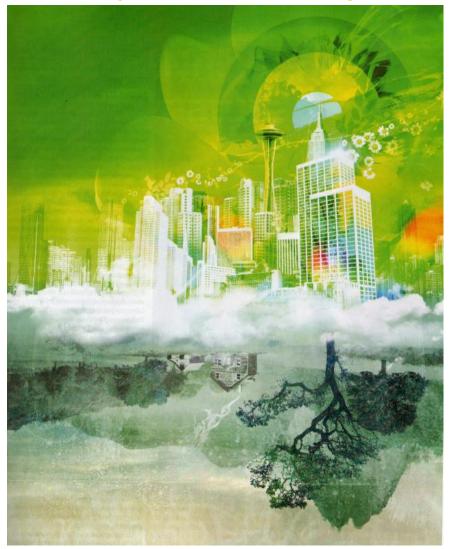


2nd Xiamen International Forum on Urban Environment:

ZeroWasteWater: Short-cycling of Wastewater Resources for Sustainable Cities of the Future

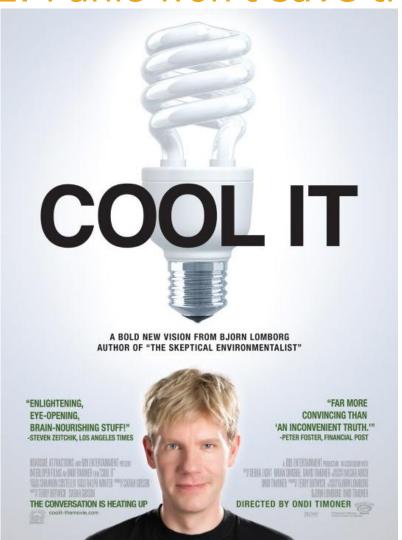
W. Verstraete, B. Bundervoet & B. Eggermont


Lab. Microbial Ecology and Technology (LabMET)
Faculty of Bioscience Engineering,
Ghent University
Coupure L 653, B-9000 Gent, Belgium
www.LabMET.UGent.be

1. Escape to the city: a urban utopia

"Urbanites now outnumber their rural cousins – and that's surprisingly **good news** for the environment"

"The average New Yorker produces just 30 per cent of the greenhouse emissions of the average US citizen"


(Barley 2010; *New Scientist* 2785, 32-37)

2. Panic won't save the world

Positive and effective remedies:

- promote basic sanitation
- implement green roofs

(Bjorn Lomborg)

3. Myth: Sanitation worldwide is resolved

The WC with a water footprint of some 130 L water per capita per day is "unsustainable"

Currently 2.6 billion people have no decent sanitation

Sanitation is taboo in many cultures, religions, science, ...

Result of the taboo:

4. New approaches for sanitation are needed

Key issues:

- The "Urban Metabolism" of the "Cities, towns and villages of the Future"
 - → it must be redesigned drastically
- Rich countries <u>must</u> give the example

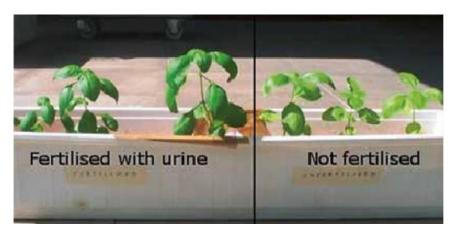
4. New approaches for sanitation are needed

Durban (South Africa) pays inhabitants for urine

- Dry toilets (water is scarce in Africa)
- Family can earn about 3 €/week by delivering urine

World Toilet Day - 19 November 2010

Poor access to water, sanitation and hygiene has a particularly acute impact on <u>women</u> and <u>girls</u>, affecting their health, dignity and life chances. (http://www.wateraid.org/uk)

