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Abstract

The fundamental elements of a new theory of regular functions of a quaternionic variable have

been recently developed, following an idea of Cullen. In this paper we present a detailed study of

the structure of the zero set of Cullen-regular functions. We prove that the zero sets of the functions

under investigation consist of isolated points or isolated 2-spheres, in the 4-dimensional real space of

quaternions. Moreover, the zeros of a regular function can be factored by means of a non-standard

product. The Fundamental Theorem of Algebra for quaternions, and the approach here adopted

lead, in particular, to a deeper insight of the geometric and algebraic properties of the zero sets of

polynomials with quaternionic coefficients.

1 Introduction

Let H denote the skew field of real quaternions. Its elements are of the form q = x0 + ix1 + jx2 + kx3

where the xl are real, and i, j, k, are imaginary units (i.e. their square equals −1) such that ij = −ji = k,
jk = −kj = i, and ki = −ik = j. The richness of the theory of holomorphic functions of one complex
variable, along with motivations from physics, aroused a natural interest in a theory of quaternion valued
functions of a quaternionic variable. In fact, in the last century, several interesting theories have been
introduced. The best known is the one due to Fueter, [3, 4, 5], who defined the differential operator

∂

∂q
=

1

4
(

∂

∂x0

+ i
∂

∂x1

+ j
∂

∂x2

+ k
∂

∂x3

),

now known as the Cauchy-Fueter operator, and defined the space of regular functions as the space of
solutions of the equation associated to this operator. All regular functions are harmonic and Fueter
proved that this definition led to close analogues of Cauchy’s theorem, Cauchy’s integral formula and
the Laurent expansion. This theory is extremely successful and it is now very well developed, in many
different directions. We refer the reader to [14] for the basic features of these functions. Recent work
in this subject includes [9, 1], and references therein. For what concerns the zero set of a Fueter-regular
function, we remark here that it does not necessarily consist of isolated points, and that its real dimension
can be 0, 1, 2 (or 4).

Quite recently, G. Gentili and D. C. Struppa offered an alternative definition and theory of regularity
for functions of a quaternionic variable, inspired by an idea of Cullen [2]. Cullen-regular functions are
not harmonic in general. This new theory allows the study of natural power series (and polynomials)
with quaternionic coefficients, which is excluded when the Fueter approach is followed. A description of
this theory can be found in [6, 7]. In the same papers a study of the first properties of the zero set of
Cullen-regular functions is performed.

∗Partially supported by GNSAGA of the INdAM and by PRIN “Proprietà geometriche delle varietà reali e complesse”.

1



In order to present the definition of Cullen-regularity, we will start by denoting with S the 2-
dimensional sphere of imaginary units of H, i.e. S = {q ∈ H : q2 = −1}. The definition given by
Cullen can then be rephrased as follows.

Definition 1.1. Let Ω be a domain in H. A real differentiable function f : Ω → H is said to be C−regular
if, for every I ∈ S, its restriction fI to the complex line LI = R + RI passing through the origin and
containing 1 and I is holomorphic on Ω ∩ LI, i.e. if for every I in S,

∂If(x+ Iy) :=
1

2
(
∂

∂x
+ I

∂

∂y
)fI(x+ yI) = 0,

on Ω ∩ LI .

Throughout the paper, since no confusion can arise, we will refer to C−regular functions as regular
functions tout court. Since for all n ∈ N and all I ∈ S we have

1

2
(
∂

∂x
+ I

∂

∂y
)(x + yI)n = 0

then, by definition, the monomial M(q) = qn is regular. Since addition and right multiplication by a
constant preserve regularity, all natural polynomials of the form P (q) = qmam + . . . + qa1 + a0, with
m ∈ N and aj ∈ H (j = 0, . . . ,m) are regular. As observed in [6, 7], for each quaternionic power series

f(q) =

∞
∑

n=0

qnan

there exists a ball B(0, R) = {q ∈ H : |q| < R} such that f converges absolutely and uniformly on the
compact subsets of B(0, R) (where its sum defines a regular function) and diverges in H \B(0, R).

For regular functions, a notion of derivative can be introduced.

