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ASYMPTOTICS ON DEGENERATING FAMILIES OF

DISCRETE TORI
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Abstract. By a discrete torus we mean the Cayley graph associated to a finite
product of finite cycle groups with the generating set given by choosing a gen-
erator for each cyclic factor. In this article we examine the spectral theory of

the combinatorial Laplacian for sequences of discrete tori when the orders of

the cyclic factors tend to infinity at comparable rates. First, we show that the

sequence of heat kernels corresponding to the degenerating family converges,

after rescaling, to the heat kernel on an associated real torus. We then establish

an asymptotic expansion, in the degeneration parameter, of the determinant of

the combinatorial Laplacian. The zeta-regularized determinant of the Lapla-
cian of the limiting real torus appears as the constant term in this expansion.

On the other hand, using a classical theorem by Kirchhoff, the determinant of

the combinatorial Laplacian of a finite graph divided by the number of vertices

equals the number of spanning trees, called the complexity, of the graph. As a

result, we establish a precise connection between the complexity of the Cayley

graphs of finite abelian groups and heights of real tori. It is also known that

spectral determinants on discrete tori can be expressed using trigonometric

functions and that spectral determinants on real tori can be expressed using

modular forms on general linear groups. Another interpretation of our analy-
sis is thus to establish a link between limiting values of certain products of

trigonometric functions and modular forms. The heat kernel analysis which

we employ uses a careful study of I-Bessel functions. Our methods extend to

prove the asymptotic behavior of other spectral invariants through degenera-
tion, such as special values of spectral zeta functions and Epstein-Hurwitz–type
zeta functions.

Received January 30, 2009. Accepted November 3, 2009.
The first and second authors acknowledge support provided by grants from the National

Science Foundation and the Professional Staff Congress of the City University of New
York. The third author thanks the Swedish Research Council, the Göran Gustafsson
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§1. Introduction

1.1. Historical Review
The problems we study in the present article begin with the following very

elementary question. For any d ≥ 1, let N = (n1, . . . , nd) denote a d-tuple of
positive integers, and consider the product

(1) D(N) =
∏
K �=0

(
2d − 2cos(2πk1/n1) − · · · − 2cos(2πkd/nd)

)
,

where the product is over all d-tuples K = (k1, . . . , kd) of nonnegative inte-
gers with kj < nj , omitting the zero vector in the product. The basic ques-
tion is the following: What is the asymptotic behavior of D(N) as N →
∞? Setting V (N) = n1, . . . , nd, (logD(N))/V (N) can be interpreted as an
improper Riemann sum, and we have the limiting formula

1
V (N)

logD(N)

(2)
→

∫
Zd \Rd

log
(
2d − 2cos(2πx1) − · · · − 2cos(2πxd)

)
dx1 · · · dxd

as each nj → ∞. The integral in (2) exists in the sense of improper inte-
grals from elementary calculus, and the convergence of D(N)/V (N) to the
improper integral in (2) can be verified easily using the monotonicity of
logx for x > 0 and calculus.

One can view D(N) as a determinant of a naturally defined matrix from
graph theory. Quite generally, associated to any finite graph is a discrete
Laplacian which acts on the finite-dimensional space of complex-valued
functions whose domain of definition is the space of vertices of the graph.
With our normalization of the Laplacian, defined in Section 2.4 below, D(N)
is equal to the product of the nonzero eigenvalues of the Laplacian associ-
ated to a graph which we call a discrete torus.

The study of D(N) takes on an entirely new level of significance beginning
with the 1847 paper of Kirchhoff [18], which further recognizes D(N) as a
fundamental invariant from graph theory. A spanning tree of a graph is a
subgraph, which contains precisely one path between each pair of vertices of
the original graph. Kirchhoff’s theorem states that the number of spanning
trees is equal to D(N)/V (N), the product of the nonzero eigenvalues of the
Laplacian divided by the number of vertices.
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Modern mathematics, theoretical computer science, and statistical phys-
ics contain numerous studies which in some way involve the number of
spanning trees of a given graph, determinants of Laplacians, or other sym-
metric functions of eigenvalues which form basic invariants. With all this,
we see that the invariant D(N) has considerable significance far beyond the
elementary considerations which allow for its definition.

1.2. Summary of the main results
Our work begins with the results from [15], which establishes a theta

inversion formula for the discrete Laplacian acting on the space of vertices
of nZ\Z. Let Ix(t) be the classical I-Bessel function, reviewed in detail in
Section 2.1 below. Then, using the general concept of theta functions with
inversion formulas constructed from heat kernels (see, e.g., [14]), the authors
in [15] prove that for any t > 0 and integer x, the following identity holds
for the theta function associated to the discrete torus nZ\Z:

(3) θn(t, x) =
1
n

n−1∑
k=0

e−(2−2cos(2πk/n))t+2πikx/n = e−2t
∞∑

j=− ∞
Ix+jn(2t),

where Ix(t) denotes the I-Bessel function (see Section 2.2). The general-
ization of (3) to the d-dimensional discrete torus, defined as the product
space

DTN =
d∏

j=1

njZ\Z,

comes from taking a d-fold product of the theta functions in (3). By com-
puting an integral transform of the d-dimensional theta inversion, we obtain
the following formula, given in Theorem 3.6. For any s ∈ C with Re(s2) > 0,
we have that

(4)
∑
Λj �=0

log(s2 + Λj) = V (N)Id(s) + HN (s),

where

{Λj } =
{
2d − 2cos(2πk1/n1) − · · · − 2cos(2πkd/nd)

}
,

with kj = 0, . . . , nj − 1,

as in (1);

Id(s) =
∫ ∞

0

(
e−2dte−s2tI0(2t)d − e−t

)dt

t
;
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and

HN (s) = −
∫ ∞

0

(
e−s2t[θN (t) − V (N)e−2dtI0(2t)d − 1] + e−t

)dt

t
.

We now consider a sequence of integral vectors N(u) = (n1(u), . . . , nd(u))
parametrized by u ∈ Z such that nj(u)/u → αj as u → ∞ for each j. Let A

be the diagonal matrix with the numbers αi on the diagonal, and let V (A) =
α1, . . . , αd �= 0. Through a careful study of the infinite series of I-Bessel
functions in (3), we obtain the following theorem, which is one of the main
results of the present article.

Main theorem. Let log det∗ΔDT,N(u) be the log-determinant of the
Laplacian of nonzero eigenvalues on the d-dimensional discrete torus associ-
ated to N(u), and let log det∗ΔRT,A be the log-determinant of the Laplacian
on the real torus AZd\Rd. Then

log det∗ΔDT,N(u) = V
(
N(u)

)
Id(0)

(5)
+ logu2 + logdet∗ΔRT,A + o(1), as u → ∞,

where
Id(0) =

(
log 2d −

∫ ∞

0

(
e−2dt

(
I0(2t)d − 1

)dt

t

)
.

A number of facets of (5) are interesting. First, the determinant
det∗ΔDT,N(u) is a legitimate finite product of eigenvalues, whereas
det∗ΔRT,A is defined through zeta function regularization. From this point
of view, we have connected a zeta-regularized determinant with a classical
determinant. Moreover, since the first terms in (5) are universal, this allows
for the possibility of transferring knowledge, for example, from the minimal
spectral determinants for real tori, as studied in [5] and [23], to minimal
spectral determinants for discrete tori or, alternatively, the minimal number
of spanning trees. In this context it is relevant to remark that the main theo-
rem holds without any changes for general tori (see Section 7.5). Second, the
discrete torus DTN can be viewed as a lattice on the real torus AZd\Rd,
and the degeneration which occurs when u tends to infinity amounts to
considering a family of discrete tori which are becoming uniformly dense in
AZd\Rd. The main theorem above proves a type of “rescaled continuity”
when studying the asymptotic behavior of spectral determinants. Finally,
the classical Kronecker limit formula for Epstein zeta functions amounts to
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the evaluation of log det∗ΔRT,A in terms of a generalization of Dedekind’s
eta function to a GL(d,Z) modular form. With this, we have established a
precise connection between the asymptotics of the number of spanning trees
on families of discrete tori and modular forms.

The verification of the main theorem in the case d = 1 can be carried out
directly; the details are presented in Section 6.1. When d = 2, additional
explicit computations are possible, in which case the main theorem becomes
the following result.

Main theorem in the case d = 2. Let N(u) = (n1(u), let n2(u)) =
(n1, n2), and assume that N(u)/u → (α1, α2). With the above notation, we
have, for any integer K > 3, the asymptotic formula

log det∗ΔDT,N(u) = n1n2
4G
π

+ log(n1n2) + log
(

|η(iα2/α1)|4α2/α1

)
(6)

+
K−3∑
k=1

Fk(u) + O(u−K)

as u → ∞, where G is the classical Catalan constant, η denotes Dedekind’s
eta function, and the functions Fk(u) are explicitly computable and satisfy
the asymptotic bound Fk(u) = O(u−k−2) as u → ∞.

The main theorem (5) comes from studying the special value s = 0 in (4).
The analysis we develop in the proof of (5) extends to prove the asymptotic
behavior of (4) for all s ∈ C with Re(s2) > 0, as well as for special values of
the spectral zeta function

∑
j Λ−w

j for w ∈ C with Re(w) > 0. In Section 7.3,
we prove the following theorem.

Theorem. With notation as above, let ζA be the spectral zeta function
on the real torus AZd\Rd. Then for any w ∈ C with Re(w) > 0, we have
that

lim
u→∞

u−2w
(
ζN (w) − V (N)

Γ(w)

∫ u2

0

(
e−2tI0(2t)

)d
tw

dt

t

)
(7)

= ζA(w) − V (A)
(4π)d/2(w − d/2)Γ(w)

.

In particular, for any w ∈ C with Re(w) > d/2, we have

(8) lim
u→∞

(
u−2wζN(u)(w)

)
= ζA(w).
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1.3. Comparisons with known results
The case d = 2 has been studied since at least the 1960s by physicists,

starting with Kasteleyn’s celebrated computation [16] of the lead term
4G/π. The next-order terms in the asymptotic expansion were later obtained
by Barber (see [9, references therein]; see also [9, (3.18), for the precise
statements]). Going further, [9] establishes the error term O(u−1), while
our explicit error term expansion begins with a term of order O(u−3). The
authors in [9] prove their results by studying the asymptotic behavior of
the spectrum of the Laplacian, as opposed to the asymptotic behavior of
the heat kernel and its integral transforms, which is the approach we take
in the present article. Subsequent authors have studied asymptotics of the
Laplacian on more general subgraphs of Z2 (see, e.g., [2], [17]). For general
d ≥ 2, the articles [2], [4], [11], [24], and [25] have discussions which give the
lead-term asymptotics in (5). However, there is no discussion in these arti-
cles or elsewhere regarding the next-order term in the asymptotic expansion
in (5).