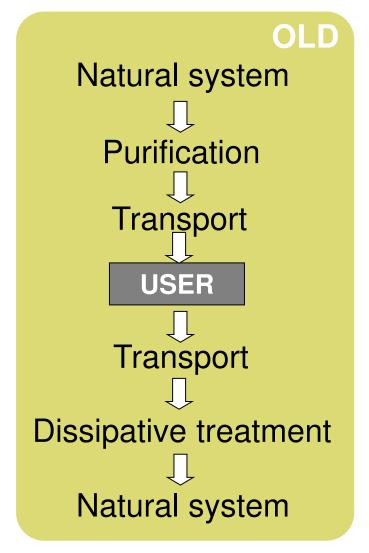


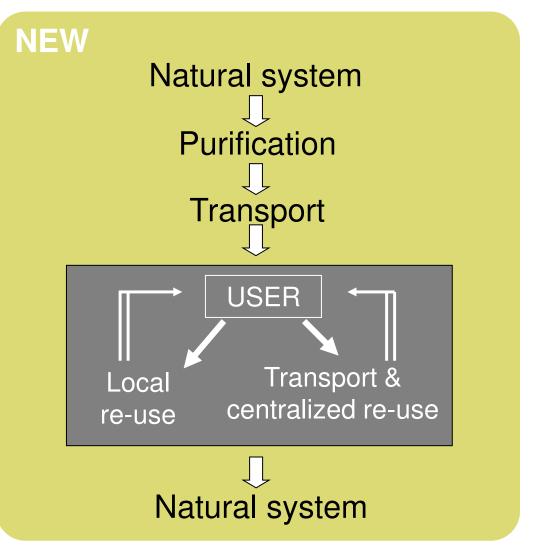
4. New approaches for sanitation are needed

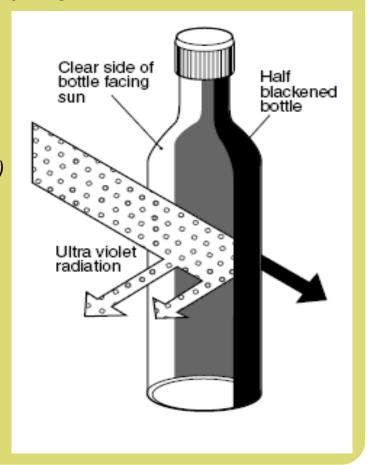
Pure urine as liquid NSF is interesting for agricultural applications in developing countries

BUT can contain some hazardous components (e.g. pharmaceuticals)

Possible treatments:


- Electrodialysis
- Struvite
- Sand filtration + solar drying


(Pronk and Kone 2009; *Desalination* 248, 360-368)



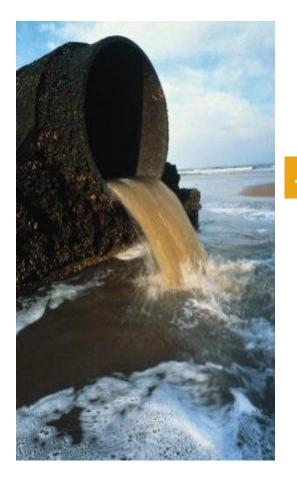
Production of drinking water in developing countries: SODIS

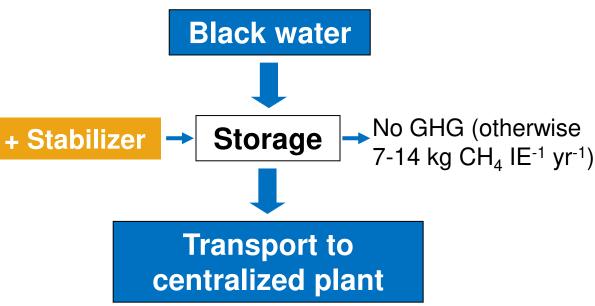
- A PET bottle in the sun!
- The diarrhoea decreases by a factor 3 (SandecNews, EAWAG Aquatic Res., Aug. 2010)
- The costs are affordable because below 0.1 €/m³

Key issues are:

We should be humble enough to upgrade SODIS and propagate its use.

