
ZesT: an all-purpose hash function based on

Zémor-Tillich

Christophe Petit1⋆, Giacomo de Meulenaer1, Jean-Jacques Quisquater1,
Nicolas Veyrat-Charvillon1, Jean-Pierre Tillich2 and Gilles Zémor3

1 2 3
UCL Crypto Group⋆⋆ Equipe SECRET Institut de Mathématiques de Bordeaux

Université catholique de Louvain INRIA Rocquencourt Université Bordeaux 1
Place du levant 3 351, cours de la Libération

1348 Louvain-la-Neuve, Belgium 78153 Le Chesnay, France 33405 Talence, France

e-mails:
christophe.petit@uclouvain.be,giacomo.demeulenaer@uclouvain.be,jjq@uclouvain.be,

nicolas.veyrat@uclouvain.be,jean-pierre.tillich@inria.fr,Gilles.Zemor@math.u-bordeaux1.fr

Abstract. Hash functions are a very important cryptographic primitive.
The collision resistance of provable hash functions relies on hard mathe-
matical problems. This makes them very appealing for the cryptographic
community since collision resistance is by far the most important prop-
erty that a hash function should satisfy. However, provable hash functions
tend to be slower than specially-designed hash functions like SHA, and
their algebraic structure often implies homomorphic properties and weak
behaviors on particular inputs.

We introduce the ZesT hash function, a provable hash function that
is based on the Zémor-Tillich hash function. ZesT is provably collision
and preimage resistant if the balance problem corresponding to Zémor-
Tillich is hard, a problem that has remained unbroken since CRYPTO’94.
The function admits an ultra-lightweight implementation in ASIC and it
is currently between 2 to 3 times less efficient than SHA on FPGA,
and between 4 to 10 times slower than SHA in software. The func-
tion has structural parallelism, and its simplicity will certainly allow a
much wider range of implementations and many code optimization tech-
niques. A careful examination and pseudorandom tests performed with
the Dieharder revealed no apparent malleability weakness, which sug-
gests that the function can be used as a general-purpose hash function.
Finally, ZesT can be slightly modified to reach all the requirements of
the NIST competition.

We stress that the hardness of the balance problem corresponding to
Zémor-Tillich should be further studied and better established by the
cryptography community. In that case, our function ZesT will definitely
become a very appealing all-purpose hash function.

⋆ Research Fellow of the Belgian Fund for Scientific Research (F.R.S.-FNRS) at Uni-
versité catholique de Louvain (UCL).

⋆⋆ A member of BCRYPT network.

1 Introduction

“Provable” hash functions, whose collision resistance relies on hard mathematical
problems, are very appealing. Collision resistance is by far the most important
property that a hash function should satisfy. A mathematical problem can be
studied independently outside the cryptographic community and the confidence
in the collision resistance of the hash function may increase with the understand-
ing of the problem. In particular, functions based on the factorization problem
[25,26,17,40] or on the discrete logarithm problem [17,13] provide a very strong
level of confidence.

On the other hand, provable hash functions have important issues that have
impended their broad use in practice. Provable hash functions tend to be very
slow compared to specially designed hash functions like SHA. This effect tend to
disappear in recent provable hash function proposals like VSH [16] and SWIFFT
[32], but the corresponding hard problems are only variants of standard factor-
ization and lattice problems. Moreover, existing provable hash functions have
a rich mathematical structure implying homomorphic properties and weak be-
haviors on particular inputs. In general, provable hash functions should only be
used in applications requiring no more than collision resistance.

Hash functions are the Swiss army knives of Cryptography: they are supposed
to possess a lot of functionalities for a lot of different applications. In practice,
it would be dangerous to publicize a collision resistant hash function with cer-
tain weak behaviors because the function might be (wrongly) used by engineers
without any background in Cryptology. The efficiency issue is also important
since there are applications requiring high-speed or low-area implementations.
At the light of most existing proposals, provable hash functions seem therefore
not practical at all. However, the ZesT hash function presented here is a prov-
ably collision resistant hash function that suits all applications.

ZesT is Zémor-Tillich with Enhanced Security inside. It is essentially the
vectorial version of the Zémor-Tillich hash function iterated twice. The Zémor-
Tillich hash function is a provable hash function based on a non-standard as-
sumption that has resisted 15 years of cryptanalysis since its publication at
CRYPTO’94 [42]. Its vectorial version was introduced in [36] and shown to be
as secure as the original function. The ZesT function preserves the provable

collision resistance of the Zémor-Tillich hash function but it also heuristically

satisfies good pseudorandom properties.
We argue that this approach is meaningful as it combines the main advan-

tages of the fully heuristical approach and the fully theoretical approach. ZesT
has heuristic pseudorandom properties comparable to the heuristic pseudoran-
dom properties of custom designed hash functions and it is moreover provably

secure with respect to the crucial notion of collision resistance. It is also by
far more efficient than any provably pseudorandom and collision-resistant hash
function could be. Besides, we point out that the same approach was chosen by
Micciancio et al. in their NIST submission based on SWIFFT.

ZesT has exciting flavors of provable security. Like the Zémor-Tillich hash
function, ZesT is collision resistant if and only if the balance problem is hard and
in particular if the representation problem is hard for the group SL(2, F2n) and
the generators A0 = (X 1

1 0) and A1 =
(

X X+1
1 1

)

. According to existing attacks,
ZesT is provably preimage resistant, second preimage resistant and collision
resistant up to n/2 bits, for an output of 2n bits.

For collision and second preimage resistance, the security of ZesT is indeed
of n/2 bits in the sense that attacks with this complexity exist and that attacks
with lower complexity would improve the resolution of the balance problem. For
preimage resistance, the actual security of ZesT seems to be as large as 2n bits
because the preimage attacks against the Zémor-Tillich hash function do not
generalize to ZesT. Besides, an informal reasoning on the known weaknesses of
Zémor-Tillich tends to assert the security of ZesT as a MAC, and tests per-
formed with Dieharder [2] assert its pseudorandom behavior.

ZesT provides great recipes for many diets: it is really practical in a wide
range of applications. ZesT is provably secure, reasonably efficient in software,
about as efficient as SHA in FPGA and very compact in low area ASIC imple-
mentations. ZesT algorithm only consists of XORs, SHIFTs and TEST opera-
tions on bit vectors. This simplicity allows efficient implementations on a wide
range of platforms, as well as software-assisted code optimization.

At equivalent collision resistance security levels, ZesT is 10 times as slow as
SHA-1, 10 times as slow as SHA-256 and 4 times as slow as SHA-512 on our
32-bit architecture evaluation platform. With the notable exception of SWIFFT
[31], this is comparable or better than other provably secure hash functions, and
fast enough for most software applications that are limited in speed by the poor
efficiency of their asymmetric cryptographic components anyway. Moreover, the
function would take full benefit of graphic accelerators with large data buses and
instructions.

ZesT is particularly efficient in hardware. For high speed designs in FPGA,
first evaluations show that ZesT implementations may reach throughput per
slice ratios comparable to very optimized FPGA implementations of SHA-1 and
SHA-2. On the other hand, the simplicity of ZesT allows trading throughput
for area with a lot of flexibility. Lightweight implementations of ZesT are much
smaller than lightweight implementations of currently used hash functions. In
particular, ZesT outperforms the lightweight implementation of SHA-1 pre-
sented in [22], the SQUASH implementation of [27] and the implementation of
the block cipher-based hash function DM-PRESENT-80 presented in [21].

ZesT can be cut into small pieces. The function has inherited the parallelism
of the Zémor-Tillich hash function. Unlike many hash functions proposed for the
NIST competition, the computation of ZesT in serial and parallel modes gives
the same result thanks to the inherent group structure of the function and in
particular to the associativity property. Besides, additional parallelism can be
exploited in software by using SIMD instructions for computing the XORs of

large bit vectors.

After appropriate preparation, ZesT sweetly fits into NIST’s cooking pot.
Despite its very interesting properties, ZesT hash function does not completely
fulfil standard requirements for hash functions like described in NIST’s call [1].
However, slight modifications of the algorithm allow it to reach these require-
ments.

ZesT as such is a keyed hash function that possesses some weak keys, while
a secure unkeyed version is necessary in many applications. This issue is solved
by an appropriate choice of default keys. ZesT’s collision resistance is only the
square root of the birthday bound, and its second preimage resistance is not
better than its collision resistance. The first issue is solved by using the projective
version of Zémor-Tillich instead of the vectorial version in the second round of
ZesT; and the second issue is solved by doubling the parameters’ sizes in the
first round. Finally, ZesT’s parameter n must be prime to be protected against
subgroup attacks while NIST required output lengths of 224, 256, 384 and 512
bits. This issue can be solved either by truncating or by extending the outputs
by a few bits.

All these changes in ZesT’s recipe may influence its simplicity, its efficiency
and its security. Like tastes and colors this cannot be discussed. We believe that
the choice between one or another version of ZesT’s recipe will depend on ev-
erybody’s personal taste for simplicity, efficiency, security and conformity with
NIST’s requirements. We present our favorite recipe but we invite everybody to
select their personal first-rate ingredients.

This paper is organized as follows. Section 2 recalls the main results on the
Zémor-Tillich hash function. Section 3 introduces the ZesT function. Section
4 and 5 give provable and heuristic security results on ZesT. Section 6 gives
efficiency results for a software optimized C code, a high-speed FPGA imple-
mentation and a low-area ASIC implementation and it furthermore discusses
additional implementations. Section 7 modifies the function to approach NIST’s
requirements, Section 8 discusses some alternative choices in the design’s param-
eters and Section 9 concludes the paper.

2 The Zémor-Tillich hash function

In this paper, we will often abusively identify a polynomial of degree n over
F2 Pn(X) = Xn + pn−1X

n−1 + ... + p1X + p0 to its corresponding bit se-
quence pn−1...p1p0. When Pn(X) is irreducible, it defines a finite field F2n

whose elements will be identified to bitstrings through the isomorphism F2n ≈
F2[X]/(Pn(X)). Finally, a vector (a b) ∈ (F2n)2 will be abusively identified to
the bit sequence a||b.

Let m = m0m1...mµ be the bitstring representation of a message m. Let
Pn(X) be an irreducible polynomial of degree n over F2 (Tillich and Zémor

suggested using 130 ≤ n ≤ 170) defining the field F2n ≈ F2[X]/(Pn(X)). Let
A0, A1 be the matrices of G := SL(2, F2n) (the group of 2× 2 matrices over F2n

with unitary determinant) defined by

A0 =

(

X 1
1 0

)

A1 =

(

X X + 1
1 1

)

The matrices A0 and A1 will be called graph generators. The Zémor-Tillich hash
value of m is defined as the matrix product [42]

HZT (m) = HZT (Pn(X), m) := Am0
Am1

...Amµ
.