As stated, in Sections 7.3 and 7.4 we apply our analysis to study the
asymptotic behavior of the families of spectral zeta functions and Epstein-
Hurwitz zeta functions through degeneration. These problems are consid-
ered in [9] in the case d = 2 for general arguments for the Epstein-Hurwitz
zeta function and for the special values w = 1 and w = 2 of the spectral zeta
function (see Section 7.4 for a clarification of the notation). Specifically, [9,
(3.24)] asserts that, “after a rather long algebra,” one has the asymptotic
formula∑

k �=0

1
Λ2

k

∼
(α1uα2u

2π

)2( 1
24 · 45

(2πα1/α2)2 +
ζ(3)

2(2πα1/α2)
(9)

+
1

2πα1/α2

∑
n≥1

1
n3

e−2πα1/α2n

1 − e−2πα1/α2n
+

∑
n≥1

1
n2

e−2πα1/α2n

(1 − e−2πα1/α2n)2

)
as u → ∞. For comparison, our result (8) specialized to d = w = 2 yields the
asymptotic formula

(10)
∑
k �=0

1
Λ2

k

∼ u4

(2π)4
∑

(n,m)�=(0,0)

1
((n/α1)2 + (m/α2)2)2

as u → ∞. Going further, the current literature contains only a handful of
other considerations beyond (9), all in the case of d = 2, whereas our result
is completely general.
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As an aside, note that by equating the lead terms in (9) and (10) and
setting y = α1/α2, we arrive at the formula∑

(n,m)�=(0,0)

1
(n2 + (my)2)2

=
(2π

y

)2((2πy)2

24 · 45
+

ζ(3)
4πy

(11)

+
1

2πy

∑
n≥1

1
n3

e−2πyn

1 − e−2πyn
+

∑
n≥1

1
n2

e−2πyn

(1 − e−2πyn)2
)
.

A direct proof of (11) can be obtained by taking the Fourier expansion of
the nonholomorphic Eisenstein series E(z, s) for SL(2,Z) with z = iy and
s = 2, using the evaluation of the K-Bessel function Ks−1/2 in terms of
exponential functions when s = 2. We thank Cormac O’Sullivan for clarify-
ing this point for us, and we refer the interested reader to his forthcoming
article ([20]) for a systematic presentation of identities of this form.

In Riemannian geometry, the determinant of the Laplacian obtained
through zeta-function regularization has been used extensively as a height
function on moduli space (see, e.g., [5], [19]). We view the asymptotic
expansion in (5) as establishing a precise connection to the well-established
notion of complexity from graph theory (compare with the discussion in [22,
page 619] or [17, page 242]). Another context where the number of spanning
trees in discrete tori appears is in the study of sandpile models [3]. Going
beyond the setting of discrete and real tori, we are optimistic that the point
of view taken in the present article will extend to address problems in the
study of other families of Cayley graphs of discrete, possibly infinite, groups.

1.4. Outline of the article
In Section 2, we establish notation and present background material from

elsewhere in the mathematics literature.
In Section 3, we study the theta function (3) associated to the action

of the discrete Laplacian on functions on DTN =
∏d

j=1 njZ\Z. Following
the results from [15], we begin with the inversion formula (3) obtained by
expressing the heat kernel on Zd in terms of I-Bessel functions and then
periodize to obtain an expression for the heat kernel on the discrete torus.
The main result in Section 3 is Theorem 3.6, stated in (4) above, which com-
putes the Gauss transform (Laplace transform with a quadratic change of
variables) of the heat kernel on DTN . By taking a special value of the Gauss
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transform, we obtain an expression for the determinant of the Laplacian on
DTN in terms of integral transforms of I-Bessel functions.

In Section 4, we prove general bounds for I-Bessel functions, building
from the fundamental estimates proved in [21]. Many of the computations
in Section 4 involve rescaled I-Bessel functions. For instance, we establish
asymptotic behavior (Proposition 4.7) and uniform bounds (Lemma 4.6) in
the parameter u of

(12) f(u;x, t) = ue−u2tIux(u2t).

In particular, we prove that as u tends to infinity, f(u;x, t) approaches the
heat kernel on R associated to a certain scaling of the usual Laplacian.

In Section 5 we define and study spectral asymptotics on degenerating
sequences of discrete tori. Theorem 5.8, and its reformulation in Remark
5.9, proves the main result of this article as stated in (5), which is the
asymptotic behavior of the determinant of the Laplacian on a degenerating
family of discrete tori. The two key steps are to first employ the change
of variable t → u2t and then utilize a careful decomposition of the Bessel
integrals involved. The various integrals are then analyzed individually and
matched up with terms in the meromorphic continuation of the spectral
determinant on the continuous side.

Whereas we highlight Theorem 5.8 as the main result of the present
article, there are many other applications of the analysis from Sections 3
and 4 that go beyond the study of the determinant of the Laplacian, which
is the focus of attention in Section 5.

In Section 6, we deduce our main theorem for d = 2 and show that it
agrees with the work in [9]. Moreover, we show how to obtain an explicit
expansion of the error term. This does not appear in previous work and could
be of importance when comparing heights of discrete tori and corresponding
continuous tori.

The main points we address in Section 7 are examination of the numerical
evaluation for the lead term in various asymptotic expansions for arbitrary
dimension, determination of asymptotic behavior of spectral zeta functions
and Epstein-Hurwitz zeta functions for general dimension, and investigation
of the notational changes needed to consider general sequences of degener-
ating discrete tori.
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§2. Preliminary material

The purpose of this section is to establish notation and recall relevant
material from elsewhere in the mathematics literature.

2.1. Basic notation
We use t ∈ R+ to denote a positive real variable, and we use x ∈ Z to

denote an integer variable. For any integer n ≥ 1, we call the quotient space
nZ\Z a discrete circle, and a finite product of discrete circles a discrete
torus. The product of d discrete circles formed with the integers n1, . . . , nd

will be denoted by DTN , where N = (nj)j=1,...,d.
For any function f : Z → R, we define the Laplacian ΔZ by

ΔZf(x) = 2f(x) −
(
f(x + 1) + f(x − 1)

)
.

The Laplacian on Zd is the sum of d Laplacians ΔZ; one for each coordinate.
The spectrum of the Laplacian ΔZ acting on function on nZ\Z is easily
computable (see, e.g., [15]); hence the spectrum on DTN is simply the set
of sums of eigenvalues for each discrete circle. Specifically, let {Λj } denote
the set of eigenvalues of Δ acting on function on DTN . Then, with our
normalization of the Laplacian,

{Λj } =
{
2d − 2cos(2πk1/n1) − · · · − 2cos(2πkd/nd)

}
,

with k1 = 0, . . . , n1 − 1, . . . , kd = 0, . . . , nd − 1. Let V (N) = n1, . . . , nd, which
can be viewed as a volume of DTN,d. There are V (N) eigenvalues of the
Laplacian on DTN , and V (N) − 1 of the eigenvalues are nonzero.

The discrete torus DTN gives rise to a graph by inserting an edge between
two points which have a single component that differs by one (i.e., nearest
neighbor). This is the Cayley graph of the group

∏d
j=1 njZ\Z with respect to

the generators corresponding to the standard basis vectors of Zd. A spanning
tree is a subgraph such that given any two vertices in DTN , there is precisely
one path within the subgraph that connects the two vertices. The matrix-
tree theorem (see, e.g., [12]) asserts that

# of spanning trees =
1

V (N)

∏
Λj �=0

Λj .

We will use the notation

det∗ΔDT,N =
∏

Λj �=0

Λj ,
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where det∗ΔDT,N denotes the determinant of the Laplacian on the discrete
torus DTN omitting the zero eigenvalue.

2.2. The I-Bessel function
Classically, the I-Bessel function Ix(t) is defined as a solution to the

differential equation

t2
d2w

dt2
+ t

dw

dt
− (t2 + x2) = 0.

For integer values of x, it is immediately shown that Ix = I−x, and for
positive integer values of x, we have the series representation

(13) Ix(t) =
∞∑

n=0

(t/2)2n+x

n!Γ(n + 1 + x)
,

as well as the integral representation

(14) Ix(t) =
1
π

∫ π

0
et cos(θ) cos(θx)dθ.

The mathematics literature contains a vast number of articles and mono-
graphs which study the many fascinating properties and manifestations of
the I-Bessel functions, as well as other Bessel functions. As demonstrated
in the analysis in [15], basic to our considerations is the relation

Ix+1(t) + Ix−1(t) = 2
d

dt
Ix(t),

which easily can be derived from the integral representation and simple
trigonometric identities.

2.3. Universal bounds for the I-Bessel function
The elementary definition of the I-Bessel function leads to a number of

precise expressions for Ix(t), two of which are stated in Section 2.2. Unfor-
tunately, the explicit identities do not easily lead to viable estimates for
Ix(t). Beginning with the differential equation which characterizes Ix(t),
Pal’tsev [21] was able to derive very precise upper and lower bounds for the
I-Bessel function, which we now state. Let

gx(t) =
√

(x2 + t2) + x log
( t

x +
√

(x2 + t2)

)
.
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Then for all t > 0 and x ≥ 2 we have that

(15) e−1/(2
√

(x2+t2)) ≤
√

(2π) · (x2 + t2)1/4Ix(t)e−gx(t) ≤ e1/(2
√

(x2+t2)).

These bounds play an important role in this article. Indeed, in Section 4,
we study the function gx(t) − t in order to obtain elementary bounds for√

te−tIx(t), which will be vital when establishing our main result.

2.4. Heat kernels and zeta functions
In [15], the authors established a theta inversion formula obtained from

studying the heat kernel associated to the Laplacian on nZ\Z. Let KZ(t, x)
be a function on Z such that

ΔZKZ(t, x) +
∂

∂t
KZ(t, x) = 0

and

lim
t→0

KZ(t, x) =

{
1 if x = 0,

0 if x �= 0.

General results from [7] and [6] prove the existence and uniqueness of
KZ(t, x), and as shown, for example, in [15], we have that

KZ(t, x) = e−2tIx(2t).

The existence and uniqueness theorems for heat kernels on graphs apply to
heat kernels on nZ\Z. Bounds for the I-Bessel function from Section 2.3
imply that the series

(16)
∞∑

k=− ∞
e−2tIkn+x(2t)

converges and hence is equal to the heat kernel on nZ\Z, which we denote
by KnZ\Z(t, x). Denote the eigenvalues on nZ\Z and corresponding eigen-
functions by {λn,j } and {φn,j }, respectively. This leads to the identity

(17)
n−1∑
j=0

e−tλn,jφn,j(x)φn,j(0) =
∞∑

k=− ∞
e−2tIkn+x(2t).

In the case n = 1, this yields a classical identity which expresses an infinite
sum of I-Bessel functions as an exponential function. The heat kernel on
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DTN and corresponding theta inversion formula are obtained by taking the
d-fold product of (17).

2.5. Spectral analysis on real tori
Given a positive definite d × d matrix A, let RTA denote the real torus

AZd\Rd. On R we use the variable y to denote the standard global coordi-
nate, from which we have the Laplacian

ΔRf(y) = − d2

dy2
f(y)

and corresponding heat kernel KR(t, y) which is uniquely characterized by
the conditions

ΔRKR(t, y) +
∂

∂t
KR(t, y) = 0

and ∫
R

KR(t, x − y)f(y)dy → f(x), as t → 0,

for any smooth, real-valued function f on R with compact support. The set
of eigenvalues of the Laplacian on RTA is given by {(2π)2tmA∗m} for m ∈
Zd, where A∗ is the dual lattice to A. The eigenfunctions of the Laplacian
are expressible as exponential functions. The theta function

ΘA(t) =
∑

m∈Zd

e−(2π)2·tmA∗m·t,

with t > 0, is the trace of the heat kernel on RTA. The asymptotic behavior
of the theta function is well known, namely, that

ΘA(t) = V (A)(4πt)−d/2 + O(e−c/t), for some c > 0 as t → 0,

and
ΘA(t) = 1 + O(e−ct), for some c > 0 as t → ∞.