Production of drinking water in developing countries: **SODIS**





A. Decentralized: Maximum storage

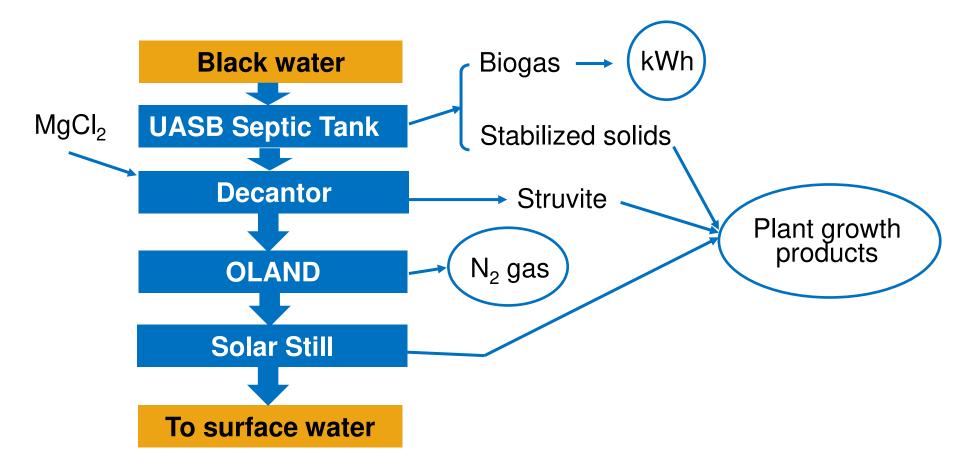
Question: What type of reversible stabilizer?

A. Decentralized: Elegant integration in the street

Multilayer Combined Bio-Trickling Filter (MC-BTF); Shangai

→ Unit for 100 families!

(Kuai Linping, Shanghai Jiao Tong University, China)

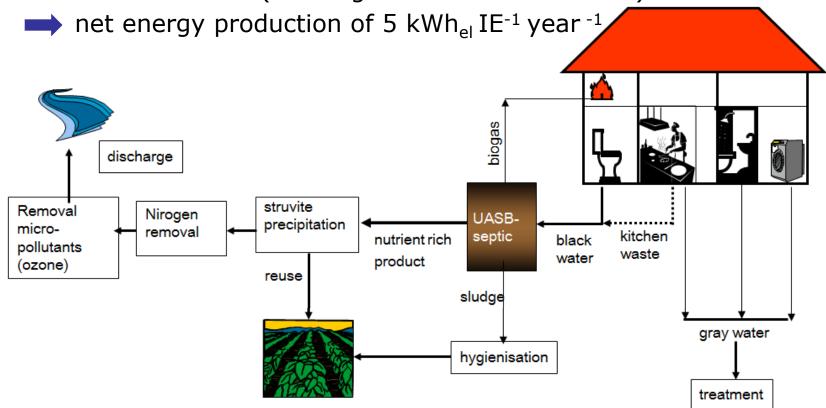


A. Decentralized: Autonomic treatment

(Vlaeminck et al. 2007; Appl. Microbiol. Biotechnol. 74: 1376-1384; LabMET)

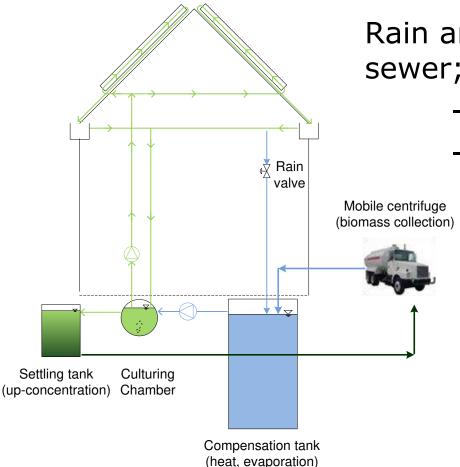
A. Decentralized: Autonomic treatment

UASB (ST)	SRT = 75 d
	$HRT_{min} = 10 d$
	T = 30 °C
Decantor	HRT = 30 min
Decantor	- 00 111111
OLAND	$HRT_{min} = 3 d$
Solar still	HRT = months



A. Decentralized: Autonomic treatment

Case study (Sneek, Netherland): Pioneer project of 32 houses with vacuum toilets (flushing with 1L in stead of 7L)

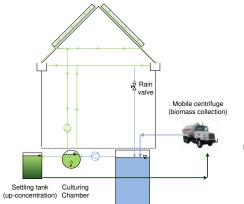

(Zeeman et al. 2008; Water Sci. & Techn. 57, 1207-1212)

A. Decentralized: Green roofs

Rain and pretreated sewage not in sewer; it can be used to maintain:

- Green rooftops
- Algae cultivation

(Zamolla et al. In prep.; LabMET)



A. Decentralized: Algae cultivation on domestic roofs

production of 20 g dry mater m⁻² d⁻¹

→ gross energy recovery of 8.7 kWh_{el} m⁻² year⁻¹

or 1000 kWh_{el} home⁻¹ year⁻¹

(heat, evaporation)

photovoltaic panels: 100 kWh_{el} m⁻² year⁻¹

Other advantages:

