+u∗
k
(A ∗

k
Ak)−1uk − 1

rk
Re{e−iαk+1 u∗

k
(A ∗

k
Ak)−1qk+1}

)

.

where the notations are as defined earlier, and ωV = V∗dV . Here 1(6.6.5) denotes the

indicator function of the constraints stated in the display (6.6.5) on Z and Q, where

Q is related to P by Q =W∗PW .

Assuming the validity of these lemmas, we now deduce Theorem 4.3.13. First

we state an elementary fact that we leave for the reader to verify.

FACT 6.6.3. Let M be a manifold and suppose that {xi : i ≤ k}∪ {yj : j ≤ ℓ} and

{xi : i ≤ k}∪ {z j : j ≤ ℓ} are two sets of co-ordinates on M. Let x = (x1, . . . xk) and

similarly define y and z. If the volume form on M is given in the two co-ordinate

systems by f (x,y)∧i dxi ∧ j dyj and by g(x,z)∧i dxi ∧ j dz j respectively, then, on the

submanifold x= 0, the two ℓ-forms f (0,y)∧ j dyj and g(0,z)∧ j dz j are equal.
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Proof of Theorem 4.3.13. The unitary group is the submanifold of gℓ(n,C)

defined by the equations P = I. Therefore, by Lemma 6.6.1, Lemma 6.6.2 and

Fact 6.6.3, we may conclude that

f (I)
∧

i, j

ωU
i, j =

∏

i< j
|zi − z j |2

n
∏

k=1
|det(Ak)|2

(

1+u∗
k
(A ∗

k
Ak)−1uk

)

1(6.6.5)

∧

i

|dzi |2
∧

i 6= j

ωV
i, j

∧

k

dαk

∧

dθ.

The denominator is much simpler than in (6.6.6) because, when P is the identity,

so is Q, and hence qk+1 = 0 for each 1 ≤ k ≤ n. For the same reason, and because

Qk,k = 1, the constraints (6.6.5) simplify to |zk|2 < 1, 1≤ k ≤ n.

The denominator can be further simplified. Using Y ∗Y =Q = I which gives

A ∗
k Ak +uku∗

k = Ik, for k ≤ n.

From this we see that

1 = det
(

A ∗
k Ak +uku∗

k

)

= |det(Ak)|2 det
(

I+ [(A ∗
k )−1uk][(A ∗

k )−1uk]∗
)

= |det(Ak)|2(1+u∗
k(A ∗

k Ak)−1uk)

where the last line employs the identity det(I +ww∗) = 1+w∗w for any vector w.

This identity holds because w is an eigenvector of I+ww∗ with eigenvalue 1+w∗w,

while vectors orthogonal to w are eigenvectors with eigenvalue 1. Thus we arrive at
∧

i, j

ωU
i, j = C

∏

i< j

|zi − z j |2
∧

i

|dzi |2
∧

i 6= j

ωV
i, j

∧

k

dαk

∧

dθ

for some constant C. This gives the density of Z as proportional to
∏

i< j |zi − z j|2, for

|z j | < 1, j ≤ n. This is exactly what we wanted to prove. �

It remains to prove Lemma 6.6.1 and Lemma 6.6.2.

Proof of Lemma 6.6.1. The bijection M → (U,P) from GL(n,C) onto the space

{p.d. matrices}×U (n) is clearly smooth. Thus we must have
∧

i, j

|dMi, j |2 = f (P,U)
∧

i, j

dPi, j

∧

i, j

ωU
i, j

because dPi, j ,ω
U
i, j

are 2n2 independent one-forms on the 2n2-dimensional space

{p.d. matrices}×U (n).

For any fixed unitary matrix U0, the transformation M → U0M preserves the

Lebesgue measure while it transforms (U,P) to (U0U,P). From the invariance of

ωU , it follows that f (P,U0U)= f (P,U) which in turn just means that f is a function

of P alone. �

Proof of Lemma 6.6.2. First consider the (unmodified) Schur decomposition

M = WYW∗, where the effect is to just change from X to V ,Z,T, while b,c undergo

unitary transformations to u,v respectively. Using Ginibre’s measure decomposition

(6.3.5) to make the change from X to V ,Z,T, we get
∧

i, j

|dMi, j |2 =(6.6.7)

∏

i< j

|zi − z j |2
∧

i

|dzi |2
∧

i 6= j

ωV
i, j

∧

i< j

|dTi, j |2
∧

k

|dvk |2
∧

k

(rkdrk ∧dαk)
∧

(rdr∧dθ).
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Here we have expressed |duk |2 and |da|2 in polar co-ordinates. Recall equations

(6.6.1)-(6.6.4) that express T,v,r and rk,k ≤ n as functions of Z,V and P. From

(6.6.1) and (6.6.2), we get

k
∧

i=1

dTi,k+1 = 1

det(Ak)

k
∧

i=1

dQ i,k+1 + [. . .],
n
∧

i=1

dvi =
1

det(An)

n
∧

i=1

dQ i,n+1 + [. . .]

where [. . .] consists of many terms involving dui ,dzi , as well as dTi, j for j ≤ k.

Therefore, when we take wedge product of these expressions and their conjugates

over k, all terms inside [. . .] containing any dTi, j or dT i, j factors vanish, and we get

∧

i< j

|dTi, j |2
∧

i

|dvi |2 =
1

n
∏

k=1
|det(Ak)|2

∧

i< j

|dQ i, j |2 + [. . .]

where [. . .] consists of many terms involving dui ,dzi , their conjugates. Substitute

this into the right hand side of (6.6.7), and observe that all terms coming from [. . .]

give zero because dui ,dzi and their conjugates already appear in (6.6.7). Thus

(6.6.8)

∧

i, j

|dMi, j |2 =

∏

i< j
|zi − z j |2

n
∏

k=1
|det(Ak)|2

∧

i

|dzi |2
∧

i< j

|dQ i, j |2
∧

i 6= j

ωV
i, j

∧

k

(rkdrk ∧dαk)
∧

(rdr∧dθ).

Since Q is Hermitian, we have written |dQ i, j |2 as dQ i, j∧dQ j,i . We are being cavalier

about the signs that come from interchanging order of wedge products, but that can

be fixed at the end as we know that we are dealing with positive measures.

Next, apply (6.6.3) and (6.6.4) to write

∧

k

(2rkdrk)
∧

rdr =
dQ1,1

∧

. . .
∧

dQn+1,n+1

n
∏

k=1

(

1+u∗
k
(A ∗

k
Ak)−1uk − 1

rk
Re{e−iαk+1 u∗

k
(A ∗

k
Ak)−1qk+1}

)

+ [. . .].

Again the terms included in [. . .] yield zero when “wedged” with the other terms in

(6.6.8). Thus,

(6.6.9)

∧

i, j

|dMi, j |2 =

(

∏

i< j
|zi − z j |2

)

∧

i |dzi |2
∧

i, j dQ i, j
∧

i 6= j ω
V
i, j

∧

k dαk
∧

dθ

n
∏

k=1
|det(Ak)|2

(

1+u∗
k
(A ∗

k
Ak)−1uk − 1

rk
Re{e−iαk+1 u∗

k
(A ∗

k
Ak)−1qk+1}

)

.

This is almost the same as the statement of the lemma, except that we have dQ in

place of dP. However from P =WQW∗, and the definition of W we get

dP =W

(

dQ+
[

ωV 0

0 1

]

P −P

[

ωV 0

0 1

])

W∗.

As we have seen before, the map M →W∗MW is unitary, which implies that ∧dPi, j =
∧(W∗dPW)i, j , which by the above equation shows that ∧i, jQ i, j = ∧i, jdPi, j + [. . .],

where again the terms brushed under [. . .] are those that yield zero when substituted
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into (6.6.9). Therefore

∧

i, j

|dMi, j |2 =

(

∏

i< j
|zi − z j |2

)

∧

i |dzi |2
∧

i, j dPi, j
∧

i 6= j ω
V
i, j

∧

k dαk
∧

dθ

n
∏

k=1
|det(Ak)|2

(

1+u∗
k
(A ∗

k
Ak)−1uk − 1

rk
Re{e−iαk+1 u∗

k
(A ∗

k
Ak)−1qk+1}

)

.

�

6.7. Singular points of matrix-valued GAFs

Now we use Theorem 4.3.13 to prove Theorem 4.3.15 . This gives an alternate

proof to Theorem 5.1.1, different from the one that was given in the chapter 5. The

proof given here is due to appear in the paper of Katsnelson, Kirstein and Krishna-

pur (46) and is simpler than the original one in (54).

We split the proof into two lemmas, the first of which establishes the link be-

tween submatrices of Haar unitary matrices and Gaussian matrices and the second

which uses Theorem 4.3.13 and in which a central idea is a link between (determin-

istic) unitary matrices and analytic functions on the unit disk.

LEMMA 6.7.1. Let U be an N×N random unitary matrix sampled from the Haar

measure. Fix n≥ 1. After multiplication by
p

N, the first principal n×n sub-matrices

of U p, p ≥ 1, converge in distribution to independent matrices with i.i.d. standard

complex Gaussian entries. In symbols,

p
N

(

[U]i, j≤n,[U2]i, j≤n, . . .
) d→ (G1,G2, . . .)

where G i are independent n×n matrices with i.i.d. standard complex Gaussian en-

tries. That is, any finite number of random variables
p

N[U p]i, j , p ≥ 1, i, j ≤ n,

converge in distribution to independent standard complex Gaussians.

LEMMA 6.7.2. Let U be any unitary matrix of size N +m. Write it in the block

form

U =
[

Am×m B

C VN×N

]

.

Then,

det(zI−V∗)

det(I− zV )
= (−1)N det(U∗)det

(

A+ zB(I− zV )−1C
)

.

Assuming the lemmas, we deduce Theorem 4.3.15.

Proof of Theorem 4.3.15. Let U be sampled from Haar measure on U (N +m)

and write it in block form as in Lemma 6.7.2. Define

fN (z)= (−1)N det(U)
det(zI−V∗)

det(I− zV )
.

Since V∗ has the same law as V , by Theorem 4.3.13, the zeros of fN are determinan-

tal with kernel

K
(m)
N

(z,w)=
N−1
∑

k=0

(m+1) . . . (m+k)

k!
(zw)k

Hence, to prove Theorem 4.3.15, it suffices to show that

(6.7.1) Nm/2fN (z)
d→ det

(

G0 + zG1 + z2G2 + . . .
)

,
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where the distributional convergence is not for a fixed z but in the space of functions

analytic in the unit disk, with respect to the topology of uniform convergence on

compact subsets. By Lemma 6.7.2, we see that

Nm/2fN(z) = det
(p

N(A+ zB(I− zV )−1C)
)

= det
(p

N(A+ zBC+ z2BVC+ z3BV 2C+ . . .)
)

.

Now observe that A = [U]i, j≤m. Hence, by Lemma 6.7.1, it follows that

(6.7.2)
p

N A
d→G0.

Further, p
N[U2]i, j≤m =

p
N A2 +

p
NBC.

By (6.7.2), we see that
p

N A2 p→ 0, and thus, an application of Lemma 6.7.1 implies

that
(p

N A,
p

NBC
)

d→ (G0,G1).

Inductively, we see that BV kC = [Uk+2]i, j≤m+OP (1/N). Here, by OP (1/N) we mean a

quantity which upon dividing by N−1 remains tight. Thus Lemma 6.7.1 implies that

p
N(A,BC,BVC,BV 2C, . . .)

d→ (G0,G1,G2 . . .).