Definition 1.2. Let Ω be a domain in H, and let f : Ω → H be a regular function. The (Cullen)
derivative of f , ∂f

∂q
, is defined as follows:

∂f

∂q
(q) =

{

∂If(x+ yI) := 1

2
( ∂
∂x

− I ∂
∂y

)fI(x+ yI) if q = x+ yI with y 6= 0
∂f
∂x

(x) if q = x is real

As explained in [6, 7], this definition of derivative is well posed because it only applies to regular
functions. It turns out that regular functions defined on domains containing the origin of H can be
expanded in power series. Namely, if B(0, R) is the open ball of H centered at 0, with radius R > 0, then
we have the following result:

Theorem 1.3. If f : B(0, R) → H is regular, then it has a series expansion of the form

f(q) =

∞
∑

n=0

qn
1

n!

∂nf

∂qn
(0)

converging on B(0, R). In particular f is C∞ on B(0, R).

Roughly speaking, there is a correspondence between quaternionic power series centered at 0 and
regular functions on domains containing the origin of H. In [6, 7] the first fundamental results of the
theory of (Cullen) regular functions are proved: the identity principle, the maximum modulus principle,
the Cauchy representation formula, the Liouville theorem and the Morera theorem. A version of the
Schwarz lemma opens possible advances in the study of the geometry of the unit ball of H, of the four
dimensional analog of the Siegel right-half plane (biregular to the unit ball via the analogous of a Cayley),
and their transformations. Finally, we recall the statement of a first (purely algebraic) property of the
zeros of regular functions which is proven in [6, 7]:

Theorem 1.4. Let f(q) =
∑+∞

n=0
qnan be a quaternionic power series converging in B(0, R) and let

x, y ∈ R be such that y 6= 0, x2 + y2 < R2. If there exist two distinct imaginary units I, J ∈ S such that
f(x+ yI) = 0 = f(x+ yJ) then f vanishes on the whole 2-sphere x+ yS = {x+ yL : L ∈ S}.
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The same result was previously proven for polynomials in [12]. Theorem 1.4 enlightens a symmetry
property of the zeros of regular functions, but it does not predict the topological features of the zero set
of such functions.

We begin this paper by proving the following topological property of the zero set of regular functions,
which urges a comparison with the case of holomorphic functions of one complex variable. Namely we
prove that

Theorem 2.4 (Structure of the Zero Set). Let f be a regular function on an open ball B(0, R) centered
in the origin of H. If f is not identically zero then its zero set consists of isolated points or isolated
2-spheres of the form S = x+ yS, for x, y ∈ R, y 6= 0.

The above result is proven for the polynomial case in [12], by means of simpler techniques. It naturally
leads to the formulation of an identity principle which generalizes the one stated in [6, 7]:

Theorem 2.5 (Strong Identity Principle). Let f, g : B(0, R) → H be regular functions. If there exist
x, y ∈ R such that S = x + yS ⊆ B(0, R) and a subset T ⊆ B(0, R)\S having an accumulation point in
S such that f ≡ g on T , then f ≡ g on the whole domain of definition B(0, R).

Remark that S = x+ yS is a 2-sphere if y 6= 0, a real singleton {x} if y = 0. The proof of theorem 2.4 is
much harder than the proof of the homologous result in complex analysis, and has a different structure. In
fact the factorization property of the zeros of holomorphic functions does not extend to regular functions,
due to the lack of commutativity. Nevertheless, the techniques employed to prove theorem 2.4 suggest
the use of the following multiplication between regular power series:

Definition 3.1. Let f(q) =
∑+∞

n=0
qnan and g(q) =

∑+∞

n=0
qnbn be given quaternionic power series with

radii of convergence greater than R. We define the regular product of f and g as the series f ∗ g(q) =
∑+∞

n=0
qncn, where cn =

∑n

k=0
akbn−k for all n.

We point out that the sequence of the coefficients of the regular product f ∗ g is the discrete convolution
of the sequences of the coefficients of f and g. In the polynomial case, the regular multiplication concides
with the classical multiplication of the polynomial ring over the quaternions, H[X ]. In terms of the
above defined product we obtain a factorization result for the zeros of regular functions (theorem 3.2)
and completely describe the zero set of a regular product in terms of the zero sets of the two factors:

Theorem 3.3 (Zeros of a regular product). Let f, g be given quaternionic power series with radii greater
than R and let p ∈ B(0, R). Then f ∗g(p) = 0 if and only if f(p) = 0 or f(p) 6= 0 and g(f(p)−1pf(p)) = 0.

