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Introduction. 0.1. Let G be a connected linear algebraic group, V 

a finite dimensional vector space and ƒÏ a rational representation of G 

on V. We call a triple (G,ƒÏ,V) a prehomogeneous vector space if there 

exists a proper algebraic subset S of V such that V-S is a single G-

orbit. The set S is called the singular set of (G,ƒÏ,V). When G and 

V have structures over a field K such that ƒÏ is defined over K, the 

triple (G,ƒÏ,V) is said to be defined over K. An arithmetic significance 

of the theory of prehomogeneous vector spaces lies in a conjecture due 

to M. Sato that one can associate a system of Dirichlet series satisfying 

certain functional equations with a prehomogeneous vector space defined 

over an algebraic number field. This conjecture was taken up by Sato 

himself and Shintani in [14] under the hypothesis that G is reductive, 

S is an absolutely irreducible hypersurface and (G,ƒÏ,V) is defined over 

the rational number field Q. In this case, according to their results, 

one can associate with such a triple (G,ƒÏ,V) a system of Dirichlet series 

in one complex variable which satisfies a functional equation similar to 

those of classical zeta functions such as the Riemann zeta function, the 

Epstein zeta function, etc. If we remove the assumptions above on the 

group G and the singular set S, it is natural to consider Dirichlet series 

in several complex variables. The purpose of this paper is to present 

a definition of zeta functions in several variables associated with a 

prehomegeneous vector space satisfying certain mild assumptions and 

to establish the conjecture of M. Sato for such zeta functions.

Igusa [6] posed a problem to associate a zeta function with a poly-

nomial mapping with coefficients in an algebraic number field. Our result 

may be regarded as a partial answer to his problem.

0.2. Now we give a summary of this paper. For a prehomogeneous 

vector space (G,ƒÏ,V) defined over an algebraic number field K, we are 

able to obtain a prehomogeneous vector space RK/Q(G,ƒÏ,V) defined over 

Q by restricting the field of definition K to Q. The zeta functions 

associated with (G,ƒÏ,V) should coincide with those associated with
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RK/Q(G,ƒÏ,V) for various reasons. Hence, without loss of generality, 

we may assume that (G,ƒÏ,V) is defined over Q. Let P1,•c,Pn be Q-

irreducible polynomials defining the Q-irreducible components of S with 

codimension 1. It is known that there exist Q-rational characters 

X1,•c,Xn of G such that 

Pi(ƒÏ(g)x)=Xi(g)Pi(x)(1•…i•…n) 

for all g•¸G and for all x•¸V, namely, the polynomials P1,•c,Pn are 

relative invariants of (G,ƒÏ,V). Let GR+ be a subgroup of the real Lie 

group GR containing the connected component of the identity element 

and let VR-SR=V1•¾•c•¾VƒË be the GR+-orbit decomposition. We fix 

a matrix expression of G and a basis of V compatible with the given 

Q-structure of (G,ƒÏ,V) and such that ƒÏ(Gz)VZ•¼VZ. Put 

„C={g•¸GZ•¿GR+;Xi(g)=1(1•…i•…n)}.

Let L be a „C-invariant lattice in VQ and set Li=L•¿Vi(1•…i•…ƒË). 

Denote by „C/Li the set of all „C-orbits in Li Let Gx be the isotropy 

subgroup of G at a point x in V and denote by Gx the connected com-

ponent of the identity element of Gx. Put G+x=Gx•¿G+R and „Cx=Gx•¿„C.

We assume that the group of Q-rational characters of Gx is trivial for 

all x in VQ-SQ. Then, for any X in VQ-SQ, the invariant volume of 

G+x/„Cx is finite. For any rapidly decreasing function f on VR, consider 

the integrals 

Z(f,L;s)=•çG+R/„CIIi=1n|Xi(g)|siƒ°x•¸L-Sf(ƒÏ(g)x)dg

 and 

ƒ³(f;s)=•çViIInj=1|Pj(x)|sjf(x)dx(1•…i•…ƒË)

where dg is a right invariant measure on GR and dx is a Euclidean 

measure on VR. The functions ƒ³1•c,ƒ³ƒË have analytic continuations to 

meromorphic functions of s in Cn. By a routine argument, we have at 

least formally the formula 

(0-1) Z(f,L;s)=ƒ°ƒËi=1ƒÌi(L;s)ƒ³i(f;s-ƒÂ) 

for some ƒÂ in Qn. Here ƒÌ1,•c,ƒÌƒË are the Dirichlet series defined by 

ƒÌi(L;s)=ƒ°x•¸„C/LiƒÊ(x)|P1(x)| -s1•c|Pn(x)|-sn(1•…i•…ƒË, s•¸Cn)

where ƒÊ(x) is the volume of Gx+/„Cx with respect to a suitably normalized 

Haar measure on G+x. The Dirichlet series ƒÌ1,•c,ƒÌƒË are called the zeta 

functions associated with (G,ƒÏ,V). We always assume that ƒÌ1,•c,ƒÌƒË
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are absolutely convergent when Re s1,•c,Re sn are all sufficiently large. 

Then the formula (0-1) is justified in a domain on which both ƒÌi's and 

ƒ³i's are absolutely convergent.

If the representation ƒÏ is irreducible, then we have at most one 

irreducible relative invariant up to a constant factor. So we are inter-

ested in a triple (G,ƒÏ,V) such that ƒÏ is reducible. Especially we consider 

the case where (G,ƒÏ,V) is decomposed into the form (G,ƒÏ, V)=(G,ƒÏ1(+)

ƒÏ 2,E(+)F) over Q and the singular set S is a hypersurface in V. The 

invariant subspace F is called a Q-regular subspace of (G,ƒÏ,V) if there 

exists a relative invariant P(x,y) (x•¸E,y•¸F) with coefficients in Q such 

that the Hessian

 HP,y(x, y)=det(•Ý2P/•Ýyi•Ýyj(x,y)) 

of P with respect to the variable y in F is not identically zero. We 

assume the Q-regularity of F. Let F* be the vector space dual to F. 

Denote by ƒÏ2* the representation of G on F* contragredient to ƒÏ2. Put 

ƒÏ *=ƒÏ
1(+)ƒÏ2 and V*=E(+)F*. As a consequence of the Q-regularity 

of F, the triple (G,ƒÏ*,V*) is also a prehomogeneous vector space which 

has a natural Q-structure. The assumptions imposed on (G,ƒÏ,V) are also 

satisfied by (G,ƒÏ*,V*) with the only possible exception of the assumption 

on the convergence of the zeta functions. Moreover it can be seen that 

the singular set S* of (G,ƒÏ*,V*) is also a hypersurface in V* with n 

Q-irreducible components and VR*-SR* is decomposed into ƒË orbits under 

the action of GR+ . Let x1*,•c,xn* be the Q-rational characters of G 

corresponding to Q-irreducible relative invariants Q1(x,y*),•c, Qn(x,y*) 

defining the Q-irreducible components of S*. Then there exist an n by 

n unimodular matrix U=(uij) and an n-tuple ƒÉ of half-integers such 

that 

Xi(g)=IInj=1Xj*(g)uij(1•…i•…n) and det ƒÏ2(g)2=IIni=1Xi(g)2ƒÉi.

Let M and N be „C-invariant lattices in EQ and FQ respectively. Let 

N* be the lattice dual to N. Put L=M(+)N and L*=M(+)N*. For 

the triple (G,ƒÏ*,V*) and a rapidly decreasing function f* on VR*, define 

Z*(f*,L*;s), ƒÌ*i(L*;s) and ƒ³*i(f*s) (1•…i•…ƒË) as for (G,ƒÏ,V). Finally 

we assume the absolute convergence of ƒÌ1*,•c,ƒÌ*ƒË. Then we have 

(0-2) Z*(f*,L*;s)=ƒ°ƒËi=1ƒÌ*i(L*;s)ƒ³*i(f*;s-ƒÂ*) 

where ƒÂ*=(ƒÂ-2ƒÉ,)U. Denote by B and B* the domains of absolute 

convergence of Z(f,L;s) and Z*(f*,L*;s) respectively. Let D (resp.
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D*) be the convex hull of (B*U-1+ƒÉ)•¾B(resp.(B-ƒÉ)U•¾B*) in Cn . 

Notice that (D-ƒÉ)U=D*. Set 

ƒ³ (f;s)=t(ƒ³1(f; ),•c,ƒ³ƒË(f;s)) 

and 

ƒ³ *(f*;s)=t(ƒ³
1*(f*;s),•c,ƒ³*ƒË(f*;s)).

We define the partial Fourier transform of f* with respect to F* by 

the formula 

F f*(x,y)=•çF *Rf*(x,y*)e2ƒÎ•ã-1<y,y*>dy*.

THEOREM 1. There exist a ƒË by ƒË matrix A(s), a Gamma factor ƒÁ(s) 

and non-zero complex numbers c1,•c,cn, which are independent of f*, 

such that 

ƒ³(Ff*;s)=IIni=1ci-si(2ƒÎ•ã-1)d*(s)ƒÁ(s)A(s)ƒ³*(f*(s+ƒÉ)U) 

where d*(s)=s1degy*Q1(x,y*)+•c+sndegy*Qn(x,y*) and all the entries 

of A(s) are polynomial functions in exp (ƒÎs1•ã-1),exp (-ƒÎs1•ã-1)
,•c,

exp(ƒÎsn•ã-1),exp(-ƒÎsn•ã-1).

This theorem is a generalization of Sato [11,Theorem 4], Sato and 

Shintani [14,Theorem 1] and Shintani [16,Theorem 1.1].

Set

ƒÌ (L;s)=t(ƒÌ1(L;s),•c,ƒÌƒË(L;s)) 

and 

ƒÌ *(L*;s)=t(ƒÌ*1(L*;s)
,•c,ƒÌ*ƒËƒË(L*;s)).

The following is the main theorem of the present paper.

THEOREM 2. (i) The Dirichlet series e1(L;s),•c,ƒÌƒË(L;s) (resp.

ƒÌ*1(L*;s),•c, ƒÌ*ƒË(L*;s)) have analytic continuations to meromorphic func-

tions of s in D (resp.D*).

(ii) There exists a polynomial b(s) (resp.b*(s)) in s such that b(s-

ƒÂ)ƒÌ1(L;s),•c,b(s-ƒÂ)ƒÌƒË(L;s) (resp.b*(s-ƒÂ*)ƒÌ*1(L*;s),•c,b*(s-ƒÂ*)ƒÌ*ƒË(L*;s)) 

are holomorphic functions in D (resp.D*).

(iii) The following functional equation holds for s•¸D:

v(N*)ƒÌ*(L*;(s-ƒÉ)U)=IIni=1ciƒÂi-si(-2ƒÎ•ã-1)d*(s-ƒÂ)ƒÁ(s-ƒÂ) tA(s-ƒÂ)ƒÌ(L;s)

where v(N*)=•çF*R/N*dy*.

Theorem 2 is derived from Theorem 1 and the integral representations
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(0-1) and (0-2) of the zeta functions. Under the additional assumptions 

that G is reductive and V itself is a Q-regular subspace, the domains 

D and D* coincide with Cn, and hence, the associated zeta functions are 

continued meromorphically in the whole of Cn. It is another consequence 

of Theorem 2 that the zeta functions satisfy at least the same number 

of functional equations as the number of Q-regular subspaces. As is 

seen in examples, it frequently occurs that (G,ƒÏ,V) has several Q-regular 

subspaces.

0.3. This paper is devided into seven sections. In •˜1,•˜2 and •˜3, 

we investigate elementary properties of prehomogeneous vector spaces 

and their Q-regular subspaces. The zeta functions are introduced in •˜4. 

Generalizing the method used in [11] and [14], we prove Theorems 1 and 

2 in •˜5 and •˜6 respectively. The final section is devoted to the study 

of concrete examples. The examples treated in •˜7 are rather easy ones. 

Further applications of Theorem 2 will be seen in subsequent papers 

([23], [24]). Another summary of this paper is found in [26].

0.4. The author would like to thank Professor M. Sato and the late 

Professor T. Shintani for their helpful advises and encouragement.