This convergence is meant in the sense that any finite set of the random variables

on the left converge in distribution to the corresponding ones on the right. Surely,

this implies that the coefficients in the power series expansion of Nm/2fN converge

in distribution to those of det(G0 + zG1 + z2G2 + . . .). However, to say that the zeros

of Nm/2fN converge (in distribution) to those of det(
∑

Gkzk), we need to show weak

convergence in the space of analytic functions on the unit disk with respect to the

topology of uniform convergence on compact sets. Since we already have convergence

of coefficients, this can be done by proving that supz∈K |Nm/2fN (z)| is tight, for any

compact K ⊂D. We skip this boring issue and refer the reader to Lemma 14 in (54).

This completes the proof. �

A word of explanation on the question of tightness in the last part of the proof. To see

that there is an issue here, consider the sequence of analytic functions gn(z)= cn zn.

All the coefficients of gn converge to 0 rapidly, but gn may converge uniformly on

compact sets in the whole plane (cn = 2−n2
) or only in a disk (cn = 1) or merely at one

point (cn = 2n2
). Which of these happens can be decided by the asking on what sets

is the sequence gn uniformly bounded.

It remains to prove the two lemmas. In proving Lemma 6.7.1, we shall make

use of the following “Wick formula” for joint moments of entries of a unitary matrix

(compare with the Gaussian Wick formula of Lemma 2.1.7). We state a weaker form

that is sufficient for our purpose. In Nica and Speicher (64), page 381, one may find

a stronger result, as well as a proof.

RESULT 6.7.3. Let U = ((ui, j))i, j≤N be chosen from Haar measure on U (N). Let

k ≤ N and fix i(ℓ), j(ℓ), i′(ℓ), j′(ℓ) for 1≤ ℓ≤ k. Then

(6.7.3) E

[

k
∏

ℓ=1

ui(ℓ), j(ℓ)

k
∏

ℓ=1

ui′(ℓ), j′(ℓ)

]

=
∑

π,σ∈Sk

Wg(N,πσ−1)
k

∏

ℓ=1

1i(ℓ)=i′(πℓ)1 j(ℓ)= j′(σℓ)
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where Wg (called “Weingarten function”) has the property that as N →∞,

(6.7.4) Wg(N,τ) =
{

N−k +O(N−k−1) if τ= e (“identity” ).

O(N−k−1) if τ 6= e.

Proof of Lemma 6.7.1. We want to show that
p

N(Uk)α,β, k ≥ 1, 1 ≤ α,β ≤ n

converge (jointly) in distribution to independent standard complex Gaussians. To

use the method of moments consider two finite products of these random variables

(6.7.5) S =
m
∏

i=1

[(Uki )αi ,βi
]pi and T =

m′
∏

i=1

[(Uk′
i )α′

i
,β′

i
]p′

i .

where m,m′, pi , p′
i
,ki ,k

′
i
≥ 1 and 1≤αi ,βi ,α

′
i
,β′

i
≤ n are fixed. We want to find E[ST]

asymptotically as N →∞.

The idea is simple-minded. We expand each (Uk)α,β as a sum of products of

entries of U. Then we get a huge sum of products and we evaluate the expectation

of each product using Result 6.7.3. Among the summands that do not vanish, most

have the same contribution and the rest are negligible. We now delve into the details.

Let Pk(α,β) denote all “paths” γ of length k connecting α to β. This just means

that γ ∈ [N]k+1, γ(1)=α and γ(k+1)=β. Then we write

(6.7.6) (Uk)α,β =
∑

γ∈Pk (α,β)

k
∏

j=1

uγ( j),γ( j+1).

Expanding each factor in the definition of S like this, we get

(6.7.7) S =
∑

γℓ
i
∈Pki

(αi ,βi )

i≤m;ℓ≤pi

m
∏

i=1

pi
∏

ℓ=1

ki
∏

j=1

uγℓ
i
( j),γℓ

i
( j+1).

In words, we are summing over a packet of p1 paths of length k1 from α1 to β1, a

packet of p2 paths of length k2 from α2 to β2, etc. T may similarly be expanded as

(6.7.8) T =
∑

Γ
ℓ
i
∈P

k′
i

(α′
i
,β′

i
)

i≤m′;ℓ≤p′
i

m′
∏

i=1

p′
i

∏

ℓ=1

k′
i

∏

j=1

u
Γ
ℓ
i
( j),Γℓ

i
( j+1).

To evaluate E[ST], for each pair of collections γ= {γℓ
i
} and Γ= {Γℓ

i
}, we must find

(6.7.9) E





(

m
∏

i=1

pi
∏

ℓ=1

ki
∏

j=1

uγℓ
i
( j),γℓ

i
( j+1)

)





m′
∏

i=1

p′
i

∏

ℓ=1

k′
i

∏

j=1

u
Γ
ℓ
i
( j),Γℓ

i
( j+1)







 .

Fix a collection of packets γℓ
i
∈Pki

(αi,βi). For which collections Γ
ℓ
i
∈Pk′

i
(α′

i
,β′

i
) does

(6.7.9) give a nonzero answer? For that to happen, the number of ui, js and the

number of ui, js inside the expectation must be the same (because eiθU
d=U for any

θ ∈R). Assume that this is the case.

It will be convenient to write γ(i,ℓ, j) in place of γℓ
i
( j). From Result 6.7.3, to get

a nonzero answer in (6.7.9) we must have bijections

{(i,ℓ, j) : i ≤ m,ℓ≤ pi ,1 ≤ j ≤ ki}
π→ {(i,ℓ, j) : i ≤ m′,ℓ≤ p′

i ,1 ≤ j ≤ k′
i}

{(i,ℓ, j) : i ≤ m,ℓ≤ pi ,2≤ j ≤ ki +1}
σ→ {(i,ℓ, j) : i ≤ m′,ℓ≤ p′

i ,2 ≤ j ≤ k′
i +1}
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such that
(

γ(i,ℓ, j)
)

i≤m,ℓ≤pi ,1≤ j≤ki
= (Γ(π(i,ℓ, j)))i≤m,ℓ≤pi ,1≤ j≤ki

.
(

γ(i,ℓ, j)
)

i≤m,ℓ≤pi ,2≤ j≤ki+1
= (Γ(σ(i,ℓ, j)))i≤m,ℓ≤pi ,2≤ j≤ki+1 .

And for each such pair of bijections π,σ, we get a contribution of Wg(N,πσ−1).

Let us call the collection of packets γ typical, if all the paths γℓ
i

are pairwise

disjoint (except possibly at the initial and final points) and also non self-intersecting

(again, if αi = βi , the paths in packet i intersect themselves, but only at the end

points).

If γ is typical, then it is clear that for Γ to yield a nonzero contribution, Γ must

consist of exactly the same paths as γ. This forces ki = k′
i

and pi = p′
i

and αi =
α′

i
,βi =β′

i
for every i. If this is so, then the only pairs of bijections (π,σ) that yield a

non zero contribution are those for which

• π=σ (From the disjointness of the paths).

• π permutes each packet of paths among itself. In particular there are
m
∏

i=1
pi !

such permutations.

This shows that for a typical γ, the expectation in (6.7.9) is equal to

(6.7.10) 1Γ=γ

(

m
∏

i=1

pi!

)

Wg(N, e).

Here γ=Γ means that the two sets of paths are the same. Now suppose γ is atypical.

For any fixed γ, typical or atypical, the number of Γ for which (6.7.9) is nonzero is

clearly bounded uniformly by m and pi ,ki , i ≤ m. In particular it is independent of

N. Therefore the expected value in (6.7.9) is bounded in absolute value by

(6.7.11) C sup
τ

Wg(N,τ).

Now for an atypical γ, at least two of γℓ
i
( j), 1 ≤ i ≤ m, 1 ≤ ℓ ≤ pi , 2 ≤ j ≤ ki , must

be equal (our definition of “typical” did not impose any condition on the initial and

final points of the paths, which are anyway fixed throughout). Thus, if we set r =
p1(k1−1)+ . . .+ pm(km −1), then it follows that the total number of atypical γ is less

than r2Nr−1. Since the total number of γ is precisely Nr , this also tells us that there

are at least Nr − r2Nr−1 typical γ. Put these counts together with the contributions

of each typical and atypical path, as given in (6.7.10) and (6.7.11), respectively. Note

that we get nonzero contribution from typical paths only if S = T. Also, the total

number of factors in S is r+∑

pi (this is the “k” in Result 6.7.3). Hence

E[ST] = 1S=T Nr(1−O(1/N))Wg(N, e)
m
∏

i=1

pi!+O(Nr−1) sup
τ∈Sr+

∑

pi

Wg(N,τ)

= 1S=T N−
∑

pi

(

m
∏

i=1

pi !

)

(

1+O

(

1

N

))

by virtue of the asymptotics of the Weingarten function, as given in Result 6.7.3.

The factor N
∑

pi is precisely compensated for, once we scale (Uk)α,β by
p

N, as in

the statement of the lemma. Since the moments of standard complex Gaussian are

easily seen to be E[gp gq] = p!1p=q, we have shown that
p

N(Uk)α,β, k ≥ 1, α,β ≤ n,

converge to independent standard complex Gaussians. �
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Proof of Lemma 6.7.2. Consider the matrix

X =
[

z−1 A B

C −(I− zV )

]

.

Then

det(z−1A)det(−(I− zV )−C(z−1A)−1B) = det(−(I− zV ))det(z−1A+B(I− zV )−1C)

because both sides are equal to det(X ). Factor out z to get

(6.7.12) det(A)det(−I+ z(V −CA−1B))= (−1)N det(I− zV )det(A+ zB(I− zV )−1C).

The left hand side may be written as
[

det(A)det(V −CA−1B)
][

det(zI− Ṽ )
]

where Ṽ = (V − CA−1B)−1 is the lower right N × N block of U−1 (by well known

formulas for the inverse of a block matrix). Since U is unitary, it follows that Ṽ = V∗.

Further, the quantity inside the first bracket is just det(U). Using these inferences

in equation (6.7.12), we obtain

det(zI−V∗)

det(I− zV )
= (−1)N det(U∗)det

(

A+ zB(I− zV )−1C
)

as claimed. �

6.8. Notes

• We omitted the proof of P[e ∈T]=‖Ie‖2. This was originally proved by Kirchoff (49)

in 1847. Thomassen proves it by showing that if e =−→
xy, then

Ie = 1

no. spanning trees of G

∑

T

(χf1 + . . .+χfk )

where the sum is over all spanning trees of G and f1, . . . , fk is the unique path in

T from x to y. The Burton Pemantle theorem was proved for two edges by Brooks,

Smith, Stone and Tutte (10) and in general by Burton and Pemantle (11). The joint

distribution of the set of edges in T in terms of independent Bernoullis (as in Theo-

rem 4.5.3) was found by Bapat (3), but the determinantal nature was not realized.

The proof presented here is due to Benjamini, Lyons, Peres and Schramm (5), where

one may also find much more about uniform spanning trees and forests, including

the situation of an infinite underlying graph.

• The derivation of random matrix eigenvalue densities presented here using various

decompositions and wedge products may be found in Forrester (26) and Mehta (58).

We have cleaned up some proofs in places where they seemed insufficiently rigor-

ous (see below). The eigenvalue density of a Haar unitary matrix is well known in

representation theory and is called the Weyl integration formula for U (n). It was

introduced in the random matrix context by Dyson (22) in his "three-fold classifica-

tion".

• Ginibre’s original proof of Theorem 4.3.10 used the diagonalization of M as X∆X−1.