As the group SL(2, F2n) has size 2n(22n−1), the output size is roughly 3n bits if
the matrices of SL(2, F2n) are mapped to bitstrings. This very simple design is
also very elegant and appealing, as many properties of the hash function can be
captured through graph-theoretical and group-theoretical problems [45,46,42].
Finding collisions is hard if the corresponding representation problem is hard to
solve, and if and only if the corresponding balance problem is hard to solve.

Problem 1 (Representation problem) Given a group G and a subset S thereof,

find a reduced product of subset elements of length at most L that is equal to the

unit element of the group, that is

∏

0≤i<µ

si = 1

with si ∈ S, sisi+1 6= 1 and µ ≤ L.

Problem 2 (Balance problem) Given a group G and a subset S thereof, find

two reduced products of subset elements of lengths at most L that are equal, that

is
∏

0≤i<µ

si =
∏

0≤i<µ′

s′i

with si, s
′
i ∈ S, sisi+1, s

′
is

′
i+1 6= 1 and µ, µ′ ≤ L.

The parameter L in these problems corresponds to the maximal bit size of
message that is considered as “reasonable”. We may require L to be polynomial
in n for theory or to be smaller than 250 for practice.

The representation and balance problem are not classical problems in Cryp-
tography but in the case of the Zémor-Tillich hash function they have resisted
15 years of cryptanalysis attempts. “Provable security” with respect to non-
standard assumptions may not give today the same confidence as a security re-
duction to the factorization problem, but the confidence grows over the years if
the function does not get broken. At least, the security reduction for the Zémor-
Tillich hash function provides a concise well-defined mathematical problem to
solve in order to break the function, and this problem has not been solved for
15 years.

The hardness of representation and balance problems seems to depend a lot
on the group G and the subset S. Representation problems have been long stud-
ied in Spectral Graph Theory of Cayley graphs [28]; balance problems have been
introduced in [9] for Abelian groups and factorization problems are well-studied
in other settings. Finding the shortest representation and factorization are hard
problems for generic groups [29,20]. The representation problem is as hard as
the discrete logarithm problem in Abelian groups [9], but for Abelian groups the
balance problem is clearly easy. The representation problem was solved for the
LPS and Morgenstern hash functions [43,35] but these functions use very par-
ticular generator sets that give rise to Ramanujan graphs [11,30,33]. In general,
the hardness of representation and balance problems is a very interesting open
problem for Cryptography.

Despite partial cryptanalysis results, the Zémor-Tillich hash function remains
essentially unbroken today, 15 years after its publication. The message 0ord(A0)

and any similarly constructed message provide solutions to the representation
problems, but for parameter L far too large for practice, unless the polynomial
is chosen explicitly to make these attacks practical [12,7]. Similarly, the attack
described by Geiselmann in [24] produces collisions that are far too large for
practice. Steinwandt et al. [41] exploited the subgroup structure of SL(2, F2n)
to build trapdoor attacks (that find collisions by “cheating” in the choice of the
polynomial Pn(X)) as well as collision attacks but only for composite parameters
n.

Recently, Petit et al. [36] presented both collision and preimage attacks run-
ning in time 2n/2 instead of the optimal 23n/2 and 23n birthday and exhaustive
search bounds. Those attacks are generic in the sense that they work for any
parameters. They perform “meet-in-the-middle” attacks in a space of size 2n

to find messages mi hashing to matrices with a left eigenvector equal to (1, 0),
and then combine these matrices efficiently to solve the representation problem.
The attack gives collisions to the void message that are concatenations of many
individual messages mi.

Besides existing partial attacks on the collision and preimage resistance prop-
erties, the Zémor-Tillich hash function has issues that impede its use as a general-
purpose hash function. First, the function can be inverted on messages of size
up to n + 80 as no polynomial reduction appears in the hash computation for
message sizes smaller than n [41]. This may become a problem for example if
ECDLP keys are hashed. Second, the hash function is clearly malleable, in the
sense that for any m1, m2 ∈ {0, 1}∗, HZT (m1||m2) = HZT (m1)HZT (m2).

As a counterpart of their attacks, Petit et al. [36] proposed two variants of the
Zémor-Tillich hash function with reduced output sizes but essentially the same
collision and preimage resistance security. Both variants are parameterized by a
polynomial Pn(X) plus an initial vector (a0 b0) 6= (0 0). The vectorial Zémor-

Tillich is defined by Hvec
ZT (Pn(X)|| (a0 b0) , m) := (a0 b0) HZT (Pn(X), m). The

projective Zémor-Tillich returns the projective point1 corresponding to the out-
put of the vectorial variant, that is Hproj

ZT (Pn(X)|| (a0 b0) , m) = [a : b] if
Hvec

ZT (Pn(X)|| (a0 b0) , m) = (a b). When the initial vector is randomly cho-
sen, the collision resistance of the Zémor-Tillich hash function is equivalent to
the collision resistance of its vectorial variant, and equivalent to its projective
variant for sufficiently small parameters [36].

In the remainder of this paper, we work with prime parameter n hence the
subgroup attacks of Steinwandt et al. do not apply. Moreover, we assume that
the best attack against the Zémor-Tillich hash function and its variants is the
attack described in [36] that require time 2n/2 and produce structured messages
(except for the projective variant).

The vectorial version was used in [37] to construct a hash function based
on Zémor-Tillich but without its main weaknesses that are malleability and
invertibility for short messages. The basic idea was to iterate the vectorial Zémor-
Tillich in order to remove the malleability properties but to keep the provable
security and the parallelism of Zémor-Tillich. The function was evaluated for
software applications by Petit et al. [37] and for FPGA and area-constrained
applications by de Meulenaer et al. [19].

The ZesT function proposed in this paper builds upon these works. We pro-
vide the full theoretical justifications that are missing in [37] and we slightly
modify the function to achieve these proofs, decrease its area requirements and
simplify the function. We provide efficiency estimates based on a new implemen-
tation in C and on the implementations of de Meulenaer et al. [19] in hardware.
Additionally, we study the function as a MAC and we show how to further
modify it in order to reach NIST’s requirements [1].

We start by describing ZesT’s hash and key generation algorithms.

3 ZesT hash function

3.1 ZesT hash algorithm

ZesT hash algorithm takes as entry a key made of an irreducible binary poly-
nomial Pn(X) and of a starting point (a0 b0) ∈ F

2
2n \ (0 0), and a bitstring

m = m0m1...mµ−1 of arbitrary length. It is defined by

ZesT(Pn(X)|| (a0 b0) , m) := Hvec
ZT (Pn(X)|| (a0 b0) , (m||Hvec

ZT (Pn(X)|| (a0 b0) , m))) .

ZesT algorithm is made of two rounds of the vectorial Zémor-Tillich hash func-
tion: after the first round, the intermediary result (a b) := Hvec

ZT (Pn(X)|| (a0 b0) , m)
is seen as a bit sequence of 2n bits that are processed as a continuation of the
message bits.

1 We denote by P
1(F2n) the projective space of dimension 1 on F2n , which is the set

of equivalence classes of F2n × F2n that results from identifying two vectors (a1 b1)
and (a2 b2) if and only if (a2 b2) = λ (a1 b1) for some λ ∈ F

∗

2n . We denote by [a : b]
the projective point that is the equivalence class of a vector (a b).

3.2 ZesT key generation algorithm

The key of ZesT is made of an irreducible polynomial Pn(X) and of a vector
(a0 b0) ∈ F

2
2n \ (0 0). Both elements are randomly chosen by the key generation

algorithm: if the polynomial is fixed, collision resistance cannot be reached: an
adversary can simply store a collision for the original Zémor-Tillich hash function
to produce collisions for any starting point (a0 b0). On the other hand, if the
starting vector is not chosen randomly, the collision resistance of ZesT is no
longer equivalent to the collision resistance of the Zémor-Tillich hash function.
In particular, some keys are weaker than others, for example if the starting point
is (a aX) for any a ∈ F

∗
2n .

If the person who generates the key is trusted, the degree of the polynomial
must be prime in order to avoid subgroup attacks against the Zémor-Tillich hash
function, and the starting vector must be chosen randomly among all possible
vectors for the equivalence between the original and vectorial Zémor-Tillich to
hold. If the person generating the key is not trusted, it is necessary to choose the
polynomial Pn(X) and the initial vector in a way that clearly discards trapdoor
attacks. This protection can be achieved by standard techniques, resorting either
to universal constants like π or e, to a pseudorandom number generator or to a
cryptographic hash function H (which can even be ZesT with some fixed key).

4 Security reduction for ZesT

ZesT has exciting flavors of provable security. Its collision, preimage and second
preimage resistances follow from the hardness of the balance problem corre-
sponding to the Zémor-Tillich hash function.

4.1 Collision resistance

ZesT is collision resistant if and only if the balance problem corresponding to
the Zémor-Tillich hash function is a hard problem.

Proposition 1 There exists a PPT algorithm that breaks the collision resistance

of ZesT if and only if there exists a PPT algorithm that solves the balance problem

corresponding to the Zémor-Tillich hash function.

Proof: We show how to construct a collision for the vectorial Zémor-Tillich
with key Pn(X)|| (a0 b0) from a collision for ZesT with the same parameters
and vice-versa; the result then follows from the equivalence between the vectorial
and original versions of Zémor-Tillich (Proposition 4 of [36]). Let (m, m′) be a
collision on ZesT: we have m 6= m′ and

Hvec
ZT (Pn(X)|| (a0 b0) , (m||Hvec

ZT (Pn(X)|| (a0 b0) , m)))

= Hvec
ZT (Pn(X)|| (a0 b0) , (m′||Hvec

ZT (Pn(X)|| (a0 b0) , m′))) .

The messages m||Hvec
ZT (Pn(X)|| (a0 b0) , m) and m′||Hvec

ZT (Pn(X)|| (a0 b0) , m′)
collide for the vectorial version and are distinct. On the other hand, it is clear

that any collision on the vectorial version is also a collision on ZesT. �

The equivalence result of Proposition 1 is nearly tight. On one side, a solution
to the balance problem immediately gives a collision on ZesT. On the other side,
log2 n bits of security are “lost” from the vectorial to the matrix version of Zémor-
Tillich in the proof of Proposition 4 of [36]. The collision resistance of ZesT is
not optimal as its output has 2n bits while the collision attacks of [36] will find
collisions for the vectorial version of Zémor-Tillich in time 2n/2. In Section 7.3,
we will suggest a modification of ZesT that reaches optimal collision resistance.

4.2 Preimage resistance up to the collision resistance level

The preimage resistance of ZesT follows from the hardness of the balance prob-
lem corresponding to the Zémor-Tillich hash function. We give here a proof that
provides a preimage resistance guarantee but only up the n/2 bits of the collision
resistance level.

Proposition 2 If there exists a PPT algorithm that breaks the preimage resis-

tance of ZesT, then there exists a PPT algorithm that solves the balance problem

corresponding to the Zémor-Tillich hash function.