2.6. Regularized determinants on real tori
In very general circumstances, the spectral zeta function is defined as

the Mellin transform M of the theta function formed with the nonzero
eigenvalues. Specifically, for s ∈ C with Re(s) > d/2, we define the spectral
zeta function

(18) ζA(s) = MΘA(s) =
1

Γ(s)

∫ ∞

0

(
ΘA(t) − 1

)
ts

dt

t
.
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The integral in (18) converges for Re(s) > d/2. Let us write

ζA(s) =
1

Γ(s)

∫ 1

0

(
ΘA(t) − V (A)(4πt)−d/2

)
ts

dt

t

+
1

Γ(s)

∫ 1

0

(
V (A)(4πt)−d/2 − 1

)
ts

dt

t
(19)

+
1

Γ(s)

∫ ∞

1

(
ΘA(t) − 1

)
ts

dt

t
.

Going further, we can carry out the integral in the second term to get

ζA(s) =
1

Γ(s)

∫ 1

0

(
ΘA(t) − V (A)(4πt)−d/2

)
ts

dt

t

+ (4π)−d/2 V (A)
(s − d/2)Γ(s)

− 1
Γ(s + 1)

(20)

+
1

Γ(s)

∫ ∞

1

(
ΘA(t) − 1

)
ts

dt

t
.

By virtue of the asymptotic behavior of ΘA(t) as t → 0 and t → ∞, expres-
sion (20) provides a meromorphic continuation of ζA(s) to s ∈ C. Therefore,
using (20), we can study the behavior of ζA(s) near s = 0. The integrals are
holomorphic near s = 0, and 1/Γ(s) = s+O(s2) near s = 0, so then we have
that ζA(0) = −1, which is a point that will be used later. In particular, we
have that

ζ ′
A(0) =

∫ 1

0

(
ΘA(t) − V (A)(4πt)−d/2

)dt

t
+ Γ′(1)

(21)

− 2
d
V (A)(4π)−d/2 +

∫ ∞

1

(
ΘA(t) − 1

)dt

t
,

which will play an important role in the proof of our main result.

2.7. Kronecker’s limit formula
The special value ζ ′

A(0) has a unique place in classical analytic number
theory, and the evaluation of ζ ′

A(0) in terms of modular forms is generally
referred to as Kronecker’s limit formula, which we now describe. The content
of this section has its origins in [10], and the discussion we present here comes
directly from [8].
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Let Q denote a d × d positive definite matrix, and let u ∈ Rd any vector.
If we write Q = (qi,j), then the quadratic form associated to Q is defined by

Q(u) =
∑
i,j

qi,juiuj .

The Epstein zeta function associated to Q is defined for Re(s) > d/2 by the
convergent series

Z(s,Q) =
∑

m∈Zd \{0}
Q(m)−s.

From the discussion in Sections 2.4 and 2.5, the Epstein zeta function is, up
to a multiplicative factor of (2π)−2s, the spectral zeta function associated to
the real torus RTA with A = Q∗, where Q∗ is the dual lattice to Q. It can be
shown that Z(s,Q) admits a meromorphic continuation and the functional
equation

π−sΓ(s)Z(s,Q−1) = (detQ)1/2πs−d/2Γ(d/2 − s)Z(d/2 − s,Q).

The Iwasawa decomposition of Q asserts that Q can be uniquely expressed
as

Q =
(

1 0
−tx Id−1

)(
y−1 0
0 Y

)(
1 −x

0 Id−1

)
,

with y ∈ R+, x ∈ Rd−1, and Y a (d − 1) × (d − 1) positive definite matrix;
here, Id−1 denotes the (d − 1) × (d − 1) identity matrix, and we think of
x ∈ Rd−1 and y ∈ R as row vectors. For m ∈ Rd−1, one defines

Q{m} = m · x + i
√

yY (m),

which is a complex number with Im(Q{m}) > 0 unless m = 0. With all this,
the generalization of the classical Kronecker limit formula for Z(s,Q) is the
identity

(22) Z ′(0,Q) = −2π
√

yZ(1/2, Y ) − log
∣∣∣(2π)2y

∏
m∈Zn−1\{0}

(1 − e2πiQ{m})4
∣∣∣.

In [8] the authors study exp(−Z ′(0,Q)) as a generalization of the classical
Dedekind eta function and prove an analogue of the Chowla-Selberg formula
which relates exp(−Z ′(0,Q)) to special values of higher order gamma func-
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tions and special values of certain L functions. We refer the interested reader
to [8] for additional results regarding the fascinating number theoretic and
automorphic aspects of (22).

2.8. Mellin transform and inversion
Let fx(t) = e−t/2Ix(t/2). Known transform identities include the formula

(23) f̃x(s) =
∫ ∞

0
e−t/2Ix(t/2)ts

dt

t
=

Γ(s + x)Γ(1/2 − s)√
πΓ(x + 1 − s)

.

The identity (23) is valid for −x < Re(s) < 1/2. The inverse Mellin formula
gives

(24) fx(t) =
1

2πi

∫
(σ)

f̃x(s)t−s ds, for −x < σ < 1/2.

The Mellin transform of a product is computed via the convolution of
two transforms, yielding the computations

f̃xfy(s) =
∫ ∞

0
fx(t)fy(t)ts

dt

t

=
∫ ∞

0
fx(t)

[ 1
2πi

∫
(σ)

f̃y(z)t−z dz
]
ts

dt

t
, for −y < σ < 1/2

=
1

2πi

∫
(σ)

f̃y(z)
[∫ ∞

0
fx(t)ts−z dt

t

]
dz, for −x < Re(s) − σ < 1/2

=
1

2πi

∫
(σ)

f̃x(s − z)f̃y(z)dz.

Therefore, we conclude that

f̃xfy(s) =
∫ ∞

0
e−tIx(t/2)Iy(t/2)ts

dt

t

=
1

2πi

∫
(σ)

Γ(s − z + x)Γ(1/2 + z − s)Γ(z + y)Γ(1/2 − z)√
πΓ(x + 1 + z − s)

√
πΓ(y + 1 − z)

dz(25)

=
1

2πi

∫
(σ)

Γ(s − z + x)Γ(1/2 + z − s)Γ(z + y)Γ(1/2 − z)
πΓ(x + 1 + z − s)Γ(y + 1 − z)

dz.

Using the bounds Ix(t) = O(tx) as t → 0 and e−tIx(t) = O(t−1/2) as t → ∞,
the Mellin transform f̃xfy(s) is defined for −x − y < Re(s) < 1, so (25) holds
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for 0 < σ < Re(s) < 1/2. If x �= 0 or y �= 0, we can take s = 0 and write∫ ∞

0
e−t[Ix(t/2)Iy(t/2)]

dt

t
(26)

=
1

2πi

∫
(1/4)

Γ(x − z)Γ(1/2 + z)Γ(z + y)Γ(1/2 − z)
πΓ(x + 1 + z)Γ(y + 1 − z)

dz.

In Section 6.2 below, we will extend (26) to the case x = y = 0.

2.9. Miscellaneous results
For any ε > 0 and z ∈ C, Stirling’s formula for the classical gamma func-

tion is the asymptotic relation

logΓ(z) = (z − 1/2) log z − z + (1/2) log(2π) + O(1/z),

as z → ∞ provided | arg(z)| < π − ε. In particular, one has for fixed a and b

the asymptotic relation

(27)
Γ(z + a)
Γ(z + b)

= za−b+O(za−b−1), as z → ∞ provided | arg(z)| < π − ε.

Further terms in the Stirling’s formula can be computing (see, e.g., [13]),
which then would imply further terms in the asymptotic expansion (27).

Throughout our work, we will use the elementary identity

(28) log(w) =
∫ ∞

0
(e−t − e−wt)

dt

t
, for all w ∈ C with Re(w) > 0.

To prove this relation, one simply observes that both sides of the proposed
identity vanish when w = 1 and have first derivative equal to 1/w.

§3. Zeta functions and determinants for discrete tori

In this section we study the Gauss transform of the trace of the heat kernel
associated to a discrete torus. We begin with Lemma 3.1, which recalls the
theta inversion formula associated to a general discrete torus. From the
theta inversion formula, we define the Gauss transform (Lemma 3.2). Using
the group periodization representation of the heat kernel, we decompose the
theta inversion formula into two summands: the identity term and the set of
nonidentity terms. We study the Gauss transform of these two summands
separately, ultimately arriving at an identity (Theorem 3.6) which expresses
the determinant of the Laplacian on the discrete torus in terms of I-Bessel
functions.
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Lemma 3.1. Let θN (t) be the theta function associated to the d-dimen-
sional discrete torus NZd\Zd, defined by

θN (t) =
∑
Λj

e−Λjt,

where

{Λj } = {2d − 2cos(2πm1/n1) − · · · − 2cos(2πmd/nd) :

0 ≤ mi < ni, for each i = 1,2, . . . , d}.

Then for all t > 0, we have the identity

θN (t) = V (N)
∑

K∈Zd

∏
1≤j≤d

e−2tInj ·kj
(2t),

where K runs over d-tuples of integers (k1, . . . , kd).

Proof. We refer to [15] for the case d = 1. From there, one gets the general
case using that the heat kernel on a product space is equal to the product
of the heat kernels, since the Laplacian on the product space is defined to
be the sum of the Laplacians from each factor space.

Lemma 3.2. For all s ∈ C with Re(s2) > 0, we have

∑
Λj �=0

2s
s2 + Λj

= V (N)2s
∫ ∞

0
e−s2te−2dtI0(2t)d dt

+ 2s
∫ ∞

0
e−s2t[θN (t) − V (N)e−2dtI0(2t)d − 1]dt.

Proof. By the definition of θN , we can write∑
Λj �=0

e−Λjt = V (N)
(
e−2tI0(2t)

)d + [θN (t) − V (N)e−2dtI0(2t)d − 1].

Now simply multiply both sides of this identity by 2se−s2t and integrate
with respect to t on (0, ∞). Asymptotic behavior of the integrands as t → 0
and t → ∞ easily implies that the resulting integrals are convergent for
s ∈ C provided Re(s2) > 0.
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Lemma 3.3. The function

f(s) =
∑
Λj �=0

log(s2 + Λj)

is uniquely characterized by the differential equation

∂sf(s) =
∑
Λj �=0

2s
s2 + Λj

and the asymptotic relation

f(s) =
(
V (N) − 1

)
· log s2 + o(1), as s → ∞.

Proof. The differential equation characterizes f(s) up to an additive con-
stant, which is uniquely determined by the stated asymptotic behavior.

Proposition 3.4. The function

Id(s) = −
∫ ∞

0

(
e−s2te−2dtI0(2t)d − e−t

)dt

t

is uniquely characterized by the differential equation

∂sId(s) = 2s
∫ ∞

0
e−s2te−2dtI0(2t)d dt

and the asymptotic relation

Id(s) = log s2 + o(1), as s → +∞.

Proof. For this, we write

Id(s) = −
∫ ∞

0
e−s2te−2dt

(
I0(2t)d − 1

)dt

t
−

∫ ∞

0
(e−s2te−2dt − e−t)

dt

t
.