This extends to quaternionic power series the theory presented in [10] for polynomials. In particular,
given the power series expansion of any regular function f , we construct the symmetrization f s of f
which has real coefficients and vanishes exactly on the 2-spheres (or singletons) x + yS where f has a
zero.

When applied to polynomials, the above results and the fundamental theorem of algebra for quater-
nions (see section 5 for reference) lead to a factorization theorem which states that

Theorem 5.2 (Factorization). Let a0, ..., an ∈ H, an 6= 0 and f(q) = a0 + qa1 + ... + qnan. Then there
exist points p1, ..., pn ∈ H such that f(q) = (q − p1) ∗ ... ∗ (q − pn)c, where c = an.

and to the complete identification of the zeros of polynomials in terms of their factorization. These last
results have already been proven in [13] from an algebraic point of view. Our new approach enriches
them with a technique to localize the zeros of polynomials.

Finally, the most natural definition of multiplicity leads to the result that the degree of a polynomial
might exceed the sum of the multiplicities of its zeros (Proposition 5.6).

Aknowledgements. We thank the attentive, anonymous referee for the precious comments and re-
marks. In particular, we will follow the suggestion to compare Fueter-regularity and Cullen-regularity.
This will be the object of a subsequent paper.
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2 Structure of the zero set of regular functions

One of the basic properties of holomorphic functions of a complex variable is the discreteness of their zero
sets (except for the case where the function vanishes identically). Given a regular quaternionic function
f on a ball B(0, R), all of its restrictions fI to complex lines LI are holomorphic and hence either have
a discrete zero set or vanish identically. By the identity principle proven in [6, 7], if fI ≡ 0 for some
I ∈ S then f ≡ 0. Therefore, the zeros of a non-trivial f can not accumulate on a single complex line
LI . However, this does not prevent the zeros of f from accumulating tout court: as we have seen in
theorem 1.4, a regular function may well have a whole 2-sphere x+ yS of zeros. The result we announced
in the introduction as theorem 2.4 tells us that this is the only way the zeros of a regular function can
accumulate: every zero of f is either isolated or part of an isolated 2-sphere of zeros.

In order to prove the desired result, we need to take some preliminary steps. First of all, we describe a
necessary and sufficient condition for a quaternionic regular function f to have a zero at point p, in terms
of the coefficients of the power series expansion of f . This result is a non-commutative generalization of
a well-known property of holomorphic functions of a complex variable: a holomorphic function f has a
zero at point p if and only if there exists a holomorphic function g such that f(z) = (z − p)g(z) for all z
in a neighbourhood of p.

Theorem 2.1. Let
∑+∞

n=0
qnan be a given quaternionic power series with radius of convergence R and

let p ∈ B(0, R). Then
∑+∞

n=0
pnan = 0 if and only if there exists a quaternionic power series

∑+∞

n=0
qncn

with radius of convergence R such that a0 = −pc0 and an = cn−1 − pcn for all n > 0.

Proof. Let I ∈ S be an imaginary unit such that p ∈ LI and let J ∈ S be such that I ⊥ J . There exist
sequences {αn}

+∞

n=0, {βn}
+∞

n=0 in LI such that an = αn + βnJ for all n. The equation

0 =

+∞
∑

n=0

pnan =

+∞
∑

n=0

pnαn +

+∞
∑

n=0

pnβnJ

is equivalent to 0 =
∑+∞

n=0
pnαn =

∑+∞

n=0
pnβn. By identifying LI with the complex plane C, we can

consider the two complex power series
∑+∞

n=0
znαn,

∑+∞

n=0
znβn, whose radii of convergence R1, R2 are

such that min(R1, R2) = R. These two series have a zero at p if and only if there exist complex power
series

∑+∞

n=0
znγn,

∑+∞

n=0
znδn with radii R1, R2 such that

+∞
∑

n=0

znαn = (z − p)
+∞
∑

n=0

znγn = −pγ0 +
+∞
∑

n=1

zn(γn−1 − pγn)

+∞
∑

n=0

znβn = (z − p)
+∞
∑

n=0

znδn = −pδ0 +
+∞
∑

n=1

zn(δn−1 − pδn)

i.e. such that α0 = −pγ0, β0 = −pδ0 and αn = γn−1 − pγn, βn = δn−1 − pδn for all n > 0. Recalling that
an = αn + βnJ and setting cn = γn + δnJ for all n, the latter is equivalent to

a0 = −pc0, an = cn−1 − pcn for all n > 0.