- Recycle grey water nutrients
- Uptake of CO₂
- Management of storm water
- Cooling of the house

(Zamolla et al. In prep.; LabMET)

- B. Centralized: Conventional activated sludge (CAS) design
 - □ Capex + Opex: 17 40 EUR IE⁻¹ year⁻¹
 - □ Energy use: 20-35 kWh_{el} IE⁻¹ year⁻¹
 - Energy recovery via sludge digestion is limited
 - ♦ Theor.: 30-40 kWh IE-1 year-1
 - ♦ Pract.: 15-20 kWh IE-1 year-1
 - N, P, K → no recovery
 - All organic C via biology + sludge incineration to CO₂
 - Water → hardly re-used

<u>Take home</u>: The <u>centralized wastewater</u> treatment must be redesigned entirely!

B. Centralized: Retrofitting of CAS-design

Macao (Egypt): sewage treatment plant

INESS® Integrated New Energy Solutions & Services wastewater treatment plant powered by the sun

Wind turbine

Anaerobic digester

Photovoltaic roof

Towards minimal external power consumption

6. New Urban Metabolism

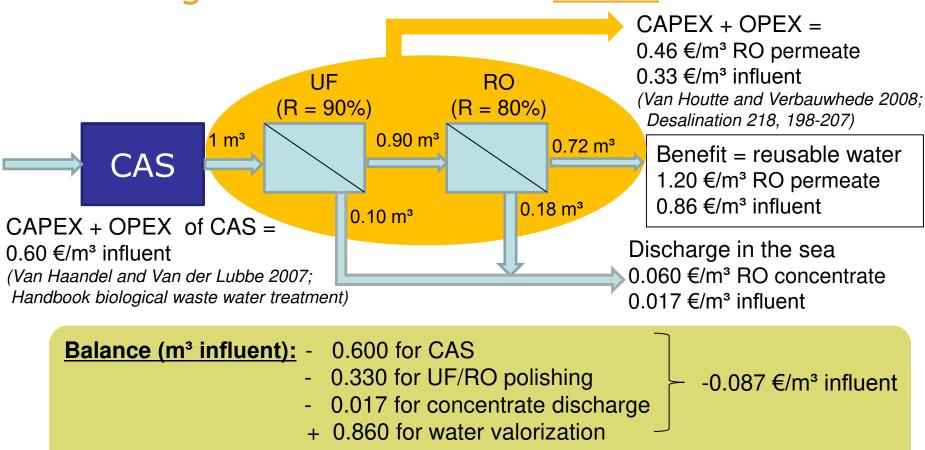
Food wastes are properly re-used

- Food consumes 15% of the US overall energy budget
- About 20% of food is wasted, i.e. 2-3% of the total energy budget (Webber & Cuellar, 2010; EST; DOI 10:1021)

Take home:

- Co-digestion can recover a major part of this energy
- Food and kitchen wastes can be the driver of a new type of wastewater treatment