By (28), ∫ ∞

0
(e−s2te−2dt − e−t)

dt

t
= − log(s2 + 2d),

so then we have

Id(s) = −
∫ ∞

0
e−s2te−2dt

(
I0(2t)d − 1

)dt

t
+ log(s2 + 2d).

From this last expression, the asymptotic behavior as s → ∞ is immediate.
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Proposition 3.5. The function

HN (s) = −
∫ ∞

0

(
e−s2t[θN (t) − V (N)e−2dtI0(2t)d − 1] + e−t

)dt

t

is uniquely characterized by the differential equation

∂sHN (s) = 2s
∫ ∞

0
e−s2t[θN (t) − V (N)e−2dtI0(2t)d − 1]dt

and the asymptotic relation

HN (s) = − log s2 + o(1), as s → +∞.

Proof. For this, we write

HN (s) = −
∫ ∞

0
e−s2t

(
θN (t) − V (N)e−2dtI0(2t)d

)dt

t
+

∫ ∞

0
(e−s2t − e−t)

dt

t
(29)

= −
∫ ∞

0
e−s2t

(
θN (t) − V (N)e−2dtI0(2t)d

)dt

t
− log(s2).

Clearly, the integral in (29) approaches zero as s approaches infinity, which
completes the proof of the stated asymptotic relation.

Theorem 3.6. For any s ∈ C with Re(s2) > 0, we have the relation∑
Λj �=0

log(s2 + Λj) = V (N)Id(s) + HN (s).

Letting s → 0, we have the identity

log
( ∏

Λj �=0

Λj

)
= V (N)Id(0) + HN (0),

where

Id(0) = −
∫ ∞

0

(
e−2dtI0(2t)d − e−t

)dt

t

and

HN (0) = −
∫ ∞

0

(
θN (t) − V (N)e−2dtI0(2t)d − 1 + e−t

)dt

t
.
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Proof. We begin with the relation from Lemma 3.2. By substituting from
the differential equations from Lemma 3.3 and Propositions 3.4 and 3.5 and
then integrating, we get

(30)
∑
Λj �=0

log(s2 + Λj) = V (N)Id(s) + HN (s) + C

for some constant C. We now use the asymptotic behavior relations as s →
∞ from Lemma 3.3 and Propositions 3.4 and 3.5 to show that C = 0. From
the series expansion (13), we have

e−2dtI0(2t)d − e−t = O(t), as t → 0.

Lemma 4.1 gives

e−2dtI0(2t)d = O(t−d), as t → ∞,

so then the integrand in the definition of Id(0) is L1(0, ∞) with respect to
dt/t. Concerning the integrand in the definition of HN (0), we have

θN (t) − V (N)e−2dtI0(2t)d = O(t), as t → 0,

and

e−t − 1 = O(t), as t → 0,

so then the integrand in the definition of HN (0) is in L1(0,1) with respect
to dt/t. Furthermore, we have

θN (t) − 1 = O(e−ct), as t → ∞ for some c > 0,

and

V (N)e−2dtI0(2t)d − e−t = O(t−d), as t → ∞,

so then the integrand in the definition of HN (0) is in L1(1, ∞) with respect
to dt/t. With all this, we have that all functions in (30) are continuous and
well defined for s ∈ R≥0, so we simply need to evaluate at s = 0 to complete
the proof.
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§4. Bounds and asymptotic formulas for Bessel functions

In this section we prove bounds for individual I-Bessel functions. For
technical reasons, it is necessary to separately establish bounds for I0 and
for Ix for x > 0. As we show in Section 5, it is necessary to consider the
function

u · e−u2tIn(u)(u
2t)

for u ≥ 1 and where n(u)/u → x. The asymptotic behavior as u → ∞ is given
in Proposition 4.7; uniform bounds are established in Lemma 4.1 when x = 0
and in Corollary 4.4 and Lemma 4.6 when x > 0. Although we restrict our
attention to integers x ≥ 0, we recall that Ix = I−x, so the results we prove
apply for all x ∈ N.

Lemma 4.1. For any ε < π/2 and t > 0, we have the bounds

0 ≤ e−tI0(t) ≤ C · t−1/2,

where C =
1√

(2 − ε2/6)π
+

π − ε

π
· 1√

(1 − ε2/12)ε2e
.

Proof. The positivity of I0(t) follows immediately from the series expan-
sion stated in Section 2.2. From the integral representation, choose any
ε ∈ (0, π/2) and write

e−tI0(t) =
1
π

∫ ε

0
e−t(1−cos(u)) du +

1
π

∫ π

ε
e−t(1−cos(u)) du.

There exists c(ε) > 0 such that 1 − cos(u) ≥ c(ε)u2 for u ∈ [0, ε]. With this,
for the first integral we have

1
π

∫ ε

0
e−t(1−cos(u)) du ≤ 1

π

∫ ε

0
e−c(ε)tu2

du ≤ 1√
4c(ε)πt

.

For the second integral, we trivially have

1
π

∫ π

ε
e−t(1−cos(u)) du ≤ π − ε

π
e−t(1−cos(ε)) ≤ π − ε

π
e−c(ε)tε2

.

Combining, we have

0 ≤ e−tI0(t) ≤ 1√
4c(ε)πt

+
π − ε

π
e−c(ε)tε2

.
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Since ε < π/2 and u ≤ ε, we have the bound

1 − cos(u) ≥ u2/2 − u4/24 ≥ (1/2 − ε2/24)u2,

so we may take c(ε) = (1/2 − ε2/24). Therefore,

0 ≤ e−tI0(t) ≤ 1√
(2 − ε2/6)πt

+
π − ε

π
e−(1/2−ε2/24)ε2·t.

Using elementary calculus, one shows that

t1/2e−at ≤ 1/
√

2ae,

so then

0 ≤ e−tI0(t) ≤ C · t−1/2,
(31)

where C =
1√

(2 − ε2/6)π
+

π − ε

π
· 1√

(1 − ε2/12)ε2e
.

Remark 4.2. Directly from Lemma 4.1, we have that

ue−u2tI0(u2t) ≤ u · C · (u2t)−1/2 = C · t−1/2,

so we indeed have established the uniform upper bound as claimed. Also,
for our purposes, it is not necessary to optimize (31) through a judicious
choice of ε. Numerically, one can show that by taking ε = 1.5, which is
allowed since we only required that ε < π/2, we have that C = 0.676991. . . .
One point we use later (see Section 7.1) is that C < 1/

√
2 < 1. We use the

numerical verification of this bound and omit the theoretical proof from our
analysis, noting that the estimate for C indeed can be proved from (31).

Lemma 4.3. For fixed x ≥ 1 and t > 0, consider the function

hx(t) =
√

(x2 + t2) − t + x log
( t

x +
√

(x2 + t2)

)
.

Then we have the bound

exp
(
hx(t)

)
≤

( t

t + x

)x/2
.

By continuity, the inequality also holds when t = 0.
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Proof. To begin, observe that

(32) hx(t) =
x2

t +
√

(x2 + t2)
+ x log

( t

x +
√

(x2 + t2)

)
,

which comes from the definition of hx(t) and by writing√
(x2 + t2) − t =

x2

t +
√

(x2 + t2)
.

Therefore, we have

hx(t) =
x2

t +
√

(x2 + t2)
+ x log

( t

x +
√

(x2 + t2)

)
=

x2

t +
√

(x2 + t2)
+ x log

(1
t
(
√

x2 + t2 − x)
)

=
x2

t +
√

(x2 + t2)
+ x log

(√(
1 +

x2

t2

)
− x

t

)

= x

(
x/t

1 +
√

((x/t)2 + 1)
+ log

(√(
1 +

x2

t2

)
− x

t

))
.

We now employ the change of variables

u = log
(√(

1 +
x2

t2

)
+

x

t

)
,

which is equivalent to the relation sinh(u) = x/t. Using the elementary iden-
tities

1 + (sinhu)2 = (coshu)2, sinhu = 2sinh(u/2) cosh(u/2)

and
1 + coshu = 2

(
cosh(u/2)

)2
, coshu − sinhu = e−u,

we arrive at the expression

hx(t) = x
(
tanh(u/2) − u

)
.

Trivially, since u ≥ 0 we have that tanh(u/2) ≤ u/2, so then, for x > 0,

hx(t) ≤ −x · u/2 = −(x/2) log
(√(

1 +
x2

t2

)
+

x

t

)
≤ −(x/2) log

(
1 +

x

t

)
.
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With all this, we have that

exp
(
hx(t)

)
≤

(
1 +

x

t

)−x/2
=

( t

x + t

)x/2
,

which completes the proof of the lemma.

Corollary 4.4. For any t > 0 and integer x ≥ 0, we have

√
t · e−tIx(t) ≤

( t

t + x

)x/2
=

(
1 +

x

t

)−x/2
.

Proof. We begin by considering x ≥ 2, so then the analysis from
Lemma 4.3 applies. Indeed, we use the trivial estimates

1√
2π

e1/(2
√

(x2+t2)) ≤ e1/4

√
2π

≤ 1

and √
t

(x2 + t2)1/4
≤ 1.

Therefore, using the notation of Lemma 4.3, the bound (15) becomes

√
t · e−tIx(t) ≤ exp

(
hx(t)

)
≤

( t

x + t

)x/2
,

which proves the claim, again provided that x ≥ 2. If x = 0, the claim follows
from Lemma 4.1 as well as Remark 4.2, which shows that the constant C

in Lemma 4.1 satisfies C ≤ 1. It remains to consider the case when x = 1.
The series representation (13) of Ix(t) gives

0 ≤ I1(t) ≤ (t/2)
∞∑

n=0

(t/2)2n

n!Γ(n + 2)

≤ (t/2)
( ∞∑

n=0

(t/2)n

n!

)( ∞∑
n=0

(t/2)n

Γ(n + 2)

)
≤ (t/2)et.

For t ≤ 1, t/2 ≤ 1/
√

(t + 1), so then

√
t · e−tI1(t) ≤

√
t · (t/2) ≤

( t

t + 1

)1/2
, for t ≤ 1.
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From (14), we have that I1(t) ≤ I0(t) since cos(xθ) ≤ 1. With this,
Lemma 4.1 implies

(33) e−tI1(t) ≤ e−tI0(t) ≤ C/
√

t.

In Remark 4.2, it was argued that C < 1/
√

2. With this, we have for t ≥ 1
the inequalities

C/
√

t ≤ 1/
√

2t ≤ 1/
√

(t + 1),

so then

(34) e−tI1(t) ≤ 1/
√

(t + 1), for t ≥ 1.

Combining (33) and (34), we have the claimed assertion for x = 1, which
completes the proof for all integers x ≥ 0.

Remark 4.5. To be precise, the bound in Corollary 4.4 in the case x = 1
is not needed in this article. We included the statement and proof for the
sake of completeness.

Lemma 4.6. Fix t ≥ 0 and nonnegative integers x and n0. Then for all
n ≥ n0, we have the uniform bound

0 ≤
√

(n2t) · e−n2tInx(n2t) ≤
( n0t

x + n0t

)n0x/2
=

(
1 +

x

n0t

)−n0x/2
.

Proof. The positive lower bound is obvious from the series definition of
the I-Bessel function, so we focus on proving the upper bound. From Corol-
lary 4.4, we have

√
(n2t) · e−n2tInx(n2t) ≤

( n2t

nx + n2t

)nx/2
.

