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Abstract. Let G be a locally compact abelian group. The notion of Zak
transform on L2(Rd) extends to L2(G). Suppose that G is compactly generated
and its connected component of the identity is non-compact. Generalizing a
classical result for L2(R), we then prove that if f ∈ L2(G) is such that its Zak

transform Zf is continuous on G× Ĝ, then Zf has a zero.

1. Introduction

The Zak transform on the real line, sometimes also referred to as the Weil-
Brezin map, was introduced in 1967 by Zak [11] to construct a quantum mechanical
representation for the description of the motion of a Bloch electron in the presence
of a magnetic or electric field. Subsequently it proved to be an important tool in
applied areas such as signal theory, wavelet analysis and solid state physics (compare
the survey article [7] and the references therein).

For f ∈ L2(R) the Zak transform Zf is the function on R× R defined by

Zf(x, y) =
∞∑

k=−∞
f(x + k)e2πiyk.

A striking property of the Zak transform, independently shown by Zak [3] and
Janssen [6], is that Zf has a zero whenever Zf is continuous on R × R. Actually,
in certain special cases like when f is the Gaussian, this follows from elementary
properties of theta series.

Now, the notion of the Zak transform admits a natural generalization to locally
compact abelian groups (see Section 3). Given a locally compact abelian group G,
its dual group Ĝ and a uniform lattice K in G, the Zak transform, associated to
K, of f ∈ L2(G) can be defined (almost everywhere) on G× Ĝ by

Zf(x, ω) =
∑
k∈K

f(xk)ω(k).

The main purpose of this note is to extend the above result to compactly generated
locally compact abelian groups. In fact, we are going to establish the following
stronger result.
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Theorem. Let G be a compactly generated locally compact abelian group with non-
compact connected component of the identity, K a uniform lattice in G and Γ the
annihilator of K in the dual group Ĝ of G. Suppose that g : G × Ĝ → C is a
continuous function satisfying the quasi-periodicity relation

g(xk, ωγ) = ω(k)g(x, ω)

for all (x, ω) ∈ G× Ĝ and (k, γ) ∈ K × Γ. Then g has a zero.

The converse to the theorem also holds (Remark 1 in Section 4). As an immediate
consequence of the theorem we obtain the following:

Corollary. Let G and K be as in the theorem and Z the associated Zak transform.
Let f ∈ L2(G) and suppose that Zf is continuous on G× Ĝ. Then Zf has a zero.

It is worthwhile to point out that conversely the corollary implies the theorem
at least when G is first countable (compare Remark 5).

The proof of the theorem will be given in Section 2, whereas in Section 3 we deal
with the Zak transform. Finally, in Section 4 we conclude with some remarks.

2. Proof of the theorem

Let G be an arbitrary locally compact abelian group and let K be a uniform
lattice in G, that is, a discrete subgroup of G with compact quotient group G/K.
In the sequel, Γ will denote the annihilator of K in Ĝ,

Γ = A(K, Ĝ) = {γ ∈ Ĝ : γ(k) = 1 for all k ∈ K}.
Then Γ is a uniform lattice in Ĝ since Γ is topologically isomorphic to Ĝ/K and
Ĝ/Γ is topologically isomorphic to K̂ (via the restriction map ωΓ → ω|K). The
following lemma is required in the proof of the theorem.

Lemma 1. Let H be a downward directed system of compact subgroups of G (with
normalized Haar measures) such that

⋂
H∈HH = {e}. Let g be a continuous func-

tion on G× Ĝ such that

g(xk, ωγ) = ω(k)g(x, ω)

for all (x, ω) ∈ G× Ĝ and (k, γ) ∈ K ×Γ. For each H ∈ H, define gH on G× Ĝ by

gH(x, ω) =
∫
H

g(xh, ω)dh.

Then gH is continuous and satisfies gH(xk, ωγ) = ω(k)gH(x, ω). If every gH has a
zero, then g has a zero.

Proof. That gH is continuous follows immediately from the uniform continuity of
g on compact subsets of G× Ĝ. Moreover, for (x, ω) ∈ G× Ĝ and (k, γ) ∈ K × Γ,

gH(xk, ωγ) =
∫
H

g(xkh, ω)dh = ω(k)
∫
H

g(xh, ω)dh = ω(k)gH(x, ω).