The proof based on Schur decomposition follows appendix 35 of Mehta (58) who

attributes the proof to Dyson. The mistake referred to in our proof is as follows. In

that proof they "impose the constraints, (V∗dV ) j, j = 0", justifying it by saying that

there are n more degrees of freedom in (V , Z,T) as compared to M, and hence, n

constraints may be imposed. The freedom of choice we have in Schur decomposition

is that (V ,T) may be replaced by (VΘ,Θ∗VΘ), where Θ j, j = eiθ j . This changes

(V∗dV ) j, j to (V∗dV ) j, j + idθ j . It is not clear to us that this can be made to vanish.

However, as our proof shows, it suffices to have (V∗dV ) j, j be a linear combination of
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(V∗dV )k,ℓ, k 6= ℓ, since upon taking wedge products, that will render the (V∗dV ) j, j

terms irrelevant.

• Theorem 4.3.13 was proved in (90) and the same proof with more details is pre-

sented in Forrester’s book (26). We have supplied the same proof with additional ar-

guments, such as the use of polar decomposition in Lemma 6.6.1, to render the proof

rigorous. As explained in the text, we start with Lebesgue measure on gℓ(n,C), so

as to make ready use of Ginibre’s measure decomposition (6.3.5). A possible alter-

nate approach would be to start with the Haar measure ∧i, j (U
∗dU)i, j on U (n+1),

and use Schur decomposition of X . Then we write U∗dU in terms of V∗dV , dZ

dαk etc., in effect carrying out the proof of (6.3.5) in the current context where we

have only (n+1)2 degrees of freedom, instead of 2(n+1)2.

When we go to the general case of m ≥ 2, the bulk of the proof remains un-

changed. However, b is now an m×n matrix, and if we write the jth column of b

as r jω j in spherical co-ordinates, then the measure on U does not quite come out

as a product form as it did for m= 1. There will be an extra step of integration over

ωn, . . . ,ω1, in that order, before we get the density of eigenvalues.

• Theorem 4.3.15 was first proved in (54). The original proof uses Lemma 6.7.1 and

then constructs the functions fN . In taking the limit of Nm/2fN however, the proof

that we present is simpler. The idea of using Lemma 6.7.2 in its place was pointed

out by Katsnelson and Kirstein (personal communication, but see (27)) and sim-

plies the proof a great deal. The simplified proof will appear in (46). The idea

of associating to a unitary matrix U (with blocks A,B,C,V ), the rational function

det(A+ zB(I − zV )−1C), called the characteristic function, was due to Livshits (see

(27) and references therein) and is extensively used in system theory.

• Lemma 6.7.1 may be read as follows. Let e i, i ≤ m be any orthonormal set in C
N .

Then the spectral measures µi, j defined by 〈Uke j, e i〉 =
∫

eikθdµi, j converge to in-

dependent complex white noises on the unit circle. The lemma was proved in (54).

It is similar in spirit to well-known results on Gaussian approximation to traces of

powers of U (due to Diaconis and Shahshahani, and Evans) and to entries of U it-

self, in which the best known results are due to Tiefeng Jiang, who showed that the

top
p

n×
p

n submatrix of
p

NU is approximately Gaussian. There is a long history

going back to Maxwell (see (18) and references therein).





CHAPTER 7

Large Deviations for Zeros

7.1. An Offord type estimate

In this chapter we study probabilities of various unlikely events of random ze-

ros. We begin with a large deviation estimate which is valid for arbitrary Gauss-

ian analytic functions and then describe more specialized results. This estimate

bounds the probability for a linear statistic of the zero set of a GAF to deviate

from its mean. This result is taken from Sodin (80) who extended the ideas of

Offord (66). Offord proved the same theorem for Nevanlinna’s integrated count-

ing function, N( f ,w,r) :=
∫r

0

N f (u)

u
du, where N f (u) is the number of zeros of f in

the disk of D(w,u). The Nevanlinna counting function is easily seen to be equal to
∫

log+(r/|z−w|)dn f (z), where n f is the counting measure of zeros of f , and hence

for w,r fixed, N( f ,w,r) is a linear statistic of the zeros of f . In this form, Sodin’s

extension amounts to replacing “log+” by arbitrary smooth functions. We present

this result in the case when f is Gaussian.

THEOREM 7.1.1. Let f be a Gaussian analytic function on a domain Λ⊂C. Let nf

denote the counting measure of the zero set of f and let µ be the expectation of nf, i.e.,

µ(A) = E [nf(A)]. Let ϕ ∈ C2
c (Λ) be a test function with compact support in Λ. Then,

for every λ> 0,

(7.1.1) P





∣

∣

∣

∣

∣

∣

∫

Λ

ϕ(dnf −dµ)

∣

∣

∣

∣

∣

∣

≥ λ



≤ 3e−πλ/‖∆ϕ‖
L1 .

The following lemma is the key ingredient in Offord’s approach.

LEMMA 7.1.2. Let a be a complex Gaussian random variable with zero mean and

variance σ2. Then, for any event E in the probability space, we have

(7.1.2)
∣

∣E [1E log |a|]−P(E) logσ
∣

∣≤P(E)

[

2log
1

P(E)
+ P(E)

2

]

.

PROOF. Upper bound: Replace a by a/σ to assume without losing generality

that σ= 1. From Jensen’s inequality E
[

log |a|2
∣

∣E
]

≤ logE
[

|a|2
∣

∣E
]

. Rewrite this as

1

P(E)
E

[

1E log |a|2
]

≤ log

(

1

P(E)
E

[

|a|21E

]

)

≤ log

(

1

P(E)

)

,

the last inequality being valid because E[|a|21E]≤ 1. Thus

E [1E log |a|] ≤−1

2
P(E) logP(E)

which is more than we need.

119
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Lower bound: Next we prove the lower bound in (7.1.2). Let log− x =−min{0, log x}.

Then,

E[log |a|1E ] ≥ −E[log− |a|1E ]

= −E[log− |a|1E∩{|a|≤P(E)}]−E[log− |a|1E∩{|a|>P(E)}].

The second term may be bounded below by

(7.1.3) −E[log− |a|1E∩{|a|>P(E)}]≥−P(E) log

(

1

P(E)

)

.

while for the first term we have

−E[log− |a|1E∩{|a|≤P(E)}] ≥ −E[log− |a|1|a|≤P(E)]

= −E



1|a|≤P(E)

1
∫

0

1s>|a|
ds

s





= −
1

∫

0

P [|a| <min{P(E),s}]
ds

s

= − log(s)P[|a| <min{P(E),s}]
∣

∣

1

0

+
1

∫

0

log(s)
d

ds
P[|a| <min{P(E),s}]ds.

The first summand is zero. For the second, observe that P[|a| < s] = 1− e−s2
, whence

−E[log− |a|1E∩{|a|≤P(E)}] ≥
P(E)
∫

0

log(s)e−s2

2sds

=
1

2

P(E)2
∫

0

log(t)e−tdt

≥ 1

2

P(E)2
∫

0

log(t)dt

= −P(E)2 log

(

1

P(E)

)

− 1

2
P(E)2.

Adding this with (7.1.3) gives

E[log |a|1E ] ≥ −P(E)2 log

(

1

P(E)

)

− 1

2
P(E)2−P(E) log

(

1

P(E)

)

≥ −2P(E) log

(

1

P(E)

)

−
1

2
P(E)2

as claimed. �

We are ready to prove Theorem 7.1.1.

PROOF. [Proof of Theorem 7.1.1] Fix λ> 0, and define the events

A+ =







∫

Λ

ϕ(dnf −dµ) ≥λ







, A− =







∫

Λ

ϕ(dnf −dµ) ≤−λ







.
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Using Lemma 7.1.2, we obtain upper bounds for the probabilities of A+ and A− and

thus the deviation inequality we are after. First, consider A+.

Since deterministic zeros of f do not contribute to the deviation at all, we ex-

clude all of them from the domain Λ without losing generality. Then the expected

measure of the zeros, µ, is absolutely continuous with respect to Lebesgue measure

and the first intensity (the Radon-Nikodym derivative of µ with respect to Lebesgue

measure) is given by (2.4.8). Recall (2.4.4) to deduce that
∫

Λ

ϕ(z)(dnf(z)−dµ(z))= 1

2π

∫

Λ

(∆ϕ)(z)
{

log |f(z)|− log
√

K(z, z)
}

dm(z).

As ϕ is compactly supported and twice differentiable,

(7.1.4)

∫

Λ

E
[

∣

∣∆ϕ(z)
∣

∣

(

∣

∣ log |f(z)|
∣

∣+
∣

∣ log
√

K(z, z)
∣

∣

)]

dm(z) <∞.

This would be valid even if f had some deterministic zeros, because the integrand

has only logarithmic singularities. But anyway, we have assumed that there are

no deterministic zeros, so the integrand is bounded almost surely. This justifies the

interchange of integral and expectation below.

λP[A+] ≤ E



1A+ ·
1

2π

∫

Λ

∆ϕ(z)
{

log |f(z)|− log
√

K(z, z)
}

dm(z)





= 1

2π

∫

Λ

∆ϕ(z)E
[

1A+

{

log |f(z)|− log
√

K(z, z)
}]

dm(z)

= 1

2π

∫

Λ

∆ϕ(z)
(

E
[

1A+ log |f(z)|
]

−P[A+] log
√

K(z, z)
)

dm(z)

Applying Lemma 7.1.2 to estimate the quantity inside the brackets, we get

λP[A+] ≤ 1

2π

∫

Λ

|∆ϕ(z)|P[A+]

(

2| logP[A+]|+ P(A+)

2

)

dm(z)

≤ 1

2π
P[A+]

(

2| logP[A+]|+ 1

2

)

‖∆ϕ‖L1 .

This gives,

P[A+]≤ e
− πλ

‖∆ϕ‖
L1

+ 1
4
.

The same estimate holds for A− and the theorem follows because 2e
1
4 < 3. �

7.2. Hole probabilities

One quantity of interest that is informative about the “rigidity” of a point pro-

cess in the plane is the decay of hole probability, i.e., the probability that a disk of

radius r contains no points, as r →∞. Before posing this question for zeros of Gauss-

ian analytic functions, we compute the hole probabilities for several other point pro-

cesses. Here below, n(r) will denote the number of points in the disk of radius r

centered at the origin. The center does not matter if the point process is translation

invariant.
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• Poisson process in the plane with constant intensity λ: By definition,

the number of points n(r) in a disk of radius r has Poisson distribution with

mean λπr2. Therefore

(7.2.1) P[n(r) = 0]= e−λπr2

.

• Perturbed lattice: Let ak,ℓ be i.i.d. NC(0,1) random variables, for (k,ℓ) ∈
Z

2. Then let X be the point process {(k,ℓ)+ak,ℓ}. In this case, for the event

{n(r) = 0} to occur, we must have |(k,ℓ)+ak,ℓ| > r for every k,ℓ.

For k2+ℓ2 < r2

4
, this implies that |ak,ℓ|2 > r2

4
. Since there are more than

π(1−ǫ)
4

r2 such pairs (k,ℓ), (for any ǫ> 0, this is true for large enough r), we

see that for some C1

P[n(r) = 0]≤ e−C1r4

.

On the other hand, it is easy to see that that the event A = {|(k,ℓ)+ak,ℓ | >
r for every k2 +ℓ2 > 2r2} has a positive probability at least C′ > 0, where

C′ is independent of r (in fact we can let C′ go to 1 as r →∞). Moreover, if

k2 +ℓ2 ≤ 2r2, then P[|(k,ℓ)+ak,ℓ | > r] ≥P[|ak,ℓ| > 4r] = e−16r2
. Therefore

P[n(r) = 0] ≥ P [A ]
∏

k2+ℓ2≤2r2

P
[

|ak,ℓ| > 4r
]

≥ C′e−C2r4

.

The interested reader may try to find the sharp constant in the exponent.