Elementary algebra yields( n2t

nx + n2t

)−1
= 1 +

x

nt
= 1 +

x2/(2t)
(nx/2)

,

so then we have

(35)
√

(n2t) · e−n2tInx(n2t) ≤
( n2t

nx + n2t

)nx/2
=

(
1 +

x2/(2t)
(nx/2)

)−nx/2
.
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For any constant c > 0, consider the function

g(y) =
(
1 +

c

y

)y
.

We claim that g(y) is monotone increasing in y. Indeed, using logarithmic
differentiation, we have that

g′(y)
g(y)

= log
(
1 +

c

y

)
+ y · 1

1 + c/y
· −c

y2

= log
(
1 +

c

y

)
− c

c + y
= log

(c + y

y

)
− c

c + y

= − log
( y

c + y

)
− c

c + y
= − log

(
1 − c

c + y

)
− c

c + y
.

Clearly, if 0 ≤ u < 1, the function − log(1 − u) − u is positive. Since g(y) > 0,
we conclude that g′(y) > 0, which shows that g(y) is monotone increasing
in y. By taking c = x2/(2t) and y = nx/2, we have, for n ≥ n0, the inequality(

1 +
x2/(2t)
(n0x/2)

)n0x/2
≤

(
1 +

x2/(2t)
(nx/2)

)nx/2
,

which gives(
1 +

x2/(2t)
(nx/2)

)−nx/2
≤

(
1 +

x2/(2t)
(n0x/2)

)−n0x/2

(36)

=
(
1 +

x

n0t

)−n0x/2
=

( n0t

n0t + x

)n0x/2
.

By substituting (36) in (35), the lemma is proved.

Proposition 4.7. Let n(u) be a sequence of positive integers parame-
trized by u ∈ Z+ such that n(u)/u → α > 0 as u → ∞. Then for any t > 0
and nonnegative integer k ≥ 0, we have

lim
u→∞

n(u) · e−2u2tIn(u)k(2u
2t) =

α√
4πt

· e−(αk)2/(4t).

Proof. We work with the integral expression for the I-Bessel function
given in Section 2.2, namely, that for any integer x, we have

Ix(t) =
1
π

∫ π

0
et cos(θ) cos(θx)dθ.
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To begin, assume k > 0. If we let y = n(u)kθ, then we can write

n(u)e−2u2tIn(u)k(2u
2t) =

n(u)
π

∫ π

0
e−2u2t(1−cos(θ)) cos

(
θn(u)k

)
dθ

=
1
kπ

∫ n(u)kπ

0
e−2u2t(1−cos(y/(n(u)k))) cos(y)dy.

For all v ∈ [0, π], one can easily show that

1
2

− π2

24
≤ 1

2
− v2

24
≤ 1 − cos(v)

v2
.

Let c = 1/2 − π2/24, which, numerically, can be shown to satisfy c > 0.
Setting v = y/(n(u)x), we get for y ∈ [0, uxπ] the uniform bound

1 − cos(y/(n(u)k))
1/u2

≥ c
( yu

n(u)k

)2
.

In addition, observe that

lim
u→∞

1 − cos(y/(n(u)k))
1/u2

=
1
2

( y

αk

)2
.

Choose u0 such that for u > u0 we have α/2 < n(u)/u < 2α. Using elemen-
tary bounds, we have for any u > u0 the inequalities

|n(u)e−2u2tIn(u)k(2u
2t)| ≤ 1

kπ

∫ n(u)kπ

0
e−cy2t/(2αk)2 dy

≤ 1
kπ

∫ ∞

0
e−cy2t/(2αk)2 dy =

α√
πct

.

Therefore, by the Lebesgue dominated convergence theorem, we have

lim
u→∞

n(u) · e−2u2tIn(u)k(2u
2t) =

1
kπ

∫ ∞

0
e−y2t/(αk)2 cos(y)dy

=
α√
4πt

· e−(αk)2/(4t).

If x = 0, the proof follows a similar pattern using instead the substitution
y = θu; for the sake of brevity, we omit the details.

Remark 4.8. Proposition 4.7 was proved by Athreya [1, Theorem 2]
using a certain local central limit theorem. For convenience we included a
quick self-contained proof.
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§5. Asymptotic behavior of spectral determinants

In this section we use the bounds and asymptotic relations from Sec-
tion 4 to prove our main theorem, namely, the asymptotic behavior of the
spectral determinant associated to a sequence of degenerating discrete tori.
We begin by proving that the associated family of traces of heat kernels
converges pointwise through degeneration (Proposition 5.2) and then prove
uniform bounds for heat traces for long time (Proposition 5.4) and small
time (Proposition 5.5 and Lemma 5.6). After these results, we analyze the
expression for HN (0) from Theorem 3.6, namely,

(37) HN (0) = −
∫ ∞

0

(
θN (t) − V (N)e−2dtI0(2t)d − 1 + e−t

)dt

t
.

Ultimately we compare the limiting value of (37) through degeneration with
the expression for the spectral determinant on the real torus, which is stated
in (21) in Section 2.6. These computations are given in the proof of Theo-
rem 5.8, which is the main result of this section.

5.1. Degenerating sequences of discrete tori
We consider d-tuples of integers N(u) parametrized by a positive integer u

in such a way that

(38)
1
u

N(u) =
1
u

(n1, . . . , nd) → (α1, . . . , αd), as u → ∞.

Let A be the diagonal matrix with the αj on the diagonal. Recall the nota-
tion V (N) = n1, . . . , nd and V (A) = α1, . . . , αd. From (38), V (N(u))/ud →
V (A) when u → ∞. For the sake of brevity, and for this section, we assume
that V (A) > 0, meaning the limiting real torus AZd\Rd has dimension d.
Using the elementary change of variables t 
→ u2t, we write (37) as

HN(u)(0)
(39)

= −
∫ ∞

0

(
θN(u)(u

2t) − V (N(u))(e−2u2tI0(2u2t))d − 1 + e−u2t
)dt

t
,

which is the form that we will study. The results of this section are designed
to determine the asymptotic behavior of (39) as u → ∞.

Proposition 5.2. For each fixed t > 0, we have the pointwise limit

θN(u)(u
2t) → ΘA(t), as u → ∞.
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In other words, the rescaled theta functions on the discrete tori approach
the theta function on the limiting real torus AZd\Rd.

Proof. We begin by writing the theta function using its expansion involv-
ing I-Bessel functions, namely,

(40) θN(u)(u
2t) =

∞∑
k1,...,kd=− ∞

d∏
j=1

nj(u)e−2u2tInj(u)kj
(2u2t).

From Proposition 4.7, we have, for any t > 0, the pointwise limit

d∏
j=1

nj(u)e−2u2tInj(u)kj
(2u2t) → V (A)

d∏
j=1

1√
(4πt)

e−(αjkj)
2/(4t), as u → ∞.

Since

ΘA(t) = V (A)
∞∑

k1,...,kd=− ∞

d∏
j=1

1√
(4πt)

e−(αjkj)
2/(4t),

the result will follow if we can interchange the limit in u with the infinite
sum in (40).

Choose u0 such that for each j = 1, . . . , d, αj/2 < nj(u)/u < 2αj for all
u > u0. We can rewrite (40) into a sum of d + 1 subseries, each determined
by the number of kj which are equal to zero. Fix some u0 ≥ 0 sufficiently
large. Then from Lemmas 4.1 and 4.6, we have that the subseries consisting
of terms with exactly r of the kj equal to zero is bounded from above for
any u > u0 by

2rCr(2t)−r/2V (A)
∞∑

k1,...,kr=1

r∏
j=1

(
1 +

αjkj

4u0t

)−u0αjkj/2

(41)

≤ 2rCr(2t)−r/2V (A)
∞∑

k1,...,kr=1

r∏
j=1

r
kj

j ,

where

(42) rj =
(
1 +

αj

4u0t

)−u0αj/2
< 1.

Obviously,
∞∑

k1,...,kr=1

r∏
j=1

r
kj

j =
r∏

j=1

( rj

1 − rj

)
.
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Therefore, the series in (40) is uniformly convergent for fixed t, so we can
interchange the limit in u and the summation in (40), which completes the
proof.

Lemma 5.3. Let

θabs(t) = 2
∞∑

j=1

e−cj2t,

with c = 4π2(1 − π2/24)2. Assume u0 is such that αk/2 < nk/u < 2αk for all
k = 1, . . . , d and u > u0. Then for any t > 0 and u > u0, we have the bound

θN(u)(u
2t) ≤

d∏
k=1

(
1 + e−4u2

0t + θabs(αkt/2)
)
.

Proof. Recall from [15] that

θnk(u)(t) = 1 + e−4t + 2
nk(u)/2−1∑

j=1

e−4(sin(πj/nk(u)))2t

if nk(u) is even, and

θnk(u)(t) = 1 + 2
(nk(u)−1)/2∑

j=1

e−4(sin(πj/nk(u)))2t

if nk(u) is odd. In either case, we will use the elementary bound

sinx ≥ x − x3/6, for x ∈ [0, π/2].

To prove this inequality, one considers the Taylor series expansion with
error at x = 0 for sin(x), together with the observation that the error term
is positive. Taking x = πj/nk(u), we then have that

nk(u) sin
(
πj/nk(u)

)
≥ πj

(
1 − (πj)2/(6nk(u)2)

)
.

We may assume that j ≤ nk(u)/2, so then j/nk(u) ≤ 1/2; hence

nk(u) sin
(
πj/nk(u)

)
≥ πj(1 − π2/24).

It is important to use the trivial bound 1 − π2/24 > 0. With all this, we
arrive at the inequality

θnj(u)(u
2t) ≤ 1 + e−4u2t + 2

n/2∑
j=1

e−cαkj2t/2 ≤ 1 + e−4u2
0t + 2

∞∑
j=1

e−cαkj2t/2,
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with c = 4π2(1 − π2/24)2 > 0. Therefore, we have shown that for any u > u0,
we have the bound

θn(u2t) ≤ 1 + e−4u2
0t + θabs(t).

Since

θN(u)(u
2t) =

d∏
j=1

θnk(u)(u
2t),

the proof of the lemma is complete.

Proposition 5.4. With notation as above, we have that∫ ∞

1

(
θN(u)(u

2t) − V (N(u))(e−2u2tI0(2u2t))d − 1 + e−u2t
)dt

t

=
∫ ∞

1

(
ΘA(t) − 1

)dt

t
− 2

d
V (A)(4π)−d/2 + o(1), as u → ∞.

Proof. Write∫ ∞

1

(
θN(u)(u

2t) − V (N(u))(e−2u2tI0(2u2t))d − 1 + e−u2t
)dt

t

=
∫ ∞

1

(
θN(u)(u

2t) − 1
)dt

t
−

∫ ∞

1
V

(
N(u)

)(
e−2u2tI0(2u2t)

)d dt

t
(43)

+
∫ ∞

1
e−u2t dt

t
,

and consider the three integrals separately. Trivially, we have∫ ∞

1
e−u2t dt

t
→ 0, as u → ∞.

Next, we claim that

V (N)
∫ ∞

1

(
e−2u2tI0(2u2t)

)d dt

t
→ V (A)

∫ ∞

1
(4πt)−d/2 dt

t
(44)

=
2
d
V (A)(4π)−d/2, as u → ∞.