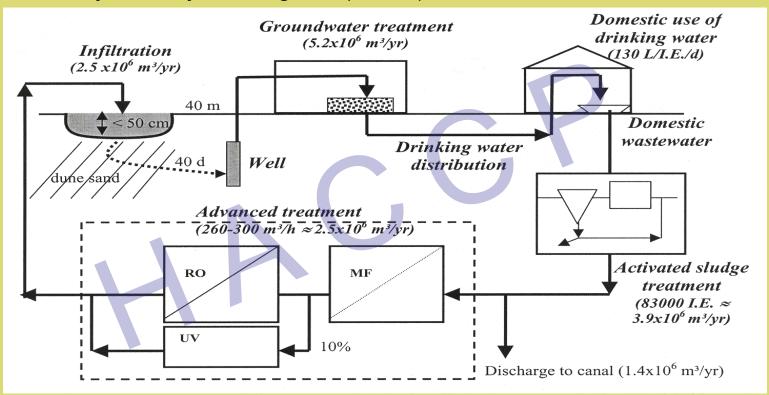
7. Sewage as a resource


	Production IE ⁻¹ year ⁻¹				Value (EUR IE ⁻¹ year ⁻¹)	
Resources	Sewage	Kitchen waste	Market price		Sewage	Sewage + Kitchen waste
Potable water	54 m ³		1.2 E	EUR m ⁻³	65.4	65.4
Heat recovered (5°cooling) • Electricity consumption • Heat recovered	-179 kWh _{el} 496 kWh _{th}		0.10 El 0.05 El	JR kWh _{el} -1 JR kWh _{th} -1	6.9	6.9
Anaerobic digestion • Electricity produced • Heat generated	23 kWh _{el} 24 kWh _{th}	16 kWh _{el} 17 kWh _{th}		JR kWh _{el} -1 JR kWh _{th} -1	3.5	5.9
Biochar production	5.7 kg	3.9 kg	0.14 I	EUR kg ⁻¹	0.8	1.3
Recovered nitrogen	2.4 kg	0.2 kg	1.15 E	UR kg ⁻¹ N	2.7	2.9
Recovered phosphorus	0.82 kg	0.66 kg	1.35 E	UR kg ⁻¹ P	1.1	2.0
				Overall	80.4	84.5

8. Sewage as a resource of water

<u>Take home</u>: If RO-permeate is used at value, CAS + UF + RO pays already for itself!

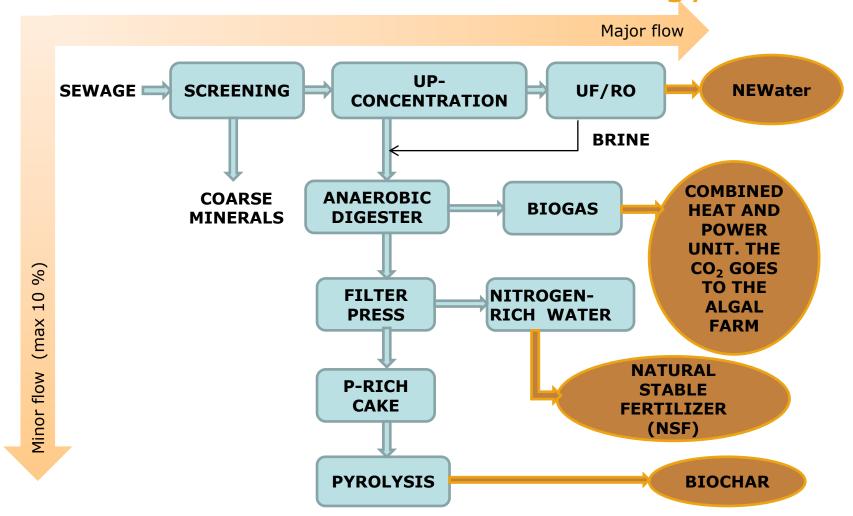
(Verstraete et al. 2009; Bioresource Techn. 100, 5537-5545; LabMET)



8. Sewage as a resource of water

Case study: Koksijde, Belgium (IWVA)

(Dewettinck et al., 2001; Water Sci. Technol. 43: 31-38; LabMET)


<u>Take home:</u> this technology was upscaled in Singapore → NEWater

0

9. The "Zero-Waste" Water Technology

(Verstraete et al. 2009; Bioresource Techn. 100, 5537-5545; LabMET)

Crucial step = up-concentration

(creating a pre-effluent easy cleanable with UF/RO + concentrate waste load with 10 – 20 times more COD/m³)

Examples of up-concentration (prevention of sewage dilution)

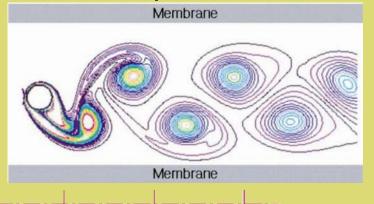
- Separate sewer system (rain water and waste water)
- 50 % less infiltration of ground water in sewer
- Domestic water conservation
- Use of kitchen waste
- Control microbial degradation
- → Already (5 10 times) upconcentration possible

effluent

10. Sewage as a multi-resource

Crucial step = up-concentration

(creating a pre-effluent easy cleanable with UF/RO + concentrate waste load with 10 – 20 times more COD/m³)

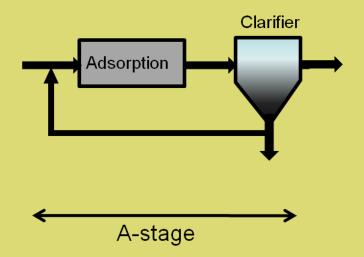

Examples for up-concentration (Physical/Chemical)