Proof: The result is immediate as ZesT processes arbitrary-length bit se-
quences and it is collision resistant if the balance problem is hard (see [38]
and Proposition 1). The informal argument is as follows. Suppose there exists
an efficient algorithm A computing preimages, then there exists an efficient al-
gorithm B that finds collisions: B chooses a random message m, computes its
hash value, gives the hash to A and receives m′ from A. As each hash value has
a lot of preimages on average, the messages m and m′ are likely to be different
hence to form a collision. �

The result is not tight as there does not currently exists any algorithm able
to compute preimages for ZesT in time 2n/2. Indeed, we argue in Section 5 that
the actual preimage resistance level of ZesT seems closer to 2n bits.

4.3 Second preimage resistance up to the collision resistance level

The second preimage resistance of ZesT also follows from the hardness of the
balance problem corresponding to the Zémor-Tillich hash function.

Proposition 3 If there exists a PPT algorithm that breaks the second preimage

resistance of ZesT, then there exists a PPT algorithm that solves the balance

problem corresponding to the Zémor-Tillich hash function.

Proof: Identical to the proof of Proposition 2. �

This result is tight as there exists an algorithm computing second preimages
in time 2n/2. Indeed, given a message m, there exists an algorithm computing a

preimage of (a b) := Hvec
ZT (Pn(X)|| (a0 b0) , m) in time 2n/2: this algorithm first

computes a matrix M ∈ SL(2, F2n) such that (a0 b0) M = (a b) and it then
applies the preimage algorithm of [36] to M . To compute a second preimage of
ZesT, it suffices to give (a b) to this algorithm; as ZesT processes arbitrary-
length inputs the message m′ returned is likely to be different from m. Moreover,

Hvec
ZT (Pn(X)|| (a0 b0) , (m||Hvec

ZT (Pn(X)|| (a0 b0) , m)))

= Hvec
ZT (Pn(X)|| (a0 b0) , m) HZT (Pn(X), Hvec

ZT (Pn(X)|| (a0 b0) , m))

= Hvec
ZT (Pn(X)|| (a0 b0) , m′) HZT (Pn(X), Hvec

ZT (Pn(X)|| (a0 b0) , m′))

= Hvec
ZT (Pn(X)|| (a0 b0) , (m′||Hvec

ZT (Pn(X)|| (a0 b0) , m′))) .

5 Other security aspects of ZesT

ZesT is Zémor-Tillich with Enhanced Security inside. In this section, we give
security properties of ZesT that cannot be proved based on the hardness of
the balance problem corresponding to Zémor-Tillich, but that still appear very
likely.

5.1 Output distribution

We argue that for long messages, the output distribution of ZesT is close to
uniform. Given a message m, ZesT outputs the value

Hvec
ZT (Pn(X)|| (a0 b0) , (m||Hvec

ZT (Pn(X)|| (a0 b0) , m)))

= Hvec
ZT (Pn(X)|| (a0 b0) , m) HZT (Pn(X), Hvec

ZT (Pn(X)|| (a0 b0) , m))

which can be seen as the result of two consecutive walks determined by the bits
of m and of (a b) := Hvec

ZT (Pn(X)|| (a0 b0) , m) in a graph ZT vec corresponding
to the vectorial version2. This graph is a quotient graph of the graph ZT corre-
sponding to the original Zémor-Tillich hash function. As random walks converge
in ZT [42], they also converge in ZT vec [28], and the uniform distribution of
(a b) for long messages follows. The second walk of 2n bits performed from (a b)
should not affect this distribution because the bits of Hvec

ZT (Pn(X)|| (a0 b0) , m)
are expected to be reasonably random and independent of those of m. Under this
independence assumption, the output distribution of ZesT on long messages is
provably close to the uniform distribution.

5.2 Preimage resistance

The preimage resistance of ZesT is much better than the n/2 bit security
that can be proved based on the hardness of the representation problem. As
preimages of the first round can be computed in time 2n/2, we may try to fix
the value h′ after this first round and to recover the message with this addi-
tional constraint. However, finding an h′ value that may satisfy the equation

2 See [36] for the definition of this graph.

h = h′HZT (Pn(X), h′) when h is given seems to be a hard problem, that cannot
be solved faster than by exhaustive search methods.

A preimage on ZesT implies a preimage on Hvec
ZT in the second round that

has the form m||Hvec
ZT (Pn(X)|| (a0 b0) , m). The preimage algorithm of Section

[36] can be easily modified to compute some kinds of particular preimages on
the vectorial version. For example, there exists an algorithm finding preimages
that start and end with some given constant bitstrings. However, computing
preimages of the form m||Hvec

ZT (Pn(X)|| (a0 b0) , m) faster than by exhaustive
search seems to be out of reach.

The preimage attacks of [36] cannot be extended to messages of the form
m||Hvec

ZT (Pn(X)|| (a0 b0) , m). For generic messages, we could concatenate vari-
ous messages colliding for the projective version into a collision for the vectorial
version. The approach does not work here because the concatenation of two
messages of the form m||Hvec

ZT (Pn(X)|| (a0 b0) , m) is not a message of the form
m||Hvec

ZT (Pn(X)|| (a0 b0) , m) in general.

For generic messages, we could also follow a “meet-in-the-middle” strategy
to get preimages at the price of collisions. In the second round of ZesT, this
approach is no longer possible because of the redundancy between the left-most
and the right-most bits of the message that is given to the second round. More
generally, it seems impossible to exploit the mathematical structure of ZesT (in
particular the associativity of the matrix product) to improve generic preimage
attacks against the second round because of the redundancy introduced between
the bits of m and those of Hvec

ZT (Pn(X)|| (a0 b0) , m).

The actual preimage resistance of ZesT is therefore of 2n bits, hence much
better than the n/2 bits security obtained from the hardness of the balance prob-
lem. For applications that only require 60 bits of preimage resistance (without
requiring collision resistance), parameters as small as n = 31 will therefore be
safe.

5.3 Issues in Zémor-Tillich that are removed in ZesT

ZesT does not present any apparent malleability property nor any apparent
predictable behavior contradicting the intuition of pseudorandomness.

Unlike Zémor-Tillich and its vectorial variant, ZesT cannot be inverted on
short messages. In these functions, the invertibility comes from the absence of
modular reductions when the message size is only slightly larger than n. The is-
sue is removed in ZesT because at least 2n bits are hashed in the second round.

ZesT is not malleable. As an example, let us consider a simple malleability
issue of Hvec

ZT that is a relation between the hash values of m and m′ = m||0:

if Hvec
ZT (m) = h1||h2 then Hvec

ZT (m′) = (h1X + h2)||h1.

We point out that the malleability of the vectorial Zémor-Tillich is limited to
addition and/or suppression of bits on the right side of unknown messages. In
particular, it is not possible to modify a hash value according to a change in the
middle bits of an unknown message.

Let us now consider ZesT(m) = Hvec
ZT (m||Hvec

ZT (m)). Although they are
strongly correlated, the hash values Hvec

ZT (m) and Hvec
ZT (m′) differ in many mid-

dle bits in general, so ZesT(m) and ZesT(m′) are completely uncorrelated.
Of course, there exist some particular values (m, m′) such that Hvec

ZT (m) and
Hvec

ZT (m′) are very close, for example differ by only the last bit, but finding such
a pair without inverting Hvec

ZT already seems a hard problem. Moreover, any such
m and m′ that we could find would differ in many bits, so again ZesT(m) and
ZesT(m′) would be completely uncorrelated.

In Section 7.2 below, we provide further evidence that ZesT has no apparent
weakness, based on analysis carried out with the pseudorandom tests of the
Dieharder [2].

5.4 Security as a MAC

ZesT can be used as a message authentication code MZesT = (Gen, Mac, V er).
The Gen and Mac algorithms of MZesT are just the key generation and the
hash algorithms of ZesT. Of course, the key remains secret here, and it is im-
portant that both elements Pn(X) and (a0 b0) remain secret. On input (s, m, t),
the verification algorithm simply checks whether t = ZesT(s, m).
MZesT is essentially HMAC used with the vectorial version of the Zémor-Tillich
hash function. Although the weaknesses of this last function are not present in
the functions usually employed with HMAC, we argue that MZesT is a secure
MAC algorithm.

Key recovery against MZesT seems to be a hard problem. A ZesT key
is made of two components, an irreducible polynomial Pn(X) and an initial
vector (a0 b0). We argue that recovering the whole key has a cost 22n even if the
polynomial Pn(X) can be recovered in time 2n.

Let us first suppose that the polynomial Pn(X) is not known to the adversary.
If the adversary knew the initial vector (a0 b0), he could easily recover Pn(X)
as follows. The adversary would send the void message to the Mac algorithm
and receive an answer that equals Hvec

ZT (Pn(X)|| (a0 b0) , (a0 b0)). The adversary
could also compute the hash value by itself without performing the reductions
and subtract the hash value returned by the Mac algorithm to obtain a vector
(a b) ∈ F2[X]. The polynomial Pn(X) would be an irreducible factor of gcd(a, b)
with degree n. If needed, the adversary would make an additional query to the
Mac algorithm to discriminate between alternative possible factors of degree n.

If the adversary does not know the initial vector, he can still recover the poly-
nomial Pn(X) with 2n MZesT queries as follows. After 2n queries, the adver-
sary is likely to find two messages with the same MAC value. With a probability
of about 50%, these two messages provide a collision (m, m′) on the vectorial

version of Zémor-Tillich. The adversary then computes the Zémor-Tillich hash
values M,M ′ of m and m′ without performing the modular reductions. The
polynomial Pn(X) is an irreducible factor of degree n of det(M + M ′). As this
determinant may have more than one polynomial factor of degree n and as the
adversary does not know whether the collision he obtained for the MAC was a
collision for the first round, he needs a few MAC collisions to identify the right
polynomial.

Let us now suppose that the polynomial Pn(X) is known to the adversary
who wants to recover the initial vector. From messages mi of his choice and the
corresponding hash values hi := ZesT(Pn(X)|| (a0 b0) , mi), the adversary tries
to recover (a0 b0). This is equivalent to finding any (ai bi) such that (ai bi) =

Hvec
ZT (Pn(X)|| (a0 b0) , mi) because (a0 b0) = (ai bi) (HZT (Pn(X), mi))

−1
. The

task of the adversary now consists in solving the equation

(ai bi) HZT (Pn(X), (ai bi)) = hi

for one of the hi. Solving this equation seems hard because of the redundancy in
the unknown; the preimage attack of Section [36] does not extend to this case.
We believe that when the polynomial is known, the adversary cannot recover
the initial vector faster than in time 22n.