Now suppose that every gH has a zero. Since G/K and Ĝ/Γ are compact, there
exist compact subsets C of G and ∆ of Ĝ such that G = CK and Ĝ = ∆Γ. Due
to the quasi-periodicity, for each H ∈ H there exist xH ∈ C and ωH ∈ ∆ such
that gH(xH , ωH) = 0. C and ∆ being compact, by passing to a subnet if necessary,
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we can assume that xH → x and ωH → ω for some x ∈ C and ω ∈ ∆. Finally,
employing the uniform continuity of g on compact sets once more, we obtain that

|g(x, ω)| = |g(x, ω)− gH(xH , ωH)|

=
∣∣∣ ∫
H

(
g(x, ω)− g(xHh, ωH)

)
dh
∣∣∣ ≤ ∫

H

|g(x, ω)− g(xHh, ωH)|dh,

which converges to zero as H → {e}.
We now turn to the proof of the theorem. Notice first that by the structure

theorem for compactly generated locally compact abelian groups [5, Theorem 9.8],
G is of the form G = Rp × Zq × C where C is a compact group and p ≥ 1 since
by hypothesis G has a non-compact connected component of the identity. Now,
compact groups are projective limits of Lie groups [10, p.99]. Therefore, there
exists a system H of closed subgroups H of C as in Lemma 1 such that C/H is
a Lie group for every H ∈ H. Thus, for each H ∈ H, there is a closed subgroup
LH of C such that H ⊆ LH , LH is of finite index in C and LH/H = T rH for some
rH ∈ N0.

By Lemma 1, for any such H, gH is continuous, and once we have established
that gH has a zero on G× Ĝ, it follows that g has a zero as well. To that end, fix
H and set L = LH and r = rH . Replacing gH by g, we can therefore assume that g
is constant on cosets of H . Let π : G → G/H denote the quotient homomorphism.
Then π(K) = KH/H is a uniform lattice in G/H , and

A(π(K), Ĝ/H) = {χ ∈ Ĝ/H : χ ◦ π ∈ A(K, Ĝ)}.
Now, the function g̃ : G/H × Ĝ/H → C defined by

g̃(π(x), χ) = g(x, χ ◦ π),

x ∈ G, χ ∈ Ĝ/H, is continuous and satisfies the equation

g̃(π(x)π(k), χ δ) = g̃(π(x), χ)(χ ◦ π)(k)

for all x ∈ G, k ∈ K, χ ∈ Ĝ/H and δ ∈ A(π(K), Ĝ/H). It suffices to show that g̃
has a zero. Thus, after moving to G/H , we can assume that L = Tr. Towards a
contradiction, suppose that g(x, ω) 6= 0 for all (x, ω) ∈ G× Ĝ.

In what follows, for x ∈ G and ω ∈ Ĝ, let x1 ∈ Rp and ω1 ∈ R̂p denote the first
component of x and ω, respectively. When convenient, we shall identify Rp with
R̂p by writing ω1(x1) = exp 2πi〈x1, ω1〉. Let 1C be the trivial character of C and
er : Rr → T r the covering homomorphism given by

er(u) = (e2πiu1 , . . . , e2πiur )

for u = (u1, . . . , ur) ∈ Rr. We define homomorphisms

ϕ1 : Rp × Rr → Rp × {0} × T r ⊆ G, (x1, u) → (x1, 0, er(u))

and

ϕ2 : R̂p × R̂q → R̂p × Ẑq × {1C} ⊆ Ĝ, (ω1, χ) → (ω1, χ|Zq , 1C).

Since g is continuous and has no zero on G × Ĝ, we can consider the continuous
function

(x1, u, ω1, χ) → g(ϕ1(x1, u), ϕ2(ω1, χ))
|g(ϕ1(x1, u), ϕ2(ω1, χ))|
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on S = Rp × Rr × R̂p × R̂q. Since S is simply connected, there exists a continuous
function ϕ : S → R such that

exp 2πiϕ(x′, ω′) =
g(ϕ1(x′), ϕ2(ω′))
|g(ϕ1(x′), ϕ2(ω′))|

for all x′ ∈ Rp × Rr and ω′ ∈ R̂p × R̂q. Since ϕ1 and ϕ2 are homomorphisms, the
quasi-periodicity relation for g implies that

exp 2πi[ϕ(x′k′, ω′)− ϕ(x′, ω′)] = ϕ2(ω′)(ϕ1(k′))

= ω1(k1) = exp(−2πi〈ω1, k1〉)
for all (x′, ω′) ∈ S and k′ ∈ ϕ−1

1 (K), and

exp 2πi[ϕ(x′, ω′γ′)− ϕ(x′, ω′)] = 1

for all (x′, ω′) ∈ S and γ′ ∈ ϕ−1
2 (Γ).