• Ginibre ensemble: For the infinite Ginibre ensemble, we saw the re-

sult of Kostlan in Theorem 4.7.3 that the set of absolute values of the

points has the same distribution as {R1,R2, . . .}, where R2
k

has distribution

Gamma(k,1) and all the Rks are independent. Therefore

P[n(r) = 0]=
∞
∏

k=1

P[R2
k > r2].

The moment generating function of R2
k

exists for θ < 1 and yields

P[R2
k > r2] ≤ e−θr2

E[eθR2
k ]

= e−θr2

(1−θ)−k.

For k < r2, the bound is optimized for θ = 1− k
r2 . This gives (we write as if

r2 is an integer. This is hardly essential).

P[n(r) = 0] ≤
r2
∏

k=1

P[R2
k > r2]

≤
r2
∏

k=1

e
−(1− k

r2 )r2−k log
(

k

r2

)

= e
− 1

2
r2(r2−1)−r4(

1
∫

0

x log(x)dx)+O(r2log r)

= e−
1
4 r4(1+o(1)).

Next we want to get a lower bound for
∞
∏

k=1
P[R2

k
> r2]. Recall that

P[Gamma(n,1) >λ]=P[Poisson(λ)< n].
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Therefore,

P[R2
k > r2] = P[Poisson(r2)≤ k−1]

≥ e−r2 r2(k−1)

(k−1)!
.

Use this inequality for k ≤ r2 to obtain,

r2
∏

k=1

P[R2
k > r2] ≥

r2
∏

k=1

e−r2 r2(k−1)

(k−1)!

= exp{−r4 +
∑

k<r2

k log(r2)− log(k!)}

= exp{−r4 +
∑

k<r2

k log(r2)−
∑

k<r2

(r2 −k) log(k)}

= exp{−r4 +
∑

k<r2

(r2 −k) log(r2)−
∑

k<r2

(r2 −k) log(k)}

= exp{−r4 −
∑

k<r2

(r2 −k) log

(

k

r2

)

}.

As before,

∑

k<r2

(r2 −k) log

(

k

r2

)

= r4

1
∫

0

(1− x) log(x)dx+O(r2 log r)

= −3

4
r4 +O(r2 logr).

This yields

(7.2.2)
r2
∏

k=1

P[R2
k > r2]≥ e−

r4

4
+O(r2 log r).

Since P[Poisson(λ)>λ]→ 1
2

as λ→∞, it follows that for large enough r, for

any k > r2, we have P[R2
k
> r2]≥ 1

4
. Therefore, for large enough r, we have

(7.2.3)
2r2
∏

k=r2+1

P[R2
k > r2]≥ e−r2 log(4).

For large enough r, with probability at least 1
2

, the event {R2
k
> r2, ∀ k >

2r2} occurs. To see this, recall that the large deviation principle (Cramer’s

bound) for exponential random variables with mean 1 gives

P[R2
k <

k

2
]≤ e−ck,

for a constant c independent of k. Therefore, for large r

∑

k>2r2

P[R2
k < r2]<

1

2
.

Then,

(7.2.4)
∞
∏

k=2r2+1

P[R2
k > r2]≥

1

2
.
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From (7.2.2), (7.2.3) and (7.2.4) we get

∞
∏

k=1

P[R2
k > r2]≥ e−

1
4

r4+O(r2 log r).

Thus we have proved

PROPOSITION 7.2.1. For the Ginibre ensemble, 1
r4 logP[n(r) = 0] →− 1

4
,

as r →∞.

7.2.1. Hole probability for the planar Gaussian analytic function. Com-

ing back to zeros of Gaussian analytic functions, Theorem 7.1.1 provides as an easy

corollary, an upper bound for the hole probability for any Gaussian analytic function

f on a domain Λ. As we shall see, this estimate is far from optimal in general.

Firstly apply Theorem 7.1.1 with λ =
∫

ϕdµ, where µ is the first intensity mea-

sure, to get

(7.2.5) P





∫

Λ

ϕdnf = 0



≤ 3exp

{

− π

||∆ϕ||L1

∫

ϕdµ

}

.

Now let DR ⊂ Λ be a disk of radius R, and let Dr, r < R, be a concentric disk of a

smaller radius r. Without loss of generality, let the common center be 0.

Fix a smooth function h : R→ [0,1] that equals 1 on (−∞,0] and equals 0 on [1,∞)

and 0< h(x) < 1 for x ∈ (0,1). Then define a test-function ϕ :Λ→R by ϕ(z)= h
(

|z|−r
R−r

)

.

Clearly, ϕ vanishes outside DR and equals 1 on Dr. Furthermore, with |z| = t, we

have

(7.2.6)
∂pϕ(z)

∂tp
= (R− r)−ph(p)

(

t− r

R− r

)

.

For a radial function, it is easy to see that ∆ϕ(z)=
(

∂2

∂t2 + 1
t

∂
∂t

)

ϕ(t). Thus,

||∆ϕ||L1 = 2π

R
∫

r

∣

∣ t
∂2ϕ(t)

∂t2
+ ∂ϕ(t)

∂t

∣

∣dt

≤ 2π

1
∫

0

|h′(t)|dt+ 2πR

R− r

1
∫

0

|h′′(t)|dt

≤ C
R+ r

R− r
,

for a constant C that depends only on h. Then it follows from (7.2.5) that

COROLLARY 7.2.2.

P (nf(R)= 0)≤ 3exp

[

−cµ(Dr)
R− r

R+ r

]

, for any 0< r < R.

We now focus our attention on the planar GAF,

(7.2.7) f(z)=
∞
∑

k=0

ak

zk

p
k!

,

where ak are i.i.d. ∼ NC(0,1), and consider the hole probability P(nf(r) = 0). As a

consequence of Corollary 7.2.2 we get P(nf(r) = 0) ≤ exp(−c r2). However, this is the

same asymptotic rate of decay that we obtained for the Poisson process in (7.2.1). As

a glance at Figure 1 suggests, the zeros should at least exhibit some local repulsion.
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FIGURE 1. The zero set of f (left) and a Poisson point process with

the same intensity.

In fact, the local repulsion for the zeros is more like that of the Ginibre ensemble.

Hence we might expect the hole probability of the zeros to decay like exp{−c r4}, as

it does for the Ginibre case. The next result, due to Sodin and Tsirelson (83), shows

that this is indeed the case.

THEOREM 7.2.3 (Sodin and Tsirelson). There exist positive constants c and C

such that for all r ≥ 1, we have

exp(−Cr4)≤P(nf(r) = 0)≤ exp(−cr4).

In this section, by c and C we denote various positive numerical constants whose

values can be different at each occurrence.

REMARK 7.2.4. Theorem 7.2.3 above shows that the hole probability for the

zeros of the planar GAF f decays exponentially in the square of the area of the hole,

just as for the perturbed lattice. This motivates a question as to whether the zeros

of f can in fact be thought of as a perturbed lattice? Obviously we do not expect the

zeros to be exactly distributed as the lattice with i.i.d. perturbations. One way to

make the question precise is whether there is a matching (this term will be precisely

defined in chapter 8) between the zeros of f and the lattice in such a manner that

the distance between matched pairs has small tails. Sodin and Tsirelson showed

that there is indeed a matching with sub-Gaussian tails that is also invariant under

translations by Z
2. In chapter 8 we shall discuss this and the closely related question

of translation invariant transportation between Lebesgue measure and the counting

measure on zeros.

In addition to hole probability, one may ask for a large deviation estimate for n(r)

as r →∞. Sodin and Tsirelson proved such an estimate (without sharp constants). In

fact this deviation inequality is used in proving the upper bound on hole probability,

but it is also of independent interest.

THEOREM 7.2.5. For any δ > 0, there exists c(δ) > 0, r(δ) > 0 such that for any

r ≥ r(δ),

(7.2.8) P

(

∣

∣

nf(r)

r2
−1

∣

∣≥ δ

)

≤ exp{−c(δ)r4}.

In what follows, by c(δ) we denote various positive constants which depend on

δ only and which may change from one occurrence to the next. A natural and very
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interesting question here is that of finding sharp constants in the exponents in Theo-

rem 7.2.3 and Theorem 7.2.5. See the notes at the end of the chapter for a discussion

of some recent developments in this direction.

PROOF. [Theorem 7.2.3] The lower bound is considerably easier than the upper

bound. This because one can easily find conditions on the coefficients that are suffi-

cient to force the event under question (a hole of radius r) to occur but much harder

to find a necessary one.

Lower bound There will be no zeros in D(0,r) if the constant coefficient a0 domi-

nates the rest of the series for f on the disk of radius r, that is, if

|a0| >
∣

∣

∞
∑

k=1

ak

zk

p
k!

∣

∣ ∀|z| ≤ r.

For the series on the right hand side, namely f(z)−a0, to be small all over the disk

D(0,r), we shall impose some stringent conditions on the first few coefficients. The

later ones are easily taken care of by the rapidly decreasing factor zk/
p

k!. For, if

|z| ≤ r, then

∣

∣

∞
∑

k=m+1

ak

zk

p
k!

∣

∣ ≤
∞
∑

k=m+1

|ak |
rk

p
k!

≤
∞
∑

k=m+1

|ak |
(

er2

k

)

k
2

by the elementary inequality k! ≥ kk e−k. Choose m = e(1+δ)2r2 where δ > 0. Then

the factors in the series above are bounded by (1+δ)−k. Define the event

A := {|ak | < k ∀k > m}.

If the event A occurs then for sufficiently large r we have

(7.2.9)
∣

∣

∞
∑

k=m+1

ak

zk

p
k!

∣

∣≤
∞
∑

k=m+1

k

(1+δ)k
≤ 1

2
.

Now consider

∣

∣

m
∑

k=1

ak

zk

p
k!

∣

∣

2 ≤
(

m
∑

k=1

|ak |2
)(

m
∑

k=1

r2k

k!

)

≤ er2
m
∑

k=1

|ak |2.

Define the event

B :=
{

|ak |2 < e−r2 1

4m
∀1 ≤ k ≤ m

}

.

If B occurs, then it follows that

(7.2.10)
∣

∣

m
∑

k=1

ak

zk

p
k!

∣

∣≤ 1

2
.

We also define a third event C := {|a0| > 1}. If A,B,C all occur, then by (7.2.9) and

(7.2.10) we see that nf(r) = 0. Recall that |ak|2 are independent exponentials to
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deduce that for r sufficiently large, we have (with m = e(1+δ)2r2),

P(A) ≥ 1−
∞
∑

k=m+1

e−k2

≥ 1

2
,

P(B) = (1−exp{−e−r2

(4m)−1})m ≥ e−mr2

(8m)−m,

P(C) = e−1.

In estimating P(B), we used the simple fact that 1− e−x ≥ x
2

for x ∈ [0,1]. Thus

P(nf(r) = 0) ≥ P(A) ·P(B) ·P(C)

≥ 1

2
e−1e−mr2

(8m)−m

= e−αr4(1+o(1))

for any α> e. This is the desired lower bound.

Upper bound The upper bound is much harder but is a direct corollary of Theo-

rem 7.2.5 which is proved next. Unlike in the lower bound we do not have a good

numerical value of the exponent here. �

7.2.2. Proof of Theorem 7.2.5. Recall Jensen’s formula (see (1), chapter 5, sec-

tion 3.2 or (73), section 15.16)

(7.2.11) log |f(0)|+
∑

α∈f−1 {0}
|α|<r

log

(

r

|α|

)

=
∫2π

0
log |f(reiθ )|

dθ

2π
.

Observe that the summation on the left hand side may also be written as
r
∫

0

n(t)
t

dt.

Fix κ= 1+δ and observe that

r
∫

r
κ

n(t)

t
dt≤ n(r) logκ≤

κr
∫

r

n(t)

t
dt.