Notation. As usual, Z,Q,R and C are the ring of rational integers, 

the rational number field, the real number field and the complex number 

field, respectively. For any non-zero real number x, sgnx is x/|x|. For any 

complex number x, we put e[x]=exp2ƒÎ•ã-1x. Let R be a commutative 

ring with an identity element. We denote by M(n;R) (resp.M(n,m,R)) 

the set of n by n (resp.n by m) matrices with entries in R. For any 

matrix A, denote by tA the transposed matrix of A. We use the symbols 

tr A and det A, respectively, as abbreviations for the trace and the deter-

minant of A•¸M(n;R). For an affine algebraic set X defined over a field 

K, we denote by XK the set of K-rational points on X. If G is an 

algebraic group of matrices defined over Q, the group of integral matrices 

with determinant •}1 contained in G is denoted by Gz. For any finite 

dimensional real vector space V, j(V) is the space of rapidly decreasing 

functions on V. For any smooth manifold X, C0•‡(X) is the space of smoth 

functions with compact support on X. Let (X,ƒÊ) be a measure space. 

Denote by .L1(X,ƒÊ) the space of ƒÊ-integrable functions on X. We denote 

by „C(z) the Gamma function and ƒÄ(z) the Riemann zeta function.

1. K-structures on prehomogeneous vector spaces. Let (G,ƒÏ,V) be 

a triple of a connected complex linear algebraic group G, a finite dimen-

sional vector space V over C and a rational representation ƒÏ of G on V. 

A triple (G,ƒÏ,V) is called a prehomogeneous vector space (briefly a p.v.)
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if there exists a proper algebraic subset of V such that V-S is a 

single G-orbit. Then S is called the singular set of (G,ƒÏ,V). By a 

generic point, we mean a point in V-S. For a rational character X 

of G, a non-zero rational function P on V is called a relative invariant 

of (G,ƒÏ,V) corresponding to x if P(ƒÏ(g)x)=X(g)P(x) (for all g•¸G and 

for all x•¸V).

For any subfield K of C, if G and V admit K-structures such that 

ƒÏ is defined over K, then (G,ƒÏ,V) is said to be defined over K. From 

now on we fix a K-structure on (G,ƒÏ,V). Identify V with Cs (s=dim V) 

and G with a closed subgroup of GL(ƒÁ) defined over K. We may assume 

that all the entries of ƒÏ(g)•¸ Aut(V)=GL(s)(g•¸G) are rational functions 

on G with coefficients in K. Let Gal(C/K) be the Galois group of C 

over K. The canonical action of ƒÂ in Gal(C/K) on a rational function 

R on CN is denoted by RƒÂ. Let P(x) be a relative invariant corresponding 

to a rational character X of G. Then, for any ƒÂ in Gal(C/K), we have 

(1-1) PƒÂ(ƒÏ(g)x)=XƒÂ(g)PƒÂ(x) (g•¸G,x•¸V).

LEMMA 1.1. Let (G,ƒÏ,V) be a p.v. defined over K and S be its 

singular set. Denote by S' the union of the irreducible components of 

S with codimension 1. Then both S and S' are defined over K.

PROOF. For an x•¸V, denote by Gx the isotropy subgroup of G at 

x. It obvious that GxƒÂ=(Gx)ƒÂ for all ƒÂ•¸Gal(C/K). By the proof of 

[13,•˜2,Proposition 2], x is in S if and only if dim Gx>dimG-dimV. 

Since dim GxƒÂ=dim(Gx)ƒÂ=dimGx, S is stable under the action of 

Gal(C/K). This implies that S is defined over K (cf. [2,Chapter AG,

Theorem (14.4)]).

Let S1,•c,Sn be the irreducible components of S with codimension 

1. Then S'=S1•¾•c•¾Sn. Since the singular set S is defined over K, 

SiƒÂ(ƒÂ•¸Gal(C/K)) is also an irreducible component of S with codimension 

1 for every i. Hence S'ƒÂ=S' for any ƒÂ•¸Gal(C/K). Thus S' is also 

defined over K.

Let G1 be the normal closed subgroup of G generated by the com-

mutator group of G and the isotropy subgroup Gx at a generic point x. 

By the prehomogeneity, the group G1 is independent of the choice of x. 

Let X(G) be the group of rational characters of G. Denote by XƒÏ(G) 

the subgroup of X(G) consisting of elements whose restrictions to G1 

are trivial:

(1-2) XƒÏ(G)={X•¸X(G);X|G1•ß1}.

It is known that the group XƒÏ(G) coincides with the group of rational
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characters corresponding to relative invariants of (G,ƒÏ,V) (cf.[13,•˜4,

Proposition 19]). Denote by XƒÏ(G)K the subgroup of XƒÏ(G) consisting of 

rational characters defined over K.

LEMMA 1.2. Let (G,ƒÏ,V) be a p.v. defined over K.

(i) There exists a finite Galois extension L of K such that any 

relative invariant coincides with a rational function with coefficients in 

L up to a constant factor.

(ii) Let P(x) be a relative invariant corresponding to a rational 

character X of G. Then P(x) coincides with a rational function with 

coefficients in K up to a constant factor if and only if X•¸XƒÏ(G)K.

PROOF. (i) As in the proof of Lemma 1.1, let S1,•c,Sn be the 

irreducible components of S with codimension 1 and put S'=S1•¾•c•¾Sn. 

Since the algebraic set S' is defined over K, we may take a finite Galois 

extension L of K as a common field of definition of S1,•c,Sn. For each 

Si, let Pi(x) be an irreducible polynomial with coefficients in L such that 

Si={x•¸V;Pi(x)=0}. Then, by [13,•˜4, Proposition 5], the polynomials 

P1(x),•c,Pn(x) are relative invariants and any relative invariant P(x) 

is of the form 

P(x)=cP1(x)m1•cPn(x)mn(c•¸C,m1,•c,mn•¸Z). 

This proves the first assertion.

(ii) If P(x) has coefficients in K, then, by (1-1), 

P(ƒÏ(g)x)=XƒÂ(g)P(x) (ƒÂ•¸Gal(C/K)). 

Since the characters X and XƒÂ correspond to the same relative invariant 

P(x), XƒÂ=X for all ƒÂ•¸Gal(C/K). Hence X•¸XƒÏ(G)K. Conversely, suppose 

that X is defined over K. By (i), we may assume that P(x) has coeffici-

ents in a finite Galois extension L over K. Then the equality (1-1) im-

plies that PƒÂ(ƒÏ(g)x)=X(g)PƒÂ(x) for arbitrary ƒÂ•¸Gal(L/K). By [13,•˜4,

Proposition 3], there exists a non-zero constant cƒÂ•¸L•~ such that PƒÂ=cƒÂP. 

It is obvious that cƒÂƒÑ=cƒÂƒÑcƒÂ. According to Hilbert-Speiser's theorem, one 

can find a constant c•¸L•~ such that cƒÂ=(cƒÂ)-1c for all ƒÂ•¸Gal(L/K). 

Then (cP)ƒÂ=cP for all ƒÂ•¸Gal(L/K). This completes the proof.

Let S1,•c,Sn be the K-irreducible components of S with codimension 

1 and P1,•c,Pn be polynomials with coefficients in K defining Sl,•c,Sn, 

respectively. Denote by X1,•c,Xn the rational characters of G cor-

responding to P,•c,Pn, respectively.

The next lemma follows from [13,•˜4,Proposition 5].
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LEMMA 1.3. These P1,•c,Pn are algbraically independent relative 

invariants and any relative invariant P(x) with coefficients in K is of 

the form 

P(x)=cP1(x)m1•cPn(x)mn (c•¸K,m1,•c,mn•¸Z).

These polynomials P1,•c,Pn are determined uniquely up to constant 

factors in K. We call the set {P1,•c,Pn} a complete system of K-irre-

ducible relative invariants of (G,ƒÏ,V).

The following lemma is an immediate consequence of Lemma 1.2 (ii), 

Lemma 1.3 and [13,•˜4,Lemma 4].

LEMMA 1.4. The group XƒÏ(G)K is a free abelian group of rank n 

generated by X1,•c,Xn.

2. Direct sum of prehomogeneous vector spaces. 2.1. Let K be 

a subfield of C. Let G be a connected linear algebraic group defined 

over K. Let ƒÏ1 and ƒÏ2 be K-rational representations of G on finite dimen-

sional vector spaces E and F respectively. Put V=E(+)F and ƒÏ=ƒÏ

1(+)ƒÏ2. Here ƒÏ is, by definition, the representation of G on V given 

by the following formula:

ƒÏ(g)(x,y)=(ƒÏ1(g)x,ƒÏ2(g)y) (g•¸G,(x,y)•¸E(+)F=V).

For an x•¸E, denote by Gx the isotropy subgroup of G at x: Gx={g•¸G;

ƒÏ1(g)x=x}. Let Gx be the connected component of the identity element 

of Gx. If x is a K-rational point in E, then both Gx and Gx are defined 

over K (cf.[2,Chapter 1,Proposition (1-2)]).

LEMMA 2.1. Assume that (G,ƒÏ,V) is a p.v. with the singular set S.

(i) The triples (G,ƒÏ1,E) and (G,ƒÏ2,F) are p.v.'s defined over K.

(ii) For a K-rational generic point x of (G,ƒÏ1,E), the triple 

(Gx,ƒÏ2,F) is a p.v. defined over K, whose singular set Sx is given by 

Sx={y•¸F;(x,y)•¸S}.

For an irreducible component W of S with codimension r, put

Wx={y•¸F;(x,y)•¸W}.

If Wx is non-empty, it is of pure codimension r in F.

PROOF. The first part of the lemma is obvious. Let us prove the 

second part. Denote by Gx,y the isotropy subgroup of Gx at y•¸F. Then 

Gx,y={g•¸Gx;ƒÏ2(g)y=y}={g•¸G;ƒÏ(g)(x,y)=(x,y)}.

It is clear that the group Gx,y•¿Gx contains the connected component of



ZETA FUNCTIONS 445

the identity element of Gx,y. Hence dim (Gx,y•¿Gx)=dimGx,y and 

dim Gx=dimGx. Therefore, by [13,•˜2,Proposition 2], the triple 

(Gx,ƒÏ2,F) is a p.v. and y is a generic point of (Gx,ƒÏ2,F) if and only if 

(2-1) dimGx-dimGx,y=dimF. 

Since x is a generic point of (G,ƒÏ1,E) and dimG-dimGx=dimE, the 

equality (2-1) is equivalent to the following: dimG-dimGx,y=dimV. 

This implies that (Gx,ƒÏ2,F) is a p.v. with a generic point y if and only 

if (x,y) is a generic point of (G,ƒÏ,V). Hence (Gx,ƒÏ2,F) is a p.v. and 

Sx={y•¸F;(x,y)•¸S}. It is obvious that (Gx,ƒÏ2,F) is defined over K.

Finally let Wx1 be any irreducible component of Wx. Since x is a generic 

point, dim W1x+dimE•…dimW. Hence we have 

r=dimV-dimW•…dimF-dimW1x. 

On the other hand, Wx is the intersection of two irreducible varieties 

W and {x}•~F and each component of Wx is of dimension not smaller 

than dimW+dimF-dimV=dimF-r. Thus we obtain r=dimF-

dimWx.

Let (G,ƒÏ,V)=(G,ƒÏ1(+)ƒÏ2,E(+)F) be a p.v. For a relative invariant 

Q1(x) of (G,ƒÏ1,E), put Q(x,y)=Q1(x). Obviously Q(x,y) is a relative 

invariant of (G,ƒÏ,V) independent of the second component y•¸F. The 

mapping Q1•¨Q gives rise to a natural one to one correspondence between 

relative invariants of (G,ƒÏ1,E) and relative invariant of (G,ƒÏ,V) inde-

pendent of y. In the following we do not distinguish them.

Fix a K-rational generic point x of (G,ƒÏ1,E). Let P be a relative 

invariant of (G,ƒÏ,V) which corresponds to X•¸XƒÏ(G)K. Then, as a func-

tion of y, P(x,y) is a relative invariant of (Gx,ƒÏ2,F) which corresponds 

to X|Gx, the restriction of X to Gx. Hence X|Gx•¸XƒÏ2(Gx)K for any X•¸XƒÏ(G)K.

Define a homomorphism 

ƒ¿:XƒÏ(G)K•¨XƒÏ2(Gx)K 

by the formula ƒ¿(X)=X|Gx. A character X is in the kernel of ƒ¿ if and 

only if it is a rational character of G which corresponds to a relative 

invariant P(x,y) with coefficients in .K of (G,ƒÏ,V) independent of the 

second component y. Hence Ker ƒ¿=XƒÏ1(G)K. Set 

(2-2) XƒÏ|ƒÏ2(Gx)K=the image of ƒ¿ in XƒÏ2(Gx)K. 

