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It was shown by Selberg [3] that the Riemann Zeta-function has at least
cT log T zeros on the critical line up to height T, for some positive absolute
constant c. Indeed Selberg’s method counts only zeros of odd order, and counts
each such zero once only, regardless of its multiplicity. With this in mind we
shall write γ̂i for the distinct ordinates of zeros of ζ(s) on the critical line of
odd multiplicity. We shall number the points γ̂i so that 0 < γ̂1 < γ̂2 < . . . . The
purpose of the present note is to extract a little more from Selberg’s argument,
by obtaining further information on the distribution of the γ̂i. This is given in
the following result.

Theorem For any constant µ ∈ (0, 2) we have
∑

γ̂i≤T

(γ̂i+1 − γ̂i)µ ¿µ T (log T )1−µ.

In particular, if f(T ) is any function which tends to infinity with T, then “almost
all” intervals [T , T + f(T )(log T )−1] contain a point γ̂i.

Clearly this result includes Selberg’s. Moreover it is apparent that the second
statement of the theorem follows from the first. We also remark that, if one
merely sums over ordinates γi of the zeros in the usual sense, not restricting to
those zeros which are on the critical line, then one has

∑

γi≤T

(γi+1 − γi)µ ¿µ T (log T )1−µ

for any µ > 0, as was shown by Fujii [1].
In giving the proof of our result we shall refer to the version of Selberg’s ar-

gument presented by Titchmarsh [4: §§10.9-10.22]. The proof uses a “mollifier”

φ(s) =
∑

ν≤X

βνν−s,
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in which the numbers βν are defined in terms of the coefficients αν in the
expansion

ζ(s)−1/2 =
∞∑

ν=1

ανν−s σ > 1.

Titchmarsh takes
βν = αν(1− log ν

log X
),

but for our purpose the choice

βν =





αν , ν ≤ X1/2,

2αν
log X/ν
log X , X1/2 ≤ ν ≤ X,

is required. One then defines

F (t) =
Ξ(t)

t2 + 1
4

|φ(
1
2

+ it)|2e( 1
4 π− 1

2 δ)t,

where δ is small and positive. In fact we shall take δ = T−1, where [T, 2T ] is
the interval in which we are looking for zeros. With the above definition of F (t)
it follows (Titchmarsh [4: Lemma 10.17]) that

∫ ∞

−∞

∣∣∣∣∣
∫ t+h

t

F (u)du

∣∣∣∣∣

2

dt ¿ h

δ1/2 log X
. (1)

This is subject to the conditions X = δ−c and h = (a log X)−1, where a, c are
positive and satisfy (a + 2)c ≤ 1

4 . Titchmarsh takes a to be constant, but this
is unnecessary. We shall set c = 1

16 so that any value a ∈ (0, 2) is permissable.
We see from (1) that

∫ 2T

T

∣∣∣∣∣
∫ t+h

t−h

F (u)du

∣∣∣∣∣

2

dt ¿ hT 1/2

log T
, (2)

on changing h into 2h and substituting t− h for t. The bound (2) is subject to
the conditions X = T 1/16 and h = (a′ log T )−1, where a′ ∈ (0, 1

4 ).
The proof of (1), and hence of (2), depends on the definition of βν , so we

must check that our modification does not materially alter the estimates. It is
only Lemma 10.12 of Titchmarsh [4] which needs any change. It is shown that

∑

κ≤X/d

ακκθ−1 log
X

dκ
¿ (

X

d
)θ(log

X

d
)1/2

∏

p|ρ
(1 + p−1)1/2 (3)
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uniformly for 0 < θ ≤ 1
2 , where κ is restricted to integers coprime to ρ. We shall

require a corresponding estimate in which the function

f(X, d, κ) =
{

log X/dκ, dκ ≤ X,
0, dκ ≥ X,

on the left is replaced by

g(X, d, κ) =





log X, dκ ≤ X1/2,
2 log X/dκ, X1/2 ≤ dκ ≤ X,

0, dκ ≥ X.

However, since

g(X, d, κ) = 2f(X, d, κ)− 2f(X1/2, d, κ),

one sees that (3) remains true with g in place of f.
We shall also require the estimate

∫ ∞

−∞
|F (t)|2dt ¿ log 1/δ

δ1/2 log X
¿ T 1/2 (4)

given by Lemma 10.18 of Titchmarsh [4]. The proof of this requires no modifi-
cation.

We now establish a lower bound for
∫ t+h

t−h

|F (u)|du = J(t),

say, on the interval T ≤ t ≤ 2T. Titchmarsh does this only on average, while we
shall, in effect, obtain a lower bound for “almost all” t. We begin by choosing a
large constant integer K, and writing

w(z) = (
sin z

z
)2K ,

so that ∫ ∞

−∞
eiλtw(t)dt = 0 for |λ| ≥ 2K.

We now consider the integral

∫ 1/2+i∞

1/2−i∞
ζ(s + it)φ(s + it)2w(

s− 1
2

i∆
)ds = I, (5)

say, where
1

log T
≤ ∆ ≤ T 3/4. (6)
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The integral will converge if K is chosen large enough. We now move the line
of integration to σ = 2, producing a residue

φ(1)2w(
1
2 − it

i∆
) ¿ (log T )2(

e1/2∆

|t|/∆
)2K ¿ (log T )−2.

