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Zeros of the Hankel Function of Real Order

and of Its Derivative

By Andrés Cruz and Javier Sesma

Abstract. The trajectories followed in the complex plane by all the zeros of the Hankel

function and those of its derivative, when the order varies continuously along real values, are

discussed.

1. Introduction. Many physical problems require a good knowledge of the location

of zeros of the Hankel function and/or those of its derivative. For instance, the

trajectories of the zeros of 7/„(l)(z), for varying real order v, are the ^-trajectories of

the S-matrix singularities for quantum scattering by a hard sphere. Also, the zeros of

H¡;X)iz) and id/dz)HJ,x\z) give, respectively, the poles and zeros of the logarithmic

derivative of the external Schrödinger wave function in a short-range potential,

which should match, at the edge of the potential, with the logarithmic derivative of

the internal wave function.

Information provided by classical treatises [7], [4] on special functions about the

zeros of H¡;x\z) and id/dz)H¡¡x\z) is rather insufficient. A more recent updated

revision of the topic has been published by Luke [6]. In the case of integer order,

v = n, two types of zeros of #„(1)(z) or of id/dz)H^x\z) are found [1, pp. 373-374],

[3] (in the principal Riemann sheet, | arg z |< tt):

(1) An infinite number of zeros for |Rez|>n just below the negative real

semi axis.

(2) A group of A? zeros for | Re z | < n which he along the lower half of the

boundary of an eye-shaped domain around z = 0.

Our interest in this paper is on the trajectories followed by those zeros as the order

varies continuously along real values. Trajectories of this kind, connecting second-

type zeros, are shown in [5]. We discuss the trajectories described by all the zeros of

H¡,x\z) and of id/dz)H¡;x\z) in Sections 2 and 3, respectively. It will turn out from

our study that the distinction between the two types of zeros mentioned above is

rather artificial, since all first-type zeros become second-type as v increases.

In view of the well-known relations [1, Eq. 9.1.6]

(1.1)        H^iz) = expiivr)H?Kz),       ff<J>/(z) = cxp(i7rv)H^'(z),

we need to consider only nonnegative values of v in our discussion.
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2. Zeros of //„(1)(z). We have used the "steepest descent" method to find the

solutions of

(2.1) H?\z) = 0.

The Hankel function was expressed in terms of Bessel functions, which were

computed by means of their ascending series expansion. Double precision was used

in the summation of the series. The order v was considered as a parameter; small

variations of it allowed us to obtain the trajectories of the zeros of H{px\z) shown in

Figure 1.

The trajectories start from the zeros of H§\z). All zeros, accurate to 10D, of

H^x\z) for | z |< 158 were obtained by Döring [3]. We shall consider these zeros, zs,

labelled by an index i = 1,2,... increasing with the absolute value of zs. The same

label will be used for the corresponding trajectory. As v increases, all zeros move

upwards, almost vertically, approaching the cut existing along the negative real

semiaxis. At v = 1/3 the zeros cross the cut and go into the Riemann sheet

-3-n < arg z < -n\ They continue their ascending motion and go to infinity as v

tends to 1/2 from below, along the asymptotes x — i-s + l/4)tt. As v crosses the

value 1/2, all zeros make a discontinuous jump by Ax = m/2. As v increases, the

zeros come from infinity along the asymptotes x — i-s + 3/4)w. Their nearly

vertical motion causes them to cross the cut at v = 2/3, coming back in this way to

the principal Riemann sheet. They continue, on this sheet, moving downwards until

the order takes the value v = 1. The positions of the zeros of H\x\z), accurate to

10D, have been given by Döring [3].

The first zero, zxiv), that for v = 0 had been considered a first-type zero according

to the classification of the zeros in the two types mentioned in Section 1, is of the

second type for v — 1. Analogously, every zero zjiv), that should be considered a

first-type zero for v < s, becomes a second-type one for v > s.