This is the group of rational characters of Gx which correspond to rela-

tive invariants of (Gx,ƒÏ2,F) with coefficients in K obtained from relative 

invariants of (G,ƒÏ,V) by restricting them to {x}•~F.
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Put n=rank XƒÏ(G)K and r=n-rankXƒÏ1(G)K. Let {P1,•c,Pn} be a 

complete system of K-irreducible relative invariants of (G,ƒÏ,V). Then 

exactly n-r of Pi's are independent of the second component y. We 

may assume that Pr+1,•c, Pn are independent of y. The set {Pr+1,•c,Pn} 

is a complete system of K-irreducible relative invariants of (G,ƒÏ1,E). 

Let X1,•c,Xn be rational characters of G corresponding to P1,•c,Pn, 

respectively.

LEMMA 2.2. Fix a K-rational generic point x of (G,ƒÏ1,E). Then, 

as functions of y, P1(x,y),•c, Pr(x,y) are algebraically independent.

PROOF. Assume that P1(x,y),•c, Pr(x,y) are not algebraically inde-

pendent for a generic point x of (G,ƒÏ1,E). Then, by [13,•˜4,Lemma 

4], there exists an (m1,•c,mr)•¸Zr-{(0,•c,0)} such that X1m1•cXrmr•ß1 

on . Hence X1m1•c

by Xr+1,•c,Xn, we have a non-trivial relation 

. This contradicts the fact that P1•c,Pn are algebraically independent 

(cf. Lemma 1.3).

COROLLARY. The group X(G)K is a free abelian group of rank 

r generated by ,

LEMMA 2.3. The following three assertions are equivalent.

(i)  is surjective, namely, X.

(ii) Any relative invariant Q(y) of (,F) with coefficients in 

K is of the form 

(iii) For any•c,r,P1(x,y) is a K-irreducible polynomial in y.

PROOF. The equivalence of the first and the second assertions is quite 

obvious. We shall show that the second assertion implies the third. 

Assume that  for some polynomials  in y 

with coefficients in K. Then, by Lemma 1.3, Q1 and Q2 are relative 

invariants of  and, by the assumption, they are written as 

follows:

Since Q1 and Q2 are polynomial functions in y and x is a generic point 
of (GE), the rational functions  and ; have no poles 
in (ESE)F where we denote by SE the singular set of (G1E)
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Hence the exponents mkj are all non-negative integers. As a function 
of y,(IIrk=1Pj(x,y)mij+m2j)•Pi(x,y)-1 is a constant and we have

(IIrj=1 Pm1j+m2jj)•Pi-1=cIIj=nr+1Pujj 

for some c•¸K and some ur+1,•c,un•¸Z. Since mkj are non-negative, 

this equality implies that 

uj=0, mkj=0 (j•‚i), {m1ij,m2j}={1,0}.

Therefore the polynomial Pi(x,y) of y is K-irreducible for any i. Finally, 

it follows from Lemma 2.1 (ii) that any irreducible component of the 

singular set of (Gx,ƒÏ2,F) with codimension 1 is contained in the set of 

zero-points of IIrj=1 Pi(x,y). Hence, by Lemma 1.3, the third condition 

implies the second.

Let F* be the vector space dual to F and ƒÏ2* be the representation 

of G on F* contragredient to ƒÏ2. Put 

V*=E(+)F*,ƒÏ*=ƒÏ(+)ƒÏ2.

We call ƒÏ* the partial contragredient representation of ƒÏ with respect 

to F. Fix K-structures of (G,ƒÏ1,E) and (G,ƒÏ2,F) and identify F with 

Cm(m=dimF). We identify F* with Cm via the symmetric bilinear 

form 

<y,y*>=y1y1*+•c+ymym*.

Then ƒÏ2 and ƒÏ* are K-rational representations of G on F* and V*, 

respectively. For any relative invariant P of (G,ƒÏ,V), define a rational 

mapping ƒÓP of V-S into V* by 

(2-3) ƒÓP(x,y)=(x,grady logP(x,y))

where 

gradylogP(x,y)=(1/P(x,y)•Ý/•Ýy1/P(x,y),•c,1/P(x,y)•Ý/•ÝymP(x,y)).

The mapping ƒÓP is independent of the choice of a basis in F. If P has 

coefficients in K, ƒÓP is defined over K. Moreover we have 

(2-4) ƒÓp(ƒÏ(g)(x,y))=ƒÏ*(g)ƒÓP(x,y) ((x,y)•¸V-S,g•¸G).

Put 

HP,y(x,y)=det(•Ý2P/•Ýyi•Ýyi(x,y)

. If there exists a relative invariant P of (G,ƒÏ,V) such that HP,y(x,y) is 

not identically zero, then F is called a regular subspace of (G,ƒÏ,V).
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Moreover, if P can be taken so that P has coefficients in K, we say that 

the subspace F is regular over K or K-regular. We call a p.v. (G,ƒÏ
,V) 

regular over K if V is a K -regular subspace. When K=C,(G,ƒÏ,V) is 

simply called regular instead of regular over C. This terminology is 

consistent with [13,4,Definition 7]. If F is a K-regular subspace, the 

p.v. (Gx,ƒÏ2,F) is regular over K for any K-rational generic point x of 

(G,ƒÏ1,E).

Basic properties of p.v.'s with a regular subspace are summarized 

in the next lemma which follows from Lemma 1.2 (ii) and [13,•˜4, Prop-

osition 10, Remark 11].

LEMMA 2.4. Let (G,ƒÏ,V)=(G,ƒÏ1(+)ƒÏ2,E(+)F) be a p.v. with a K-

regular subspace F.

(i) The triple (G,ƒÏ*,V*)=(G,ƒÏ1(+)ƒÏ*2,E(+)F*) is a p.v, with a 

K-regular subspace F*.

(ii) For an (x,y)•¸V-S, put (x,y*)=ƒÓP(x,y). If HP,y does not 

vanish identically, then Gx,y=Gx,y*.

(iii) XƒÏ(G)K=XƒÏ*(G)K and XƒÏ2(Gx)K=XƒÏ*2(Gx)K for any K-rational 

generic point x of (G,ƒÏ1,E).

(iv) Let S and S* be the singular sets of (G,ƒÏ,V) and (G,ƒÏ*,V*) 

respectively. For aX•¸XƒÏ(G)K=XƒÏ*(G)K, let P and Q be relative invari-

ants of (G,ƒÏ,V) and (G,ƒÏ*,V*) corresponding to X and X-1 respectively.

If HP,y does not vanish identically, ƒÓP is a biregular rational mapping 

defined over K of V-S onto V*-S* and the inverse mapping of ƒÓP 

is given by ƒÓQ.

(v) The singluar set S of (G,ƒÏ,V) is a hypersurface if and only 

if the singular set S* of (G,ƒÏ*,V*) is a hypersurface.

LEMMA 2.5. Denote by det ƒÏ2(g) the determinant o f ƒÏ2(g) in F. If 

F is a K-regular subspace, then det ƒÏ2(g)2•¸XƒÏ(G)K.

PROOF. Let P be a relative invariant of (G,ƒÏ,V) such that HP,y is 

not identically zero. Then an easy computation shows that PmH-1p,y(m=

dimF) is a relative invariant of (G,ƒÏ,V) corresponding to detƒÏ2(g)2.

Since ƒÏ2 is assumed to be K-rational, it is clear that detƒÏ2(g)2 is a K-

rational character of G.

2.2. Let (G,ƒÏ,V) be a p.v. defined over a subfield K of C. Assume 

that (G,ƒÏ,V) is decomposed into the form (G,ƒÏ1(+)ƒÏ2(+)ƒÏ3, V1(+)V2(+)V3) 

over K and V3 is a K-regular subspace. Denote by V*3the dual space 

of V3 and by ƒÏ3 the representation contragradient to ƒÏ3. Then the triple 

(G,ƒÏ*,V*)=(G,ƒÏ1(+)ƒÏ2(+)ƒÏ*3,V1(+)V2(+)V3) is also a p.v. Let S and S*
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be the singular sets of (G,ƒÏ,V) and (G,ƒÏ*,V*) respectively.

LEMMA 2.6. The following assertions are equivalent.

(1) V2(+)V3 is a K-regular subspace of (G,ƒÏ,V).

(2) V2 is a K-regular subspace of (G,ƒÏ*,V*).

PROOF. Put V#=V1(+)V*2(+)V*3 where V*2 is the vector space dual 

to V2. For a relative invariant P of (G,ƒÏ,V), we define two mappings 

ƒÓP:V-S•¨V# and ƒÓ'P:V-S•¨V* by

ƒÓP(x,y,z)=(x,1/PgradyP(x,y,z),1/PgradezP(x,y,z)

 and 

ƒÓ'P(x,y,z)=(x,y,1/PgradzP(x,y,z)).

By the K-regularity of V3, we can find a P with coefficients in K such 

that ƒÓ'P is a biregular rational mapping of V-S onto V*-S*. Put 

Q(x,y,z*)=P(ƒÓ'-1P(x,y,z*)). The function Q is a rational function on V* 

defined over K and is a relative invariant of (G,ƒÏ*,V*). Let be the 

mapping of V*-S* into V# defined by 

ƒÓQ(x,y,z*)=(x,1/QgradyQ(x,y,z*),z*).

We shall prove the equality ƒÓP=ƒÓQƒÓ'P. Since P=QƒÓ'P, we have 

(2-5) •ÝP/•Ýyi(x,y,z)=•ÝQ/•Ýyi(

It is clear that the character of G corresponding to Q coincides with that 

corresponding to P. By Lemma 2.3 (iv), the mapping 

,z*))

is the inverse mapping of ƒÓ'P. Hence we have 

and the second term of the right hand side of (2-5) is equal to 

The function P is homogeneous in z (cf.[13,•˜4,Proposition 3]). By
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Euler's identity, we obtain 

•ÝP/•Ýyi(x,y,z)
=(•ÝQ/•Ýyi)(ƒÓ'P(x,y,z)) (1•…i•…dimV2).

The equality ƒÓP=ƒÓQ•ZƒÓ'P follows immediately from this identity. Either 

of the conditions (1) and (2) yields that (G,ƒÏ#,V#)=(G,ƒÏ1(+)ƒÏ*2(+)ƒÏ*3,

V1(+)V*2(+)V*3) is a p.v. Denote by S# the singular set of this p.v. If 

the condition (1) is satisfied, there exists a relative invariant P of 

(G,ƒÏ,V) such that ƒÓP and ƒÓ'P are biregular rational mapping of V-S 

onto V#-S# and V*-S* respectively. Then QƒÓ=ƒÓP•ZƒÓ'-1P is a biregular 

rational mapping of V*-S* onto V#-S#. This implies the condition 

(2) (cf.[13,•˜4, Proposition 10]). Similarly we are able to prove that 

the condition (2) implies the condition (1).

3. Partial b-functions. We keep the notation in •˜2.1 and assume 

that F is a K-regular subspace. By Lemma 2.4 (iii), rank XƒÏ(G)K=

rank XƒÏ*(G)K. Let P1,•c,Pn (resp.Q1,•c,Qn) be a complete system of 

K-irreducible relative invariants of (G,V) (resp.(G,ƒÏ*,V*)) where 

n=rankX For every i, the K-rational character 

of G corresponding to Pi (resp. Qi) is denoted by Xi (resp. X*i). For a 

character X in , let 

 be the elements in Zn such that 

Since  and •c,X*n} form two system of generators of the 

free abelian group )K, there exists a unimodular matrix U•¸GL(n;Z) 

such that 

(G)K).

In particular, 

where uij; is the (i,j)-entry of the matrix U.
For a  we put

  and .

[] implies that Pi (resp. Qi) are homogeneous with 
respect to the variable y (resp. y*) in F (). Denote by d(X) and 
d, respectively, the homogeneous degrees of PX and  with respect 
to y and y
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d(X)=degyPX=ƒ°ni=1ƒÂ(X)idegyPi, d*(X)=degy*QX=ƒ°ni=1ƒÂ*(X)ideg y*Qi.

If ƒÂ*(X)i•†0(resp.ƒÂ(X)i•†0) for all i, we can define a partial differential 

operator QX(x,gradsy) (resp. PX(x,grady*)) in K[x,•Ý/•Ýy] (resp. K[x,•Ý/•Ýy*]) 

such that (3-2)

{ QX(x,grady)e<y,y*>=QX(x,y*)e<y,y*>,

PX(x,grady*)e<y,y*>=PX(x,y)e<y,y*>.

The operator QX(x,grady) (resp. PX(x,grad*)) has order d*(X) (resp. d(X)).