On the line σ = 2 we may integrate termwise. We have
∫ 2+i∞

2−i∞
n−sw(

s− 1
2

i∆
)ds = i∆

∫ ∞

−∞
n−1/2−it∆w(t)dt

on moving the line of integration back to σ = 1/2, so that terms for which
∆ log n ≥ 2K make no contribution. Since

ζ(s)φ(s)2 =
∞∑

n=1

ann−s

with a1 = 1 and an = 0 for 2 ≤ n ≤ X1/2, we now see that

I = i∆CK + O(
1

log2 T
),

where
CK =

∫ ∞

−∞
w(t)dt > 0,

providing that

∆ ≥ 64K

log T
. (7)

At this point we observe that if h ≤ T 3/4 then

T 1/4J(t) À
∫ t+h

t−h

|ζ(
1
2

+ iu)φ(
1
2

+ iu)2|du

≥
∫ t+h

t−h

|ζ(
1
2

+ iu)φ(
1
2

+ iu)2|w(
u

∆
)du

≥ I + O{
∫

|u|≥h

|ζ(
1
2

+ i(u + t))φ(
1
2

+ i(u + t))2| du

(|u|/∆)2K
},

whence

T 1/4J(t) +
∫

|u|≥h

|ζ(
1
2

+ i(u + t))φ(
1
2

+ i(u + t))2| du

(|u|/∆)2K
À ∆.

Since
ζ(

1
2

+ i(u + t))φ(
1
2

+ i(u + t))2 ¿ (T + |u|)1/4X
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for T ≤ t ≤ 2T, it follows that the range |u| ≥ T/2 will contribute only O(∆/T ),
say. Here we use the facts that ∆ ≤ T 3/4, by (6), and that K is sufficiently
large. Moreover

∫

h≤|u|≤T/2

|ζ(
1
2

+ i(u + t))φ(
1
2

+ i(u + t))2|(|u|/∆)−2Kdu

¿ T 1/4

∫

h≤|u|≤T/2

|F (t + u)|(|u|/∆)−2Kdu

= T 1/4K(t),

say. It follows that
J(t) + K(t) À T−1/4∆. (8)

We now observe that
∫ 2T

T

K(t)dt =
∫

h≤|u|≤T/2

(|u|/∆)−2K

{∫ 2T+u

T+u

|F (v)|dv

}
du,

and Cauchy’s inequality, in conjunction with (4) yields

∫ 2T+u

T+u

|F (v)|dv ¿ T 1/2{
∫ 5T/2

T/2

|F (v)|2dv}1/2 ¿ T 3/4.

We therefore see that ∫ 2T

T

K(t)dt ¿ hT 3/4

(h/∆)2K
, (9)

since ∫

h≤|u|≤T/2

(|u|/∆)−2Kdu ¿ h

(h/∆)2K
.

We shall write (8) as

J(t) + K(t) ≥ CT−1/4∆,

and define
Rh = {t ∈ [T, 2T ] : J(t) ≤ C

2
T−1/4∆}.

Then K(t) À T−1/4∆ on Rh, whence

T−1/4∆mes(Rh) ¿ hT 3/4

(h/∆)2K
,

by (9). It follows that

mes(Rh) ¿ T

(h/∆)2K−1
. (10)
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We can now complete the proof of the theorem. We consider the set Sh of
t ∈ [T, 2T ] for which the interval t − h ≤ u ≤ t + h contains no sign change of
the function F (u), or equivalently no zero of odd order of ζ( 1

2 + iu). Thus

J(t) = |
∫ t+h

t−h

F (u)du|

for t ∈ Sh. If t ∈ Sh \Rh then J(t) ≥ C
2 T−1/4∆, whence (2) yields

(
C

2
T−1/4∆)2mes(Sh \Rh) ¿ hT 1/2

log T
.

Thus
mes(Sh \Rh) ¿ hT

∆2 log T
.

On choosing
∆ = h(h log T )−1/(2K+1)

we therefore deduce from (10) that

mes(Sh) ¿ T (h log T )−1+2/(2K+1).

Our choice of ∆ will satisfy the conditions (6) and (7) if h = (a′ log T )−1 with
h ≤ T 3/4 and 0 < a′ ≤ a′(K), say.

We are now ready to estimate
∑

γ̂i

(γ̂i+1 − γ̂i)µ

for T ≤ γ̂i ≤ 2T. We shall choose K to be a fixed integer such that

2
2K + 1

< 2− µ.

According to a result of Hardy and Littlewood [2] we have γ̂i+1 − γ̂i ¿ T θ for
any θ > 1

4 , so that it suffices to prove that
∑

γ̂i

(γ̂i+1 − γ̂i)µ ¿ T (log T )1−µ (11)

for T ≤ γ̂i < γ̂i+1 ≤ 2T. Moreover, summands for which

γ̂i+1 − γ̂i ≤ 8
a′(K) log T

clearly make a satisfactory contribution. We shall classify the remaining terms
according to the value of h = 2H , H = 1, 2, . . . , for which

4h < γ̂i+1 − γ̂i ≤ 8h.
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Thus we may assume that

1
a′(K) log T

≤ h ≤ T 3/4.

Since t ∈ Sh for γ̂i + h ≤ t ≤ γ̂i + 2h, we see that the number of points γ̂i

corresponding to any such h is at most

h−1mes(Sh) ¿ h−2+2/(2K+1)T (log T )−1+2/(2K+1).

The corresponding contribution to (11) is therefore

¿ hµ−2+2/(2K+1)T (log T )−1+2/(2K+1),

and summing over h = 2H À (log T )−1 yields the required result.
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