Thus (7.2.11) leads to the following upper and lower bounds for n(r) in terms of the

logarithmic integral of f.

n(r) logκ ≤
2π
∫

0

(log |f(κreiθ )|− log |f(reiθ )|) dθ

2π
.(7.2.12)

n(r) logκ ≥
2π
∫

0

(log |f(reiθ )|− log |f(κ−1reiθ)|) dθ

2π
.(7.2.13)

Therefore the theorem immediately follows from Lemma 7.2.6 below. Indeed, to

deduce Theorem 7.2.5, apply this lemma to say that with probability at least 1−
ec(δ2)r4

, we have

(

1

2
−δ2

)

s2 ≤
2π
∫

0

log |f(seiθ )| ≤
(

1

2
+δ2

)

s2 for s= r and s= κr.
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Without losing generality we assume that δ< 1 so that δ− δ2

2
≤ logκ≤ δ. Then, under

the above events, apply the upper bound (7.2.12) on n(r) to get

n(r)

r2
≤ 1

logκ

{(

1

2
+δ2

)

κ2 −
(

1

2
−δ2

)}

≤ 1+Cδ.

Similarly from (7.2.13) we get n(r) ≥ (1−Cδ)r2. Thus the theorem follows.

LEMMA 7.2.6. For any δ > 0, there exists c(δ) > 0, r(δ) > 0 such that for any

r ≥ r(δ),

P





2π
∫

0

log |f(reiθ)|dθ
2π

≥
(

1

2
+δ

)

r2



 ≤ e−c(δ)eδr2

.

P





2π
∫

0

log |f(reiθ)|dθ
2π

≤
(

1

2
−δ

)

r2



 ≤ e−c(δ)r4

.

7.2.3. Proof of Lemma 7.2.6. Easier than the bounds for the logarithmic inte-

gral in Lemma 7.2.6 is the following analogous lemma for the maximum of log |f| in

a large disk. The lower and upper bounds for the maximum will be used in proving

the lower and upper bounds for the logarithmic integral, respectively.

LEMMA 7.2.7. Let f be the planar Gaussian analytic function and let M(r,f) =
max|z|≤r |f(z)|. Given any δ> 0, there exists c(δ) > 0, r(δ) > 0 such that for any r ≥ r(δ),

P

[

log M(r,f) ≥ (
1

2
+δ)r2

]

≤ e−c(δ)eδr2

.

P

[

log M(r,f) ≤ (
1

2
−δ)r2

]

≤ e−c(δ)r4

.

PROOF. Upper bound: For any z with |z| = r, we have for any m,

|f(z)| ≤
∑

k≤m

|ak |
rk

p
k!

+
∑

k>m

|ak |
rk

p
k!

≤
(

∑

k≤m

|ak |2
) 1

2

e
1
2 r2

+
∑

k>m

|ak|
rk

p
k!

.

Now set m = 4er2. Suppose the following events occur.

(7.2.14) |ak | ≤
{

e
2
3 δr2

for k ≤ m

2
k
2 for k > m.

Then it follows that (use the inequality k! > kk e−k in the second summand)

max{|f(z)| : |z| = r} ≤
p

me
2
3
δr2

e
1
2

r2

+
∑

k>m

2− k
2

≤
p

2erexp

{(

1

2
+ 2δ

3

)

r2

}

+1

≤ exp

{(

1

2
+δ

)

r2

}

.



7.2. HOLE PROBABILITIES 129

Thus if (7.2.14) occurs, then logM(r,f) ≤ ( 1
2
+δ)r2 as desired. Now the probability of

the events in (7.2.14) is

P [(7.2.14)] =
(

1−exp{−e
4
3
δr2

}
)4er2

∏

k>m

(1− e−2k

)

≥ 1−exp{−eδr2

}

for sufficiently large r. This proves the upper bound.

Lower bound: Suppose now that

(7.2.15) log M(r,f) ≤
(1

2
−δ

)

r2 .

Recall the Cauchy integral formula

f(k)(0)= k!

2π
∫

0

f(reiθ)

rk eikθ

dθ

2π
.

We use this and Stirling’s formula to show that the coefficients ak must be unusually

small, which again happens with very low probability.

|ak | =
|f(k)(0)|
p

k!

≤
p

k!
M(r,f)

rk

≤ Ck1/4 exp
(k

2
logk− k

2
+

(1

2
−δ

)

r2 −k log r
)

.

Observe that the exponent equals

k

2

(

(1−2δ)
r2

k
− log

r2

k
−1

)

.

We note that (1−2δ) r2

k
− log r2

k
−1 <−δ when r2/k is close enough to 1. Whence, for

(1−ǫ)r2 ≤ k ≤ r2,

|ak| ≤ Ck1/4 exp
(

− kδ

2

)

.

The probability of this event is ≤ exp{−c(δ)k}. Since ak are independent, multiplying

these probabilities, we see that

exp
(

− c(δ)
∑

(1−ǫ)r2≤k≤r2

k
)

= exp
(

− c1(δ)r4
)

is an upper bound for the probability that event (7.2.15) occurs. �

Now we return to the proof of Lemma 7.2.6 which is the last thing needed to

complete the proof of Theorem 7.2.5 and hence of Theorem 7.2.3 also.

PROOF. [Proof of Lemma 7.2.6]

Upper bound: We use the trivial bound

(7.2.16)

2π
∫

0

log |f(reiθ )|dθ
2π

≤ log M(r,f).
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From Lemma 7.2.7, we get

P





2π
∫

0

log |f(reiθ)|dθ
2π

≥ (
1

2
+δ)r2



≤ exp{−c(δ)eδr2

}

which is what we aimed to prove.

Lower bound:

LEMMA 7.2.8. Given δ> 0 there exists r(δ) > 0, c(δ) > 0 such that if r ≥ r(δ), then

for any z0 with 1
2

r ≤ |z0| ≤ r,

P

[

∃a ∈ z0 +δrD with log |f(a)| >
(1

2
−3δ

)

|z0|2
]

≥ 1− e−c(δ)r4

.

PROOF. The random potential log |f(z)| − 1
2
|z|2 is shift-invariant in distribution

(a direct consequence of (2.3.10). In proving the lower bound for the potential in

Lemma 7.2.7, in fact we proved the following

P
(

max
z∈rD

log |f(z)|− 1
2
|z|2 ≤−δr2

)

≤ exp{−c(δ)r4}.

Apply the same to the function z 7→ log |f(z0 + z)|− 1
2
|z0 + z|2 on δrD. We get

P

(

max
z∈δrD

log |f(z0 + z)|− 1
2
|z0 + z|2 ≤−δ(δr)2

)

≤ exp{−c(δ)r4}

for a different c(δ). Since |z0| ≥ r/2, if |z| ≤ δr, then we get 1
2
|z0 + z|2 ≥ 1

2
|z0|2(1−2δ)2

whence, outside an exceptional set of probability at most exp{−c(δ)r4}, there is some

a ∈ z0 +δrD such that log |f(a)| ≥ ( 1
2
−3δ)|z0|2. �

Now, set κ = 1−δ1/4, take N = [2πδ−1], and consider N disks with centers at

equally spaced points on the circle of radius κr. That is, we take the centers to

be z j = κre2πi j/N and the disks to be z j + δr jD, for j ≤ N. Lemma 7.2.8 implies

that outside an exceptional set of probability N exp(−c(δ)r4)= exp(−c1(δ)r4), we can

choose N points a j ∈ z j +δrD such that

log |f(a j)| ≥
(1

2
−3δ

)

|z j |2 ≥
(1

2
−Cδ1/4

)

r2.

Let P(z,a) be the Poisson kernel for the disk rD, |z| = r, |a| < r. We set P j(z)= P(z,a j).

For any analytic function f , the function log | f | is subharmonic, and hence if D(0,r) is

inside the domain of analyticity, then log | f (a)| ≤
∫2π

0 log | f (reiθ)|P(reiθ ,a) dθ
2π

for any

a ∈D(0,r). Applying this to f and each a j we get

(1

2
−Cδ1/4

)

r2 ≤ 1

N

N−1
∑

j=0

log |f(a j)|

≤
2π
∫

0

(

1

N

N−1
∑

j=0

P j(reiθ)

)

log |f(reiθ )|
dθ

2π

=
∫2π

0
log |f(reiθ )|

dθ

2π
+

2π
∫

0

(

1

N

N−1
∑

j=0

P j(reiθ)−1

)

log |f(reiθ)|
dθ

2π
.

The two claims 7.2.9, 7.2.10 below, immediately imply that the second integral is

bounded in absolute value by 10C0

p
δr2, outside an exceptional set of probability
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exp(−cr4). This in turn shows that outside the exceptional set, the first integral
∫2π

0
log |f(reiθ )|dθ

2π
≥

(

1

2
−Cδ

1
4 −10C0

p
δ

)

r2

which is exactly the lower bound we are trying to prove.

Let T denote the unit circle {|z| = 1}.

CLAIM 7.2.9.

max
z∈rT

∣

∣

∣

1

N

N−1
∑

j=0

P j(z)−1
∣

∣

∣≤ C0δ
1/2 .

CLAIM 7.2.10.
∫2π

0

∣

∣ log |f(reiθ)|
∣

∣

dθ

2π
≤ 10r2

outside an exceptional set of probability exp(−cr4).

Proof of Claim 7.2.9. We start by recalling that for
∫2π

0 P(reiθ ,a) dθ
2π = 1 for any

a ∈ D(0,r). Split the circle κrT into a union of N disjoint arcs I j of equal angular

measure µ(I j)= 1
N

centered at z j . Then if |z| = r,

1= 1

N

N−1
∑

j=0

P(z,a j)+
N−1
∑

j=0

∫

I j

(

P(z,a)−P(z,a j)
)

|da|

where the last integral is with respect to the normalized angular measure on I j .

Also, by elementary and well known estimates on the Poisson kernel (consult (1) or

(73))

|P(z,a)−P(z,a j )| ≤ max
a∈I j

|a−a j | · max
z,a

|∇aP(z,a)|

≤ C1δr · C2r

(r−|a|)2
= C0δ

δ1/2
= C0δ

1/2 ,

proving the claim. �

Proof of Claim 7.2.10. By Lemma 7.2.8, we know that if r is large enough,

then outside an exceptional set of probability exp(−cr4), there is a point a ∈ 1
2

rT

such that log |f(a)| ≥ 0. Fix such a point a. Then

0≤
2π
∫

0

P(reiθ ,a) log |f(reiθ )|dθ
2π

,

and hence

2π
∫

0

P(reiθ ,a) log− |f(reiθ )|dθ
2π

≤
2π
∫

0

P(reiθ ,a) log+ |f(reiθ )|dθ
2π

.

It remains to recall that for |z| = r and |a| = 1
2

r,

1

3
≤ P(z,a) ≤ 3 ,

and that
2π
∫

0

log+ |f(reiθ )|dθ
2π

≤ log M(r,f) ≤ r2
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FIGURE 2. The zero set of f(·, t)(left) and Zpl(t), conditioned to

have a hole of radius five.

(provided we are outside the exceptional set). Hence

2π
∫

0

log− |f(reiθ )|dθ
2π

≤ 9r2

and
2π
∫

0

∣

∣ log |f(reiθ)|
∣

∣

dθ

2π
≤ 10r2,

proving the claim. �

�

7.3. Notes

• Sharp constants: Recently, Alon Nishry (65) has found a way to get sharp con-

stants in the exponent for hole probability. In particular, for the planar GAF, he

shows that r−4 logP(nf(r) = 0)→−3e2

4 . In the same paper, he finds asymptotics for

hole probabilities for zeros of a wide class of random entire function.