Message-extension attacks against MZesT are defeated by the second round
of ZesT. These attacks are possible for any iterative hash function, in particular
all Merkle-Damg̊ard-based hash function and all expander hashes. The attack
is prevented in ZesT in exactly the same way as in the HMAC construction:
the second round destroys the block structure and prevents the adversary from
having access to the result of an iterative hash function.

Forging MZesT seems to require 2n MAC queries plus a computation time
2n/2. As soon as the polynomial Pn(X) is known by the adversary, a forgery for
this MAC is feasible in time 2n/2: the forger can compute a collision (m, m′) for
the Zémor-Tillich hash function, query the Mac algorithm on m to receive t, and
return (m′, t) as a valid forgery. When the polynomial is not known, the adver-
sary cannot compute collisions for the Zémor-Tillich hash function. Moreover,
its oracle access to MZesT does not help it to attack the Zémor-Tillich hash
function as he only accesses the output of the second round. The malleability
of the first round is not useful either to the adversary for the same reason. We
have found no forgery algorithm faster than our best partial key recovery algo-
rithm on Pn(X) followed by a collision attack on the Zémor-Tillich hash function.

The trapdoor attacks and weak keys issues present in ZesT do also affect
MZesT. However, when the key generation algorithm is not trusted, the tech-
niques sketched out in Section 3.2 to protect ZesT will also protect MZesT.

5.5 Connections with HMAC and other iterative designs

The design of ZesT is inspired by HMAC [8,23] and by traditional block cipher
and compression function designs: the mathematical structure remaining after
the first round of ZesT is destroyed in its second round. However, most exist-
ing security results on HMAC assume hypotheses on the hash function that are
clearly not satisfied by the vectorial Zémor-Tillich hash function, and block ci-
phers and compression functions usually have much more than just two rounds.
The collision resistance of ZesT is guaranteed with a single round; a second
round is necessary to obtain “extra” pseudorandom properties; the second round
is also sufficient because the round function is already very strong.

ZesT looks very similar to NMAC and HMAC. The collision resistance trans-
fers from the vectorial Zémor-Tillich hash function to ZesT, exactly like in these
constructions. On the other hand, existing security results on the pseudorandom
and MAC security of HMAC and NMAC cannot be used for ZesT. NMAC and
HMAC were built for iterative hash functions whose compression functions have
no apparent weaknesses. In contrast, the vectorial version of Zémor-Tillich is
highly malleable and any “compression function” we could define from it by fix-
ing a block size would also be malleable. In particular, this compression function
would definitely not be pseudorandom nor a secure fixed-length MAC. Unlike its
collision resistance, the pseudorandomness of ZesT follows from the iteration
and not from the single rounds.

The iterative design of ZesT also appears in many block ciphers and in
compression functions, typically with 16 to 64 rounds. In contrast, ZesT only
has 2 rounds. Block ciphers or traditional hash functions would become invertible
if their round number was decreased. In contrast, a single round of ZesT is
already preimage and collision resistant because it is a whole hash function and
it is therefore much stronger than the simple components used in block ciphers
and compression functions.

6 Efficiency estimations

ZesT provides great recipes for many diets: it is really practical in a wide range
of applications. We describe software implementations in Section 6.1, FPGA
implementations in Section 6.2 and lightweight implementations in Section 6.3.
Finally, we show in Section 6.4 how to exploit in ZesT the inherent parallelism
of the Zémor-Tillich hash function.

For FPGA and lightweight implementations, we will base our performance
estimations on the implementations in [19] of the function introduced in [37].
This function, that we will call ZT ′ in this paper, is very similar to ZesT. The
only difference is the introduction of an XOR by a constant between the first
and the second round:

ZT ′ (Pn(X)|| (a0 b0) , m)

:= Hvec
ZT (Pn(X)|| (a0 b0) , (m||Hvec

ZT (Pn(X)|| (a0 b0) , m) ⊕ c)) .
(1)

The constant c is equal to the binary representation of pi in [37].

6.1 Efficiency of ZesT in software

ZesT recursively uses a very simple operation on a state (a b). Depending
on the next message bit, the state is updated to (a b) A0 = (aX+b a) or to
(a b) A1 = (aX+b aX+b+a) = (aX+b (aX+b)+a). After processing all the message
bits, the result is seen as a bitstring and processed in turn. Messages of µ bits
therefore require to process µ + 2n bits for the first and the second rounds to-
gether.

The arithmetic is in a field of characteristic 2 and is thus very efficient.
Like in [37], we may analyze the running time as follows. Any element a =
an−1X

n−1+an−2X
n−2+...a1X+a0 is represented by an array of L := ⌈ n

32⌉ 32-bit
integers (L := ⌈ n

64⌉ in 64-bit architectures). An addition requires only L XORs,
and a multiplication a by X requires L SHIFTs by one bit and one polynomial
modular reduction. The operations aX + b and aX +a can be performed with L
SXORs and a modular reduction. The polynomial reduction in the computation
of aX + b can be done by testing the left-most bit of a: if this bit is equal to 1,
we need L XORs operations of the bits of aX + b with the bits of Pn(X). For
long messages, the TEST instruction will return 1 half of the times.

Let t0 and t1 be the average times needed respectively to process a bit 0 and
1, let tXOR and tSXOR be the times needed to perform a word XOR and SXOR,
and let tTEST be the time needed to perform a TEST instruction. According to
our analysis, t0 and t1 are respectively

t0 = LtSXOR +
L

2
tXOR + tTEST + C0,

t1 = LtSXOR +
3L

2
tXOR + tTEST + C1.

where C0 and C1 are constant overhead times. If we neglect the TEST instruction
and the overhead times and if we approximate tSXOR ≈ tXOR, processing one
bit requires on average 2LtXOR instructions. The total time needed to evaluate
the ZesT hash value of a message of length µ is therefore

2(µ + 2n)LtXOR.

For long messages, this time is essentially proportional to the message length
and inversely proportional to the architecture size.

ZesT can be cut into small pieces; it is very scalable to any granularity.
Implementing ZesT on an 8-bit processor or on the other hand on a graphical
accelerator with a 512-bit data bus is just as easy as implementing ZesT on
standard 32 or 64-bit processors, and the implementation speed will be directly
proportional to the architecture size. If the architecture is larger than n, ZesT

only requires two XORs per message bit, plus 4n XORs for the second round.

ZesT algorithm was implemented in C to get running time estimations for
various parameters sizes. All tests were performed on a 64-bit Intel Xeon E5420
2.5GHz 16Go DDR2 Ram. The OS was Debian using 32-bit kernel 2.6.26. Test
vectors for performance evaluation were 500Mo random files generated using
/dev/urandom. The values chosen for the parameter n were the smallest primes
smaller than 32, 64, 128, 160, 224, 256, 384, 512 and 1024, and for each n a
random polynomial of degree n was selected for Pn(X).

Performance results are presented in Table 1. The results differ significantly
from the above analysis. First, the analysis seems to become valid only for large
values of the parameter n. This may be due to various overheads, in particular
to for loops present in the code for scalability reasons that should better be
unrolled for short parameters. Second, we observe that ZesT-61 and ZesT-251
are respectively more efficient than ZesT-31 and ZesT-157: this might be due
to the subjacent 64-bit architecture of our evaluation platform and to scalability
options taken in our code.

In Table 2, the performances of ZesT are compared to the SHA algorithm
evaluated with the sha1sum, sha256sum and sha512sum functions of the linux
kernel. At comparable collision resistances, ZesT-127, ZesT-251 and ZesT-509
are respectively 10, 10 and 4 times less efficient than SHA-1, SHA-256 and SHA-
512. At comparable preimage resistances (which is 2n bits for ZesT), ZesT-127
and ZesT-251 are respectively 7 and 2 times less efficient than SHA-256 and
SHA-512. If we only rely on the n/2 “provable” bits of preimage resistance, then
at comparable preimage resistances, ZesT-509 and ZesT-1021 are respectively
17 and 7 times less efficient than SHA-256 and SHA-512.

ZesT Time (s)

ZesT-31 43
ZesT-61 33
ZesT-127 43
ZesT-157 65
ZesT-223 76

ZesT Time (s)

ZesT-251 62
ZesT-383 82
ZesT-509 103
ZesT-1021 183

Table 1. Estimated running time (seconds) of ZesT with parameters of various
sizes in a 32-bit architecture

CR SHA Time (s) ZesT Time(s)

≈ 264 SHA-1 4 ZesT-127 43
≈ 2128 SHA-256 6 ZesT-251 62
≈ 2256 SHA-512 27 ZesT-509 103

Table 2. Comparison of SHA and ZesT at the same collision resistance levels

The basic algorithm described above can be improved by grouping the com-
putation of 2 or 4 consecutive message bits. This was done in [37] with the
help of a code-generation program. The ZesT algorithm is so simple that code-
generation programs may be easily tuned to any computer architecture and may
also include more elaborate grouping strategies, for example based on Huffman
coding. Finally, we point out that the performances of ZesT will be greatly
improved by using the multimedia sets of instructions available on modern pro-
cessors.

6.2 FPGA implementation

In this section, we provide performance estimations of high-speed implementa-
tions of ZesT on FPGA. These implementations are of interest in applications
where several messages are to be hashed and a high throughput is required,
such as for virtual network servers. The throughput per area metric makes sense
here since the goal is to jointly minimize the execution time and the area: if the
throughput of the resulting implementation is too low, any superior throughput
can be reached by simply gathering several identical circuits.

0

1

BRAM

m

c

XOR

d

a

b

XOR

0

1

0

1

Pn

msb(aX)

aX+b+aaX

b

aX+b

a

XOR XOR

mi

CORE

m1

m2

ms

CORECORE CORE

w

w

n

n

n

n

n

n

Fig. 1. FPGA architecture for ZT ′ proposed in [19]

Figure 1 presents the architecture proposed in [19] for ZT ′ which is essentially
ZesT with an additional XOR between the first and the second round (see
Equation 1). It is made of a central core processing one bit of message, and
of storage elements. The core can be replicated s times in order to process s
consecutive message bits. The throughput achieved can be approximated by the
product of the frequency and s if the processing of the final phase is negligible,
which is the case for long messages.

The implementation results for ZT ′ provide fair estimates of the perfor-
mances of ZesT. Due to the absence of the constant c in ZesT, the usage of
BRAM and of control logics will slightly decrease. The frequency should be on
the same order as the longest data path remains unchanged. FPGA implementa-
tions of ZesT will therefore have slightly better but comparable throughput/area

ratio as ZT ′.

Collision Area Frequ. Through. Through./Area

Resistance [Slices] [Mhz] [Mbps] [Mbps / Slice]

SHA-1 [15] 263 533 230 1435 2.7

ZT’-127 264 597 160 800 1.34

SHA-256 [14] 2128 797 150 1184 1.49

ZT’-251 2126 1044 140 700 0.67

SHA-512 [14] 2256 1666 121 1534 0.92

ZT’-509 2255 1850 135 675 0.36

Table 3. Comparison of the implementation results of ZT’ with SHA.