Since S is connected and ϕ is continuous, it follows that given k′ and γ′, there
are integers m1(k′) and m2(γ′) such that

(1) ϕ(x′k′, ω′)− ϕ(x′, ω′) + 〈k1, ω1〉 = m1(k′)
and

(2) ϕ(x′, ω′γ′)− ϕ(x′, ω′) = m2(γ′)

for all x′ ∈ Rp × Rr and ω′ ∈ R̂p × R̂q. Applying (1) first and then (2) yields

ϕ(x′k′, ω′γ′) = ϕ(x′, ω′γ′)− 〈 k1, ω1〉 − 〈k1, γ1〉 + m1(k′)
= ϕ(x′, ω′) + m2(γ′)− 〈k1, ω1〉 − 〈k1, γ1〉 + m1(k′).

On the other hand, applying (1) and (2) in the reverse order gives

ϕ(x′k′, ω′γ′) = ϕ(x′k′, ω′) + m2(γ′)
= ϕ(x′, ω′)− 〈k1, ω1〉 + m1(k′) + m2(γ′).

Subtracting these two equations shows that

〈k1, γ1〉 = 0

for all pairs (k1, γ1) such that (k1, 0, k3) ∈ K for some k3 ∈ T r and (γ1, γ2, 1C) ∈ Γ
for some γ2 ∈ Ẑq.

We are now going to show that this is impossible. Notice first that, since G′ =
Rp × L is open in G, G′/(G′ ∩ K) is topologically isomorphic to G′K/K ⊆ G/K,
which is compact. Hence K ∩G′ is cocompact in G′. Let K1 denote the set of first
components of elements in K ∩ G′. Then K1 contains a vector space basis for Rp.
Indeed, otherwise

K ∩G′ ⊆ K1 × L ⊆ V × L ⊆ Rp × L = G′

for some proper subspace V of Rp, which contradicts the fact that G′/(K ∩ G′) is
compact.

Thus it only remains to verify that there exist γ1 ∈ R̂p and γ2 ∈ Ẑq such that
γ1 6= 0 and (γ1, γ2, 1C) ∈ Γ. Assume that (γ1, γ2, 1C) ∈ A(K, Ĝ) only if γ1 = 0.
Then

A(KC, Ĝ) ⊆ A(Rp × C, Ĝ),

and hence KC ⊇ Rp × C, whence

K/(K ∩ C) = KC/C ⊇ Rp,

which is impossible since K is discrete. This finishes the proof of the theorem.
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The idea of writing g/|g|, when possible, as the exponential of some continuous
function occurs already in the proofs that Zak [3] and Janssen [6] gave for the
existence of a zero in the case G = R. For a different proof compare [1, p.18].

3. The Zak transform and zeros

If G is a locally compact abelian group and K a uniform lattice in G, then a
fundamental domain for K will mean a Borel subset S of G such that every x ∈ G
can be uniquely written in the form x = sk where s ∈ S and k ∈ K.

Generalizing the classical notion of the Zak transform for the uniform lattice Zd

in Rd, we are going to introduce the Zak transform on L2(G) associated to K. The
first step is to guarantee the existence of a fundamental domain for K.

Lemma 2. Let G be a locally compact abelian group and K a uniform lattice in
G. Then there exists a relatively compact fundamental domain for K.

Proof. We assume first that G is compactly generated. Since G is a projective limit
of second countable groups [10, p.104] and K is discrete, there exists a compact
subgroup C of G such that C ∩ K = {e} and G/C is second countable. By [8,
Lemma 1.1] there exists a relatively compact fundamental domain Q for KC/C in
G/C. Let q : G → G/C denote the quotient homomorphism, and set S = q−1(Q).
Clearly, S is a relatively compact Borel set, and using the fact that K ∩ C = {e},
it is easy to check that S is indeed a fundamental domain for K.

Now, drop the assumption that G is compactly generated and choose an open
compactly generated subgroup H of G. Since K ∩H is a uniform lattice in H , by
the preceding paragraph there exists a relatively compact fundamental domain S
for K ∩ H in H . As H is open and G/K is compact, KH has finite index in G.
Let F be a coset representative system for KH in G, and let T = FS. Then T is
a relatively compact Borel set, and as above it is straightforward to verify that T
is a fundamental domain for K in G.

By Lemma 2 there exist relatively compact fundamental domains S for K in G

and Ω for Γ in Ĝ.
Let the Haar measure on G be normalized so that Weil’s formula holds, if we take

on G/K the normalized Haar measure and the counting measure on K. Clearly, if G
is σ-compact (equivalently, K is countable), then S has positive measure (|S| > 0).
However, this is also true in the general case. To see this, choose a compactly
generated open subgroup H of G containing S and observe that Sk ∩H 6= ∅ if and
only if k ∈ H . Since H is σ-compact and K is discrete, there are only countably
many such k. Thus H is a countable union of sets Sk, k ∈ K, whence |S| > 0.