- (Direct) filtration
 - = filtration with or without coagulant
 - e.g. Dynamic sand filtration (DSF)
 - Membrane filtration
 - e.g. FMX and VSEP

influent

drain

Dissolved Air Flotation (DAF)



Crucial step = up-concentration

(creating a pre-effluent easy cleanable with UF/RO + concentrate waste load with 10 – 20 times more COD/m³)

Examples for up-concentration (Biological)

Adsorption Bio-Aeration or A/B-Boehnke concept

(Boehnke et al. 1998; Water-Engineering & Management 145, 31-34)

Cost consideration for the proposed sewage recycling technology (according to C2C)

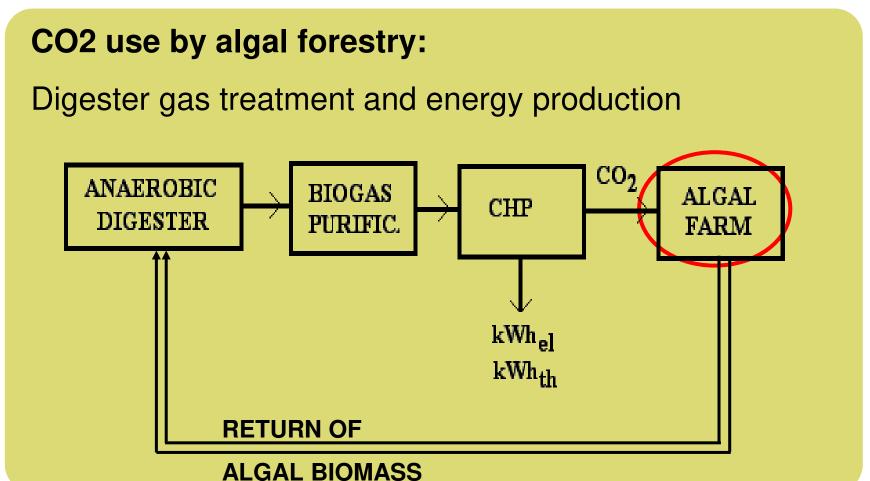
- → the major flow: directly to reuse
- → the minor flow (= a concentrate): produced at the entry of the plant, subjected to advanced recovery for energy and fertilizers

<u>Major flow</u>	
Dissolved air flotation	0.02-0.03 €/m³
Dynamic sand filtration	0.05-0.06 €/m³ \(\bigcup 0.53-1.15 €/m³
Ultra filtration and Reverse Osmosis	0.46-1.06 €/m³ _
Minor flow	
Anaerobic digestion	Break even
Mechanical separation	$0.08-0.10 \in /m^3 - 0.08-0.10 \in /m^3$
Pyrolysis	Break-even
	Total costs*: 0.61-1.25 €/m³

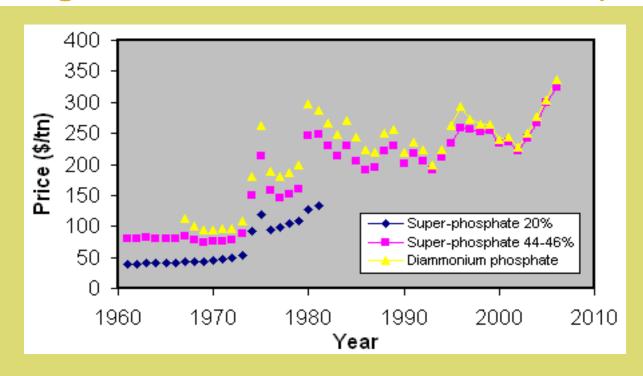
^{*} this is the estimated total cost

(Verstraete et al. 2009; Bioresource Techn. 100, 5537-5545; LabMET)

Take home: Total costs of about 1 €/m³ are comparable with CAS + UF + RO


- * AD of the "concentrate-line"
 - Add organics from 0.5 g COD/L to 5.0 g COD/L to 50 g COD/L
 - The burned biogas, i.e. CO₂ can be used to grow algae
- ❖ After AD → Separator: Decantor centrifuge with(out) PE
- Pyrolysis to biochar (Lehmann et al. 2007; Nature 447, 143-144)
 - Development needed in terms of
 - Pyrolysis of dry solids
 - Quality & optimal use of biochar
 - Economically feasible?
 - Improves soil fertility (= economic value)
 - 1 ton C ≈ 3 ton CO₂ ≈ 39 € with 13 €/tCO₂ (IETA, greenhouse gas market 2010)