It is now sufficient to remark that the radius of convergence of
∑+∞

n=0
qncn equals min(R1, R2) = R.

The previous result allows our second step towards the proof of theorem 2.4. For any quaternionic
power series f , we are able to construct a new quaternionic power series fs in such a way that whenever
f(x+ yI) = 0 for some I ∈ S we can conclude f s(x+ yL) = 0 for all L ∈ S.

Definition 2.2. Let f(q) =
∑+∞

n=0
qnan be a given quaternionic power series with radius of convergence

R. We define the symmetrization of f as the series f s(q) =
∑+∞

n=0
qnrn, where rn =

∑n
k=0

akān−k for
all n.

It is easy to prove that f s also has radius of convergence R. We also notice that coefficients rn =
∑n

k=0
akān−k all belong to R. We now prove the above mentioned relation between the zeros of a series

and the zeros of its symmetrization.
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Proposition 2.3. Let f(q) =
∑+∞

n=0
qnan be a given quaternionic power series with radius of convergence

R. If x, y ∈ R, I ∈ S and f(x+ yI) = 0 then f s(x+ yL) = 0 for all L ∈ S.

Proof. Let p = x + yI be a zero of f . By theorem 2.1, this implies the existence of a series g(q) =
∑+∞

n=0
qncn with radius R such that a0 = −pc0 and

an = cn−1 − pcn

for all n > 0. If we set rn =
∑n

k=0
akān−k and sn =

∑n
k=0

ck c̄n−k for all n, the above equality implies by
direct computation r0 = |p|2s0, r1 = −2xs0 + |p|2s1 and

rn = sn−2 − 2xsn−1 + |p|2sn

for all n > 1. From this we get

f s(q) =

+∞
∑

n=0

qnrn =

+∞
∑

n=0

qn+2sn − 2x

+∞
∑

n=0

qn+1sn + |p|2
+∞
∑

n=0

qnsn =

=
(

q2 − 2xq + |p|2
)

gs(q) =
[

(q − x)2 + y2
]

gs(q),

which gives immediately f s(x+ yL) = 0 for all L ∈ S.

We are now ready to prove theorem 2.4. Symmetrization allows us indeed to transform any zero into a
“spherical” zero and these zeros can not accumulate: if they did, zeros would accumulate in each complex
line LI and this is impossible, as we discussed at the beginning of this section. We state our result before
giving the detailed proof.

Theorem 2.4 (Structure of the Zero Set). Let f : B(0, R) → H be a regular function and suppose f does
not vanish identically. Then the zero set of f consists of isolated points or isolated 2-spheres of the form
S = x+ yS, for x, y ∈ R.

Proof. Let f : B(0, R) → H be any regular function and let Zf be its zero set. Consider any 2-sphere (or
singleton) S = x + yS ⊆ B(0, R) containing zeros of f . We already know, by theorem 1.4, that either f
has exactly one zero in S or f vanishes at all points of S. We only have to prove that if Zf\S has an
accumulation point in S then f ≡ 0.

Let p = x + yI ∈ S be such a point: there exists a sequence of zeros of f not belonging to S,
{pn}

+∞

n=0 ⊆ Zf\S, which converges to p. Consider the power series expansion f(q) =
∑+∞

n=0
qnan and its

symmetrization f s(q) =
∑+∞

n=0
qnrn: for any given n, the fact that f vanishes at pn = xn + ynIn implies

f s(xn + ynJ) = 0 for all J ∈ S. Now identify LI with the complex plane C: the complex series (with real
coefficients)

∑+∞

n=0
znrn is zero at all points xn + ynI, which accumulate at p. By a well-known property

of complex power series, coefficients rn must all vanish. It can be easily proven by induction that the
vanishing of rn =

∑n

k=0
akān−k for all n implies the vanishing of all coefficients an. This means f ≡ 0,

as wanted.