The map Φ : S → G/K, x → xK is a continuous bijection. For each measurable
subset M of S and with χM the characteristic function of M , Weil’s formula gives

|M | =
∫
G

χM (x)dx =
∫

G/K

(∑
k∈K

χM (xk)

)
d(xK) = |ΦM |.

Hence Φ maps the measure on S induced by the Haar measure on G to the nor-
malized Haar measure on G/K.

Similarly, normalizing the Haar measures on Ĝ and Ĝ/Γ appropriately, the map-
ping Ω → Ĝ/Γ, ω → ωΓ transforms the induced measure on Ω into the Haar
measure on Ĝ/Γ, and |Ω| = 1.
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The next lemma will show that for an arbitrary locally compact abelian group
the Zak transform can be defined as indicated in the introduction.

Lemma 3. Retain the preceding assumptions and notations, and let f ∈ L2(G).
Then, for almost all (x, ω) ∈ S × Ω,

Zf(x, ω) =
∑
k∈K

f(xk)ω(k)

converges, and the function Zf belongs to L2(S × Ω) and satisfies ‖Zf‖2 = ‖f‖2.

Proof. For k ∈ K, define fk ∈ L2(S × Ω) by fk(x, ω) = f(xk)ω(k). Then∑
k∈K

‖fk‖2
2 =

∑
k∈K

∫
S

∫
Ω

|fk(x, ω)|2dωdx =
∑
k∈K

∫
S

|f(xk)|2dx = ‖f‖2
2.

We claim that 〈fk, fl〉 = 0 for k, l ∈ K, k 6= l. To show this recall that if C is a
compact abelian group and ϕ a non-trivial character of C, then

∫
C ϕ(y)dy = 0 [5,

Lemma 23.19]. Applying this to C = Ĝ/Γ and the character ϕ defined by

ϕ(ωΓ) = ω(kl−1), ω ∈ Ĝ,

we obtain ∫
Ω

ω(kl−1)dω =
∫

Ĝ/Γ

ϕ(ωΓ)d(ωΓ) = 0,

and this in turn implies

〈fk, fl〉 =
∫
S

∫
Ω

f(xk)f(xl)ω(kl−1)dωdx = 0.

It follows that the series
∑

k∈K fk converges in L2(S × Ω) and satisfies

‖
∑
k∈K

fk‖2
2 =

∑
k∈K

‖fk‖2
2 = ‖f‖2

2.

In particular, Zf(x, ω) exists for almost all (x, ω) ∈ S × Ω.

We can now define the Zak transform Zf for f ∈ L2(G). Notice first that for
every (k, γ) ∈ K × Γ and any finite subset H of K,∑

h∈H

f(xkh)(ωγ)(h) = ω(k)
∑
l∈H

f(xl)ω(l).

Thus Zf(xk, ωγ) converges if and only if Zf(x, ω) does. It follows from Lemma 3
that

Zf(x, ω) =
∑
k∈K

f(xk)ω(k)

is defined for locally almost all (x, ω) ∈ G× Ĝ (and, in fact, for a.a. (x, ω) if G is
σ-compact), and this function is called the Zak transform of f . We say that Zf

is continuous on G × Ĝ if there exists a continuous function g on G × Ĝ which
agrees with Zf locally a.e. on G × Ĝ. Of course, such a function g then satisfies
the quasi-periodicity relation g(xk, ωγ) = ω(k)g(x, ω) for all (x, ω) ∈ G × Ĝ and
(k, γ) ∈ K × Γ. Hence an application of the theorem yields the corollary.
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4. Some remarks

We finish the paper by adding remarks concerning the hypotheses of the theorem
and some application.

Remark 1. The converse to the theorem also holds. That is, if G is a compactly
generated locally compact abelian group, then G0, the connected component of
the identity, must be non-compact provided that G has the following property:
For every uniform lattice K in G and f ∈ L2(G), Zf has a zero whenever Zf is
continuous.

In fact, suppose that G0 is compact so that G = D×C where D is discrete and
C is compact. Choosing K = D and f = χC , one obtains for x = dc, d ∈ D, c ∈ C,

and ω ∈ Ĝ,

Zf(x, ω) =
∑
k∈D

f(xk)ω(k) = ω(d).

This formula shows that Zf is continuous and of modulus 1.