• Time dependent processes: We noted above (Remark 7.2.4) that the hole proba-

bility for the perturbed lattice

Zpl =
{p

π(k+ iℓ)+ cak,ℓ : k,ℓ ∈Z
}

has the same asymptotic decay as the hole probability for Zf, the zero set of the

planar Gaussian analytic function. It turns out that natural time dependent ver-

sions of both these point processes exist, and that their large deviation behavior is

strikingly different (see figure 2).

The perturbed lattice model can be made into a time homogeneous Markov pro-

cess by allowing each lattice point to evolve as an independent Ornstein-Uhlenbeck

process:

(7.3.1) Zpl (t) =
{p

π(k+ iℓ)+ cak,ℓ(t) : k,ℓ ∈Z
}

.

Specifically, ak,ℓ(t) = e−t/2Bk,ℓ(et) where for each n ∈ Z
2, we have a Brownian mo-

tion in C that we write as Bn(t) = 1p
2

(

Bn,1(t)+ iBn,2(t)
)

.

One may construct a time dependent version of the planar GAF by defining

(7.3.2) f(z, t)=
∞
∑

n=0

an(t)
zn

p
n!
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where an(t) are again i.i.d. complex valued Ornstein-Uhlenbeck processes. With

probability one, this process defines an analytic function in the entire plane, and

at any fixed time t the distribution of Zf(t) is translation invariant. However, since

some information is lost when one restricts attention from f(·, t) to Zf(t), it is not

clear that Zf(t) should even be Markovian. Fortunately, using an argument similar

to the one given for the hyperbolic GAF (Theorem 5.3.1), one may show that |f(z, t)|
can be reconstructed from Zf(t) and since the evolution of the coefficients is radially

symmetric the zero set itself is a time homogeneous Markov process.

Whereas before we were interested in the hole probability that rD contains no

points, it now makes sense to introduce the time dependent hole probability, p(r,T)

that rD contains no points of the process for all t ∈ [0,T]. Using straightforward

estimates for Ornstein-Uhlenbeck processes, one can obtain the following (34)

PROPOSITION 7.3.1. In the dynamical perturbed lattice model, let Hk(T,R)

denote the event that RD contains no points of the process for all t ∈ [0,T]. Then for

any R > R∗ > 16 and T > T∗, there exist positive constants c1 and c2 depending only

on T∗ and R∗ so that

(7.3.3) limsup
T→∞

1

T
log(P(Hk(T,R))) ≤−c1R4

and

(7.3.4) liminf
T→∞

1

T
log(P(Hk(T,R))) ≥−c2R4 .

This result starkly contrasts with the time dependent hole probability for the

planar GAF, as the following result shows (34).

THEOREM 7.3.2. Let Hf(T,R) deonte the event that the dynamical planar GAF

does not have any zeros in RD for any t ∈ [0,T]. Then

(7.3.5) limsup
T→∞

1

T
log

(

P(Hf(T,R))
)

≤−e( 1
3
−o(1))R2

and

(7.3.6) liminf
T→∞

1

T
log

(

P(Hf(T,R))
)

≥−e( 1
2
+o(1))R2

.

• Overcrowding For the planar GAF, one can fix a disk of radius r and ask for the

asymptotic behaviour of P[n(r) > m] as m → ∞. Following a conjecture of Yuval

Peres, it was proved in (53) that for any r > 0, logP[n(r) > m] = −1
2 m2 log(m)(1+

o(1)). It is also shown there that for hyperbolic GAF with parameter ρ, there are

upper and lower bounds of the form e−cm2
for P[n(r)> m], for any fixed r ∈ (0,1).

• Moderate and very large deviations Inspired by the results obtained by Jan-

covici, Lebowitz and Manificat (38) for Coulomb gases in the plane (e.g., Ginibre

ensemble), M.Sodin (81) conjectured the following.

Let n(r) be the number of zeroes of the planar GAF in the disk D(0,r). Then,

as r →∞

(7.3.7)
loglog

(

1
P[|n(r)−r2|>rα]

)

logr
→







2α−1, 1
2 ≤α≤ 1;

3α−2, 1≤α≤ 2;

2α, 2≤α.

The upper bound in the case α > 2 follows by taking 1
2 r

α
2 in place of r in The-

orem 7.2.5 (In (53) it is shown that log
(

1
P[n(r)−r2>rα]

)

is asymptotic to r2α log(r),

which is slightly stronger). A lower bound for the case 1<α< 2 was proved in (53).

All the remaining cases have been settled now by Sodin, Nazarov and Volberg (60).





CHAPTER 8

Advanced Topics: Dynamics and Allocation to

Random Zeros

8.1. Dynamics

8.1.1. Dynamics for the hyperbolic GAF. Recall the hyperbolic GAF

fL(z)=
∞
∑

n=0

an

p
L(L+1) . . . (L+n−1)

p
n!

zn

which is defined for L > 0, and distinguished by the fact that its zero set is invariant

in distribution under Möbius transformations preserving the unit disk

(8.1.1) ϕα,β(z)=
αz+β

βz+α
, z ∈D

with |α|2−|β|2 = 1. In order to understand the point process of zeros of fL it is useful

to think of it as a stationary distribution of a time-homogeneous Markov process.

Define the complex Ornstein-Uhlenbeck process

a(t) := e−t/2W(et), W(t) := B1(t)+ iB2(t)
p

2
,

where B1, B2 are independent standard Brownian motions, and W(t) is complex

Brownian motion scaled so that EW(1)W(1)= 1. The process {a(t)} is then stationary

Markov with the standard complex Gaussian as its stationary distribution. Consider

the process

fL(z, t) =
∞
∑

n=0

an(t)

p
L(L+1) . . . (L+n−1)

p
n!

zn

where an(t) are now i.i.d. Ornstein-Uhlenbeck processes. Then the entire process

fL(z, t) is conformally invariant in the sense that

{

[

ϕ′
α,β(z)

]L/2
fL(ϕα,β(z), t)

}

t>0

has the same distribution as fL(z, t), t> 0. For this, by continuity, it suffices to check

that the covariances agree. Indeed, for s≤ t,

EfL(z,s)fL(w, t) = e(s−t)/2EfL(z,0)fL(w,0)

so the problem is reduced to checking the equality of covariances for a fixed time,

which has already been discussed in Proposition 2.3.4.

It follows automatically that the process {ZfL
(t)} of zeros of fL(·, t) is conformally

invariant. To check that it is a Markov process, recall from Section 5.4.1 that {ZfL
(t)}

determines fL(·, t) up to a multiplicative constant of modulus 1. Since the evolution

of an Ornstein-Uhlenbeck process is radially symmetric it follows that fL(·, t) modulo

such a constant is a Markov process; and hence fL(·, t) is a Markov process as well.

135
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8.1.2. SDE for dynamics of one zero. Finally, we give an SDE description of

the motion of zeros. Let an(t) = e−t/2Wn(et) be i.i.d. Ornstein-Uhlenbeck processes.

Condition on starting at time 1 with a zero at the origin. This implies that W0(1)= 0,

and by the Markov property all the Wi are complex Brownian motions started from

some initial distribution at time 1. For t in a small time interval (1,1+ ǫ) and for z

in the neighborhood of 0, we have

ϕt(z)=W0(t)+W1(t)z+W2(t)z2 +O(z3).

If W1(1)W2(1) 6= 0, then the movement of the root zt of ϕt where z1 = 0 is described

by the movement of the solution of the equation W0(t)+W1(t)zt +W2(t)z2
t = O(z3

t ).

Solving the quadratic gives

zt =
−W1

2W2

(

1−
√

1− 4W0W2

W2
1

)

+O(W3
0 ).

Expanding the square root we get

zt =−W0

W1
−

W2
0

W2

W3
1

+O(W3
0 ).

Since W0(t) is complex, W2
0

(t) is a martingale, so there is no drift term. The noise

term then has coefficient −1/W1, so the movement of the zero at 0 is described by

the SDE (at t= 1) dzt =−W1(t)−1dW0(t) or, rescaling time for the time-homogeneous

version, for any τ with a0(τ)= 0 we get

(8.1.2) dzτ =− 1

a1(τ)
da0(τ).

The absence of drift in (8.1.2) can be understood as follows: in the neighborhood

we are interested in, this solution zt will be an analytic function of the {Wn}, and

therefore has no drift.

For other values of L the same argument gives

dzτ =− 1
p

L a1(τ)
da0(τ).

Of course, it is more informative to describe this movement in terms of the re-

lationship to other zeros, as opposed to the coefficient a1. For this, we consider the

reconstruction formula 5.3.10, which gives

|a1| = |f′
D,L(0)| = cL

∞
∏

k=1

eL/(2k)|zk| a.s.

This means that when there are many other zeros close to a zero, the noise term in

its movement grows and it oscillates wildly. This produces a repulsion effect for zeros

that we have already observed in the point process description. The equation (8.1.2)

does not give a full description of the process as the noise terms for different zeros

are correlated. We give a more complete description of the dynamics in subsection

8.3.2.
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8.2. Allocation

8.2.1. Transportations of measures. Consider again the planar Gaussian

analytic function defined by the random power series

(8.2.1) f(z)=
∑

k≥0

ak

zk

p
k!

where ak are independent standard complex Gaussian random variables (without

loss of generality take L = 1 here). It is distinguished by the invariance of its distri-

bution with respect to the rigid motions of the complex plane as described in Chapter

2. So far we have been concerned with computing various aspects of the distribution

of zeros of random analytic functions. In this chapter we show that it is possible

to tackle certain deep stochastic geometric questions regarding the zeros of f. The

stochastic geometric aspect that will be studied in this chapter is transportation

or matching or allocation..

DEFINITION 8.2.1. Given two measures µ and ν on Λ, a transportation between

µ and ν is a measure ρ on Λ×Λ whose first marginal is µ and the second marginal,

ν. When µ and ν are both counting measures (i.e., atomic measures with atoms of

size 1), and so is ρ, the transportation will be also called a matching. When µ is a

counting measure and ν is the Lebesgue measure (or when µ is a point process and

ν is a fixed deterministic measure), a transportation will be called an allocation.

Informally we think of ρ as taking a mass dµ(x) from the point x and spreading

it over Λ by transporting a mass of ρ(x,dy) to the point y. A matching is just what

it says, a pairing of the support of µ with the support of ν (when both are counting

measures). An allocation may be picturesquely described as a scheme for dividing

up land (Lebesgue measure) among farmers (points of the point process) in a fair

manner (each farmer gets unit area of land).

One use of transportation is to quantify how close the two measures µ and ν are.

Indeed, the reader may be familiar with the fact that one can define a metric d (the

Prohorov-metric) on the space of probability measures of a complete separable metric

space by setting d(µ,ν) equal to the smallest r (infimum, to be precise) for which one

can find a transportation ρ of µ and ν that is supported in an r-neighbourhood of the

diagonal, {(x,x) : x ∈Λ}, of Λ2.

EXERCISE 8.2.2. Prove that d is indeed a metric.

Now consider a translation invariant simple point process X in the plane, for ex-

ample, the zeros of f or a Poisson process with constant intensity. Then the expected

measure E[X (·)] is a constant multiple of the Lebesgue measure on the plane. Now

consider a transportation ρ between X and c·Lebesgue measure (where c is the in-

tensity of X ). Since X is random, we would want ρ to be measurable (w.r.t. the

natural sigma-field on the space of sigma-finite measures on Λ
2) and since X is

translation invariant, it is natural to ask for ρ to be diagonally invariant in the

sense that

(8.2.2) ρ(·+w, ·+w)
d= ρ(·, ·) for any w ∈R

2.