The behavior of the first-type zeros for v in the interval 1 < v < 2 or, in general, in

the range aj < v < aï + 1 is quite similar to that shown in the interval 0 < v < 1. As v

increases, the zeros move upwards, cross the cut at v — n + 1/3 and, as v tends to

n + 1/2, go to infinity in the Riemann sheet -3ir < argz < -m along the asymp-

totes x = i-s + ai/2 + l/4)tr, where s > v. They jump by Ax = m/2 as v passes

ai + 1/2 and go down, along the asymptotes x — i-s + n/2 + 3/4)m, towards the

cut, which they cross at v — n + 2/3. They continue moving downwards in the

principal Riemann sheet until they stop their descending motion near v = n + 1.

The second-type zeros izs, s < n), instead, move downwards and towards the right,

following the trajectories shown in [5]. They cross the negative imaginary semiaxis at

v = 2s — 1/2 [1, p. 441] and go to infinity in the fourth quadrant of the z plane as v

tends to infinity. As is well known, [1, p. 441], the positions of these zeros (for

different values of s ) at half-integer values of v, v — n + 1/2, are symmetrical with

respect to the imaginary axis.

It is not difficult to understand why the zeros cross the cut precisely for

v = n + 1/3 and v — n + 2/3. Equation (2.1) is equivalent to the condition (for v

noninteger)
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2(-z2/4)r/r\(-v)(-v+l)---(-v + r)
r=0

(2.2)
-G,(z) 2 (-z2/A)r/r\v(p +l)---(v + r)=0,

r = 0

where we have denoted

(2.3) Gv(z) = exp(-i>w)(z2/4)''r(-,)/r(,).

For z on the cut, both series in (2.2) are real. So, solutions zs of (2.2) with

arg zs — -it can exist only if GjizA becomes real. This happens obviously if and only

if 3 v is an integer, v noninteger.

Now, let us examine more carefully the behavior of the first-type zeros as v

approaches a half-integer, v - ai + 1/2. Using the analytic continuation formula [1,

Eq. 9.1.37] for the Hankel function, we can write

ffF(l)(zexp(-/2ff)) = (4cos2(»'7r) - l)//„(1)(z)

(2 4)
v ' ' + 2cos(vm)z%.o(-ivn)H?\z),

where z is meant to lie in the principal Riemann sheet. Bearing in mind the fact that

| z | -» oo, the right-hand side of (2.4) can be approximated by using the asymptotic

forms [1, Eqs. 9.2.3 and 9.2.4] of the Hankel functions to obtain, retaining only

leading terms,

//<'>( zexp(-/2*))

I 2 \x/1
(2.5) H      /     ({4cos2(i'7r) - l}exp{i(z - a-tt/2 ~ V4)}

+ 2cos(c7r)exp(-z>7r)exp{-i'(z — vtr/2 — tt/4)}).

The zeros of H¡,x\z) are, therefore, given approximately by the roots of

(2.6) exp{-/2(z - tt/4)} = (1 - 4cos2(i'7r)}/2cos(K7r).

Denoting by xs and j^ the real and imaginary parts of zs, we obtain from (2.6)

(2.7,a)    xs ^ ir/4 — kv — (l/2)arg({l — 4cos2(p7t)}/2cos(p'ïï)),   /cinteger,

(2.7,b)    j^(l/2)log| (1 - 4cos2(vir)}/2cosivir)\ .

It can be seen in (2.7,a) that xs changes discontinuously by m/2 whenever v increases

through a half-integer value. Equation (2.7, b) confirms that, as v tends to ai + 1/2,

all zeros go to infinity, their imaginary parts being approximately independent of the

label s.

To end this analysis of the zeros of H¡,x\z) it remains only to consider their

behavior as the order v tends to infinity. Cochran [2] has discussed the zeros of the

Hankel function, as function of its order, giving an approximate expression valid for

large values of the variable. From that expression it is easy to obtain, for large v,

zs = v- 2-xAexpi-i2Tr/3)asvx/3

(2'8) + (3/10)2-2/3exp(-/4V3)a>-,/3 + Oivx),

where as denotes the s th one among the zeros of the Airy function of the first kind,

which are all negative real [1, p. 478].
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3. Zeros of id/dz)Hf,x\z). In the solution of the equation

(3.1) id/dz)Hlx\z) = 0

we have followed a numerical procedure entirely similar to that described in Section

2. Our results are shown in Figure 2.

The starting points, for v — 0, of the trajectories are the zeros of H¡l\z), given in