As a consequence of the previous result, we can strengthen the identity principle proven in [6, 7].

Theorem 2.5 (Strong Identity Principle). Let f, g : B(0, R) → H be regular functions. If there exist
x, y ∈ R such that S = x + yS ⊆ B(0, R) and a subset T ⊆ B(0, R)\S having an accumulation point in
S such that f ≡ g on T , then f ≡ g on the whole domain of definition B(0, R).

Proof. Consider the regular function h = f − g : B(0, R) → H and its zero set Zh. We know that
T ⊆ Zh, so Zh\S has an accumulation point in S. By the structure theorem, h ≡ 0. This implies f ≡ g,
as wanted.
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3 Regular multiplication

The proof of the structure theorem we gave in the previous section required quite a lot of work, if compared
to the proof of the analogous result in complex analysis. The fact of the matter is that the factorization
property of the zeros of holomorphic complex functions is substituted by theorem 2.1, which is apparently
a weaker result because of the non-commutativity of multiplication in H. This makes handling the zeros
harder than in the complex case. In this section we show that, using a different notion of multiplication
between regular functions, theorem 2.1 can be turned into a factorization result.

Definition 3.1. Let f(q) =
∑+∞

n=0
qnan and g(q) =

∑+∞

n=0
qnbn be given quaternionic power series with

radii of convergence greater than R. We define the regular product of f and g as the series f ∗ g(q) =
∑+∞

n=0
qncn, whose coefficients cn =

∑n
k=0

akbn−k are obtained by discrete convolution from the coefficients
of f and g.

The regular product of f and g, which we denote indifferently as f ∗ g, f ∗ g(q) or f(q) ∗ g(q), has
radius of convergence greater than R. It can be easily proven that the regular multiplication ∗ is an
associative, non-commutative operation. We can now restate theorem 2.1 as follows.

Theorem 3.2. Let f(q) =
∑+∞

n=0
qnan be a given quaternionic power series with radius of convergence

R and let p ∈ B(0, R). Then f(p) = 0 if and only if there exists a quaternionic power series g(q) with
radius of convergence R such that

f(q) = (q − p) ∗ g(q). (1)

This result would of course be uninteresting if the other zeros of f did not depend on the zeros of g.
Fortunately, this is not the case: the zeros of a regular product f ∗ g are strongly related with those of f
and g.

Theorem 3.3 (Zeros of a regular product). Let f, g be given quaternionic power series with radii greater
than R and let p ∈ B(0, R). Then f ∗g(p) = 0 if and only if f(p) = 0 or f(p) 6= 0 and g(f(p)−1pf(p)) = 0.

Proof. It can be easily proven that if g(q) =
∑+∞

n=0
qnbn then f ∗ g(q) =

∑+∞

n=0
qnf(q)bn. Hence f(p) = 0

implies f ∗ g(p) = 0 and f(p) 6= 0 implies

f ∗ g(p) = f(p)

+∞
∑

n=0

f(p)−1pnf(p)bn = f(p) g(f(p)−1pf(p)),

so that f ∗ g(p) = 0 iff g(f(p)−1pf(p)) = 0.

In particular, if f ∗ g has a zero in S = x+ yS then either f or g have a zero in S. However, the zeros
of g in S need not be in one-to-one correspondence with the zeros of f ∗ g in S which are not zeros of f .

Example 3.4. Let I ∈ S be an imaginary unit. The regular product

(q − I) ∗ (q + I) = q2 + 1

has S as its zero set, while q − I, q + I only vanish at I,−I respectively.

Example 3.5. Let I, J ∈ S be different imaginary units and suppose I 6= −J . The regular product

(q − I) ∗ (q − J) = q2 − q(I + J) + IJ

vanishes at I, but has no other zero in S: given any L ∈ S, we get L2 −L(I + J) + IJ = 0 iff L(I + J) =
−1 + IJ iff L(I + J) = I(I + J) iff L = I, since I + J 6= 0.
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4 Symmetrization and computation of the zeros

In this section we complete the characterization of the zero set of f s in terms of the zero set of f . This
leads to a method to compute the zeros of a quaternionic regular function. The new result on the zeros
of f s is based on the fact that f s = f ∗ f c, where f c is a new series called the regular conjugate of f .