Unlike in exercise 8.2.2 one cannot hope for a transportation that is supported within

a finite distance of the diagonal. For, if X has no points in D(0,r), then for |y| < r
2

,

then ρ(·, y) is necessarily supported in {x : |x− y| > r
2

}. For most point processes of

interest, the event of D(0,r) being a hole will have positive probability, no matter
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how large r is, which implies that ρ cannot be supported within a finite distance of

the diagonal of Λ2. Therefore we shall consider the decay of probability that mass is

carried to a large distance r, as r →∞ as a measure of how localized a transportation

is.

Let us make this notion precise. In this book we shall talk only of allocations, i.e.,

mass transportations from a point process to Lebesgue measure. Moreover, the point

process being translation invariant, we shall always require (8.2.2) to hold. There-

fore for every y, ρ(·, y) has the same law, and the quantity that we are interested in,

is the asymptotic behaviour of P
[

ρ(D(0,r)c ,0)> 0
]

as r →∞.

REMARK 8.2.3. The alert reader might wonder what we would do if we were

dealing with matching or transportation between two independent copies X1,X2 of

the point process. For, in that case we should consider P
[

ρ(D(y,r)c , y) > 0
]

for a

typical point y ∈ X2 and it is not obvious what that means. The notion of a typical

point of a stationary point process can be given precise meaning, in terms of what is

known as the palm measure of the point process (17). To get the palm version of

X , fix r > 0 and pick a point y uniformly at random from X ∩D(0,r) and translate

the entire process by −y so that the point at location y is brought to the origin. This

defines a point process Xr that has a point at 0, almost surely (If X ∩D(0,r) = ;,

define Xr = {0}). As r →∞, Xr converges in distribution to a point process X̃ that

also has a point at the origin. This is the palm version of X . When the matching

scheme is applied to X̃ , the distance from 0 to its match can be justly interpreted

as the typical distance to which a point of X2 is matched in the original setting. By

limiting ourselves to allocations, we shall avoid the (minor) technicalities involved

in dealing with palm measures.

In the next section, we describe a beautiful explicit allocation scheme due to

Sodin and Tsirelson for the zeros of f. We also give a brief sketch of the idea behind

the proof of Nazarov, Sodin and Volberg (61) that the diameters of basins (allocated

to a typical zero of f) in this allocation have better than exponential tails.

8.2.2. The gravitational allocation scheme. Let f be an entire function with

no multiple zeros. Set u(z) = log | f (z)|− 1
2
|z|2. Consider flow lines along the integral

curves of the vector field −∇u(z) (well defined off of the zero set of f ). In other words,

for each z ∈C\ f −1{0}, consider the ODE

dZ(t)

dt
=−∇u(Z(t))

with the initial condition Z(0)= z. We shall call these paths the “gradient" curves of

u. Visualizing the potential as a height function, we may interpret these flow lines

as the trajectories of particles without inertia in a gravitational field. Recall that
1

2π∆u(z) = dn f (z)− 1
πdm(z) in the distributional sense (see the explanation following

(2.4.3)). Thus, outside of the zero set of f , the potential u is super harmonic, and

therefore, u has no local minima other than the zeros of f . Therefore for a “typical”

initial point z, the gradient curves will flow down to a zero of f (This cannot be true

for all starting points, for instance if z is a saddle point of ∇u). For each a ∈ f −1{0},

define its basin

B(a)= {z ∈C : ∇u(z) 6= 0, and the gradient curve passing through z terminates at a} .

Clearly, each basin B(a) is a connected open set, and B(a)∩B(a′) =; if a and a′ are

two different zeros of f . The remarkable observation of Sodin and Tsirelson (84) is
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that, if a basin B(a) is bounded and has a suitably nice boundary, then B(a) has area

exactly equal to π!

A heuristic argument: We give a heuristic argument that purports to show that

the above scheme is in fact an allocation.

Fix ǫ> 0 so small that D(a,ǫ)⊂ B(a) and set Bǫ = B(a)\ D(a,ǫ). Then ∆u=−2 on

Bǫ and by Green’s theorem we find

−2|Bǫ| =
∫

Bǫ

∆u(z)dm(z)

=
∫

∂Bǫ

∂u

∂n
(z) |dz|

= −
∫

∂D(a,ǫ)

∂u

∂n
(z) |dz|,

where in the last equality we used the intuitively obvious fact that ∂u
∂n

= 0 on ∂B(a),

since gradient lines must be flowing tangentially on the boundary of two basins. The

negative sign is there because the outward facing normal on ∂D(a,ǫ) changes direc-

tion depending on whether we regard it as the boundary of D(a,ǫ) or the boundary

of B(a)\ D(a,ǫ). This last integral can be written as

−
2π
∫

0

Re

{(

f ′(a+ǫeiθ)

f (a+ǫeiθ)
−

1

2
(a+ǫe−iθ)

)

eiθ

}

ǫdθ = −2π+O(ǫ),

because by Cauchy’s theorem (the curve ǫeiθ encloses a, a zero of f with unit multi-

plicity),

1

2π

2π
∫

0

f ′(a+ǫeiθ)

f (a+ǫeiθ)
ǫdθ = 1.

Thus by letting ǫ→ 0, we deduce that |B(a)| =π as we wanted to show.

The obvious gaps in this "back-of-the-envelope" calculation are that we have

assumed a priori that the basins are bounded and have piecewise smooth boundaries.

See Figure 1 for a picture of the potential and Figure 2 for a patch of the allocation

defined by the gradient lines of the potential in the case when f is a sample of the

planar Gaussian analytic function f.

REMARK 8.2.4. Although this scheme gives a very explicit allocation of Lebesgue

measure to the set of zeros, superficially it may seem as though the analytic function

is essential to make it work. That is not quite correct, because at least when we have

a finite set of points, it is possible to express everything in terms of the points of the

point process alone, without recourse to the analytic function whose zeros they are.

Given a finite collection of points {z1, . . . , zn} in the complex plane, one may define

f (z)=
n
∏

k=1
(z− zk) and define u(z) exactly as before. In this case

(8.2.3) −∇u(z) =−
n
∑

k=1

1

z− zk

+ z,

so at the point z each zero zk exerts a “gravitational force” of magnitude 1
|z−zk | to-

wards zk. It is worth recalling here that the correct analogue of the gravitational
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FIGURE 1. The potential function u(z) = log |f(z)|− 1
2
|z|2.

potential (equivalently, the Green’s function for the Laplacian) in two dimensions is

log |z−w| while in R
d for d ≥ 3, it is ‖x− y‖−d+2. Henceforth we shall refer to this

scheme as gravitational allocation. Figure 2 shows a piece of the allocation when

applied to a finite number of points chosen uniformly from a square (a finite approx-

imation to Poisson process on the plane), and visibly, the basins are more elongated

compared to the case of the zeros. In R
d with d ≥ 3, the idea can be made to work for

the Poisson process also. See the notes at the end of this chapter.

Here is a cute fact about the gravitational allocation scheme that has not found

any application yet. This exercise is not essential to anything that comes later.

EXERCISE 8.2.5. The first part of Theorem 8.2.7 asserts that for the planar

Gaussian analytic function f, the allocation scheme described above does partition

the whole plane into basins of equal area π. Assuming this, show that the time to

flow from 0 into a zero of f has exponential distribution with mean 1
2

.

(Hint: Consider the time-derivative of the Jacobian of the reversed dynamics.)

In the following exercise, make appropriate assumptions that the relevant an-

gles are well-defined, that the boundaries are smooth etc.

EXERCISE 8.2.6. Let f and g be two entire functions. Define the potential v(z)=
log | f (z)|− log |g(z)| and consider flow lines along the vector field ∇v. Since v is +∞
(−∞) at the zeros of g (respectively f ), typical flow lines start at a zero of f and end
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FIGURE 2. Gravitational allocation for a Poisson process (left) and

for Zf.

at a zero of g.

Consider two gradient lines γ1 and γ2 that start at a ∈ f −1{0} and end at b ∈ g−1{0}.

Let θa be the angle between these two curves at a and θb the angle at b. Let Ω be

the region bounded by this two curves and let Ωǫ =Ω\[B(a,ǫ)∪B(b,ǫ)]. Assume that

θa and θb exist and also that Ω contains no other zeros of f or g. Then apply Green’s

theorem to
∫

Ωǫ

∆v and let ǫ → 0 to show that θa = θb. (For a picture When f and g

are independent samples of the planar Gaussian analytic function, see Figure 3).

Having proved this, one can define the mass transportation between the zeros of f

and g by setting

ρ(a,b) = 1

2π
{Angle of the sector of directions at a

along which the flow lines end up at b}.

8.2.3. Bounding the diameters of cells in the gravitational allocation.

The calculations in the previous section were somewhat formal, and in this section

we state precise results on the gravitational allocation when applied to the planar

Gaussian analytic function. The result that makes all the effort worthwhile is this.

THEOREM 8.2.7 (Nazarov, Sodin, Volberg). Apply the gravitational allocation

scheme to f, the planar Gaussian analytic function.

(1) Almost surely, each basin is bounded by finitely many smooth gradient curves

(and, thereby, has area π), and C\
⋃

a∈Z f
B(a) has zero Lebesgue measure

(more, precisely, it is a union of countably many smooth boundary curves).

(2) For any point z ∈C, the probability of the event that the diameter of the basin

containing z is greater than R is between ce−CR(log R)3/2
and Ce−cR

p
logR .

The proof of this theorem is quite intricate and is beyond the scope of this book.

We shall merely whet the appetite of the reader by sketching an outline of the central
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0.15 0.7
−1.2

−0.65

FIGURE 3. Gradient lines of v(z)= log |f(z)|− log |g(z)|.

part of the proof of Thorem 8.2.7 and direct those hungry for more to the original

paper (61).

The diameter of a basin in the allocation can be large only if there is a long

gradient line. Thus the following auxiliary result is of great relevance.

THEOREM 8.2.8 (Absence of long gradient curves). Let Q(w,s) be the square cen-

tered at w with side length s and let ∂Q(w,s) be its boundary. Then there are constants

c,C such that for any R ≥ 1, the probability that there exists a gradient curve joining

∂Q(0,R) with ∂Q(0,2R) does not exceed Ce−cR
p

log R .

8.2.4. Proof sketch: absence of long gradient curves. First, notice that the

potential u is shift invariant. Heuristically, we pretend that u is almost bounded.

Thus, if a long gradient curve Γ exists, |∇u| must be very small on Γ (about 1
R

).

The second idea is to discretise the problem. Since it is hard to work with arbitrary

curves (they are infinitely many), we want to replace each curve by a connected set

of small squares covering it. Since the second derivatives of u are “morally bounded"

and the smallness size of ∇u we need is 1
R

, it is natural to divide the square Q(0,2R)

into squares of size 1
R

. Then, if |∇u| < 1
R

at one point of the square Q(w, 1
R

), it is less

than C
R

in the entire square, and, in particular at its center w. We shall call such a
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square black. Now note that, since u is shift invariant and ∇u(z)=
(

f′(z)
f(z)

)

−z, we have

P
{

|∇u(w)| < C
R

}

=P
{

|∇u(0)| < C
R

}

=P
{∣

∣

∣

a1

a0

∣

∣

∣< C
R

}

≤ CR−2 .

This means that the expected number of black squares in the entire square Q(0,2R)

is bounded by CR4R−2 = CR2, which is barely enough to make a connected chain

from ∂Q(0,R) to ∂Q(0,2R). Moreover, if we take any smaller square Q(w,2r) with

side length r, the expected number of black squares in it is about (rR)2R−2 = r2,

which is much less than the number rR of squares needed to get a chain joining

∂Q(w,r) to ∂Q(w,2r). This also gives an estimate r/R for the probability of existence

of at least rR black squares in Q(w,r) (just use the Chebyshev inequality). Hence,

the probability of existence of a noticeable (i.e., comparable in length to the size of

the square) piece of a black chain in Q(w,2r) also does not exceed r/R.