Indeed, the pointwise convergence of the integrands in (44) is proved in
Proposition 4.7, and the uniform bound from Lemma 4.1, which is integrable
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on (1, ∞) with respect to the measure dt/t, allows one to apply the Lebesgue
dominated convergence theorem to prove the claim. It remains to show that∫ ∞

1

(
θN(u)(u

2t) − 1
)dt

t
→

∫ ∞

1

(
ΘA(t) − 1

)dt

t
, as u → ∞.

The pointwise convergence of the integrands is proved in Proposition 5.2,
and Lemma 5.3 establishes a uniform, integrable upper bound so that, again,
we may apply the Lebesgue dominated convergence theorem, thus complet-
ing the proof.

Proposition 5.5. With notation as above, we have that∫ 1

0

(
θN(u)(u

2t) − V (N)(e−2u2tI0(2u2t))d
)dt

t

→
∫ 1

0

(
ΘA(t) − V (A)(4πt)−d/2

)dt

t
,

as u → ∞.

Proof. For fixed t < 1, we have the pointwise convergence

θN(u)(u
2t) − V (N)

(
e−2u2tI0(2u2t)

)d → ΘA(t) − V (A)(4πt)−d/2, as u → ∞,

directly from Propositions 4.7 and 5.2. It remains to show that we have
uniform, integrable bounds for the integrand so then the proposition will
follow from the Lebesgue dominated convergence theorem. For this, we write

θN(u)(u
2t) − V

(
N(u)

)(
e−2u2tI0(2u2t)

)d

(45)
= V (A)

∑
K �=0

∏
k1,...,kd

ue−2u2tInj(u)kj
(2u2t).

The bounds (41) and (42) apply. Since each nj(u) tends to infinity, one can
choose u0 such that for each j = 1, . . . , d and u > u0, we have the inequality
nj(u)kj > d + 2, which implies that the upper bound in (42) is integrable
on (0,1) with respect to dt/t.

Lemma 5.6. For u ∈ R, we have the asymptotic formula∫ 1

0
(e−u2t − 1)

dt

t
= Γ′(1) − log(u2) + o(1), as u → ∞.
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Proof. Choose ε ∈ (0,1). By employing integration by parts, we can write∫ 1

ε
(e−u2t − 1)

dt

t
=

∫ 1

ε
(e−u2t − 1)d log(t)

= log(t) · (e−u2t − 1)|1t=ε + u2

∫ 1

ε
log(t)e−u2t dt

= log(ε) · (1 − e−u2ε) + u2

∫ 1

ε
log(t)e−u2t dt.

For fixed u, we have that 1 − e−u2ε = O(ε) as ε approaches zero, so then∫ 1

0
(e−u2t − 1)

dt

t
= u2

∫ 1

0
log(t)e−u2t dt.

If we let v = u2t, then dv = u2 dt; hence∫ 1

0
(e−u2t − 1)

dt

t
=

∫ u2

0
log(v/u2)e−v dv

=
∫ u2

0
log(v)e−v dv − log(u2)

∫ u2

0
e−v dv.

By definition

Γ(s) =
∫ ∞

0
e−vvs dv

v
,

which implies that

Γ′(1) =
∫ ∞

0
e−v log(v)dv =

∫ u2

0
e−v log(v)dv +

∫ ∞

u2

e−v log(v)dv,

thus yielding the relation∫ 1

0
(e−u2t − 1)

dt

t
= Γ′(1) −

∫ ∞

u2

e−v log(v)dv − log(u2)
∫ u2

0
e−v dv

(46)

= Γ′(1) − log(u2) + log(u2)e−u2 −
∫ ∞

u2

log(v)e−v dv.

For x > 1, we have the trivial inequalities 0 ≤ logx ≤ 2ex/2, so then

(47) 0 ≤
∫ ∞

u2

log(v)e−v dv ≤ 2
∫ ∞

u2

e−v/2 dv = 4e−u2/2 = o(1), as u → ∞.

Trivially, log(u2)e−u2
= o(1) as u → ∞. By substituting this estimate

and (47) into (46), the proof of the lemma is complete.
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Corollary 5.7. With notation as above, we have∫ 1

0

(
θN(u)(u

2t) − V (N)(e−2u2tI0(2u2t))d − 1 + e−u2t
)dt

t

→
∫ 1

0

(
ΘA(t) − V (A)(4πt)−d/2

)dt

t
+ Γ′(1) − log(u2) + o(1), as u → ∞.

Proof. Simply combine Proposition 5.5 and Lemma 5.6.

Theorem 5.8. With notation as above, we have

HN(u)(0) = logu2 − ζ ′
A(0) + o(1), as u → ∞.

Equivalently, we have

log
( ∏

Λj �=0

Λj

)
= V

(
N(u)

)
Id(0) + logu2 − ζ ′

A(0) + o(1), as u → ∞,

where
Id(0) = −

∫ ∞

0

(
e−2dtI0(2t)d − e−t

)dt

t
.

Proof. To begin, combine Proposition 5.4 and Corollary 5.7 to get the
asymptotic expansion of V (N(u))HN(u)(0) out to o(1). Then combine the
terms in the expansion with the expression in (21) to complete the proof of
the first assertion. One then substitutes the first assertion into the identity
stated in Theorem 3.6 to prove the second relation.

Remark 5.9. Using the notation of spectral determinants, one can
rewrite the main result in Theorem 5.8 as stating the asymptotic relation

logdet∗ΔDT,N(u) = V
(
N(u)

)
Id(0) + logu2

+ logdet∗ΔRT,A + o(1), as u → ∞.

In words, the asymptotic expansion of the log-determinant of the Laplacian
on the discrete torus DTN(u) has a lead term

V
(
N(u)

)
Id(0) + logu2

= −V
(
N(u)

)∫ ∞

0

(
e−2dt(I0(2t))d − e−t

)dt

t
+ logu2

= V
(
N(u)

)(
log 2d −

∫ ∞

0
e−dt

(
I0(t)d − 1

)dt

t

)
+ logu2,

with a constant term equal to the log-determinant of the Laplacian on the
real torus AZd\Rd.
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Remark 5.10. As previously discussed, two zeta functions are being con-
sidered: the spectral zeta function ζA associated to the real torus AZd\Rd

and the Epstein zeta function Z(·,Q) associated to the positive definite d × d

matrix Q. Classical and elementary mathematical considerations show that
Z(·,Q) = ζA, where Q is the form associated to A∗, the dual lattice of A.
This remark needs to be kept in mind when reading the main result in
Theorem 5.8 as restated in Remark 5.9.

§6. Example: cases d = 1 and d = 2

As stated in Section 1, the lead term in the asymptotic of log det∗ΔDT,N(u)

for d = 2 was first computed by Kasteleyn [16]. Duplantier and David [9]
expressed the next-order term in terms of the Dedekind η function. In this
section we rederive these results by the methods introduced in this article
and go further by indicating how to obtain the complete asymptotic expan-
sion of log det∗ΔDT,N(u) when d = 2. We begin by making explicit the case
d = 1.

6.1. The case d = 1
Known evaluations of the Riemann zeta function ζQ at s = 0 yield the

relations ζQ(0) = −1/2 and ζ ′
Q(0) = −(1/2) log(2π). Let N(u) = n with

n/u → α > 0. With all this, we can write

(48) logn2 = logu2 + 4 log(2π/α)ζQ(0) − 4ζ ′
Q(0) + o(1), as u → ∞.

We claim that (48) is equivalent to the main theorem when d = 1. First,
it is obvious that the number of spanning trees in nZ\Z is n and, hence,
that the determinant of the combinatorial Laplacian is n2, so the left-hand
side of (5) is logn2. Regarding the right-hand side, it is possible to directly
verify through the Mellin transform that∫ ∞

0
e−2t

(
I0(2t) − 1

)dt

t
= log 2,

which implies, in our notation, that I1(0) = 0. Hence, the lead term in the
asymptotic expansion (5) when d = 1 is zero. The continuous Laplacian on
nZ\R has the set of eigenvalues given by {(2π)2(n/α)2} for n ∈ Z, so the
spectral zeta function is

ζα(s) = 2(2π/α)−2sζQ(2s);
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thus
ζ ′
α(0) = −log det∗ΔRT,α = −4 log(2π/α)ζQ(0) + 4ζ ′

Q(0),

which agrees with (48) and confirms, by direct computation, the main the-
orem when d = 1.

6.2. The lead term when d = 2
We will evaluate the expression

Id(0) = log(2d) −
∫ ∞

0
e−dt

(
I0(t)d − 1

)dt

t

when d = 2. Recall from Section 2.8 the Mellin inversion formula, (25). Let us
set x = y = 0 and move the contour of integration to the line Re(σ) = −1/4.
The integrand has a pole at z = 0, which results in the expression

f̃0f0(s) =
1

2πi

∫
Re(z)=(−1/4)

Γ(s − z)Γ(1/2 + z − s)Γ(z)Γ(1/2 − z)
πΓ(1 + z − s)Γ(1 − z)

dz

(49)

+
Γ(s)Γ(1/2 − s)Γ(1/2)

πΓ(1 − s)Γ(1)
,

so then, using the definition of Γ(s) as the Mellin transform of e−t, we have

f̃0f0(s) − Γ(s) =
∫ ∞

0
e−t[I0(t/2)2 − 1]ts

dt

t

=
1

2πi

∫
Re(z)=(−1/4)

Γ(s − z)Γ(1/2 + z − s)Γ(z)Γ(1/2 − z)
πΓ(1 + z − s)Γ(1 − z)

dz(50)

+
Γ(s)Γ(1/2 − s)√

πΓ(1 − s)
− Γ(s).

By Taylor’s theorem, we can write

lim
s→0

(Γ(s)Γ(1/2 − s)√
πΓ(1 − s)

− Γ(s)
)

=
−Γ′(1/2) +

√
πΓ′(1)√

π
,

where we have used that Γ(1/2) =
√

π and Γ(1) = 1. One now uses the
relation

Γ(z)Γ(z + 1/2) = 21−2z √
πΓ(2z),

and by computing the derivative at z = 1/2, one can show that

−Γ′(1/2) +
√

πΓ′(1)√
π

= log 4.
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With these preliminary results, we have shown, by taking s → 0 in (50),
that ∫ ∞

0
e−t[I0(t/2)2 − 1]

dt

t

=
1

2πi

∫
Re(z)=(−1/4)

Γ(−z)Γ(1/2 + z)Γ(z)Γ(1/2 − z)
πΓ(1 + z)Γ(1 − z)

dz + log 4(51)

= log 4 − 1
2πi

∫
Re(z)=(−1/4)

1
z2 cosπz

dz,

where the last equality of integrals comes from employing the identities

Γ(x)Γ(1 − x) = π/ sinπx, xΓ(x) = Γ(x + 1).

We now evaluate the last integral in (51) by moving the line of inte-
gration toward Re(z) = −∞. The integrand has poles z = −n − 1/2, for
n = 0,1,2, . . . , with residues (−1)n(n + 1/2)−2/π. Thus

(52)
∫ ∞

0
e−t[I0(t/2)2 − 1]ts

dt

t
= log 4 − 1

π

∞∑
n=0

(−1)n

(n + 1/2)2
= log 4 − 4G

π
,

where G is the Catalan constant

G =
∞∑

n=0

(−1)n

(2n + 1)2
.

With all this, we have shown that

(53) I2(0) =
4G
π

.