The best performance results of [19] are presented in Table 3 together with
the best results for SHA. These results were obtained for s = 5. The impact of
n on the frequency is moderate as increasing n does not add logic operators to
the longest path. The small frequency drop is likely due to larger routing delays.
The area may be approximated by a linear function of n:

Area = 3.3n + 200.

The area is nearly proportional to n as the only constant parts of the circuits
are the control logics and the BRAM.

The results show that ZT ′ and hence ZesT have comparable performances
with respect to the SHA hash function in terms of throughput per slice. Table 3
provides a comparison of the efficiency and collision resistance of ZT ′ with SHA.
At comparable level of collision resistance, ZT’-127, ZT’-251 and ZT’-509 are
about twice less efficient than the state-of-the-art implementations of SHA-1,
SHA-256 and SHA-512 respectively. These performances might still be improved
by 50% by introducing pipeline stages between the s cores [19].

6.3 Lightweight implementations

We now study the performances of ZesT in constrained environments such as for
RFID tags authentication. Like in the previous section, we give estimations based
on the lightweight implementations of ZT ′ that we proposed in [19]. The FPGA
architecture with s = 1 can be modified to obtain the lightweight implementation
of Figure 2. The first main change introduced consists in computing the entries
a and b one bit at the time instead of all bits in parallel in order to save area by
replacing n-bit gates by 1-bit ones. The second main change involves the storage
elements. In lightweight implementations, large blocks of memory like BRAM
are no longer available and are therefore replaced by two registers (labeled a+ c

0
1aX+b+a (j)

mi

aX+b (j)

0
1

msb(aX)

Pn(j)

aX(j)

b(j)

0
1a(j-1)

0

XOR

XORXOR

XOR

XOR

c(n+j)

XOR

c(j)

0 1

a(j)

0 1

a
+
c

a
+
c

b
+
c

b

a

Fig. 2. Lightweight architecture for ZT ′ proposed in [19]

and b + c) that store the result of the XOR operation between the intermediary
result and the constant c, which is hardcoded.

ZesT is very efficient in terms of occupied area with respect to current hash
functions. Table 4 summarizes the results concerning ZT ′ and other hash func-
tions [19]. shows that both the lightweight and high-speed (with s = 1) versions
of ZT ′-127 already outperform the hash functions SHA-1 and MD5. Lightweight
ZT ′-127 is a little smaller than the state of the art implementation of the AES
block cipher proposed in [21]. The area requirements and collision resistances of
ZT ′ and SHA are compared in Table 5, illustrating the inferior area costs for
ZT ′ at a comparable collision resistance. ZT ′-127 requires roughly one third of
the area of SHA-1 while ZT ′-251 needs half of the area of SHA-256. ZT ′-127 is a
little less compact than H-PRESENT-128, the hash function recently proposed
in [10] based on the block cipher PRESENT.

ZesT-127 is comparable to DM-PRESENT-80 and it outperforms even H-
PRESENT-128 for the same collision resistance. Based on our results for n=127
and n=251, the area required for the lightweight ZT ′ may be approximated by
the function Area = 20n + 300. The area for ZesT can therefore be roughly
approximated by Area = 10n + 300 as half of the registers are removed. This
leads to approximations of 1600 and 2900 gates equivalents for ZesT-127 and
ZesT-251 respectively.

For some applications, collision resistance is not required and a moderate
level of security is sufficient (60-bit or 80-bit security) [39]: for example, many
RFID protocols only rely on preimage resistance. ZesT turns out to be a very
interesting candidate for these applications. As explained in Section 5.2, the

Output Through. at Through/Area Logic Area
size 100kHz [kbps] [bps/GE] process [GE]

MD5 [22] 128 83.7 10 0.13µm 8400
SHA-1 [22] 160 40.2 4.9 0.35µm 8120

SHA-256 [22] 256 45.4 4.2 0.35µm 10868
SQUASH [27] 32 < 0.1 < 0.02 estimate <6000
AES-128 [21] 128 12.4 3.7 0.35µm 3400

DM-PRESENT-80 [10] 64 14.6 9.1 0.18µm 1600
H-PRESENT-128 [10] 128 11.5 4.9 0.18µm 2330
ZT’-127 (lightweight) 254 0.52 0.18 65nm 2945
ZT’-251 (lightweight) 502 0.20 0.04 65nm 5517

ZT’-127 (s = 1) 254 66.7 17.8 65nm 3752
ZT’-251 (s = 1) 502 66.7 9.2 65nm 7267

Table 4. Comparison of the performances of the lightweight implementation of
ZT ′ with other hash functions and the AES block cipher [19]

Collision Area

Resistance [GE] (rel.)

SHA-1 [21] 263 8120 (1)

ZT ′-127 (lightweight) 264 2945 (0.36)

ZesT-127 (approximation) 264 1600 (0.20)

SHA-256 [21] 2128 10868 (1)

ZT ′-251 (lightweight) 2126 5517 (0.51)

ZesT-251 (approximation) 2126 2900 (0.27)

Table 5. Comparison of the collision resistance and area cost of SHA with the
lightweight implementation of ZT’ and the approximation for ZesT [19].

preimage resistance of ZesT-n is at least 2n/2 based on current knowledge on
the balance problem, but it actually seems to be 22n.

In Table 6, the lightweight implementation of ZT ′-127 is compared to SQUASH
and DM-PRESENT-80 in terms of preimage resistance and lightweight imple-
mentations. ZT ′-127 is twice as small as SQUASH. The function DM-PRESENT-
80 [10] is nearly twice smaller than ZT ′-127 but (according to our estimations
above) comparable to ZesT-127. If we only rely on the “provable” preimage re-
sistance of ZesT, lightweight implementations of ZesT-127 are therefore compa-
rable to those of DM-PRESENT-80. However, based on the “heuristic” preimage
resistance argued in Section 5.2, DM-PRESENT-80 should be compared with a
version of ZT ′ four times smaller (for example, ZesT-31). According to our es-
timations for ZesT-127 and ZesT-251, ZesT-31 will probably require less than
1000GE, beating by far even DM-PRESENT-80.

As pointed out above, ZesT already occupies a small area if the high-speed
design of Section 6.2 is used with s = 1. In practice, this implementation will
probably be more suitable for area-constrained applications than the lightweight
version presented in this section. As our design choice here was to minimize the

Preimage Area

Resistance [GE] (rel.)

SQUASH [27] 232 <6000 (1)

DM-PRESENT-80 [10] 264 1600 (0.27)

ZT’-127 (lightweight) 264 - 2256 2945 (0.49)

Table 6. Comparison of the preimage resistances and area costs of lightweight
implementations of ZT ′ and other one-way hash functions [19].

area, our implementation has a low throughput resulting in a long latency and
an important energy consumption. However, the flexibility of the ZesT function
allows to raise the throughput easily by increasing the number of bits of a and b
processed in parallel at the cost of little additional logic. The two extreme points
of this tradeoff between area and throughput are our first implementation with
s = 1 and our lightweight implementation; the first one has a throughput 128
times as high for only 30% more area. The optimal point in practice will probably
be closer to the the first one but the results of this section may be understood as
a lower bound for area. Wherever the tradeoff is set, ZesT is a very interesting
hash function in the context of lightweight applications.

6.4 Exploiting parallelism

ZesT can be cut into small pieces (see Figure 3). It is particularly well-suited
for parallelism in the message computation. We point out that unlike many
hash functions recently proposed, ZesT has both a serial and a parallel mode
that describe exactly the same function. Indeed, let us suppose that we have N
computing units for computing the ZesT hash value of a long message.

Fig. 3. Citrus’ ZesT in serial and parallel modes

For any (a0 b0) ∈ F2n \ {(0 0)} and for any bitstrings m1, m2, ...,mN ′ ∈
{0, 1}∗, we have

Hvec
ZT (Pn(X)|| (a0 b0) , m1||m2||...||mN ′)

= Hvec
ZT (Pn(X)|| (a0 b0) , m1) HZT (Pn(X), m2) ...HZT (Pn(X), mN ′) .

Moreover, the matrix version of Zémor-Tillich can be implemented as two vec-
torial versions starting from (1 0) and (0 1):

HZT (Pn(X), mi) =

(

Hvec
ZT (Pn(X)|| (1 0) , mi)

Hvec
ZT (Pn(X)|| (0 1) , mi)

)

.

This structure can be exploited to distribute the computation of the first
round of ZesT on a long message among N computing units. The messages are
divided into N + 1 blocks of equal sizes m0||m1||...||mN , the computation of
Hvec

ZT (Pn(X)|| (a0 b0) , m0||m1) is given to the first unit and the computations of
both Hvec

ZT (Pn(X)|| (1 0) , mi) and Hvec
ZT (Pn(X)|| (0 1) , mi) are given to the ith

unit (see Figure 4).
The exploitation of the parallelism has two costs: first, the total computation

cost of the N computing units is 2N−1
N times the computation cost of one single

unit in a serial mode (it is nearly doubled when N is large). Second, N−1 vector
by matrix multiplications must be performed at the end to combine the partial
hash values. Each of these vector by matrix products requires 4 full modular
multiplications and 2 additions. As the cost of a modular multiplication in F

∗
2n

is about 2n additions [18] (a bit less if an advanced algorithm like Schönhage
or Karatsuba is used), the time required to compute the ZesT hash value of a
message of length µ using this method is roughly

2LtXOR

[

2µ

N + 1
+ (4n + 1)(N − 1) + 2n

]

(2)

where like in Section 6.1, L is the number of words needed to store n bits and
tXOR is the time needed to compute the XOR of two words.

The time required to compute a ZesT hash value in parallel is minimized
when N ≈

√

µ
2n . For large messages (like data disks of 100GB≈ 240), this

would require too many computing units in practice hence the time is essentially
inversely proportional to N + 1.

...

Fig. 4. Distributing computation among N computing units

A second kind of parallelism can be exploited in ZesT software computation.
ZesT computes XORs, SXORs and SHIFTs on bitstrings of length n which in
ANSI C are decomposed into corresponding instructions on words of length
32 or 64 bits. Using the SIMD instructions (Single Instruction, Multiple Data)
that are commonly found on modern microprocessors, the function computation
would be considerably sped up as 128 bits would be treated in parallel. If the
implementation is performed using recent graphical accelerators with 512-bit
data BUS, then even the computation of ZesT-509 will require only 2 XOR or
SXOR per bit on average.

7 Adding ZesT into NIST’s cooking pot

ZesT has very interesting properties from both security and efficiency points
of view. It is provably collision resistant, arguably non-malleable, reasonably
efficient in software, very efficient in hardware with respect to both high speed
and low area metrics and it is parallelizable. However, it does not completely
fulfil NIST’s requirements in its call for a new hash function standard [1]. In
particular, ZesT is a keyed hash function, it has suboptimal preimage, second
preimage and collision resistances and it cannot be used with the output sizes
required by NIST because of subgroup attacks.