Definition 4.1. Let f(q) =
∑+∞

n=0
qnan be a given quaternionic power series with radius of convergence

R. We define the regular conjugate of f as the series f c(q) =
∑+∞

n=0
qnān.

We remark that f c also has radius R and that f s = f ∗ f c. Moreover, we prove the following.

Proposition 4.2. Let f be a given quaternionic power series with radius of convergence R and let
x, y ∈ R be such that S = x+ yS ⊆ B(0, R). The zeros of f in S are in one-to-one correspondence with
those of f c.

Proof. Since (f c)c = f , we only have to prove that the vanishing of f at one or all points of S implies
the vanishing of f c at one or all points of S respectively.

Let f(q) =
∑+∞

n=0
qnan and for all n ∈ N let sn, tn ∈ R be such that (x + yL)n = sn + Ltn for all

L ∈ S. Then

f(x+ yL) =

+∞
∑

n=0

(x+ yL)nan =

+∞
∑

n=0

(sn + Ltn)an = b+ Lc

f c(x+ yL) =
+∞
∑

n=0

(x+ yL)nān =
+∞
∑

n=0

(sn + Ltn)ān = b̄+ Lc̄

for all L ∈ S, letting b =
∑+∞

n=0
snan and c =

∑+∞

n=0
tnan. If f ≡ 0 on S then for all L ∈ S we get

0 = f(x + yL) = f(x − yL). Hence 0 = b + Lc = b − Lc and b = c = 0, so that b̄ = c̄ = 0 and
f c(x+ yL) = 0 for all L ∈ S. Now suppose f has exactly one zero in S, namely p = x+ yI. Then c 6= 0:
if c vanished then 0 = f(p) = b + Ic would imply b = c = 0 and f ≡ 0 in S. Hence c̄ 6= 0 and from
0 = f(p) = b+ Ic we can conclude

0 = b+ Ic = b̄− c̄I = b̄−
(

c̄Ic̄−1
)

c̄ =

= b̄+ Jc̄ = f c(x+ yJ)

where J = −c̄Ic̄−1 ∈ S.

We are now ready to study the zero set of f s.

Theorem 4.3. Let f be any given quaternionic power series with radius R. Then f s vanishes exactly
on the 2-spheres (or singletons) x+ yS where f has a zero.

Proof. Proposition 2.3 tells us that the zero set of f s includes all the 2-spheres (or sigletons) x + yS on
which f has a zero. Conversely, any zero of f s lies on a 2-sphere (or singleton) x + yS on which f has
a zero: if f s = f ∗ f c vanishes at x + yI, then either f or f c have a zero in x + yS; by the previous
proposition, this implies that f has a zero in x+ yS.

The above result radically simplifies the computation of the zeros of a given power series f(q) =
∑+∞

n=0
qnan. Consider indeed symmetrization f s(q) =

∑+∞

n=0
qnrn and its restriction to a complex line

LI . This restriction can be identified, as discussed in previous sections, with the complex series (with real
coefficients) H(z) =

∑+∞

n=0
znrn. Computing the zeros of the complex function H immediately determines

the zero set of f s, hence the real points and 2-spheres where f has zeros. For any such 2-sphere S = x+yS

we can compute, as we did proving theorem 4.2, constants b, c ∈ H such that f(x+ yL) = b+ Lc for all
L ∈ S. If b = c = 0 then f vanishes at all points of S, otherwise c 6= 0 and f has exactly one zero in S,
the point p = x+ yJ with J = −bc−1 ∈ S.
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Example 4.4. Consider the polynomial

f(q) = (q − I) ∗ (q − J) = q2 − q(I + J) + IJ

for I, J ∈ S with I 6= −J . By an easy computation, f s(q) = (q2 + 1)2 which has S as its zero set. Hence
the zeros of f are contained in S. We already proved that the only zero of f in S is point I, so f only
vanishes at I.