The next observation is that u(w′) and u(w′′) are almost independent if |w′−w′′|
is large. More precisely, we have

Ef(w′)f(w′′)=
∑

k≥0

(w′w′′)k

k!
= ew′w′′

.

This means that f(w′)e−
|w′ |2

2 and f(w′′)e−
|w′′|2

2 are standard complex Gaussian ran-

dom variables and the absolute value of their covariance equals e−
|w′−w′′ |2

2 . Recall

that two standard Gaussian random variables with covariance σ can be represented

as two independent Gaussian random variables perturbed by something of size σ.

This morally means that ∇u(w′) and ∇u(w′′) are independent up to an error of size

e−
|w′−w′′ |2

2 . Since we want to estimate the probability that they are less than 1
R

, we

can think of them as independent if e−
|w′−w′′ |2

2 < 1
R

, i.e., if |w′−w′′| > A
√

logR where

A is a large constant.

Thus, our situation can be approximately described by the following toy model.

We have a big square Q(0,2R) partitioned into subsquares with side length 1
R

. Each

small square is black with probability R−2 and the events that the small squares are

black are independent if the distance between the centers of the squares is at least
√

logR. Our aim is to estimate the probability of the event that there exists a chain

of black squares connecting ∂Q(0,R) and ∂Q(0,2R).

To solve this toy model problem, it is natural to switch to square blocks of

squares of size r =
√

logR because then, roughly speaking, any two blocks are in-

dependent. Any chain of black squares with side length 1
R

determines a chain of

blocks of size r in which all blocks contain a noticeable piece of the chain of black

squares. The probability that any particular chain of L blocks has this property is

about
(

r
R

)L < e−cL log R (due to independence). On the other hand, it is easy to esti-

mate the number of connected chains of L blocks with side length r: there are (R/r)2

blocks where we can start our chain and during each step we have a constant num-

ber of blocks to move to. This yields the estimate (R/r)2eCL. Hence, the probability

that there exists a chain of L blocks of side length r and each block, in turn, con-

tains a noticeable piece of the chain of black squares of side length 1/R, is bounded

by (R/r)2eL(C−c logR). Since our chains should connect ∂Q(0,R) with ∂Q(0,2R), we

need only the values L ≥ R/r. For such L, we have (R/r)2eL(C−c logR) ≤ e−cL log R . We

conclude that the probability that there exists a chain of black squares of side length
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1/R connecting ∂Q(0,R) and ∂Q(0,2R) is bounded by

∑

L≥ Rp
logR

e−cL log R ≤ exp

{

−c
R

√

logR
logR

}

= e−cR
p

logR .

There are several technical difficulties in the road to an honest proof. The first one

is that it is hard to work with the random potential directly and everything has to

be formulated in terms of f. The second one is that the potential u is not exactly

bounded: it can be both very large positive and very large negative. Large positive

values are easy to control but large negative values are harder and we prefer to

include the possibility that u is large negative into the definition of black squares.

The last difficulty is that independence of the values of f at distant points is not exact

but only approximate and some work is needed to justify the product formula for the

probability. All this makes the actual proof much more complicated and lengthy than

the outline we just sketched.

8.3. Notes

8.3.1. Notes on Dynamics.

8.3.2. General formulation of dynamics. In this section we create a dynamical ver-

sion of a GAF and hence of its zero set. We describe the motion of the zeros by a system of

SDEs.

First consider a function ft(z), where t> 0 and z ∈Ω, with the following properties.

• For each t, the function z → ft(z) is a (random) analytic function.

• For each z ∈Ω, the function t→ ft(z) is a continuous semi-martingale.

Let {ζk(t)}k be the set of zeros of ft. More precisely, index the zeros in an arbitrary way at t= 0.

Then as t varies the function ft varies continuously and hence the zeros also trace continuous

curves in Ω. There are two potential problems. Firstly, it may happen that the zeros collide

and separate. More seriously zeros may escape to the boundary.

For now we assume that the above problems do not arise and work formally. Later in

cases of interest to us, we shall see that these problems indeed do not arise.

Consider a zero curve ζ(t), and suppose that at time 0 we have ζ(0) = w. By our as-

sumption, the order to which f0 vanishes at w is 1. Hence by Rouche’s theorem, we can fix a

neighbourhood D(w;r)of w and ǫ> 0 (these depend on the sample path and hence are random),

such that for any t ∈ (0,ǫ), ζ(t) is the unique zero of ft in D(w;r). Fix such a t and expand ft

around w. We obtain

(8.3.1) ft(z)= ft(w)+ f′t(w)(z−w)+
f′′t (w)

2
(z−w)2 +O((z−w)3).

Therefore, one root of the equation

0= ft(w)+ f′t(w)(z−w)+
f′′t (w)

2
(z−w)2 +O((z−w)3)

(the one closer to w) differs from ζ(t) by O(ft(w)3). The quadratic above can be solved explicitly

and we get

ζ(t) = w−
f′t(w)

f′′t (w)



1−

√

√

√

√1−
2ft(w)f′′t (w)

f′t(w)2



+O(ft(w)3)

= w− ft(w)

f′t(w)
+

ft(w)2f′′t (w)

2f′t(w)3
+O(ft(w)3).
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Recall that ft(w)= 0 to get

dζ(0)=−
dft(w)

f′t(w)
.

(Here ’d’ denotes the Ito derivative.) The same calculations can be made for any t and all the

zeros ζk(t) and we end up with

(8.3.2) dζk(t)=−
dft(ζk(t))

f′t(ζk(t))
for k ≥ 1.

In some cases the zeros of ft determine ft almost surely. Then obviously, the zero set will be a

Markov process itself. In such cases the right hand side of the system of equations(8.3.2) can

be expressed in terms of {ζ j(t)} j (the equation for ζk(t) will involve all the other ζ js, of course)

and we have the equations for the diffusion of the zeros (possibly infinite dimensional).

Returning to Gaussian analytic functions, suppose we are given a GAF of the form f(z)=
∑

n anψn(z) where an are i.i.d. complex normals and ψn are analytic functions. We now make

a dynamical version of f as follows. Let an(t) be i.i.d. stationary complex Ornstein-Uhlenbeck

processes defined as an(t) = e−t/2Wn(et), where Wn are i.i.d. standard complex Brownian mo-

tions. Here ‘standard’ means that E
[

|Wn(t)|2
]

= 1. It is well known and easy to see that they

satisfy the SDEs

(8.3.3) dan(t)=−1

2
an(t)dt+dWn(t),

where Wn are i.i.d. standard complex Brownian motions.

Then set ft(z) =∑

n an(t)zn. Then the zero set of ft is isometry-invariant with the distri-

bution of the zero set of f. In this case, we can write equations (8.3.2) as

dζk(t) = −
dft(ζk(t))

f′t(ζk(t))

= −
−1

2

(
∑

n an(t)ψn(ζk(t))
)

dt+∑

nψn(ζk(t))dWn(t)

f′t(ζk(t))

= −
∑

nψn(ζk(t))dWn(t)

f′t(ζk(t))
,

for every k. Here we used equations (8.3.3) to derive the second equality, and the fact that

ft(ζk(t)) = 0 to derive the third equality. In particular, we compute the covariances of the zeros

to be

d〈ζk,ζl〉 (t) = 1

f′t(ζk(t))f
′
t(ζl (t))

∑

n
ψn(ζk(t))ψn(ζl (t))

=
K(ζk(t),ζl (t))

f′t(ζk(t))f
′
t(ζl (t))

,

where K is the covariance kernel of f.

8.3.3. Notes on Allocation.

• It is natural to ask if there are other methods for allocating a discrete point set Ξ

in the plane to regions of equal area. One such method, introduced by Hoffman,

Holroyd and Peres in (33), produces matchings which are stable in the sense of the

Gale-Shapley stable marriage problem (28). Intuitively, points in C prefer to be

matched with points of Ξ that are close to them in Euclidean distance and con-

versely, points of Ξ prefer regions of the plane close to themselves. An allocation is

said to be unstable if there exist points ξ ∈Ξ and z ∈C that are not allocated to each

other but both prefer each other to their current allocations.

It is easy to see that a stable allocation of Ξ to C will not in general allocate

the points of Ξ to sets of equal area. To obtain an equal area allocation, one can

impose the additional condition that each point in Ξ has appetite α, by which we
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FIGURE 4. The stable marriage allocation for a Poisson process

(left) and the zero set of the planar GAF.

mean that the Lebesgue measure of the set matched to each point ξ ∈ Ξ cannot

exceed α. Hoffman, Holroyd and Peres, show that stable allocations with appetite

α exist for any discrete point set Ξ. Moreover, they show that if the point process Ξ

has intensity λ ∈ (0,∞) and is ergodic under translations, then with probability one

there exists a Lebesgue-a.e. unique stable allocation with appetite 1
λ

under which

each point in Ξ is allocated a set of Lebesgue measure 1
λ

, and the set of unallocated

points in C has measure zero. Conceptually, this allocation is obtained by allowing

each point ξ ∈ Ξ to expand by growing a ball at a constant rate centered at ξ, and

“capturing" all points in C that it reaches first. Each point in Ξ “grows" according to

this procedure until it has captured area equal to 1
λ at which point it stops growing.

This description, of course, is non-rigorous and the interested reader is encouraged

to consult (33) for precise statements and further details. Pictures of the resulting

allocation obtained for the Poisson process and Zf are given in Figure 4 (notice that

the region allocated to a point ξ ∈Ξ need not be connected).

• The idea of gravitational allocation can be extended to point processes other than

zeros of analytic functions. See (15) where the authors prove the existence and prop-

erties of gravitational allocation for constant intensity Poisson processes in three

and higher dimensions.

8.4. Hints and solutions

Exercise 8.2.5 Consider the reverse dynamics dZ(t)
dt

= ∇u(Z(t)). The forward-t map Tt,

taking Z(0) to Z(t), is injective on C\{f−1{0}}. Moreover, for z 6∈ f−1{0}

d

dt
DTt(z)= D

(

dTt(z)

dt

)

=
((

∂2u(Tt z)

∂xi∂x j

))

i, j≤2

.

From this we get an expression for the derivative of the Jacobian determinant (this is called

Liouville’s theorem)

d

dt
det(DTt(z))=Trace

((

∂2u(Tt z)

∂xi∂x j

))

i, j≤2

=∆u(Tt z)=−2.
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Let a be a zero of f and let B′ = B(a) \ {a}. Since T0 is the identity map, from the derivative

of the Jacobian determinant of Tt, we get
d|Tt(B

′)|
dt

= −2|Tt(B
′)|, which of course implies that

|Tt(B
′)| = e−2t. So far the argument was completely deterministic. But now observe that

Tt(B
′) is precisely the set of points in the basin of a which in the forward dynamics had not

hit a by time t. By translation invariance, this shows that

P[time to fall into f−1{0} starting from 0> t]= e−2t.

Exercise 8.2.6 ∆u = 0 on Ωǫ. Further, the normal derivative ∂u
∂n

w.r.t. Ω is zero on γ1

and γ2. Hence by Green’s theorem,
∫

Ω∩∂B(a,ǫ)

∂u

∂n
=

∫

Ω∩∂B(b,ǫ)

∂u

∂n
.

Compute the normal derivatives of the potential by Taylor expansion of f,g at a and b to

leading order in ǫ to obtain θa = θb.
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