In this section, we present a fixed-key variant of ZesT and we study its
pseudorandom behavior. We then propose modifications of the function in or-
der to satisfy all NIST’s requirements and we discuss the efficiency and security
implications of these changes. The resulting function is less efficient and con-
siderably less simple than ZesT, but it satisfies all NIST’s requirements. The
various changes suggested in this section can be added independently into ZesT’s
recipe; we suggest that the reader selects his first-rate ingredients to satisfy his
personal taste for security, efficiency, simplicity and conformity with the NIST’s
requirements.

7.1 Fixing all parameters

Although the formal notion of collision resistance requires defining a family of
hash functions with a key as parameter, all standardized hash functions are
unkeyed functions.

The key of ZesT is made of n, of an irreducible binary polynomial Pn(X)
of degree n, and of an initial vector (a0 b0) ∈ F

2
2n \ (0 0). Besides the primality

constraint on n, our choice of parameter must be clearly non-cheating because
of the trapdoor attacks possible for the person who chooses Pn(X) or (a0 b0) ∈
F

2
2n\(0 0). A traditional solution to this problem would be to use a cryptographic

hash function (for example SHA-1) and a universal constant (for example pi) to
generate the parameters.

We suggest a different approach based on an LFSR, that might present an
advantage in area constrained applications. Our goal is to select a key value that

is “reasonably random” (say apparently random for Joe-the-Plumber) and obvi-
ously non-cheating, and that can be recomputed efficiently to avoid its storage
in memory constrained environments. We refer to Appendix A for the details of
this approach.

7.2 Use of unkeyed ZesT in standardized applications

In Section 5.3 we argued that any malleability property that was present in the
Zémor-Tillich hash function and its vectorial variant was removed in ZesT. To
further assert “pseudorandomness”, we use the Dieharder suite of pseudorandom
tests [2] on the outputs of the unkeyed version of ZesT used in a counter mode.
The results were very similar to what we may expect from truly random bits,
hence they reveal no apparent weakness of the function. This suggests that the
unkeyed version of ZesT may be used in all standardized applications including
DSA [3], key derivation [5], HMAC [4] and random bit generation [6]. Details of
our experiments are provided in Appendix B.

7.3 Reaching optimal (provable) collision resistance

ZesT-n is provably collision resistant up to n/2 bits but its output has 2n bits.
Optimal collision resistance can be reached by replacing the vectorial version of
Zémor-Tillich by its projective version in the second round. However, this change
has non-negligible efficiency and portability costs.

As the projective and vectorial versions of Zémor-Tillich have the same col-
lision resistance if n is not too large [36], we define

ZesT1(Pn(X)|| (a0 b0) , m)

:= Hproj
ZT (Pn(X)|| (a0 b0) , m||Hvec

ZT (Pn(X)|| (a0 b0) , m)) .

ZesT1 returns projective points [a : b] ∈ P
1(F2n) that can be represented in

slightly more than n bits. Following the same reasoning as for ZesT, the secu-
rity properties of ZesT1 are easily derived. ZesT1 has provable preimage, second
preimage and collision resistance up to n/2 bitsbased on the hardness of
finding collisions for Hproj

ZT (for parameters not too large, based
on the hardness of finding collisions for HZT). This is optimal for col-
lision resistance but suboptimal for preimage and second preimage resistance.
The actual second preimage security of ZesT1 is indeed not larger than n/2
bits but its preimage resistance is arguably as large as n bits because meet-in-
the-middle attacks are impossible. Finally, ZesT1 has no particular malleability
weakness because the existence of such a weakness would imply the existence of
a corresponding weakness in ZesT.

ZesT1 has 2n + 1 possible outputs while it would be more convenient if the
output could fit into n bits. For this reason, we suggest the following additional

change in ZesT:

ZesT2(Pn(X)|| (a0 b0) , m) := π (a0,ZesT1(Pn(X)|| (a0 b0) , m))

where π : F2n × P
1(F2n) → {0, 1}n is defined by

π(a0, [a : b]) =

b/a if a 6= 0,
b0/a0 if a = 0 and a0 6= 0,
X if a = 0 and a0 = 0,

for (a b) := ZesT(Pn(X)|| (a0 b0) , m).
ZesT2 is collision resistant if Hproj

ZT is collision resistant and for
parameters not too large, if and only if HZT is collision resistant.
Indeed, let (m, m′) be a collision for ZesT2: then either the ZesT1

hash values of m and m′ are the same, either the ZesT1 hash value
of one of them (let us say m) is equal to [a0 : b0] (if a0 6= 0) or to
[1 : X] (if a0 = 0). Defining h := Hvec

ZT (Pn(X)|| (a0 b0) , m), the message
m||h (if a0 6= 0) or m||h||0 (if a0 = 0) collides with the void message
for Hproj

ZT .

The function ZesT2 is less efficient than ZesT due to the final division
b/a that must be performed most of the times. Divisions in F

∗
2n can be done

either with extended versions of the Euclidean algorithm or with a modular
exponentiation. Algorithm 7.1 in [18] performs a division in the field with about
4n additions. Therefore, the time cost of performing this division is roughly the
time needed to process 2n bits of the vectorial Zémor-Tillich. For long messages,
the division time represents a small overhead but for short messages it will be
significant.

The division has another significant drawback: implementations become much
more complex. Although the division can be decomposed into additions, the XOR
gates of our implementations cannot be reused for the division: this would require
additional control logics, which would be as expensive as simply duplicating the
XOR gates. The control part of both high-speed and low-area implementations
will also considerably increase. Finally, the maximal frequency of the circuit is
likely to decrease. The hardware performances of ZesT2 should therefore be
further examined in the future. In some applications, it might be interesting to
compute ZesT in hardware and derive the ZesT2 value in software.

7.4 Reaching optimal (heuristic) second preimage resistance

The second preimage resistance of ZesT, ZesT1 and ZesT2 is limited to the
collision resistance level. Second preimages can be computed at the price of
collisions for the first round, and they suffice to compute second preimages on
the whole function. To reach an optimal level of second preimage resistance,
distinct n values may be used in the first and second round, with a value about
twice as large in the second round as in the first round.

For primes n and n′ ≈ 2n, irreducible polynomials Pn(X), Pn′(X) and initial
vectors (a0 b0) ∈ F

2
2n \ {(0 0)}, (a′

0
b′
0) ∈ F

2
2n′ \ {(0 0)},

ZesT3(Pn(X)|| (a0 b0) ||Pn′(X)|| (a′

0
b′
0) , m)

:= π
(

a0, H
proj
ZT (Pn(X)|| (a0 b0) , m||Hvec

ZT (Pn′(X)|| (a′

0
b′
0) , m))

)

.

The collision and preimage resistances of ZesT3 are identical to the previous
functions. Moreover, we argue that ZesT3 has optimal second preimage resis-
tance. Indeed, let us suppose that on input m, there exists an algorithm that
finds m′ colliding with m for ZesT3. Either m and m′ have the same interme-
diate hash value after the first round, either not. The first case clearly reduce to
the second preimage resistance of Hvec

ZT in the first round, which has a complexity
of n′/2 ≈ n bits. The second case clearly gives a collision in the second round,
but this argument only provides a security level of n/2 bits.

The second preimage resistance cannot be proved up to n bits based on
the balance problem, but heuristic arguments fill in the gap. Indeed, a proof
must assume that given m, it is infeasible to find m′ such that the vectorial
Zémor-Tillich hash values of m and m′ are collisions for the projective Zémor-
Tillich hash function. This assumption is actually a non-malleability assumption
on the vectorial Zémor-Tillich function. We know that the last function is not
non-malleable with respect to relations involving concatenations, but the rela-
tion here seems completely unrelated to the hash structure and the assumption
therefore seems reasonable.

ZesT3 is three times less efficient than ZesT because a vectorial hash value
of m is computed with a polynomial of degree n′ ≈ 2n in the first round and with
a polynomial of degree n in the second round. The software time performances,
the high speed performances and the lightweight performances will therefore
decrease roughly by a factor 3.

7.5 Tweaking the function for NIST’s output sizes

To avoid Steinwandt et al.’ subgroup attacks [41], the parameter n must be prime
in ZesT and its variants. However, standardized hash functions usually have out-
put sizes multiple of 32 or even 64. In particular, the output sizes required by
NIST for the SHA-3 standard are 224, 256, 384 and 512 [1]. In this section, we
propose two alternative modifications of the function to reach these output sizes
and we discuss their respective advantages and drawbacks. For each of these al-
ternatives, we define four instances of the function that we call kumquat, lemon,
orange and grapefruit, corresponding to the NIST output sizes.

The first alternative chooses n as the smallest prime larger than the targeted
size and truncates the result by a few bits. The second alternative chooses n
as the largest prime smaller than the targeted size, adds a third round to the
function and concatenates the result of the third round with a few bits coming

from the second round. The resulting parameters n and the numbers of truncated
or added bits ǫ for NIST’s output sizes are shown in Table 7.

Name Output Truncate Extend
n ǫ n ǫ

kumquat 224 227 3 223 1
lemon 256 257 1 251 5
orange 384 389 5 383 1
grapefruit 512 523 11 509 3

Table 7. Parameters for kumquat, lemon, orange and grapefruit in the two
alternatives

Both changes have (small) negative impact on the efficiency of the function.
The first variant uses a larger state and will require an additional word XOR for
each addition. For kumquat and in 32-bit architecture, this is not negligible as
it represents 14% additional XORs. In hardware, the effect may be considered
as negligible. The second variant has a third round hence it requires about 2n
additional full additions. This effect is negligible for long messages but not for
short ones.

The first alternative is more natural and conceptually simpler. However, the
collision resistance of a hash function does not imply that the function remains
collision resistant if some of its bits are truncated. Of course, we believe that
the resulting function is still collision resistant: the opposite would contradict
in a strong sense our intuition that ZesT has no non-random behavior. Never-
theless, with this alternative we lose the benefit of provable security for collision
resistance. On the other hand, preimage and second preimage resistance (up to
the birthday bound) still follow from the hardness of the balance problem.

The second variant is a little more elaborate but its preimage, second preim-
age and collision resistances are implied by the collision resistance of ZesT. A
third round is added in this function because the output of the first round is
not random enough to be used for the ǫ additional bits. The function is prov-
ably preimage, second preimage and collision resistant up to n/2 bits which for
collision resistance is only ǫ/2 bits worse than the birthday bound.

8 Open problems

In this section, we discuss possible improvements in ZesT that require further
study.