For s=(s1,•c,sn)•¸Cn, set 

Ps(x,y)=exp(ƒ°ni=1silog(Pi(x,y))) 

and 

Q3(x,y*)=exp(ƒ°ni=1silog(Qi(x,y*))).

We consider Ps (resp. Qs) as a function on the universal covering space 

of V-S(resp. V*-S*).

LEMMA 3.1. (i) If ƒÂ*(X)i•†0 for all i, there exists a polynomial 

bX (s) of degree d*(X) in s=(s1,•c,sn) satisfying 

QX(x,grady)Ps(x,y)=bX(s)Ps+ƒÂa(X)(x,y).

(ii) If ƒÂ(X)i•†0 for all i, there exists a polynomial bX*(s) of degree 

d(X) in s=(s1,•c,sn) satisfying

PX(x, grady*)Qs(x,y*)=b*X(s)Qs+ƒÂ*(X)(x,y*).

PROOF. We give a proof only for the first assertion. Denote by 

F(x,y) the left hand side of the equality. It follows from the definition 

of QX(x,grady) that 

QX(ƒÏi(g)x, gradƒÏ2(g)y)=X(g)QX(x,grady).

Let W be a simply connected neighbourhood of the identity element e 

of G. Define a function Xs(g) on W by setting 

Xs(g)=exp(ƒ°ni=1silog(Xi(g))), log(Xi(e))=0.

Then we have F(ƒÏ(g)(x,y))=Xs(g)X(g)F(x,y) for all g•¸W. By the pre-

homogeneity, ƒÏ(W)(x,y) contains an open neighbourhood of (x,y) for any 

(x,y)•¸V-S. Hence the equality above implies that P-s-ƒÂ(X)(x,y)F(x,y) 

is a constant which depends only upon s and X. Denote it by bX(s). It 

is clear that bX(s) is a polynomial in s of degree not greater than d*(X).



452 F. SATO

Let aX(s) be the part of bX(s) homogeneous of degree d*(X). Then, by 

an elementary calculation, we have 

aX(s)PX(x,y)=QX(x,gradylogPS)=QX(ƒÓPs(x,y)).

Since F is a K-regular subspace, there exists an s0 in Zn such that ƒÓPs0 

is a biregular mapping of V-S onto V*-S*. Then aX(s0)•‚0. Thus 

the polynomial bX(s) is of degree d*(X).

LEMMA 3.2. Let X and ƒµ be characters in XƒÏ(G)K.

(i) If ƒÂ*(X)i•†0 and ƒÂ*(ƒµ)i•†0 for all i, then 

bXƒµ(s)=bX(s)bƒµ(s+ƒÂ(X)).

(ii) If ƒÂ(X)i•†0 and ƒÂ(ƒµ)i•†0 for all i, then 

b*Xƒµ(s)=b*X(s)b*ƒµ(s+ƒÂ*(X)).

PROOF. It is easy to see that the operators QX(x,grady) and 

Qƒµ(x,grads) commute and QXƒµ(x,grady)=Qƒµ(x,grady)QX(x,grady). Now 

the first assertion is an immediate consequence of the definition of bX(s). 

The second assertion is proved quite similarly.

By using the formulas in Lemma 3.2, we can define bX(s) and b*X(s) 

for arbitrary character X in XƒÏ(G)K. We call the polynomial bX(s) (resp. 

b*X(s)) the (partial) b-function of (G,ƒÏ,V) (resp. (G,ƒÏ*,V*)) with respect 

to the K-regular subspace F (resp. F*) corresponding to X.

In the case where E={0}, F=V and ƒÏ2=ƒÏ, the b-functions were 

introduced by Sato and precisely investigated in [11]. It is easy to see 

that our partial b-functions are the b-functions of (Gx,ƒÏ2,F) in the sense 

of [11] and the results of Sato can be applied to our case without any 

essential change. The next lemma due to Sato plays an important role 

in •˜5.

LEMMA 3.3 ([11, Theorem 2, Theorem 3, Corollary to Theorem 3]). 

There exist a homomorphism c:XƒÏ(G)K•¨C•~, non-zero linear forms 

e1,•c,em:Cn•¨C and a Gamma factor 

ƒÁ(s)=IImi=1{IIaij=1„C(ei(s)-pij)}{IIƒÀij=1„C(ei(s)-qij}-1 (pij,qij•¸C)

with the following properties:

(1) All the coefficients of e1,•c,em are non-negative integers,

(2) bX(s)=c(X)ƒÁ(s)/ƒÁ(s+ƒÂ(X)).

Notice that b*X(s) has a similar expression in terms of the Gamma 

 function.
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For the general theory of b-functions, see [11] and [12]. The deter-

mination of b-functions for irreducible p.v.'s is treated by Kimura in [7].

4. Definition of zeta functions. Let (G,ƒÏ,V) be a p.v. defined 

over Q and denote by S the singular set of (G,ƒÏ,V). Let P1,•c,Pn 

be a complete system of Q-irreducible relative invariants of (G,ƒÏ,V). 

We denote by Xi the character corresponding to Pi(1•…i•…n). For any 

x•¸VQ-SQ, denote by Gx the connected component (with respect to the 

Zariski topology) of the identity component of the isotropy subgroup of 

G at x and put 

(4-1) V'Q={x•¸VQ-SQ;X(Gx)Q={1}}.

The set V'Q is ƒÏ(GQ)-stable.

LEMMA 4.1. If V'Q is not empty, then rank XƒÏ(G)Q=rank X(G)Q.

PROOF. Take an x•¸V'Q and put m=[Gx:Gx]. Since X|Gx•ß1 for 

any X•¸X(G)Q, X(g)m=X(gm)=1 for all g•¸Gx. This implies that {Xm;

X•¸X(G)Q}•¼XƒÏ(G)Q. Hence we have rank XƒÏ(G)R=rankX(G)Q.

We always assume that V'Q is not empty. Let ƒ¶ be a right in-

variant algebraic gauge form on G. Define a character ƒ¢ of G by the 

following formula: ƒ¶(gx)=ƒ¢(g)ƒ¶(x). Then ƒ¢•¸X(G)Q. By Lemma 4.1, 

there exists a natural number d such that (detƒÏ•ƒ¢-1)d•¸XƒÏ(G)Q. Put

ƒÂ =(ƒÂ1
,•c,ƒÂn)=d-1ƒÂ((detƒÏ•ƒ¢-1)d):

(detƒÏ(g)ƒ¢(g)-1)d=IIni=1Xi(g)dƒÂi.

Let GR+ be a subgroup of the real Lie group GR containing the con-

nected component of the identity element. Then VR-SR is decomposed 

into a finite number of GR+-orbits (see the proof of Lemma 5.1). Let 

VR-SR=V1•¾•c•¾VƒË be the GR+-orbit decompositon. Let |ƒ¢| be the 

character of GR+ defined by |ƒ¢|(g)=|ƒ¢(g)|. Normalize a G+R-relative 

invariant measure ƒÖ(x) on VR-SR with multiplier |ƒ¢| by setting ƒÖ(x)=

| P(x)|-ƒÂdx where •bP(x)•b-ƒÂ is an abbreviation for |P1(x)|ƒÂ-1•c|Pn(x)|-ƒÂn 

and dx is a Euclidean measure on VR. Let dg be a right invariant 

measure on GR+. Then 

•çG+R F(h-1g)dg=|ƒ¢|(h)•çG+RF(g)dg(F•¸L1(GR+;dg)).

We fix a matrix expression of G and a basis of V compatible with the 

given Q-structure of (G,ƒÏ,V) and such that ƒÏ(G) VZ•¼VZ. Put 

„C ={g•¸GZ•¿GR+;X1(g)=•c=Xn(g)=1}.
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For any x•¸V'Q, we set Gx+=Gx•¿GR+ and „Cx=„C•¿Gx+. Then, by [3,

Theorem 9-4], Gx+ is unimodular and Gx+/„Cx has a finite invariant volume.

We normalize a Haar measure dƒÊx on G+x such that 

(4-2) •ç
GR+F(g)dg=•çGR+/Gx+ ƒÖ(ƒÏ(g)x)•çGx+F(gh)dƒÊx(h)

(F•¸L1(G+R;dg),x•¸V'Q). Put ƒÊ(x)=•ç
G+x/„CxdƒÊx(x•¸V'Q).

Let L be a ƒÏ(„C)-invariant lattice in VQ and set L'=L•¿V'Q and 

Li=L'•¿Vi(1•…i•…ƒË). The sets L',L1,•c,LƒË are also ƒÏ(„C)-invariant. 

Denote by „C/Li the set of all ƒÏ(„C)-orbits in Li.

In the sequel, we use the symbols |P(x)|s and |X(g)|s as abbreviations 

forIIni=1|

Pi(x)|si and IIni=1|Xi(g)|si

respectively (x•¸VR-SR,g•¸GR+,s•¸Cn).

DEFINITION. The Dirichlet series

ƒÌi (L;s)=ƒ°x•¸„C/LiƒÊ(x)|P(x)|-s (s•¸Cn,1•…i•…ƒË)

are called the zeta functions associated with (G,ƒÏ,V) (and L).

In the following, we assume that 

(4-3) the Dirichlet series ƒÌ1(L;s),•c,ƒÌƒË(L;s) are absolutely convergent 

in a domain of the form {s•¸Cn;Resi>ai(1•…i•…n)} for sufficiently 

large real numbers a1,•c,an.

For an f•¸j(VR), we consider the following integrals:ƒ³i

=(f;s)=•çvi|P(x)|sf(x)dx (1•…i•…ƒË) 

and 

Z(f,L;s)=•çG+R/„C|X(g)|sƒ°c•¸L'f(ƒÏ(g)x)dg.

When Re s1>0,•c,Resn>0, the integrals ƒ³1(f;s),•c,ƒ³ƒË(f;s) are abso-

lutely convergent and represent holomorphic functions of s (cf. Lemma 

5.2). The following lemma, which gives an integral representation of 

ƒÌ1,•c,ƒÌƒË, is an immediate consequence of the assumption (4-3).

LEMMA 4.2. Let a1,•c,an be as in (4-3). Then the integral Z(f,L;s) 

(f•¸j(VR)) is absolutely convergent in the domain 

B={s•¸Cn;Re si>Max(ai,ƒÂ) (1•…i•…n)}
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and the following identity holds:

Z(f,L;s)=ƒ°ƒËi=1ƒÌi(L;s)ƒ³i(f;s-ƒÂ) (s•¸B).

REMARK. It is a conjecture that the condition (4-3) always holds for 

a1= ƒÂ1,•c,an=ƒÂn(cf. [14,p. 154,Remark 1]). In [23], we shall establish 

the conjecture in a particular case.

5. Partial Fourier transforms of complex powers of relative in-

variants. 5.1. In this section, we keep the notation in •˜2 and •˜3 and 

we always assume the following two conditions (5-1) and (5-2): 

(5-1) (G,ƒÏ1,E) and (G,ƒÏ2,F) are defined over a subfield K of R and 

F is a K-regular subspace of the p,v. (G,ƒÏ,V)=(G,ƒÏ1(+)ƒÏ2, V1(+)V2).

(5-2) The singular set S of (G,ƒÏ,V) is a hypersurface.

Here the subspaces E and F may be {0} and V respectively. Lemma 

2.4 (i) and (v) imply that these conditions are satisfied also by the p.v. 

(G,ƒÏ*,V*)=(G,ƒÏ1(+)ƒÏ2,E(+)F*) and F*.

For simplicity, we further assume that 

(5-3) there exists a positive integer d such that (detƒÏ1)d•¸XƒÏ(G)K.

Let GR+ be as in •˜4.

LEMMA 5.1. Under the assumption (5-1), the sets VR-SR and 

VR*-SR* decompose into the same finite number o f GR+-orbits.

PROOF. By (5-1) and Lemma 2.4, there exists a relative invariant 

P(x,y) with real coefficients such that ƒÓP is a biregular mapping from 

V-S onto V*-S* defined over R (for the definition of ƒÓP, see (2-3)). 

Let X be the rational character corresponding to P and let Q be a rela-

tive invariant of (G,ƒÏ*,V*) corresponding to X-1. By Lemma 1.2 (ii), 

the character X and X-1 are defined over R and we may assume that Q 

has real coefficients. Then it follows from Lemma 2.4 (iv) that the inverse 

mapping of ƒÓP is ƒÓQ and is also defined over R. Hence, by (2-4), the 

mapping ƒÓP gives a GR+-equivariant homeomorphism between VR-SR and 

VR*-SR*. This implies that there exists a one to one correspondence 

between GR+-orbits in VR-SR and those in VR-SR. Since GR+ contains 

the identity component of GR, the number of GR+-orbits in VR-SR is 

not greater than that of the topological components of VR-SR. By 

[3, Proposition 2.3], it is finite.