The relation in (53), which is the main asymptotic term from Theorem 5.8
in the case d = 2, agrees with the computations from [9, (3.18), page 349]
(see also [9, (A.21), page 427]).

6.3. Secondary terms when d = 2
From Theorem 5.8, we have that

(54) HN (0) = logu2 + logdet∗ΔRT,d,A + o(1), as u → 0,

for a degenerating sequence of discrete tori. As before, consider a sequence
of integer vectors N(u) for u ∈ Z+, and assume

1
u

N(u) =
1
u

(
n1(u), n2(u)

)
→ (α1, α2), as u → ∞.
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Proposition 4.7 evaluates the heat kernel on (α1Z × α2Z)\R2, where the
Laplacian is

ΔR2 = −
( ∂2

∂x2
1

+
∂2

∂x2
2

)
,

where x1 and x2 are the usual global coordinates on R2. The action of
ΔR2 on the space of smooth functions on (α1Z × α2Z)\R2 has the set of
eigenvalues given by {(2π)2((n/α1)2 + (m/α2)2)} for n,m ∈ Z, so then its
associated spectral zeta function is

ζA(s) = (2π)−2s
∑

(n,m)�=(0,0)

1
((n/α1)2 + (m/α2)2)s

.

Let us write
ζA(s) = (α1α2)sE(z, s),

where

E(z, s) = (2π)−2s
∑

(n,m)�=(0,0)

Im(z)s

|nz + m|2s
, with z = i(α2/α1) = iy.

The function E(z, s) admits a meromorphic continuation to all s ∈ C with
expansion

E(z, s) = −1 − s log
(
y|η(z)|4

)
+ O(s), as s → 0,

where z = i(α2/α1) = iy and η(z) is the classical Dedekind eta function

η(z) = e2πiz
∞∏

n=0

(1 − e2πinz), for any z ∈ C with Im(z) > 0.

With all this, we then have that

log det∗ΔRT,A = − ∂

∂s
ζA

∣∣∣
s=0

= log(α1α2) + log
(
y|η(z)|4

)
.

Therefore,

HN (0) = logu2 + log(α1α2) + log
(
y|η(z)|4

)
(55)

= log
(
n1(u)n2(u)

)
+ log

(
y|η(z)|4

)
.

Expression (55) agrees with the second-order term given in [9, (A.21),
page 427], where those authors used the notation M = n1(u) and N = n2(u).
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6.4. Error terms when d = 2
The asymptotic expansion in Theorem 5.8 contains an error term of o(1).

We present here a technique which improves the error term, ultimately
obtaining an expansion with error term of arbitrarily small polynomial
order, as stated in Section 1. Additionally, the computations we give here
offer a second proof of the main theorem in the case d = 2.

Recall the Mellin inversion formula from Section 2.8, namely,∫ ∞

0
Ix(t/2)Iy(t/2)e−tts

dt

t
(56)

=
1

2πi

∫
Re(z)=σ

Γ(s − z + x)Γ(1/2 + z − s)Γ(z + y)Γ(1/2 − z)
πΓ(x + 1 + z − s)Γ(y + 1 − z)

dz.

For fixed a and b, Stirling’s formula yields

(57)
Γ(z + a)
Γ(z + b)

= za−b + O(za−b−1)

as z tends to infinity anywhere in the half-plane Re(z) > δ > 0. Substitut-
ing (57) into (56), we have that the lead term in the asymptotic expansion
of (56) is

1
2πi

∫
Re(z)=σ

xs−z−1−z+syz−1+z · 1
π

Γ(z + 1/2 − s)Γ(1/2 − z)dz

(58)

=
x2s

π · xy
· 1
2πi

∫
Re(z)=σ

(y

x

)2z
Γ(z + 1/2 − s)Γ(1/2 − z)dz.

Let us analyze (58) by moving the contour of integration toward Re(z) =
∞. The integrand has poles at z = 1/2+n with residues equal to (−1)n/n!,
so then (58) is equal to

(59) S =
x2s

π · xy
·

∞∑
n=0

(y

x

)2n+1 (−1)n

n!
Γ(n − s + 1).

Rewrite (59) as

S =
y2s−2

π
·

∞∑
n=0

(y

x

)2n−2s+2 (−1)n

n!
Γ(n − s + 1),
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and use the elementary formula

(60) Γ(w)a−w =
∫ ∞

0
e−attw

dt

t

with w = n − s + 1 and a = x2/y2 to get that

S =
y2s−2

π
·

∞∑
n=0

∫ ∞

0
e−(x2/y2)ttn−s+1 · (−1)n

n!
dt

t
.

Observing that

e−t =
∞∑

n=0

tn · (−1)n

n!
,

we arrive at the relation

(61) S =
y2s−2

π
·
∫ ∞

0
e−(x2/y2)te−tt−s+1 dt

t
.

The integral can be evaluated using (60) with w = 1 − s and a = (x2/y2 +1),
yielding

(62) S =
y2s−2

π
· Γ(1 − s)(x2/y2 + 1)s−1 =

1
π

Γ(1 − s)(x2 + y2)s−1.

If we set s = −w with Re(w) > 0, we then have that

(63)
∫ ∞

0
Ix(t/2)Iy(t/2)e−tt−w dt

t
=

1
π

· Γ(1 + w)
(x2 + y2)1+w

+ lower-order terms.

Finally, we set x = nj and y = mk with fixed j and k and positive integers n

and m, and we sum over all n and m, thus proving that∑
n,m

∫ ∞

0
Inj(t/2)Imk(t/2)e−tt−w dt

t

(64)

=
Γ(1 + w)

π

∑
n,m

1
((nj)2 + (mk)2)1+w

+ lower-order terms.

The series in (64) can be related to the Eisenstein series EA(z, s) with
A = (x, y) and z = im/n. One then can use the classical Kronecker’s limit
formula to evaluate the asymptotic behavior of (64) as w approaches zero.
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In all, the above computations provide another proof of the main theorem
when d = 2.

Stirling’s formula can be used to compute further terms in the asymptotic
expansion in (57). Specifically, for any positive integers N and M , we write

Γ(x − z)Γ(z + y)
Γ(x + 1 + z)Γ(y + 1 − z)

− 1
xy

(y

x

)2z

(65)
=

∑
j,k

Pj,k(z)x−2z−1−jy2z−1−k + O(x−2z−1−Ny2z−1−M )

as x, y → ∞, where Pj,k denotes a polynomial in z, and the sum is over all
integers j and k such that 0 ≤ j ≤ N and 0 ≤ k ≤ M , provided (j, k) �= (0,0).
By comparing with (56), we see that the lower-order terms in (64) can be
determined by studying

Sj,k(x, y) =
1

π · xj+1yk+1
· 1
2πi

∫
Re(z)=σ

Pj,k(z)
(y

x

)2z
Γ(z +1/2)Γ(1/2 − z)dz.

Moving the contour of integration, we get that

Sj,k(x, y) =
1

π · xj+1yk+1
·

∞∑
n=0

(−1)nPj,k(n + 1/2)
(y

x

)2n+1
.

Since Pj,k(z) is a polynomial in z, we have that

Pj,k(n + 1/2)
(y

x

)2n+1
= Pj,k

(y

2
d

dy

)(y

x

)2n+1
,

so then

Sj,k(x, y) =
1

π · xj+1yk+1
· Pj,k

(y

2
d

dy

) ∞∑
n=0

(−1)n
(y

x

)2n+1

(66)

=
1

π · xj+1yk+1
· Pj,k

(y

2
d

dy

)( xy

x2 + y2

)
.

Let us define

(67) Bj,k(u) =
∑

(n1,n2)�=(0,0)

Sj,k(n1u,n2u).

Elementary bounds show that

Bj,k(u) = O(u−j−k−2), when u → ∞, provided (j, k) �= (0,0),
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since the series in (67) is convergent for (j, k) �= (0,0). Finally, if we set

(68) Fn(u) =
∑

j+k=n

Bj,k(u),

we have that the error term o(1) in Theorem 5.8 can be improved to

K∑
n=1

Fn(u) + O(u−K−3), as u → ∞ for any integer K > 0.

To summarize, the coefficients (68) can be explicitly determined from the
evaluation (66) which utilizes the precise evaluation of Stirling’s formula as
stated in (65). The coefficients (68) can be made explicit by evaluation of
the polynomials Pj,k(z) as defined in (65). We do not pursue this analysis
further here but instead leave the details for consideration elsewhere.

§7. Additional considerations

In this section we present a number of computations and remarks dis-
cussing further aspects of the preceding analysis.

7.1. A precise evaluation of the lead term
Let

ad = log(2d) −
∫ ∞

0
e−dt

(
I0(t)d − 1

)dt

t
= log 2 −

∫ ∞

0
(e−dtI0(t)d − e−t)

dt

t
,

which is obtained by replacing 2t by t in the integral definition of Id(0).
With this,

ad+1 − ad =
∫ ∞

0
e−dtI0(t)d

(
1 − e−tI0(t)

) dt

t
.

Since I0(t) ≤ et, we have that ad+1 ≥ ad. Let us write

e−tI0(t) = 1 +
∞∑

k=1

bkt
k,

which implies that

ad+1 − ad =
∞∑

k=1

bn

∫ ∞

0
e−dtI0(t)dtk dt.
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From [15], we have the identity

F (u) =
∫ ∞

0
e−utI0(t)dt =

1
u

√
u + 2

.

Therefore, ∫ ∞

0
e−dtI0(t)dtk dt = (−∂u)kF ∗d(d),

where F ∗d denotes the d-fold convolution of F with itself, evaluated at d.
Therefore, we have

ad+1 = ad +
∞∑

k=1

bk · (−∂u)kF ∗d(d).

In Section 6.2 we have shown that a2 = 4G/π, where G is the Catalan
constant. In addition, one can write

e−tI0(t) =
1
π

∫ π

0
e−t sin2(θ/2) dθ,

so the coefficients bk are explicitly computable. With all this, we have pre-
sented another series expansion for ad which could be used to numerically
evaluate ad.

7.2. Numerical estimation of the lead term
This section should be compared with the discussion in Felker and

Lyons [11]. By focusing on the lead term in Theorem 5.8, we have that

1
V (N(u))

∑
Λj(u)�=0

logΛj(u)

(69)

= log 2d −
∫ ∞

0
e−dt

(
I0(t)d − 1

)dt

t
+ o(1), as u → ∞.

As stated in Section 1, the explicit form of the eigenvalues is such that we
recognize the left-hand side of (69) as a Riemann sum, so then (69) implies
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the identity∫
Zd \Rd

log
(
2d − 2cos(2πx1) − · · · − 2cos(2πxd)

)
dx1 · · · dxd

(70)

= log 2d −
∫ ∞

0
e−dt

(
I0(t)d − 1

)dt

t
.

Recall that

I0(t) = 1 +
∞∑

n=1

ant2n, where an =
1

22n(n!)2
.

Let us write

I0(t)d = 1 +
∞∑

n=1

an,dt
2n.

The coefficients an,d easily can be written in terms of an and multinomial
coefficients, and (70) can be evaluated as∫

Zd \Rd

log
(
2d − 2cos(2πx1) − · · · − 2cos(2πxd)

)
dx1 · · · dxd

= log 2d −
∞∑

n=1

an,dΓ(2n)
n2d

.