It seems pretty natural for (q − I) ∗ (q − I) to only vanish at I. On the other hand, the fact that the
zero set of (q − I) ∗ (q − J) be a singleton even when I 6= J seems very peculiar and suggests a deeper
study of quaternionic polynomials.

Before poceeding towards this study, which is the aim of next section, we remark two useful multi-
plicative properties of regular conjugation and symmetrization. These properties are naturally connected
to the relation between the zeros of f and those of f c, f s and they will prove very useful in the polynomial
case.

Theorem 4.5. Let f, g be given quaternionic power series. Then (f ∗ g)c = gc ∗ f c and

(f ∗ g)s = f sgs = gsf s. (2)

The first property can be proven by direct computation of the coefficients of the series and the second
follows.

5 Zeros of quaternionic polynomials and multiplicity

This section is dedicated to the study of quaternionic polynomials and their zeros. First of all, we prove
that all quaternionic polynomials have a “regular factorization”. Thanks to the results proven in the
previous section, we can easily predict the zeros of a polynomial knowing its factorization and vice versa.
By defining the concept of multiplicity in the most natural way, we are led to the result that the sum of
the multiplicities of the zeros of a polynomial need not equal its degree.

Our factorization result makes use of the fundamental theorem of algebra for quaternions. This
theorem is well known and it can be proven by different techniques. We will rephrase here the interesting
proof given in [12].

Theorem 5.1 (Fundamental Theorem of Algebra for Quaternions). A quaternionic polynomial a0 +
qa1 + ...+ qnan of degree n ≥ 1 has at least one zero in H.

Proof. Let f(q) = a0+ qa1+ ...+ qnan. Its symmetrization f s(q) = r0+ qr1+ ...+ q2nr2n is a polynomial
of degree 2n ≥ 2 whith real coefficients rm =

∑m
k=0

akām−k ∈ R. By the fundamental theorem of algebra
for complex polynomials, f s must have a zero in H. By theorem 4.3, f s has zeros if and only if f has at
least one. Thus f has a zero in H, too.

An algebraic proof of the same theorem can be found, for instance, in [11]. A recent topological proof,
which applies to all division algebras, is given in [8]. We are now ready to prove our factorization result.

Theorem 5.2. Let a0, ..., an ∈ H, an 6= 0 and f(q) = a0 + qa1 + ... + qnan. Then there exist points
p1, ..., pn ∈ H such that

f(q) = (q − p1) ∗ ... ∗ (q − pn)c (3)

where c = an.

Proof. If n = 0 our thesis is obvious. Supposing the theorem holds for all polynomials of degree n, we
will prove it for a polynomial f of degree n + 1. By the fundamental theorem of algebra, f has a zero
p ∈ H. By theorem 3.2, there exists a polynomial g of degree n such that f(q) = (q − p) ∗ g(q). Hence
g(q) = (q − p1) ∗ ... ∗ (q − pn)c for some p1, ...pn, c ∈ H and the thesis follows.
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We will now study how many different factorizations a polynomial can have. If f(q) = (q − p1) ∗ ... ∗
(q − pn)c, supposing pk = xk + ykIk for all k, by theorem 4.5 we get

f s(q) = |c|2
n
∏

k=1

[

(q − xk)
2 + y2k

]

.

By this formula we can easily remark the following.

Proposition 5.3. Consider two polynomials f(q) = (q−p1)∗ ...∗(q−pn)c, g(q) = (q−p′1)∗ ...∗(q−p′m)c′

and suppose pk = xk + ykIk, p
′

h = x′

h + y′hI
′

h for all k, h. Then f s = gs if and only if n = m, |c| = |c′|
and (x1, y1), ..., (xn, yn) is a permutation of (x′

1, y
′

1), ..., (x
′

n, y
′

n).

This is, in particular, a necessary condition for f to equal g. In order to find a condition which is also
sufficient, we focus on the case where n = 2 and c = 1. Consider indeed a polynomial

f(q) = (q − a) ∗ (q − b) = q2 − q(a+ b) + ab.