Let
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VR-SR=V1•¾•c•¾VƒË. and VR*-SR*=V*1•¾•c•¾V*ƒË

be their GR+-orbit decompositions. Let dx,dy and dy* be Euclidean 

measures on ER, FR and FR* respectively. Put 

ƒ³i(f;s)=•çvi|P(x,y)|sf(x,y)dxdy

 and 

ƒ³*i(f*;s)=•çv*i|Q(x,y*)|sf*(x
,y*)dxdy* 

(1•…i•…ƒË,s•¸Cn,f•¸j(VR),f*•¸j(V*R)). The meromorphic properties 

of complex powers of polynomials were studied by Bernstein and Gelfand 

[1]. The following lemma is essentially due to them and is proved by 

the method indicated at the end of [1].

LEMMA 5.2. (i) When Res1>0,•c,Resn>0, the integrals ƒ³i(f;s) 

and ƒ³*i(f*;s) are absolutely convergent and represent holomorphic func-

tions. Moreover they have analytic continuations to meromorphic func-

tions of s in Cn.

(ii) There exist „C-factors ƒÁƒÏ(s) and ƒÁƒÏ*(s) independent of f and f* 

of the form 

ƒÁƒÏ(s)=IImi=1„C(ai,1s1+•c+ai,nsn+bi) (aij,bi•¸Q),

ƒÁƒÏ*(s)=IImi=1„C(ai*1s1+•c+a*i,nsn+b*i) (a*ij,b*i•¸Q) 

such that ƒÁƒÏ(s)-1ƒ³i(f;s) and ƒÁƒÏ*(s)-1ƒ³*i(f*;s) are entire functions.

(iii) The mappings

j( VR)•¹f•¨ƒ³i(f;s)•¸C and j(V*R)•¹f*•¨ƒ³*i(f*;s)•¸C

are tempered distributions depending meromorphically on s. Let D0 be 

a bounded domain in Rn such that ƒ³i(f;s) and ƒ³*i(f*;s) are holomorphic 

functions in the tube domain D=D0+1•ã-1Rn. Then the orders of 

these tempered distributions are bounded for s•¸D.

By Lemma 2.5, we have det ƒÏ2(g)2•¸XƒÏ(G)K. Set 

(5_4)ƒÉ=(ƒÉ1•c,ƒÉn)=2-1ƒÂ((detƒÏ2)2).

For any f*•¸j(V*R), we define the partial Fourier transform Ff* 

with respect to the K-regular subspace F* by setting 

F f*(x,y)=•çF*
Rf*(x,y*)e[<y,y*)]dy* ((x,y)•¸VR).

Let ƒÁ(s) and c(X) be as in Lemma 3.3. Put
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c(s)=c(X1)s1•cc(Xn)sn 

and 

d*(s)=s1•degy*Q1+•c+sn•degy*Qn. 

Then c(ƒÂ(X))=c(X) and d*(ƒÂ*(X))=d*(X). Also put 

ƒ³ (f;s)=t(ƒ³1(f;s),•c,ƒ³ƒË(f;s)) 

and 

ƒ³ *(f*;s)=t(ƒ³*1(f*;s)
,•c,ƒ³*ƒË(f*;s)).

Now we can state the first main theorem of the present paper.

THEOREM 1. The functions ƒ³1(f;s),•c,ƒ³ƒË(f;s) and ƒ³*1(f*;s),•c,

ƒ³*ƒË(f*;s) satisfy the following functional equation:

(5-5) ƒ³(Ff*;s)=c(-s)(-2ƒÎ•ã-1)d*(s)ƒÁ(s)A(s)ƒ³*(f*;(s+ƒÉ)U) 

where A(s) is a ƒË•~ƒË matrix whose entries are polynomials in 

exp (•}ƒÎ•ã-1s1),•c,exp (•}ƒÎ•ã-1sn).

We are able to prove Theorem 1 by using the similar argument to 

that in [11] and [16] where the theorem is shown under the additional 

assumptions that E={0},F=V,ƒÏ=ƒÏ2,K=R,XƒÏ(G)R=XƒÏ(G) and G 

is a reductive algebraic group. For the sake of completeness, we shall 

give a proof.

PROOF OF THEOREM 1. As is easily seen, it is sufficient to prove the 

theorem for the case where the group GR+ is the identity component of 

GR. Then the sign of any relative invariant does not change on a GR+-

orbit. For any i (1•…i•…ƒË), set

ƒÃ(i)=(ƒÃ1(i),•c,ƒÃn(i)), ƒÃj(i)=sgnPj(x,y),(x,y)•¸Vi 

 and 

ƒÃ*(i)=(ƒÃ*1(i)
,•c,ƒÃ*n(i)), ƒÃ*j(i)=sgnQj(x,y*),(x,y*)•¸V*i.

Moreover we define ƒÃ(i)s and ƒÃ*(i)s by the formulas 

s(i)s=IInj=1ƒÃj(i)sj and ƒÃ*(i)s=IInj=1ƒÃ*j(i)sj

where ƒÃj(i)sj (resp.ƒÃ*j(i)sj)=exp(2ƒÎ•ã-1sj) or exp(ƒÎ•ã-1sj) according as 

ƒÃj(i) (resp.ƒÃ*j(i))=1 or -1.

LEMMA 5.3. (i) For any X•¸XƒÏ(G)K such that ƒÂ*(X)1,•c,ƒÂ*(X)n•†0, 

we obtain 

ƒ³i(QX(x,grady)f;s)=(-1)d*(X)ƒÃ(i)ƒÂ(X)bX(s)ƒ³i(f;s+ƒÂ(X))

(f•¸j(VR),1•…i•…ƒË).
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(ii) For any X•¸XƒÏ(G)K such that ƒÂ(X)1,•c,ƒÂ(X)n•†0, we obtain 

ƒ³*i (PX(x,grady*)f*;s)=(-1)d(X)ƒÃ*(i)ƒÂ*(X)b*X(s)ƒ³*i(f*;s+ƒÂ*(X)) 

(f*•¸j(V*R),1•…i•…ƒË).

PROOF. Integrating by parts, we can easily derive the formulas 

from Lemma 3.1.

For f•¸j(VR) and f*•¸j(V*R), put fg(x,y)=f(ƒÏ(g)(x,y)) and 

f*g(x,y*)=f*(ƒÏ*(g)(x,y*))(g•¸GR+). It is easy to check the following 

lemma.

LEMMA 5.4.

(i) ƒ³i(fg;s)=|X(g)|-s|detƒÏ(g)|-1ƒ³i(f;s),

(ii)ƒ³*i(f*g;s)=|X*(g)|-s|detƒÏ*(g)|-1ƒ³*i(f*;s)(g•¸G+R,1•…i•…ƒË).

LEMMA,5.5. The functions ƒ³1(f;s),•c,ƒ³ƒË(f;s) and ƒ³*1(f*;s),•c,

ƒ³*ƒË(f*;s) satisfy the following functional equation:

ƒ³(Ff*;s)=c(-s)(-2ƒÎ•ã-1)d*(s)ƒÁ(s)A(s)ƒ³*(f*;(s+ƒÉ)U)

where A(s) is a ƒË•~ƒË matrix whose (i,j)-entry Aij(s) is a product of 

ƒÃ*(j)sUƒÃ(i)-s and an entire function tij(s) of s with the period lattice Zn:

PROOF. Consider the continuous linear forms Ts and T*s on C•‡0(V*j) de-

fined by Ts(f*)=ƒ³i(f*;s) and T*s(f*)=ƒ³*j(f*;s). Since F(f*g)(x,y)=

| detƒÏ2(g)|(Ff*)g(x,y), we have, by Lemma 5.4 (i),

Ts(f*g)=|detƒÏ1(g)|-1|X(g)|-sTs(f*)(g•¸G+R).

On the other hand, it follows from (3-1) and Lemma 5.4 (ii) that 

T*(s+ƒÉ)U(f*g)=|detƒÏ1(g)|-1|X(g)|-sT*(s+ƒÉ)U(f*)(g•¸GR).

Therefore, by a theorem of Bruhat (see, e.g., [22,Theorem 5.2.1.4]), 

there exists a constant hij(s) independent of f* such that Ts(f*)=

hij;(s)T*(s+ƒÉ)U(f*) for any f* •¸C•‡0(V*j). The meromorphy of hij(s) is an 

immediate consequence of Lemma 5.2 (i). This equality implies that 

(5-6) ƒ³i(f*;s)=ƒ°ƒËj=1hij(s)ƒ³*j;(f*;(s+ƒÉ)U)

for all f*•¸G•‡0(V*R-S*R). If we define a tempered distribution T's on V*R 

by setting 

T's(f*)=ƒ³i(Ff*;s)-ƒ°ƒËj=hij(s)ƒ³*j;(f*;(s+ƒÉ)U),
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then the support of T's is contained in the hypersurface S*R. For a 

X•¸XƒÏ(G)K with ƒÂ*(X)1,•c,ƒÂ*(X)n•†0, let QX(x,grady) be the partial dif-

ferential operator introduced in •˜3. Then 

F(QXf*)(x,y)=(2ƒÎ•ã-1)-d*(X)QX(x,grady),Ff*(x,y)

Hence Lemma 5.3 (i) yields that 

(QXT's)(f*)=(-2ƒÎ•ã-1)-d*(X)ƒÃ(i)ƒÂ(X)bX(s)ƒ³i(Ff*;s+ƒÂ(X))

-ƒ°ƒËj=1ƒÃ*(j)ƒÂ*(X)h
ij(s)ƒ³*j(f*;(s+ƒÂ(X)+ƒÉ)U).

Let D=D0+•ã-1Rn be as in Lemma 5.2 (iii). There exists a constant 

M such that the order of T's does not exceed M for all s•¸D. If 

ƒÂ*(X)
1,•c,ƒÂ*(X)n•†M, we have by [16,Lemma 1.3] 

(5-7) (QXT's)(f*)=0 (s•¸D)

for any f*•¸j(V*R). Comparing (5-6) with (5-7) for f*•¸C•‡0(V*R-S*R), 

we obtain

(5-8) hij(s+ƒÂ(X))=(-2ƒÎ•ã-1)d*(X)ƒÃ*(j)ƒÂ*(X)ƒÃ(i)-ƒÂ(X)bX(s)-1hij(s).

The equalities (5-7) and (5-8) imply that the functional equation (5-6) is 

valid for any f*•¸j(VR*) and for any s in D+ƒÂ(X). By the principle 

of analytic continuation, we see that (5-6) holds for any s in Cn. Making 

use of the cocycle property of bX(s) (cf. Lemma 3.2), we can easily check 

that (5-8) holds for any X•¸XƒÏ(G)K. Hence the functions 

tij(s)=C(s)(-2ƒÎ•ã-1)-d*(s)ƒÁ(s)-1ƒÃ*(j)-sUƒÃ(i)shij(s) (1•…i,j•…ƒË) 

are periodic functions with the period lattice Zn=ƒÂ(XƒÏ(G)K). We have 

by (5-6) 

tij(s)=c(s)(-2ƒÎ•ã-1)-d*(s)ƒÁ(s)-1ƒÃ*(j)-sUƒÃ(i)sƒ³i(Ff*;s)ƒ³*(f*;(s+ƒÉ)U)-1 

for f*•¸C•‡0(V*j). By Lemma 3.3 (ii), the function ƒÁ(s)-1 is holomorphic 

if Re s1,•c,Re sn, are sufficiently large. Moreover, for a given s, we 

can choose an f* such that ƒ³*j(f*;(s+ƒÉ)U)•‚0. Therefore tij(s) is 

holomorphic if Re s1,•c,Re sn are sufficiently large. Since tij(s) is peri-

odic, this implies that tij(s) is an entire function for any i, j.

The rest of this paragraph is devoted to the proof of the fact that 

tij(s) is a polynomial of exp (•}2ƒÎ•ã-1s1),•c,exp (•}2ƒÎ•ã-1sn).