[3]. The behavior of the solutions of (3.1) as v varies from ai to aj + 1 is very similar

to that of the zeros of H¡;X)iz). All first-type zeros, except that of smallest absolute

value, move vertically towards the cut, cross it at v = n + 1/3 and tend to

infinity, in the Riemann sheet -37r =s arg z < -it, along the asymptotes x =

i-s + aj/2 + 3/4)7r, with s > n + 1, as v tends to ai + 1/2. They jump by Ax =

7r/2 at v — n + 1/2 and go down along x = i-s + aj/2 + 5/4)w as v increases

further. They cross the cut at v — n + 2/3 and move downwards until they stop the

descending motion near v — n + 1. The smallest first-type zero moves, as v increases

from Ai, upwards and to the right, makes a small bump and becomes a second-type

zero. All second-type zeros go downwards and towards the right, crossing the

imaginary axis at v — 2s — 3/2 [1, p. 441] and going to infinity in the fourth

quadrant as v tends to infinity.

The explanation of the fact that the zeros cross the cut at v = n + 1/3 and

v = n + 2/3 and of their behavior as v approaches n + 1/2 runs along the same

lines as in Section 2. The large v behavior can be obtained from [2]. It turns out

zs = v - 2-1/3exp(-/27r/3)a>1/3

(3-2) +2-2/3exp(-/477/3)(3<2/10 + l/5<>"'/3 + Oiv~x),

where a's denotes the ith stationary value of the Airy function.

Appendix. It has been mentioned in Section 2 that the trajectories of the first-type

zeros of //„(1)(z) in the complex z plane, as v varies along real values, present relative

minima for nearly integer values of v. It can be proven that such minima do not

occur exactly at integer v, the case v = 0 being excepted. By differentiating (2.1), one

obtains for the slope of a trajectory at a given point

(A.l) dz/dv = - (dH?\z)/dv)/ (dH^(z)/dz),

where it is understood that z and v in the right-hand side take the values correspond-

ing to that point of the trajectory. By expressing the derivatives in (A.l) in terms of

the Hankel functions [1, Eqs. 9.1.27, 9.1.66-68] and bearing in mind that (2.1) is

satisfied, one obtains in the case of integer v

(A.2,a) , = 0, ^ = 0,

n       dz n\(2/z)"%x (z/2)kHlx\z)
(A.2,b) ^ = ai^0,     -r- = -—^-f-2- 2      <        ,\, ,    •

dv 2H^x(z) k%    (n~k)k\

By using again the recurrence relations [1, Eq. 9.1.27] for the Hankel functions and

(2.1), it is easy to see that the right-hand side of (A.2, b) reduces to an odd
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polynomial of degree 2ai — 1 in z~x. For the lowest values of v, dz/dv turns out to

be

v = 0, dz/dv = 0,

v = 1, dz/dv — -1/z,

v = 2, dz/dv = -(l/z)(2 + 4/z2),

v = 3, dz/dv = - (l/z)(3 + 16/z2 + 64/z4),

where z is to be replaced by the corresponding zero of H^\z). A relative minimum

of the trajectory at a given point should be recognized by a vanishing imaginary part

of dz/dv at that point. Obviously, the zeros at v = n ¥= 0 are not relative minima of

the trajectories.

A similar conclusion can be obtained for the relative minima of the trajectories of

the zeros of id/dz)H¡,x\z), mentioned in Section 3. Analogously to (A.2), one

obtains

0,

n!(2A)"-'

4(1 -n2/z2)H^(z)

X  2   ({Z^ix[(2k - n)H£\z) - zHlUz)].
k=o \n     K)K-

The right-hand side of (A.3, b) can be reduced to the quotient of an odd polynomial

of degree 2ai + 1 divided by an even polynomial of the second degree, both in z~'.

For the lowest values of v, dz/dv becomes

v = 0,    dz/dv = 0,

v = 1,    dz/dv = - (l/z)(l + 1/z2)/ (1 - 1/z2),

v = 2,    dz/dv = - (l/z)(2 + 16/z4)/ (l - 4/z2),

v = 3,    dz/dv = - (l/z)(3 - 5/z2 + 48/z4 + 576/z6)/ (l - 9/z2).
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