10. Sewage as a multi-resource: CO₂

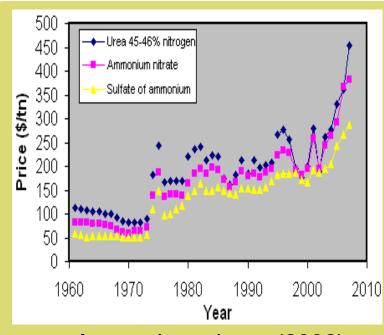

(De Schamphelaire & Verstraete 2009; Biotechn. Bioeng. 103, 296-304; LabMET)

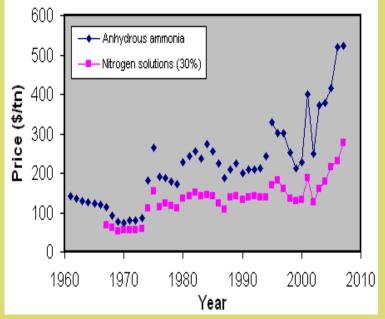
10. Sewage as a multi-resource: Phosphorus

Phosphate rock (2010): 119.6 \$/mt

Diammonium phosphate (2010): 482.6 \$/mt

Currently (2010): 1.1 – 1.6 \$/kg-P


(Sources: US Geological Survey Minerals Yearbook 2006 and the World Bank commodity data 2010)



10. Sewage as a multi-resource: Nitrogen

Ammonium nitrate (2008):

Ammonium sulfate (2008):

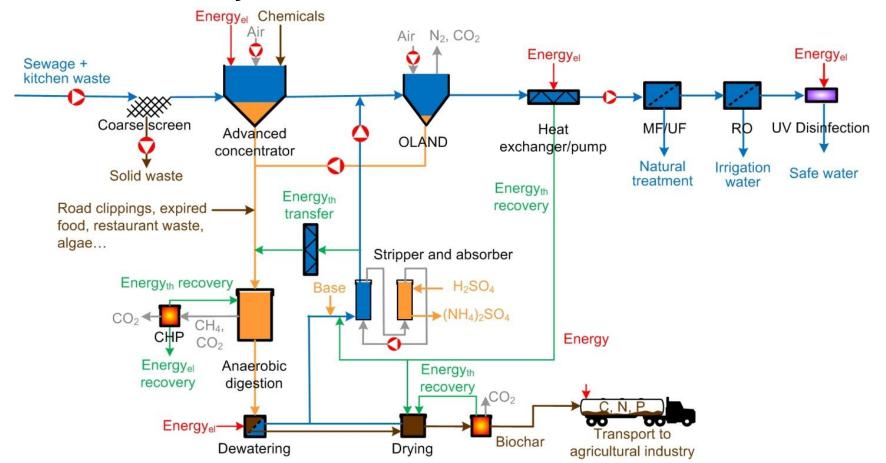
Anhydrous ammonia (2008):

Currently (2010):

300 - 330 \$/mt

200 - 210 \$/mt

450 - 650 \$/mt


1.15 - 1.48 \$/kg-N

The overall system:

	Energy gain (kWh IE ⁻¹ year ⁻¹)		Avoided CO2 emission	
	Electricity	Heat	(kg CO ₂ IE ⁻¹ year ⁻¹)	
Kitchen grinder	-1.4		-0.9	
Advanced concentrator	-6.0		-3.6	
OLAND	12.8		6.6	
Heat recovery	-179	496	41.7	
Anaerobic digestion	38.9		23.3	
Sludge dewatering	1.8		1.1	
N recovery	-9.6	40.8	4.5	
P recovery	1.2		2.0	
Biochar			13.3	
sum	-141	537	88	

<u>Take home</u>: Zero WasteWater prevents 1-4 % of the CO₂ emissions per IE

(Verstraete & Vlaeminck, 2010; Keynote Paper 2nd Xiamen Intern. Forum on Urban Environment; LabMET)