Take bases of ER and F*R and identify them with RP and RQ respec-

tively (p=dimE,q=dimF*). Put 

|| x,y*||=(x21+•c+x2p+y*21+•c+y*2q)1/2
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for (x,y*)•¸V*R=ER(+)F*R. For a multi-index ƒ¿=(a1
,•c,ƒ¿q), set 

|ƒ¿|=ƒ¿1+•c+ƒ¿q,•Ý|ƒ¿|/•Ýy*ƒ¿=•Ýƒ¿1/•Ýy*1ƒ¿1•c•Ýƒ¿q/•Ýy*qƒ¿q as usual. We define a semi-norm ƒËM ,N on j(V*R) by

ƒË M,N(f*)=Sup(x,y*)•¸V*R{(1+||x,y*||)Mƒ°|ƒ¿|•…N|•Ý|ƒ¿|/•Ýy*ƒ¿f*(x,y*)|} 

(M,N=0,1,2,•c).

Denote by CM,N(V*R) the subspace of C•‡(V*R) consisting of all functions 

f* such that ƒËM,N(f*)<+•‡.

The following lemma is easily proved.

LEMMA 5.6. Let D0 be a compact subset of Rn+={(u1,
,•c,un)•¸Rn; 

ui>0(1•…i•…n)} and put D=D0+•ã-1Rn. Then there exist positive 

integers M,N,M* and positive constants c,c* such that 

|ƒ³i(F*;s)|<cƒËM,N(f*),|ƒ³*i(f*;s)|<c*ƒËM* ,0(f*)

(1•…i•…ƒË,f*•¸j(V*R),s•¸D).

As is already noticed in the proof of Lemma 5.5, we can find a con-

stant ƒÀ such that ƒÁ(s)-1 is holomorphic in the domain 

ƒ¶ƒÀ={s•¸Cn;Resi>ƒÀ(1•…i•…n)}.

Take two points t=(t1,•c,tn) and r=(r,•c,rn) in R+nU-1 satisfying 

the conditions

{ Rn+U-1•½[t1,t1+1]•~•c•~[tn,tn+1],

ti-ƒÉ1-ri>ƒÀ(1•…i•…n),

Set B={s•¸Cn;ti•…Resi+ƒÉi•…ti+1 (1•…i•…n)}.

LEMMA 5.7. There exist positive integers M and N such that the 

functional equation in Lemma 5.5 holds for any f*•¸CM,N(V*R) and for 

any s•¸B.

PROOF. Let X be a character in XƒÏ(G)K such that ƒÂ(X)=r. Since 

ƒÂ*(X)
1,•c,ƒÂ*(X)n•†0, it follows from Lemma 3.3 and Lemma 5.3 (i) that 

ƒÁ(s)-1ƒ³i(Ff*;s)=(-1)d*(X)ƒÃ(i)ƒÂ(X)c(X-1)ƒÁ(s-ƒÂ(X))-1

•~ƒ³i(QX(x,grady).Ff*;s-ƒÂ(x)).

By (5-9), B-ƒÂ(X) is contained in ƒ¶ƒÀ. Hence, by Lemma 5.6, we have 

(5_10) |ƒÁ(s)-1ƒ³i(Ff*;s)|<c1|ƒÁ(s-ƒÂ(X))|-1ƒËM,N(f*)(s•¸B)
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for some constant c1. Since (B+ƒÉ) U is contained in Rn+, we may assume 

that

|ƒ³*j (f*; (s+ƒÉ)U)|<c2ƒËM,N(f*) (s•¸B)

for some constant c2. For any v>0, put B(v)={s•¸B; |Im s| •…v}. The 

set B(v)-ƒÂ(x) is a compact subset of ƒ¶. Therefore we obtain

|ƒÁ(s)-1ƒ³i(ff*; s)-c(-s)(-2ƒÎ•ã1)d*(s)ƒËƒ°j=1ƒÃ*(j)sUƒÃ(i)-stij(s)ƒ³*j (f*; (s+ƒÉ) U)|

<c3ƒËM,N(f*) (s•¸B(v))

where c3 is a constant depending only on v. For any f*•¸CM,N(V*R), there 

exists a sequence {fj*}•‡j=1in f(V*R) such that ƒËM,N(fj*-f*)•¨0 as j•¨•‡. 

Hence the functional equation in Lemma 5.5 holds for any f *•¸CM,N(V*R) 

and for any s•¸B(v). Since v is an arbitrary positive number, we con-

clude that the functional equation holds for and f*•¸CM,N(V*R) and for 

any s•¸B.

Now we construct functions contained in CM,N(V*R) explicitly. Let 

l: Rn+•¨ G+R be an analytic homomorphism such that

un))=ui (1•…i•…n)

and define a mapping lQ: Vj* •¨ G+R by putting

Q(x, y*)=l(|Q1(x, y*)|-1, •c, |Qn(x, y*)|-1).

Set 

Kj*={(x, y*)•¸Vj*,; Qi(x, y*)=ƒÃ*i(j) (1•…i•…n)}.

We choose a differential form ƒÆ on V*j such that 

dx1 •È•c •È dxp •Èdy*1 •È•c •È dyq*=dQ1•È•c •ÈdQn•ÈƒÆ.

Denote by |ƒÆ| the measure on K*j determined by ƒÆ. Take a ƒµ*j, in C•‡0 (K*j) 

such that

y*)|ƒÆ|=1.

Let q(u) be a function in C•‡(R) satisfying the following conditions: 

(5-11) All the derivatives of q(u) are bounded functions on R and the 

support of q(u) is contained in [1, •‡). 

(5-12) Put

q(z)=•ç•‡0uz-1q(u)du (Re z<0).

For every pair o f positive numbers a1, a2 (a1>a2), there exists a constant 

c>0 such that

q(z)|•†c•Eexp (-|Im z|1/2) (-a1<Re z<-a2).
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The existence of such a function q(u) is guaranteed by [16, Lemma 

1.4]. We define a function fj*,L(x, y*) by the formula

0 if (x, y*)•¸V*j, 

fj*,L(x, y*)={|Q1 •cQn(x, y*)|-L nIIi=1q(|Qi(x, y*)|)ƒµj*(ƒÏ*(lQ(x, y*))(x, y*))

if (x, y*)•¸V*j.

It is obvious that the support of fj*,L is contained in the set

{(x, y*)•¸V*j;|Qi(x, y*)|•†1 (1•…i•…n), ƒÏ*(lQ(x, y*))(x, y*)•¸Supp(ƒµ*j)} 

For given M, N, if L is sufficiently large, f*j,L•¸CM,N(V*R). By the assump-

tion (5-3), we can find a ƒÊ=(ƒÊ1, •c, ƒÊn)•¸ Qn such that d•EƒÊ=ƒÂ((det ƒÏ1)d).

LEMMA 5.8. Let ƒÉk (1•…k•…n) be the k-th component of (ƒÊ-ƒÉ) U. 

When L>Re s1+ƒÉ1, •c, Re sn+ƒÉn, 

Ik=1q(sk+ƒÉk-L) (i=j)(f*j
L;s)={IIk=1q(sk+ƒÉk-L)(i=j)

0 (i•‚j).

PROOF. It is clear that b; (fj*L; s)=0 for i•‚j. Since d-1ƒÂ((det ƒÏ*)d)=

for some positive integer d, we have 

f*j,L; s)=•çnIIi=1 {|Qi(x, y*)|si-Lq(|Qi(x, y*)|)}(ƒÏ*(lQ(x, y*))(x, y*))dxdy* 

=nIIk=1•ç•‡usk+ƒÉk-L-1q(u)du•çk
*j(x, y*)|ƒÆ|=nII q(sk+zƒÉk-L).

Let M, N and B be as in Lemma 5.7. Take an L such that 

fj*L•¸CM,N(VR*) and L is larger than the real parts of all the components 

of the vector (s+ƒÊ) U for s•¸B. Then, by Lemma 5.7 and Lemma 5.8, 

we obtain

tij(s)=c(s)(-2ƒÎ•ã-1)-d*(s)ƒÁ(s)-1ƒÃ*(j)-sUƒÃ(i)s

(ffj*L;s) nIIk=1 (nƒ°Sh+ƒÊh)uhk-L)-1(s•¸B)

where uhk is the (h, k)-entry of U. It follows from (5-10) and (5-12) that 

tij(s)|<c|c(s)(-2ƒÎ•ã-1)-d*(s)ƒÃ*(j)-sUƒÃ(i)s|

(s-ƒÂ(x))|-1 nIIk=1 exp (nƒ°h=1Im shuhk|1/2) (s•¸B)

for some constant c. Hence the Stirling formula yields the following 

estimate:

tij(s)|<c' exp (a1|Im s1 ( +•c + an|Im sn|) (s•¸B)
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where a1, •c, an and c' are some positive constants. Since tij(s) is a 

periodic function with the period lattice Zn and B is a fundamental region 

of Cn for Zn, this inequality holds for any s•¸Cn. This implies that the 

function tij(s) is a polynomial in exp (•}2ƒÎ•ã-1s1), •c, exp (•}2ƒÎ•ã-1sn).

Theorem 1 is now completely proved.

REMARK 1. The assumption (5-2) can be replaced by the following 

assumption:

For a generic point x of (G, ƒÏ1, E), the singular set Sx of (G•›x, ƒÏ2, F) 

is a hypersurface.

REMARK 2. The condition (5-3) is assumed for the sake of simplicity. 

We are able to avoid it. In the application to functional equations of 

zeta functions in the next section, this condition is satisfied.

REMARK 3. Let H be a subgroup of XƒÏ(G)R containing the character 

det ƒÏ2(g)2. Put m=rank H. Let P1, •c, Pm (resp. Q1, •c,Qm) be relative 

invariants with real coefficients of (G, ƒÏ, V) (resp. (G, ƒÏ*, V*)) such that 

the characters corresponding to P1, •c, Pm (resp. Q1, •c, Qm) generate 

the group H. Then if we modify the definitions of U,ƒÉ, ƒ³(f; s) and 

(f*; s), an analogue of Theorem 1 remains valid.

REMARK 4. An algorithm to calculate A(s) explicitly is obtained 

for a fairly wide class of p. v.'s by the method of micro local calculus 

(see [10] and [19]).

5.2. For a later application, we shall prove a lemma which enables 

us to reduce the calculation of partial Fourier transforms to the special 

case where E={0}, F=V and ƒÏ=ƒÏ2.

Put r=n-rank XƒÏ1(G)K. As is observed in •˜2, we may assume that 

Pr+1, •c, Pn (resp. Qr+1,•c, Qn) are independent of the second component 

y•¸F (resp. y*•¸F*) and 

(5-13) Pi(x, y)=P1(x)=Qi(x)=Qi(x, y*) (r+1•…i•…n).

In this case, the matrix U is of the form

U0 U1(5
-14) U=

0 En-r,

where U0•¸GL(r)z, U1•¸M(r, n-r; Z) and En-r is the identity square 

matrix of size n-r. By Lemma 2.4 (iii), the group XƒÏ,ƒÏ2(G•›x)K coincides 

with XƒÏ*ƒÏ2*(G•›x)K for any K-rational generic point x of (G, ƒÏ1, E). It fol-

lows from Corollary to Lemma 2.2 that X1|G•›x, •c,|G•›x and X1*|Gx*,•c, x*r|G•›x 

form two systems of generators of this group. The matrix U0 gives
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the relation between these two systems of generators, namely, 

Xi|G•›x=rIIj=1 (x*j|G•›x)uij (U0=(uij)

By (5-4), we have 

det ƒÏ2(g)2 |•›Gx=rIIi=1 (Xi(g)|G•›x)2ƒÉi.

Put ~ƒÉ0= (ƒÉ1,•c, ƒÉr, 0, •c, 0)•¸(2-1Z)n. Let S1 be the singular set of 

(G, ƒÏ1, E). Consider the projection mappings 

p: VR-SR•¨ER-S1R and p*:VR -S*R•¨ER-S1R.

These mappings are GR-equivariant and surjective. Let ER- S1R=ƒÖ

1 •¾•c•¾ ƒÖt be the G+R-orbit decomposition. For an x•¸ƒÖi, put Gx=

Gx•¿G+R. For simplicity, we assume that

(5-15) G+x•¼(G•›x)R.

There exists a one to one correspondence between G+R-orbits in p1(ƒÖi) 

(resp. p*-1(ƒÖi)) and Gx -orbits in FR- Sx,R (resp. F*R-S*x,R). Hence by 

Lemma 5.1, the number k1 of GR-orbits in p1(ƒÖi) is equal to that of 

G+R-orbits in p*-1(ƒÖi) (1•…i•…t). We have k1+ •c+kt=ƒË. We may 

assume that

p-1(ƒÖi)=Vk1+•c+ki-1+1 •¾•c•¾ Vk1+•c+ki-1+ki 

and 

p *-1(ƒÖi)=V*k1
+•c+ki-1+1 •¾•c•¾ V*k1+•c+ki-1+ki (1•…i•…t).