Remark 2. In general, a locally compact abelian group G need not contain a uni-
form lattice. The following example was kindly communicated by the referee.

Suppose G is the group (Z4)∞ with the topology obtained when the subgroup
C generated by all elements of order 2 is declared to be open and compact. Then
every discrete subgroup K of G has to be finite. Indeed, K ∩C is finite and x → x2

is a homomorphism from K into K ∩ C with kernel K ∩ C.
However, if G is of the form G = Rp × D × C, where D is discrete and C is

compact, then we can take K = Zp × D. More specifically, if G is compactly
generated, say G = Rp × Zq × C, then an abundance of uniform lattices can be
constructed as follows. Let h1 be a homomorphism of Zp ⊆ Rp into C and let h2

and h3 be homomorphisms of Zq into Rp and C, respectively. Then

K = {(x1 + h2(x2), x2, h1(x1) + h3(x2)) : x1 ∈ Zp, x2 ∈ Zq}
is a uniform lattice in G.

Remark 3. The condition that Zf be continuous is satisfied whenever f is contin-
uous and rapidly decreasing outside of compact subsets of G. More precisely, it is
well-known that if f is a continuous function on Rd such that |f(x)| ≤ c(1+‖x‖2)−α

for some α > 1 and c > 0, then Zf is continuous. Slightly more general, it is not
difficult to see that for G = Rp ×Zq ×C ⊆ Rp ×Rq ×C, a similar hypothesis with
respect to the Rp and Rq variables is sufficient.

For the two final remarks, let K denote a uniform lattice in the locally compact
abelian group G, Γ the annihilator of K in Ĝ and Z the Zak transform associated
to K.

Remark 4. Let S and Ω be relatively compact fundamental domains for K in G

and Γ in Ĝ, respectively. We have seen (Lemma 3) that, after suitably normalizing
Haar measures, Z maps L2(G) unitarily into L2(S × Ω). It can be shown that Z

is surjective provided that the mappings S → G/K and Ω → Ĝ/Γ induce Hilbert
space isomorphisms L2(S) → L2(G/K) and L2(Ω) → L2(Ĝ/Γ), (compare the proof
for G = Rd in [2]). This latter condition is satisfied if S → G/K and Ω → Ĝ/Γ are
Borel isomorphisms, that is, if S and Ω arise from Borel cross-sections G/K → G
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and Ĝ/Γ → Ĝ. Now, the existence of such cross-sections is guaranteed when G

(and hence Ĝ) is second countable ([8, Lemma 1.1] and [9, Theorem 4.2]).

Remark 5. Let G be a first countable compactly generated locally compact abelian
group, and let K be a uniform lattice in G and Γ the annihilator of K in Ĝ. Choose
relatively compact Borel sets S in G and Ω in Ĝ such that the quotient mappings
are Borel isomorphisms (see Remark 4). Suppose that g is a continuous function
on G × Ĝ satisfying the quasi-periodicity relation g(xk, ωγ) = ω(k) g(x, ω) for all
(x, ω) ∈ G×Ĝ and (k, γ) ∈ K×Γ. Then, since Z : L2(G) → L2(S×Ω) is surjective,
there exists f ∈ L2(G) such that Zf = g a.e. on S×Ω, hence a.e. on G× Ĝ. Thus,
in this situation, the theorem and the corollary are equivalent.

Remark 6. Let f ∈ L2(G), and for k ∈ K and γ ∈ Γ define ϕk,γ ∈ L2(G) by
ϕk,γ(x) = γ(x)f(k−1x). The collection of all these functions is called the Gabor
system associated with f . In the classical situation, G = Rd, the question of when
this Gabor system forms a frame (an exact frame, an orthonormal basis) for L2(G)
has been a matter of great interest.

In this context the Zak transform plays an important role. For instance, the
set {ϕk,γ : k ∈ K, γ ∈ Γ} constitutes a frame for L2(Rd) with frame bounds
A and B precisely when A ≤ |Zf | ≤ B almost everywhere on Rd × R̂d (see [2,
Theorem 3.16]). Now, the proofs of these results carry over, in a straightforward
manner, to a general locally compact abelian group G provided that the mapping
Z : L2(G) → L2(S × Ω) is onto. By the preceding remark we know this to be true
for suitable S and Ω at least when G is second countable.

In particular, from the corollary we can draw the following conclusion. Suppose
that G is a first countable compactly generated locally compact abelian group with
non-compact connected component of the identity. If f ∈ L2(G) is such that Zf is
continuous, then the functions ϕk,γ do not form a frame for L2(G).
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