The numerical evaluation of the left-hand side of (70) is difficult for large d,
both because of the slow growth of the integrand and because the domain of
integration involves the d-fold product of the unit interval. By comparison,
note that the right-hand side of (70) allows for rapid numerical evaluation
which improves as d gets larger. Indeed, from Lemma 4.1, we have

0 ≤
∫ ∞

t0

e−dt
(
I0(t)d − 1

)dt

t
≤ Cd

∫ ∞

t0

t−d/2 dt

t
+

1
t0

∫ ∞

t0

e−dt dt

(71)

=
2Cdt

−d/2+1
0 + e−dt0

dt0
.

This bound obviously gets closer to zero as t0 grows for any d. In addition,
the bound decays exponentially in d provided Ct

−1/2
0 < 1 which, from the

estimate that C < 1/
√

2, implies that we need t0 > 1/2. By the mean value
theorem, we have, for any z and a, the estimate

(x + a)d − xd ≤ ad(x + a)d−1.
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For any N , to be chosen later, we take

x =
N −1∑
n=0

ant2n, a = I0(t) − x < I0(t)

to arrive at the bound∫ t0

0
e−dt

(
I0(t)d − 1

)dt

t
≤

∫ t0

0
e−dt

((N −1∑
n=0

ant2n
)d

− 1
)dt

t

+ d

∫ t0

0
et

(
e−tI0(t)

)d−1
( ∞∑

n=N

ant2n
)dt

t
.

Choose any t0 ∈ (1/2,1). For any ε > 0, there is an N such that

∞∑
n=N

ant2n ≤ εt2N , for t ∈ [0, t0].

Elementary arguments prove the existence of a constant A > 0 such that

e−tI0(t) ≤ 1 − At, for t ∈ [0, t0].

Therefore,∫ t0

0
et

(
e−tI0(t)

)d−1
( ∞∑

n=N

ant2n
)dt

t
≤ εdet0

∫ t0

0
t2N −1(1 − At)d−1 dt

≤ εet0td0/A,

so then

0 <

∫ t0

0
e−dt

(
I0(t)d − 1

)dt

t
−

∫ t0

0
e−dt

((N −1∑
n=0

ant2n
)d

− 1
)dt

t

(72)
≤ εet0t2N −1

0 /A.

Observe that the upper bound in (72) is independent of d. When combining
(71) with (72), we conclude that one can estimate

(73)
∫ ∞

0
e−dt

(
I0(t)d − 1

) dt

t
by

∫ t0

0
e−dt

((N −1∑
n=0

ant2n
)d

− 1
)dt

t
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with error which is independent of d.
It remains to study the asymptotic behavior in d of the second integral

in (73). For this, one needs to expand the d-fold product of the polynomial
integrand and carry out the integration. The integral of each term can then
be expressed in terms of the incomplete gamma function, which in turn
can be estimated by the gamma function itself. One then would employ
elementary but somewhat involved expressions for multinomial coefficients,
ultimately obtaining the following result. For any integer k ≥ 1, there is a
polynomial Pk(x) of degree k with Pk(0) = 0 such that

∫ t0

0
e−dt

((N −1∑
n=0

ant2n
)d

− 1
)dt

t
= Pk(1/d) + O(d−k−1), as d → ∞.

We leave the details of these computations to the interested reader.

7.3. The spectral zeta function
In very general circumstances, the spectral zeta function is defined as the

Mellin transform of the theta function formed with the nonzero eigenvalues.
Specifically, for w ∈ C with Re(w) > d/2, we have that

(74) ζN (w) = MθN (w) =
1

Γ(w)

∫ ∞

0

(
θN (t) − 1

)
tw

dt

t
.

As in Section 5, let us consider a degenerating sequence of discrete tori. The
elementary change of variables t 
→ u2t in (74) yields the expression

(75) ζN (w) =
u2w

Γ(w)

∫ ∞

0

(
θN (u2t) − 1

)
tw

dt

t
.

Proposition 5.2 establishes the pointwise convergence of the integrand
in (75), and Lemma 5.3 proves a uniform upper bound. Combining these
results, as in the proof of Proposition 5.4, together with (75), we conclude
that

(76) lim
u→∞

(
u−2wζN(u)(w)

)
= ζA(w)

for any w ∈ C with Re(w) > d/2 and where

(77) ζA(w) =
1

Γ(w)

∫ ∞

0

(
ΘA(t) − 1

)
tw

dt

t
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is the spectral zeta function on the real torus AZd\Zd. The difficulty is
determining the correct generalization of (76) for w ∈ C with Re(w) > 0.
The spectral zeta function (75) can be meromorphically continued to w ∈ C
with Re(w) > 0 by writing

u−2wζN (w) =
1

Γ(w)

∫ ∞

1

(
θN (u2t) − 1

)
tw

dt

t

+
1

Γ(w)

∫ 1

0

(
θN(u)(u

2t) − V (N)e−2du2tI0(2u2t)d
)
tw

dt

t
(78)

− 1
Γ(w)

∫ 1

0

(
V (N)e−2du2tI0(2u2t)d − 1

)
tw

dt

t
.

Similarly, the meromorphic continuation of (77) is obtained by the expres-
sion

ζA(w) =
1

Γ(w)

∫ ∞

1

(
ΘA(t) − 1

)
tw

dt

t

+
1

Γ(w)

∫ 1

0

(
ΘA(t) − V (A)(4πt)−d/2

)
tw

dt

t
(79)

− 1
Γ(w)

∫ 1

0

(
V (A)(4πt)−d/2 − 1

)
tw

dt

t
.

The convergence of the first integral in (78) to the first integral in (79)
follows from Proposition 5.2 and Lemma 5.3, as in the proof of (76). The
convergence of the second integral in (78) to the second integral in (79)
follows from Proposition 5.5, using the Lebesgue dominated convergence
theorem. Let us write the third integral in (78) as∫ 1

0

(
V (N)e−2du2tI0(2u2t)d − 1

)
tw

dt

t
(80)

=
V (N)
u2w

∫ u2

0

(
e−2tI0(2t)

)d
tw

dt

t
− 1

w

and the third integral in (77) as

(81)
∫ 1

0

(
V (A)(4πt)−d/2 − 1

)
tw

dt

t
=

V (A)
(4π)d/2(w − d/2)

− 1
w

.
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Combining all of these results, we have shown that

lim
u→∞

u−2w
(
ζN (w) − V (N)

Γ(w)

∫ u2

0

(
e−2tI0(2t)

)d
tw

dt

t

)
(82)

= ζA(w) − V (A)
(4π)d/2(w − d/2)Γ(w)

.

Using Proposition 4.7, one can easily show that (82) is equivalent to (76)
when Re(w) > d/2, noting that (82) holds for all w ∈ C with Re(w) > 0 pro-
vided Re(w) �= d/2. By continuity, (82) extends to all w ∈ C with Re(w) > 0
provided one uses the interpretation

(83) lim
w→d/2

(
ζA(w) − V (A)

(4π)d/2(w − d/2)Γ(w)

)
= CTw=d/2 ζA(w),

the constant term in the Laurent expansion at w = d/2.
The above computations in the special case d = 2 with w = 1 and w = 2

were obtained in [9, Section 3]. In the case when w = 1 and d = 2, so then
w = d/2, the results in [9] were expressed in terms of the modular forms.
However, in light of the general Kronecker limit formula for Epstein zeta
functions and its functional equation, as stated in Section 2.9, it is evident
that for general d �= 1, the limiting value obtained in (83) can be expressed
in terms of a modular form (22).

7.4. The Epstein-Hurwitz zeta function
Further analysis in [9] involves the investigation of the finite product∏
(s2+Λj) for degenerating families of two-dimensional discrete tori for gen-

eral s ∈ C. If s = 0, then Theorem 5.8 determines the asymptotic behavior of
the product of nonzero eigenvalues. For s �= 0, we include the zero eigenval-
ues, which trivially introduces the multiplicative factor of s2. In this setting,
we recall that Theorem 3.6 establishes a relation for

∏
(s2 + Λj) in terms

of integrals involving I-Bessel functions. Using the substitution t 
→ u2t, we
arrive at the expression

log
∏(

(s/u)2 + Λj

)
=

∑
Λj �=0

log
(
(s/u)2 + Λj

)
(84)

= V (N/u)Id(s/u) + HN (s/u),

where
Id(s/u) = −

∫ ∞

0

(
e−2du2te−s2tI0(2u2t)d − e−u2t

) dt

t
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and

HN (s/u) = −
∫ ∞

0
e−s2t

(
θN (u2t) − V (N)e−2du2tI0(2u2t)d

) dt

t
− log(s2).

Trivially, one has that∏(
(s/u)2 + Λj

)
= u−2V (N)

∏
(s2 + u2 · Λj).

We can now employ bounds from Section 5 in order to determine the asymp-
totic behavior of (84) as u → ∞. Specifically, one uses Propositions 4.7, 5.2,
and 5.5 and Lemma 5.3 to show that for any s ∈ C with Re(s2) > 0 we have
the asymptotic formula∏(

(s/u)2 + Λj

)
= V (A/u)Id(s/u) + HA(s) + o(1), as u → ∞,

where

HA(s) = −
∫ ∞

0
e−s2t

(
ΘA(t) − V (A)(4πt)−d/2

)dt

t
− log(s2).

The function HA(s) is related to the regularized harmonic series, as defined
and studied in [13] associated to the set {ΛA,j + s2} where {ΛA,j } is the
set of eigenvalues of the Laplacian on the real torus AZd\Rd. The general
results from [13] establish that HA(s) can be expressed as special values of
the Epstein-Hurwitz zeta function formed with the set {ΛA,j +s2}. We refer
the reader to [13] for further details and identities.

7.5. General discrete tori
Let B be a positive definite d × d integer matrix, and consider the dis-

crete tori DTB = BZd\Zd. The results from [15] easily extend to compute
the spectrum of the Laplacian on DTB in terms of the dual lattice B∗. The
existence and uniqueness of the associated heat kernel on DTB follow from
general results (see, e.g., [6], [7]), thus allowing one to extend the results of
Section 3 above. Assume there is a one-parameter family DTB(u) of discrete
tori parametrized by u ∈ Z such that B(u)/u → M as u → ∞, where M is a
positive definite d × d matrix. The results of the present article apply when
considering spectral invariants on DTB(u). For example, Theorem 5.8 will
extend to obtain the asymptotic behavior of the determinant of the Lapla-
cian on DTB(u) with second-order term equal to the zeta-regularized spectral
determinant on the real torus MZd\Rd. Additional results of the present
article, specifically the contents of Sections 7.3 and 7.4, carry through using
the proofs given and only a slight change in notation.
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7.6. Height functions
The asymptotic expansion from Theorem 5.8, and its extension as out-

lined in Section 7.5, can be interpreted as saying that log det∗ΔDT,∗ is a
height function on the space of discrete tori of fixed dimension since it tends
to +∞ through degeneration. In the case of real tori, one needs to introduce
a minus sign and study − log det∗ΔRT,∗ in order to have a height function
which tends to +∞ through degeneration (see, e.g., [5]). The problem of
finding real tori with minimum height remains a question of interest (see,
e.g., [23]). One point of future investigation is to see to what extent The-
orem 5.8 allows for a connection between the problems considered in [23]
and the study of the height function logdet∗ΔDT,∗ on discrete tori, which
has the advantage of being an invariant which is defined as a finite product
and not through meromorphic continuation.
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