For an x•¸ƒÖi, set 

F(x)j={y•¸FR; (x, y)•¸Vk1+•c+ki-1+j} 

and 

F(x)*j={y•¸F*R; (x, y*)•¸V*k1+•c+ki-1+j} (1•…j•…ki).

Then the Gx-orbit -orbit decompositions of FR-Sx,R and F*R- S*x,R are given 

by 

FR-Sx,R=F(x)1 •¾•c•¾ F(x)ki and F*R-SR-F(x)1 •¾•c•¾ F(x)*ki. 

We set 

ƒ³(x, f; s)=•çF(x)i|P(x, y)|sf(y)dy

=nIIj=r+1 |Pj(x)|sj•çF(x)irIIj=|Pj(x, y)|sjf (y)dy 

and
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(x, f*; s)=•çF(x)*i|Q(x, y*)|sf*(y*)dy* 

Pj(x)|sj•çF(x)*irIIj=1|Qj(x, y*)|sjf*(y*)dy* 

(f•¸f(FR), f*•¸f(F*R), s•¸Cn).

The Fourier transform f* of f*•¸f(F*R) is defined to be

f*(y)=*•ç*FR (y*)e[<y, y*)]dy*.

Set

(x, f*; s)=t(ƒ³1(x, f*; s), •c, ƒ³ki(x, f*; s)), 

*(x
, f*; s)=t(ƒ³*1 (x, f*; s), •c, ƒ³*ki(x, f*; s))

and

U0=(U00
0 En-r).

Since the condition (5-1) implies that (G•›x, ƒÏ2, F) is regular over K, 

by Theorem 1 and Remark 3, there exists a ki by ki matrix A(x; s) of 

meromorphic functions of s, which is independent of f*, such that 

(5-16) ƒ³(x, f*; s)=A(x; s)ƒ³*(x, f*; (s+ƒÉ0)U0).

Note that the matrix A(x; s) depends only on s1, •c, sr.

LEMMA 5.9. Let x(1), •c, x(t) be points in ƒÖ1, •c, ƒÖt respectively. If 

Pr+l(x(i)|=•c| Pn(x(i))|=1 for every i=1,•c, t, then

A(x(1); s)

A(x(t); s)

=c(-s)(-2π√-1)d*(s)γ(s)A(s).

PROOF. For f•¸f(FR) and f*•¸f(F*R), we put fg(y)=f (ƒÏ2(g)y) and 

fg*(y*)=f*(ƒÏ2(g)y*) (g•¸GR). Then,

(ƒÏ1(g)x, f; s)=|X(g)|s+ƒÉƒ³(x, fg; s)

and 

*(ƒÏ
1(g)x, f*; s)=|x*(g)|s-ƒÉU*ƒ³(x, f*g; s) 

for any x•¸ER-S1R and any g•¸G+R. The following identity is an im-

mediate consequence of these formulas: A(ƒÏ1(g)x; s)=|X(g)|zA(x; s) where 

z=s+ƒÉ-(s+ƒÉ0) U0 U-1. Hence, for any x•¸ƒÖi, we have

(5-17) A(x; s)=|P(x)|zA(x(i); s).

Since z1= •c=zr=0, we write |P(x)|z here for |P(x, y)| z. Suppose
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that Re s1, •c, Re sn>0 and f* •¸C•‡0 (V*R-S*R). Then 

(5-18) ƒ³(ff*; s)=t(•çƒÖƒ³(x, (ff*)x; s) dx, •c, •çƒÖtƒ³(x, (ff*)x; s)dx)

and 

(5-19) ƒ³*(f*; s)=t(•çƒÖ1ƒ³*(x, f*x; s)dx, •c, •çƒÖt ƒ³*(x, f*x; s) dx)

where (Ff* )x and f*x stand for the functions on FR and F*R defined by 

(Ff*)x(y)=Ff*(x, y) and f*x (y*)=f*(x, y*) respectively. We get 

(Ff*)x=f*x. Denote by A'(s) the left hand side of the equality in the 

lemma. Then the identity

ƒ³(Ff*; s)=A'(s)ƒ³*(f*; z+(s+ƒÉ0) U0) (f*•¸C•‡0 ( V*R S*R)) 

follows from (5-16), (5-17), (5-18) and (5-19). Since z+(s+ƒÉ0) U0=(s+ƒÉ) U, 

we have A'(s)=c(-s)(-2ƒÎ•ã-1)d*(s)ƒÁ(s)A(s).

6. Functional equations of zeta functions. Throughout this section, 

in addition to the conditions (5-1) for K=Q and (5-2), we assume 

that 

(6-1) for any z=(x, y)•¸VQ-SQ, the group X(G0z)Q is trivial, namely, 

V'Q=VQ-SQ (for the definition of V'Q, see (4-1)).

By Lemma 2.4 (iii), this assumption is also satisfied by the p.v. 

(G, ƒÏ*, V*)=(G, ƒÏ1(+)ƒÏ*2, E(+)F*). The condition (5-3) follows immedi-

ately from (6-1) (cf. Lemma 4.1).

As in the previous section, let GR be a subgroup of GR containing 

the connected component of the identity element and let

VR-SR=V1•¾•c•¾VƒË and V*R-S*R=V1*•¾•c•¾V*ƒË 

be the GR-orbit decompositions.

We fix a matrix expression of G and bases of E and F compatible 

with the given Q-structures of (G, ƒÏ1, E) and (G, ƒÏ2, F) such that 

ƒÏ 1(Gz)EZ•¼Ez and ƒÏ2(GZ)FZ•¼Fz. We define a Q-structure on (G, ƒÏ*2, F*) 

by taking the basis dual to that of F. Let M and N be ƒÏ1(Gz)- and 

ƒÏ2(Gz)-stable lattices in EQ and FQ respectively. Denote by N* the 

lattice dual to N:

N*={y*•¸F*Q;<y, y*>•¸Z for all y•¸N}.

It is obvious that N* is ƒÏ2 (Gz)-stable. Put L=M(+)N and L*=M(+)N*. 

Then L and L* are ƒÏ(Gz)- and ƒÏ*(Gz)-stable lattices in VQ and V*Q 

respectively.
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Set 

ƒ¡={g•¸Gz•¿GR; Xi(g)=1 (1•…i•…n)}.

By (6-1), applying the argument in •˜ 4 to (G, ƒÏ, V) (resp. (G, ƒÏ*, V*)), 

we can define zeta functions ƒÌ1(L; s), •c,ƒÌƒË(L; s) (resp. ƒÌ*1(L*; s), •c, 

ƒÌ*ƒË (L*; s)).

We further assume that 

(6-2) the Dirichlet series ƒÌ1(L; s), •c, ƒÌƒË(L; s) (resp. ƒÌ*1(L*; s), •c, 

ƒÌ*ƒË (L*; s)) are absolutely convergent for Re s1>a1, •c, Re sn>an (resp. 

Re s1>a*1, •c, Re sn>a*n) for some positive real numbers a1, •c, an 

(resp. a*1, •c, a*n).

As in •˜ 4, let ƒÂ and ƒÂ* be the elements in Qn such that 

(det ƒÏ(g)ƒ¢(g)-1)d=X1(g)dƒÂ1 •cXn(g)dƒÂn 

and 

(det ƒÏ*(g)ƒ¢(g)-1)d*=X*1(g)d*ƒÂ1 •cX*n(g) d*ƒÂ*n 

for some integers d and d*. Then we have ƒÂ*=(ƒÂ-2ƒÉ) U. Put

B={s•¸Cn; Re si>Max (ai, ƒÂi) (1•…i•…n)}

and 

B*={s•¸Cn; Re si>Max (a*i, ƒÂ*i) (1•…i•…n)}. 

By Lemma 3.2, we have the following integral representations: 

(6-3) Z(f, L; s)=•çGR/ƒ¡|x(g)|sƒ°z•¸L-SQf(ƒÏ(g)z)dg

=ƒËƒ°i=1ƒÌi(L; s)ƒ³i(f; s-ƒÂ) (f•¸f(VR), s•¸B) 

and 

(6-4) Z*(f*, L*; s)=•çG+R/ƒ¡|X*(g)|sƒ°z*•¸L*-S*Q f *(ƒÏ*(g)z*)dg

=ƒËƒ°i=1ƒÌ*i(L*; s)ƒ³*i(f*; s-ƒÂ*) (f*•¸F(V*R), s•¸B*).

Denote by D (resp. D*) the convex hull of (B* U-1+ƒÉ)•¾B (resp. 

(B-ƒÉ) U •¾B*) in Cn. Notice that (D-ƒÉ) U=D*.

LEMMA 6.1. Let f* be a function in F(V*R) such that f* and 

F f* vanish on the singular sets S* and S respectively. Then 

Z(Ff*, L; s) and Z*(f*, L*; s) have analytic continuations to holomorphic 

functions of s in D and D* respectively. Moreover they satisfy the 

functional equation
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Z*(f*, L*; (s-ƒÉ)U)=v(N*)-1Z(Ff*, L; s) (s•¸D)

where v(N*)=•çF*R/Ndy*.

PROOF. Take points b•¸Zn•¿B and b*•¸Zn•¿(B* U-1+ƒÉ). Put ƒÀ=

(ƒÀ1, •c, ƒÀn)=b-b* and xB=xƒÀ11•cXƒÀnn. We define four domains D+, D_, 

D* and D_* as follows:

D+={s∈Cn; s+tβ ∈R for some t≧0}, 

D_={s∈Cn; s-tβ ∈B for Some t≧0}, 

D*+={s∈Cn; s-tβU∈B* for some t≧0}, 

D*_={s∈Cn;s+tβU∈B* for some t≧0}. 

Set 

Z+(f,L; s)=∫|
Xβ(g)|≧1|X(g)|sΣ∈L-Sf(ρ(g)z)dg, 

Z*+(f*, L*; s)=∫|X
β(g)|≦1 |X*(g)|sz*∈L*-S*Σf*(ρ*(g)z*)dg

and 

Z*-(f*, L*; s)=∫|X
β(g)|≧1 |X*(g)|sΣz*∈L*-S* f*(ρ*(g)z*)dg 

(f∈y(VR), f*∈f(V*R)).

Since Z(f, L; s) (resp. Z*(f*, L*; s)) is absolutely convergent in B (resp. 

B*), Z•}(f, L; s) (resp. Z*•}(f*, L*; s)) is absolutely convergent in D•} (resp. 

D*•}) and we have

Z(f, L; s)=Z+(f, L; s)+Z_(f, L; s) (s•¸B) 

and 

Z*(f*, L*; s)=Z*+(f*, L*; s)+Z*(f*, L*; s) (s•¸B*). 

We are assuming that f* and Ff* vanish on S* and S respectively. 

Hence the Poisson summation formula yields the following equality: 

| X(g)|ƒÉ2ƒ°z•¸L-SFf*(ƒÏ(g)z)=v(N*)ƒ°z
*•¸-S* f*(ƒÏ*(g)z*) (g•¸G+R)

By this formula, we obtain at least formally 

(6-5) Z*_(f*, L*; (s-ƒÉ) U)=v(N*)-1Z+(Ff*, L; s)

and 

(6-6) Z+ (f*, L*; (s-ƒÉ) U)=v(N*)-1Z_(Ff*, L; s)
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The right (resp. left) hand side of the equality (6-5) is absolutely con-

vergent in D+ (resp. D_* U-1+ƒÉ). By the choice of ƒÀ, the segment joining 

b and b* is contained in D+ and the set D+ •¿ (D*_U-1+ƒÉ) is a non-empty 

connected open set containing the neighbourhood of b*. Hence the func-

tions Z+(Ff*, L; s) and Z*_(f*, L*; (s-ƒÉ) U) are continued holomorphically 

in D+ •¾ (D*_U-1+ƒÉ) and the equality (6-5) actually holds in this domain. 

The same argument shows that the functions Z_(Ff*, L; s) and 

Z*+ (f*, L*; (s-ƒÉ) U) are continued holomorphically in D_•¾ (D*+ U-1+ƒÉ) 

and the equality (6-6) also holds. Thus we get the functional equation 

(6-7) Z*(f*, L*; (s-ƒÉ) U)=Z+(f*, L*; (s-ƒÉ) U)+v(N*)-1Z+(Ff*, L; s) 

=v(N*)-1Z(Ff*, L; s)

and both sides of the equation are holomorphic functions of s in 

{D+•¾(D*_U-1+ƒÉ)}•¿{D_U (D*+U-1+ƒÉ)}. This domain contains the union 

of B, B* U-1+ƒÉ and the segment joining b and b*. Hence, by [5, 

Theorem 2. 5. 10], the identity (6-7) holds for s•¸D.