8.1 Use of special polynomials

Special polynomials, in particular sparse polynomials, may significantly improve
the efficiency of ZesT in software [36]. Indeed, if Pn(X) = Xn +P31(X), a mod-

ular reduction only requires one word XOR instead of L word XORs. For large n
and small architectures, this results in an efficiency improvement of nearly 25%.
The efficiency in hardware, at least for our designs of Section 6.2 and 6.3, is un-
changed. However, the use of sparse polynomials impacts the pseudorandomness
behavior of ZesT as the bit mixing is achieved through the modular reductions.

We heuristically observed that “the images of messages with a lot of zeroes
also have a lot of zeroes”. This fact may be explained from the properties of
the powers of A0 that are described in [7]. Similarly, we observed that “the im-
ages of messages with a lot of ones have a lot of zeroes”. Further study should
demonstrate whether this weakness can be turned into an actual collision attack
against the Zémor-Tillich hash function when sparse polynomials are used, or if
its damage is limited to pseudorandom properties. In the second case, we solved
the problem in [37] with an appropriate intermediate permutation between the
first and the second rounds of ZesT. The purpose of this permutation is to mix
the bits produced after the first round; it may be as simple as an XOR by a
constant whose bits do not follow any repetition pattern, for example the bits
of pi [37].

8.2 Other graph generators

From both efficiency and security points of view, the generators chosen in the
Zémor-Tillich hash function are better than other Cayley hash proposals like
LPS and Morgenstern [11,43,35]. There may exist other generators sets that
still improve the function, but further study is required to assert their security.
Balance and representation problems are not classical problems but in the case
of the Zémor-Tillich hash they have at least been studied from 15 years. If the
generators change, the confidence that we may have on the Zémor-Tillich hash
function will not transfer automatically to the new function because the hard-
ness of these problems seems to depend a lot on the generators choice.

From an efficiency point of view, the group SL(2, F2n) is definitely better than
the group SL(2, Fp) used in [11]. The function efficiency will however improve a
lot if sets of 4, 8 or 16 generators can be used instead of the two generators A0

and A1 of the Zémor-Tillich hash function.
We may also try to change the generators to protect against the trapdoor

attack on the vectorial version. The choice of A0 and A1 was particularly unlucky
with this respect, because the attack will likely be unpractical for randomly
chosen generators. Indeed, let M,M ′ ∈ SL(2, Fp) satisfy (a0 b0) M = (a0 b0) M ′.
This is equivalent to det(M +M ′) = 0, hence to det(I +M ′M−1) = 0 and finally
to Tr(M ′M−1) = 0. There are about 23n matrices in SL(2, Fp), among which
about 22n matrices with 0 trace, hence for randomly chosen generators we would
need about 2n random products of them in order to find two matrices of the
correct form. Choosing as generators the two matrices

A′
0 =

(

X2 1
1 0

)

A′
1 =

(

X X + 1
1 1

)

.

seems safe with respect to the vectorial trapdoor attack. The change of X by
X2 in A0 will not affect too much the efficiency. Moreover, this change would
have the advantage to lessen greatly the density of the subset Ω generated in
SL(2, F2[X]), which could be benefic against lifting attacks.

Since balance and representation problems in groups SL(2, .) are badly known
in general and since their hardness seems to depend a lot on the choice of gener-
ators, any change in the generators should be followed by its own careful security
study.

8.3 Number of rounds

Heuristic reasoning and pseudorandomness tests on the outputs of ZesT used
in a counter mode tend to assert that two rounds are enough for its security as
a general-purpose hash function. However, we might have missed some way to
exploit the group structure or even some hidden quasi-group structure in the
function. In particular, we believe that the number of rounds necessary in ZesT
should be better examined, especially in the light of standard attacks against
traditional hash functions. We leave this question as an interesting open problem.

9 Conclusion

In this paper, we transformed a provable hash function with its inherent mal-
leability weaknesses into a practical, all-purpose hash function. We started from
the Zémor-Tillich hash function because of its elegant Cayley hash design, its
potentially great efficiency and the possibility to parallelize the hash computa-
tion. Although the collision resistance of this function relies on a problem that is
not classical in Cryptography, the problem has resisted 15 years of cryptanalytic
attempts and we believe that it deserves broader interest in the cryptographic
community.

We call ZesT our modification of the Zémor-Tillich hash function. ZesT is
provably collision, preimage and second preimage resistant. Our first implemen-
tations show that it is reasonably fast in software and efficient in FPGA and
that it admits ultra-lightweight implementations. In particular, it is only 4 to 10
times as slow as SHA in software, comparable to SHA on FPGA and better than
any other known hash function for area constrained applications. Moreover, the
hash computation can be distributed easily without affecting the result.

The ZesT function does not fill all NIST requirements in its call for a
new hash algorithm, but it can be easily modified to comply with all of them.
Therefore, as soon as the security of the Zémor-Tillich hash function is better
trusted by further studies on balance and representation problems in non-Abelian
groups, ZesT will definitely be an interesting hash candidate ... for SHA-4.

References

1. http://csrc.nist.gov/groups/ST/hash/documents/SHA-3_FR_Notice_Nov02_

2007%20-%20more%20readable%20version.pdf.

http://csrc.nist.gov/groups/ST/hash/documents/SHA-3_FR_Notice_Nov02_2007%20-%20more%20readable%20version.pdf
http://csrc.nist.gov/groups/ST/hash/documents/SHA-3_FR_Notice_Nov02_2007%20-%20more%20readable%20version.pdf

2. Dieharder. http://www.phy.duke.edu/ rgb/General/dieharder.php.
3. FIPS 186-2 digital signature standard (DSS).
4. FIPS 198 the keyed-hash message authentication code. http://csrc.nist.gov/

publications/fips/fips198/fips-198a.pdf.
5. Recommendation for pair-wise key establishment schemes using discrete loga-

rithm cryptography. http://csrc.nist.gov/publications/nistpubs/800-56A/

SP800-56A_Revision1_Mar08-2007.pdf.
6. Recommendation for random number generation using deterministic ran-

dom bit generators. http://csrc.nist.gov/publications/nistpubs/800-90/

SP800-90revised_March2007.pdf.
7. K. S. Abdukhalikov and C. Kim. On the security of the hashing scheme based on

SL2. In FSE ’98: Proceedings of the 5th International Workshop on Fast Software
Encryption, pages 93–102, London, UK, 1998. Springer-Verlag.

8. M. Bellare, R. Canetti, and H. Krawczyk. Message authentication using hash
functions—the HMAC construction. CryptoBytes, 2, 1996.

9. M. Bellare and D. Micciancio. A new paradigm for collision-free hashing: Incre-
mentality at reduced cost. In EUROCRYPT, pages 163–192, 1997.

10. A. Bogdanov, G. Leander, C. Paar, A. Poschmann, M. J. B. Robshaw, and
Y. Seurin. Hash functions and RFID tags: Mind the gap. In E. Oswald and
P. Rohatgi, editors, CHES, volume 5154 of Lecture Notes in Computer Science,
pages 283–299. Springer, 2008.

11. D. X. Charles, E. Z. Goren, and K. E. Lauter. Cryptographic hash functions from
expander graphs. To appear in Journal of Cryptology.

12. C. Charnes and J. Pieprzyk. Attacking the SL2 hashing scheme. In ASIACRYPT
’94: Proceedings of the 4th International Conference on the Theory and Applica-
tions of Cryptology, pages 322–330, London, UK, 1995. Springer-Verlag.

13. D. Chaum, E. van Heijst, and B. Pfitzmann. Cryptographically strong unde-
niable signatures, unconditionally secure for the signer. In J. Feigenbaum, edi-
tor, CRYPTO, volume 576 of Lecture Notes in Computer Science, pages 470–484.
Springer, 1991.

14. R. Chaves, G. Kuzmanov, L. Sousa, and S. Vassiliadis. Improving SHA-2 hardware
implementations. In CHES, pages 298–310, 2006.

15. R. Chaves, G. Kuzmanov, L. Sousa, and S. Vassiliadis. Cost-efficient SHA hardware
accelerators. IEEE Transactions on Very Large Scale Integration Systems (TVLSI),
16(8):999–1008, August 2008.

16. S. Contini, A. K. Lenstra, and R. Steinfeld. VSH, an efficient and provable collision-
resistant hash function. In S. Vaudenay, editor, EUROCRYPT, volume 4004 of
Lecture Notes in Computer Science, pages 165–182. Springer, 2006.

17. I. Damg̊ard. Collision free hash functions and public key signature schemes. In
EUROCRYPT, pages 203–216, 1987.

18. G. M. de Dormale. Destructive and Constructive Aspects of Efficient Algorithms
and Implementation of Cryptographic Hardware. PhD thesis, Université catholique
de Louvain, 2008.

19. G. de Meulenaer, C. Petit, and J.-J. Quisquater. Hardware implementations of
a variant of Zémor-Tillich hash function: Can a provably secure hash function be
very efficient ? Preprint, 2009.

20. S. Even and O. Goldreich. The minimum-length generator sequence problem is
NP-hard. J. Algorithms, 2(3):311–313, 1981.

21. M. Feldhofer, S. Dominikus, and J. Wolkerstorfer. Strong authentication for RFID
systems using the AES algorithm. pages 357–370. 2004.

http://csrc.nist.gov/publications/fips/fips198/fips-198a.pdf
http://csrc.nist.gov/publications/fips/fips198/fips-198a.pdf
http://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-90/SP800-90revised_March2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-90/SP800-90revised_March2007.pdf

22. M. Feldhofer and C. Rechberger. A case against currently used hash functions in
rfid protocols. pages 372–381. 2006.

23. FIPS. The Keyed-Hash Message Authentication Code (HMAC), Mar. 2002.
24. W. Geiselmann. A note on the hash function of Tillich and Zémor. In D. Goll-

mann, editor, Fast Software Encryption, volume 1039 of Lecture Notes in Computer
Science, pages 51–52. Springer, 1996.

25. S. Goldwasser, S. Micali, and R. L. Rivest. A “paradoxical” solution to the signa-
ture problem (extended abstract). In FOCS, pages 441–448. IEEE, 1984.

26. S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM Journal on Computing, 17:281–
308, 1988.

27. F. Gosset, F.-X. Standaert, and J.-J. Quisquater. FPGA implementation of
SQUASH. In Proceedings of the 29th Symposium on Information Theory in the
Benelux, 2008.

28. S. Hoory, N. Linial, and A. Wigderson. Expander graphs and their applications.
Bull. Amer. Math. Soc., 43:439–561, 2006.

29. M. R. Jerrum. The complexity of finding minimum-length generator sequences.
Theor. Comput. Sci., 36(2-3):265–289, 1985.

30. A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combinatorica,
8:261–277, 1988.

31. V. Lyubashevsky, D. Micciancio, C. Peikert, and A. Rosen. Provably secure FFT
hashing. In NIST 2nd Cryptogaphic Hash Workshop, 2006.