10. Sewage as a multi-resource: Economically

CAS design: - Total cost with water recovery ≈ 1.0 €/m³

- Net costs upon sale of RO-permeate = 0.0 €/m³

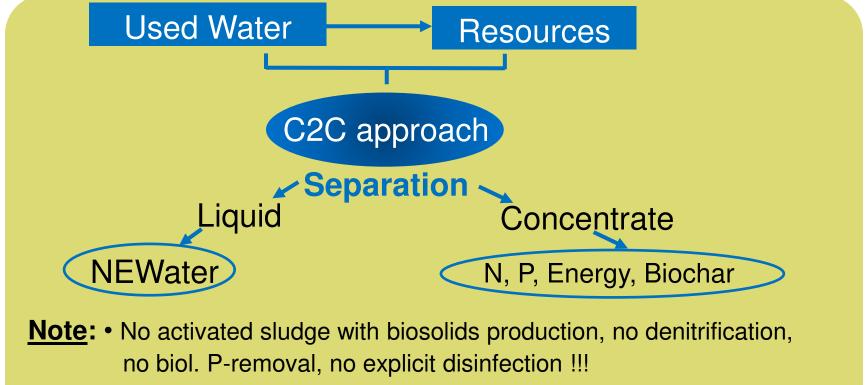
C2C design - Total cost with up-recycling of water, energy & nutrients ≈ 1.0 €/m³

- Net costs upon sale of RO-permeate = 0.0 €/m³

Perspective:

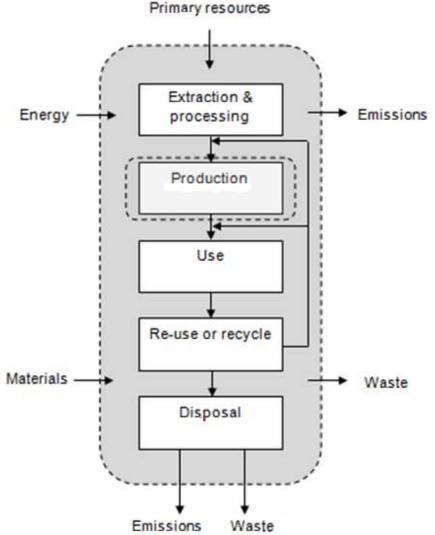
- CO₂ recycling via algae
- Recovery of struvite
- C-storage as biochar

Take home:


The C2C design can already be achieved at equal costs of the CAS + it holds plenty of extra potentials

10. Sewage as a multi-resource: Economically

• Still problematic: micropollutants


<u>Take home</u>: To have a set of advanced case-specific processes available, can be useful

11. Evaluate sewage treatment plant with LCA

Life Cycle Assessment or LCA

is a process to evaluate the environmental burdens associated with a product, process or activity by identifying, quantifying and assessing energy and materials used and wastes released to the environment

11. Evaluate sewage treatment plant with LCA

LCA: Identify and evaluate opportunities to effect environmental improvements for policy makers, product developers, ...

- ❖ standard units to compare technologies (e.g. CO₂-equivalents IE⁻¹)
- Use of mili Persons Equivalent or mPE to evaluate the impact of a certain product/process
 - ➤ 1000 mPE = 100% of the yearly pollution of a specific kind (e.g. eutrofication, acidification, global warming, ...)
 - e.g. 58 kg NO_3 -equivalents = 1000 mPE_{eutrofication}
 - 8700 kg CO_2 -equivalents = 1000 mPE_{CO2}

11. Evaluate sewage treatment plant with LCA

Some mPE's of waste water treatment

	Conventional	Zero waste water
Eutrofication	115 mPE	RKK
Ecotoxicity	85 mPE	KK
Acidification	30 mPE	7
Global warming potential	18 mPE	7

(Clauwaert et al 2010; WT-Afvalwater 10, 186-195; Aquafin)

<u>Take home</u>: wastewater treatment still has a relatively large share in the environmental pollution; this can be decreased significantly!

12. Conclusions

- We have to redesign the sewage System entirely
 - Separation at source (NoMix)
 - Separation at STP
- Up-concentration is a crucial step

Several lines of up-concentration are under development

- Management
- Physical/chemical
- Biological
- AD is a key process in the recovery of Energy and Nutrients
- We must work towards a "Zero Waste"-Water Technology both at decentralized as centralized level
- Thus we can truly deal with the environmental burdens of the water cycle