If a = b̄ and a, b ∈ S = x + yS then f(q) = (q − x)2 + y2. Thanks to proposition 5.3, it is easy to prove
that f(q) = (q − a′) ∗ (q − b′) if and only if a′, b′ ∈ S and a′ = b̄′.

If a, b lie on the same S, but a 6= b̄, then f can only be factored as f(q) = (q− a) ∗ (q− b). Supposing
indeed f(q) = (q − a′) ∗ (q − b′), we get a′, b′ ∈ S by proposition 5.3 and we can easily conclude that
a′ = a, b′ = b.

Now suppose a, b lie on different 2-spheres (or real singletons) Sa, Sb. Supposing a′ ∈ Sa, b
′ ∈ Sb, it is

easy to prove that f(q) = (q − a′) ∗ (q − b′) if and only if a′ = a, b′ = b and f(q) = (q − b′) ∗ (q − a′) if
and only if a′ = cac−1, b′ = cbc−1 where c = a− b̄ 6= 0. By proposition 5.3, there is no other alternative.
So f has exactly two factorizations: f(q) = (q − a) ∗ (q − b) and f(q) = (q − cbc−1) ∗ (q − cac−1).

Recalling that, by theorem 3.2, every zero can be factored “on the left”, the three configurations
above correspond to different structures of the zero set.

Theorem 5.4. Let a, b ∈ H and f(q) = (q − a) ∗ (q − b). If a, b lie on different 2-spheres (or real
singletons) then f has two zeros, a and (a − b̄)b(a − b̄)−1. If a, b lie on the same 2-sphere S but a 6= b̄

then f only vanishes at a. Finally, if a = b̄ ∈ S then the zero set of f is S.

It seems perfectly natural, thanks to the study accomplished in section 2, that some polynomials have
as many zeros as their degrees predict and some have a whole 2-sphere instead of a couple of zeros. It
also seems natural for the “regular square” (q− a) ∗ (q− a) to just vanish at a. The very peculiar case is
that of a polynomial (q − a) ∗ (q − b) where a, b are different, non-conjugate points of the same 2-sphere:
the uniqueness of the zero a does not seem to be justified by multiplicity arguments. We now translate
this impression in a more rigorous result. First of all, we define the regular power of a series f in the
most obvious way:

f∗n = f ∗ ... ∗ f = ∗ni=1f

Now we define the multiplicity of a zero.

Definition 5.5. Let f(q) =
∑+∞

n=0
qnan be a given quaternionic power series with radius R, and let

p ∈ B(0, R). We define the multiplicity of p as a zero of f and denote by mp(f) the largest n ∈ N such
that there exists a series g with f(q) = (q − p)∗n ∗ g(q).

Letting I ∈ S be such that p ∈ LI , the equality f(q) = (q − p)∗n ∗ g(q) implies by restriction to the
complex line LI that fI(z) = (z − p)ngI(z). Hence the multiplicity of a zero of f is well-defined: by a
well-known fact in complex analysis, there is just a finite set of natural numbers n such that (z− p)n can
be factored from the holomorphic function fI(z).

Conversely, it can be proven that if there exists a complex series (with quaternionic coefficients)H(z) =
∑+∞

n=0
znan such that fI(z) = (z − p)nH(z), then f(q) = (q − p)∗n ∗ g(q) with g(q) =

∑+∞

n=0
qnan. Hence

the quaternionic multiplicity defined above extends coherently the definition of complex multiplicity.
Nevertheless, it leads to the result that

Proposition 5.6. The degree of a polynomial can exceed the sum of the multiplicities of its zeros.
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We conclude with an explicit example, to prove and make clear our last statement. Consider (again)
the polynomial

f(q) = (q − I) ∗ (q − J) = q2 − q(I + J) + IJ

and suppose I, J ∈ S with I 6= J , I 6= −J . We already proved that the zero set of f is {I}. It is easy to
remark that mI(f) = 1, while f has degree 2.
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[2] C. G. Cullen, An integral theorem for analytic intrinsic functions on quaternions. Duke Math. J. 32
(1965), 139–148.

[3] R. Fueter, Die Funktionentheorie der Differentialgleichungen ∆u = 0 und ∆∆u = 0 mit vier reellen
Variablen. Comment. Math. Helv. 7 (1934/5), 307–330.
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