32. V. Lyubashevsky, D. Micciancio, C. Peikert, and A. Rosen. SWIFFT: A modest
proposal for FFT hashing. In Nyberg [34], pages 54–72.

33. M. Morgenstern. Existence and explicit construction of q + 1 regular Ramanujan
graphs for every prime power q. Journal of Combinatorial Theory, B 62:44–62,
1994.

34. K. Nyberg, editor. Fast Software Encryption, 15th International Workshop, FSE
2008, Lausanne, Switzerland, February 10-13, 2008, Revised Selected Papers, vol-
ume 5086 of Lecture Notes in Computer Science. Springer, 2008.

35. C. Petit, K. Lauter, and J.-J. Quisquater. Full cryptanalysis of LPS and Morgen-
stern hash functions. In R. Ostrovsky, R. D. Prisco, and I. Visconti, editors, SCN,
volume 5229 of Lecture Notes in Computer Science, pages 263–277. Springer, 2008.

36. C. Petit, J.-P. Tillich, G. Zémor, and J.-J. Quisquater. Hard and easy components
of collision search for the Zémor-Tillich hash function: new attacks and reduced
variants with the same security. To appear in CT-RSA 2009, 2008.

37. C. Petit, N. Veyrat-Charvillon, and J.-J. Quisquater. Efficiency and Pseudo-
Randomness of a Variant of Zémor-Tillich Hash Function. In IEEE International
Conference on Electronics, Circuits, and Systems, ICECS2008, 2008.

38. P. Rogaway and T. Shrimpton. Cryptographic hash-function basics: Definitions,
implications, and separations for preimage resistance, second-preimage resistance,
and collision resistance. In B. K. Roy and W. Meier, editors, FSE, volume 3017 of
Lecture Notes in Computer Science, pages 371–388. Springer, 2004.

39. A. Shamir. SQUASH - a new MAC with provable security properties for highly
constrained devices such as RFID tags, 2008.

40. A. Shamir and Y. Tauman. Improved online/offline signature schemes. In J. Kilian,
editor, CRYPTO, volume 2139 of Lecture Notes in Computer Science, pages 355–
367. Springer, 2001.

41. R. Steinwandt, M. Grassl, W. Geiselmann, and T. Beth. Weaknesses in the
SL2(F2n) hashing scheme. In Proceedings of Advances in Cryptology - CRYPTO
2000: 20th Annual International Cryptology Conference, 2000.

42. J.-P. Tillich and G. Zémor. Hashing with SL2. In Y. Desmedt, editor, CRYPTO,
volume 839 of Lecture Notes in Computer Science, pages 40–49. Springer, 1994.

43. J.-P. Tillich and G. Zémor. Collisions for the LPS expander graph hash function.
In N. P. Smart, editor, EUROCRYPT, volume 4965 of Lecture Notes in Computer
Science, pages 254–269. Springer, 2008.

44. Wikipedia. Linear feedback shift register, October 2008.
45. G. Zémor. Hash functions and graphs with large girths. In EUROCRYPT, pages

508–511, 1991.
46. G. Zémor. Hash functions and Cayley graphs. Des. Codes Cryptography, 4(4):381–

394, 1994.

A Fixing the key with an LFSR

To generate the 3n bits of Pn(X) and (a0 b0), we use the maximal Fibonacci
LFSR defined by the polynomial x16 +x14 +x13 +x11 +1. As n must be at least
1024 to provide the 512 bits of preimage resistance required by NIST for sensitive
applications [1], the degree of the LFSR polynomial must be at least 12. We chose
a polynomial of degree 16 because it might help in some applications if the LFSR
register has an exact number of bytes. The polynomial x16 + x14 + x13 + x11 + 1
has a maximal period 65535; it is the polynomial of degree 16 proposed in [44].

From this LFSR we construct the following (cryptographically weak but good
enough for our purpose) pseudorandom bit generator that outputs the first bit
of the state.

uint16_t reg = INIT ;

for (i =1;i<=65535;i++)

{

bit = (reg & 0x0001)^((reg & 0x0002) >> 1)

^((reg & 0x4000) >> 14) ;

reg = (reg >> 1) | (bit << 15);

cout<<bit;

}

Let us write g(INIT, i) for the ith bit output by this generator if the state
is initially set to INIT. For any n value, we generate our parameters Pn(X) and
c as follows:

1. Fix INIT to the binary representation of pi that is 1100100100001111.
2. Build a polynomial from g as follows

a Set Pn(X) = Xn + 1
b Set the ith bit of Pn(X) to the value g(INIT, i)

3. Check wether Pn(X) is irreducible. If yes go to point 6.
4. If Pn(X) is not irreducible, modify it as follows:

Pn(x)← X
−2

(

Pn(X) + (Pn(X) mod X
2)

)

+ X
n + 1 + bX

n−1

where b is the next bit output by the LFSR.
5. Check wether Pn(X) is irreducible. If yes go to point 6, otherwise go back to point

4.
6. Take the 2n following consecutive bits of the LFSR to define the initial vector

(a0 b0), from the degree 0 coefficient of b0 to the degree n− 1 coefficient of a0.

B Results of Dieharder

The tests included in the version 2.28.1 of Dieharder we used are listed in Table
8. Each test returns a p-value and a diagnostic according to this p-value. The
test is considered as PASSED if the p-value returned is larger than 5%. The byte
sequence analyzed is considered as POTENTIALLY WEAK if the p-value is be-
tween 1% and 5%, and as POOR if it is smaller than 1%. Many of these tests
are probabilistic. On perfectly random bits they will return POTENTIALLY
WEAK 4% of the times and POOR 1% of the times.

Diehard Tests

-d 1 Diehard Birthdays test

[sus: -d 2 Diehard Overlapping Permutations test]

-d 3 Diehard 32x32 Binary Rank test

-d 4 Diehard 6x8 Binary Rank test

-d 5 Diehard Bitstream test

-d 6 Diehard OPSO test

-d 7 Diehard OQSO test

-d 8 Diehard DNA test

-d 9 Diehard Count the 1s (stream) test

-d 10 Diehard Count the 1s (byte) test

-d 11 Diehard Parking Lot test

-d 12 Diehard Minimum Distance (2D Spheres) test

-d 13 Diehard 3D Spheres (minimum distance) test

-d 14 Diehard Squeeze test

[sus: -d 15 Diehard Sums test]

-d 16 Diehard Runs test

-d 17 Diehard Craps test

-d 18 Marsaglia and Tsang GCD test

[dev: -d 19 Marsaglia and Tsang Gorilla test]

RGB Tests

-r 1 RGB Timing test (times the rng)

-r 2 RGB Bit Persistence test

-r 3 RGB Ntuple Bit Distribution test suite (-n ntuple)

-r 4 RGB Generalized Minimum Distance test

-r 5 RGB Permutations test (new, partial replacement for operm tests)]

[rft: -r 6 RGB Lagged Sums test

(do not use the following as tests yet)

[dev: -r 7 RGB L-M-Ntuple Distribution test suite (quite long)]

[dev: -r 8 RGB Overlapping Permutations test]

Statistical Test Suite (STS)

-s 1 STS Monobit test

-s 2 STS Runs test

-s 3 STS Serial test

User Tests

-u 1 User Template (Lagged Sum Test)

Table 8. Tests implemented into Dieharder version 2.28.1 [2]. The tests preceded
by “rft” are ready for testing (the test may - or may not - work correctly) in that
version, the tests preceded by “sus” are suspect (they consistently fail “good”
generators) and the tests preceded by “dev” are under development.

ZesT was used in a counter mode with n in 31, 61, 127, 157, 223, 251,
383, 509, 1021 and the parameters fixed in the previous section. More precisely,
we computed the hash values of 1, 2, ..., 1.000.000, we truncated them by a few
bits to fit perfectly into bytes, we concatenated the results and we analyzed the
resulting byte sequence with the Dieharder suite.

The results are shown in Table 9. Each column is a version of ZesT labeled
by its parameter n and each row is a test of Dieharder labeled as in Table 8.
As some tests are repeated, each entry shows the number of tests for which the
result was PASSED, POTENTIALLY WEAK and POOR. The results for ZesT
are very similar to what we may expect from random bytes: for each n value, a
few tests are failed below 5% and very few tests are failed below 1%.

Test 31 61 127 157 223 251 383 509 1021

- r 3 31a1b 11a1c 11a1b 11a1b 11a1b 12a 12a 12a 11a1b

- r 4 4a 4a 3a1b 4a 4a 4a 4a 3a1b 3a1b

- r 5 5a1c 5a1c 6a 6a 5a1b 6a 6a 6a 6a

- r 6 33a 33a 33a 31a2b 33a 33a 32a1b 31a1b1c 33a

- d 1 1a 1a 1a 1a 1a 1a 1a 1b 1a

- d 3 1a 1a 1a 1a 1a 1a 1a 1a 1a

- d 4 1a 1a 1a 1a 1a 1a 1a 1a 1a

- d 5 1a 1a 1b 1a 1a 1a 1a 1a 1a

- d 6 1c 1a 1a 1a 1a 1b 1a 1c 1a

- d 7 1a 1a 1a 1a 1a 1a 1a 1a 1a

- d 8 1a 1a 1a 1b 1a 1a 1a 1a 1a

- d 9 1a 1b 1a 1a 1a 1a 1a 1a 1a

- d 10 1a 1a 1a 1a 1a 1a 1a 1a 1a

- d 11 1a 1a 1a 1a 1a 1a 1a 1b 1a

- d 12 1a 1a 1a 1a 1a 1a 1a 1a 1a

- d 13 1a 1a 1a 1a 1a 1a 1a 1a 1a

- d 14 1a 1a 1a 1a 1a 1a 1a 1a 1a

- d 16 2a 2a 2a 2a 2a 2a 2a 2a 2a

- d 17 2a 2a 2a 2a 2a 2a 2a 2a 2a

- d 18 2a 2a 2a 2a 2a 2a 2a 2a 2a

- s 1 1a 1a 1a 1a 1a 1a 1a 1a 1a

- s 2 1a 1a 1a 1a 1a 1a 1a 1a 1a

- s 3 29a1b 29a1b 30a 29a1c 30a 28a1b1c 30a 30a 27a3b

- u 1 1a 1a 1a 1a 1a 1a 1a 1a 1a

Table 9. Results of Dieharder for ZesT. The tests are identified as in Table 8.
As some tests are repeated, each entry gives the number of tests whose verdicts
were PASSED, POTENTIALLY WEAK and POOR. a=PASSED (p-value larger
than 5%); b=POTENTIALLY WEAK (p-value between 1% and 5%); c=POOR
(p-value smaller than 1%).

	ZesT: an all-purpose hash function based on Zémor-Tillich
	Christophe Petit1, Giacomo de Meulenaer1, Jean-Jacques Quisquater1, Nicolas Veyrat-Charvillon1, Jean-Pierre Tillich2 and Gilles Zémor3