We shall construct rapidly decreasing functions with the property 

mentioned in the lemma above by the method indicated in [14, p. 169, 

Additional remark 2]. We may assume that (5-13) holds for P1, •c, Pn 

and Q1, •c, Qn. Put XF=X1•c Xr and XF*=X*1•c X*r.

LEMMA 6.2. (i) For an f*i•¸C•‡0 (Vi*), put f*=PxF(x, grad*) fi*. 

Then the function Ff* vanishes in SR.

(ii) For an fi•¸C•‡0(Vi), put f*=F-1(QxF*(x, grady)fi) where F-1 

stands for the inverse transformation of the partial Fourier transform 

F: Then the function f* vanishes in S*R.

PROOF. (i) Integrating by parts, we have 

F f*(x, y)=(-2ƒÎ•ã-1)dPxF(x, y)Ffi*(x, y) 

where d=degyP1+•c+ degy Pr. The assumption (5-13) implies that 

SR=S1R•~FR •¾{(x, y)•¸VR; P,(x, y) •c Pr(x, y)=0}. Since Ffi*(x, y)=0 

for any (x, y)•¸S1R•~FR, Ff* vanishes in SR.

(ii) We omit the similar proof to that of (i).

Put bF(s)=bxF*(s) and bF*(s)=b*XF(s). We call bF(s) (resp. bF*(s)) the 

partial b -function of (G, ƒÏ, V) (resp. (G, ƒÏ*, V*)) with respect to the 

Q-regular subspace F (resp. F*).

THEOREM 2. (i) The Dirichlet series e1(L; s), •c,ƒÌƒË(L; s) (resp. 

ƒÌ*1, (L*; s), •c,ƒÌ*ƒË (L*; s)) have analytic continuations to meromorphic func-

tions of s in D (resp. D*).
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(ii) The functions bF(s-ƒÂ)ƒÌ1(L; s), •c, bF(s-ƒÂ)ƒÌv(L; s) (resp. 

bF*(s-ƒÂ)ƒÌ1*(L*; s), •c, bF*(s-ƒÂ*)ƒÌ*ƒË(L*; s)) are holomorphic in D (resp. 

D*).

(iii) Put

ƒÌ (L; s)=t(1(L; s), •c, ƒÌƒË(L; s)) 

and 

ƒÌ *(L*; s)=t(ƒÌ*1(L*
; s), •c, ƒÌ*ƒË (L*; s)). 

Then the following functional equation holds for s in D: 

(6-8) v(N*)ƒÌ*(L*; (s-ƒÉ)) U)

=c(ƒÂ-s)(-2ƒÎ•ã-1)d*(s-ƒÂ)ƒË(s-ƒÂ)tA(s-ƒÂ) ƒÌ(L; s). 

PROOF. Let fi* and f* be as in Lemma 6.2 (i). By (6-3), (6-4) and 

Lemma 6.1, we have

(6-9) ƒÌ*i(L*; (s-ƒÉ)U)ƒ³*i(f*; (s-ƒÉ) U-ƒÂ*)

=v(N*)-1ƒËƒ°j=1ƒÌj(L, s)ƒ³j(Ff*; s-ƒÂ)

where both sides of the equality are holomorphic functions of s in D. 

We are able to take an fi* such that the support of fi* is contained in 

a connected component of Vi* and ƒ³*i (f*i; (s-ƒÉ) U-ƒÂ*+ƒÂ*(XF))•‚0. 

Then the sign of any relative invariant does not change in the support 

of f*i. Lemma 5.3 (ii) implies that 

ƒ³*i(f*;(s-ƒÉ) U-ƒÂ*) 

=(-1)d(XF)ƒÃ*i*(XF)bF*((s-ƒÉ)U-ƒÂ*)ƒ³*i(f*i; (s-ƒÉ) U-ƒÂ*+ƒÂ*(XF)). 

Hence the function bF*((s-ƒÉ) U-ƒÂ*)ƒÌ*i (L*; (s-ƒÉ) U) is holomorphic in 

D. Since (D-ƒÉ) U=D*, this proves the assertions (i) and (ii) for ƒÌ*i. 

The similar argument applied to fi and f* given in Lemma 6.2 (ii) shows 

that ƒÌ1, •c, ƒÌƒË have the analytic properties asserted in (i) and (ii). Since 

 (ƒÂ-2ƒÉ) U=ƒÂ*, the functional equation (6-8) is an immediate consequence 

of (6-9) and Theorem 1.

COROLLARY 1. Let (G, ƒÏ, V) is a p.v, with a reductive algebraic 

group G satisfying the conditions (5-1), (6-1) and (6-2) for E={0}, F=V 

and K=Q. Then the zeta functions ƒÌ1(L; s), •c, ƒÌƒË(L; s) have analytic 

continuations to meromorphic functions of s in Cn. Moreover the func-

tions bv(s-ƒÂ)ƒÌ1(L; s), •c, bv(s-ƒÂ)ƒÌƒË(L; s) are entire functions of s. 

PROOF. When G is reductive, the condition (5-2) is derived from 

the condition (5-1) for E={0} and F=V (see [13, •˜ 4, Remark 26]). 

Hence we are able to apply Theorem 2 to (G, ƒÏ, V) and our task is only
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to show that the convex hull D of (B* U-1+ƒÉ)•¾B coincides with Cn. 

By [13, •˜4, Proposition 24], we may assume that U=-En. This implies 

that D=Cn.

Corollary 1 is generalized as follows: 

COROLLARY 2. Let (G, ƒÏ, V) be a regular p.v. defined over Q with 

a reductive algebraic group G. Assume that (G, ƒÏ, V) is decomposed into 

a direct sum (G, ƒÏ1(+) ƒÏ2, W1(+)W2) over Q. Further assume that the con-

ditions (5-1), (6-1) and (6-2) hold for E=W1, F=W2, K=Q and for 

E=W2, F=W1, K=Q. Then if L is decomposed into a direct sum 

of a ƒÏ1(ƒ¡)-invariant lattice Ll in W1Q and a ƒÏ2(ƒ¡)-invariant lattice L2 

in W2Q, the zeta functions ƒÌ1(L; s), •c, ƒÌƒË(L; s) multiplied by bw1(s-ƒÂ)•~

bw2(s-ƒÂ) are entire functions of s.

+ PROOF. Since (G, ƒÏ, V) is regular and G is reductive, the condition 

(5-2) is automatically satisfied. The matrix U and the vector ƒÉ are defined 

for each of two Q-regular subspaces W1 and W2. We denote them by 

U1, U2, ƒÉ(1)and ƒÉ(2). For sufficiently large positive numbers a1,•c, an, put

B={s•¸Cn; Re s1>a1, •c, Re sn>an}.

Let Di (i=1, 2) be the convex hull of (BUi-1+ƒÉ(i))•¾B. Then, by 

Theorem 2 (ii), the functions bWi(s-ƒÂ)ƒÌj(L; s) (i=1, 2, 1•…j•…ƒË) are 

holomorphic in Di. Hence bw1(s-ƒÂ)bW2(s-ƒÂ)ƒÌj(L; s) (1•…j•…v) are holo-

morphic functions of s in the convex hull of

B•¾{BU-11+ƒÉ(1)}•¾{BU-12+ƒÉ(2)}.

Since G is reductive and ƒÏ*1 (+) ƒÏ2 is the contragredient representation of 

ƒÏ1(+)ƒÏ* 2, by [13, •˜4, Proposition 24], we may assume that U1=-U2. 

Therefore the convex hull of the set above is equal to Cn.

REMARK 1. When G is not reductive, the author does not know 

whether the zeta functions have analytic continuations to meromorphic 

functions of s in Cn.

REMARK 2. If (G, ƒÏ, V) does not satisfy the condition (6-1), namely, 

V'Q is a proper subset of VQ-SQ, the study of zeta functions becomes 

extremely difficult. An example of zeta functions of this kind is the 

Siegel zeta function of a ternary zero form (cf. [17], [18] and [25]).

REMARK 3. Theorem 2 was previously proved for some special cases.

If G is reductive and S is an absolutely irreducible hypersurf ace, 

Theorem 2 was already established by Sato and Shintani in [14].

The Eisenstein series of the group SL(n) can be viewed as an example
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of zeta functions associated with p.v.'s. Arithmetic approaches to the 

Eisenstein series given in Langlands [8], Maass [9], Selberg [15] and 

Terras [21] are well-understood from our point of view (cf. [24]).

In [20], Suzuki showed Theorem 2 for certain zeta functions in two 

variables related to quadratic forms (cf. 7 Remark 2 to Example B).

In [17, Chapter 1], Shintani studied certain Dirichlet series in two 

variables which we shall reexamine in the next section.

7. Examples. In this section we frequently use the symbols intro-

duced in the previous sections without any special reference.

7.1. Example (A). Let G=SL(2)•~GL(1)3, V(1)=V(2)=V(3)=M(2, 1) 

and V=V(1)(+) V(2)(+)We define a representation ƒÏ of G on V by 

setting

ƒÏ(g)v=ƒÏ(h, t1, t2, t3)(x, y, z)=(hxt-11, hyt-12, hzt-13).

Put

P1(v)=P1(x, y, z)=det (y, z),

P2(v)=P2(x, y, z)=det (x, z),

P3(v)=P3(x, y, z)=det (x, y)

and

(7-1) S=3Ui=1{v•¸V;Pi(v)=0}.

It is easy to check that the triple (G, ƒÏ, V) is a p.v. with the singular 

set S. Hence the condition (5-2) is satisfied by (G, ƒÏ, V). The polynomials 

P1, P2 and P3 are irreducible relative invariants which correspond to the 

characters

(7-2)

{X1(g)=(t2t3)-1, 

X2(g)=(t1t3)-1, 
X3(g)=(t1t2)-1,

respectively. There exists a natural Q-structure on (G, ƒÏ, V): 

GQ=SL(2)Q•~Q•~QX•~Q•~, 

VQ=M(2, 1; Q)(+)M(2,1; Q)(+)M(2,1; Q), 

GZ=SL(2)Z•~{•}1}•~{•}1}•~{•}1}, 

VZ=M(2,1; Z)(+)M(2,1; Z) (+)M(2,1; Z). 

We put GR=GR=SL(2)R•~RX•~RX•~R•~. Then the set VR -SR is 

the union of two GR-orbits V+ and V_:

V+={v•¸VR; P1(v)P2(v)P3(v)>0}, V_={v•¸VR; P1(v)P2(v)P3(v)<0}
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The group ƒ¡ is given by

ƒ¡ ={(h, t1, t2, t3)•¸Gz; t1=t2-t3=•}1}.

The isotropy subgroup Gv at a generic point v•¸V-S is independent of 

the choice of v and coincides with {•}(E2,1,1,1)}. This implies the con-

dition (6-1): V'Q=VQ-SQ. For any v•¸V'Q, G+v=ƒ¡v={•}(E2, 1, 1, 1)}. 

The character det ƒÏ is in XƒÏ (G)Q and ƒÂ=ƒÂ(det ƒÏ)=(1, 1, 1). Let dv=

dxdydz be the standard Euclidean measure on VR. We can normalize a 

Haar measure dg on GR such that

F(ƒÏ(g)v0)dg=2(v)|P(v)|-ƒÂdv (v0•¸V•}, F•¸L1 ( V•}, |P(v)|-ƒÂ{-ƒÂdv)).

The normalization of dg is independent of v0. Then, for the Haar measure 

dƒÊv on G+v normalized by (4-2), we have 

d=2 and ƒÊ(v)=dƒÊ=1 (v•¸V'Q).

Let L be a ƒ¡-invariant lattice in VQ and set L•}=L•¿V•}. The zeta 

functions associated with (G, ƒÏ, V) are defined by the formula

(7-3) ƒÌ•}(L; s)=|P(v)|-s (s•¸C3). 

For the lattice L=VZ, these Dirichlet series are easily calculated 

and we get

(7-4) ƒÌ•}(s)=ƒÌ•}(VZ; s)=ƒÌ(s1)ƒÄ(s2)ƒÄ(s3)ƒÄ(s1+s2+s3-1).

This implies that the series ƒÌ•}(L; s) are absolutely convergent for 

Re s1, Re s2, Re s3>1. Since ƒÂ=(1, 1, 1),

B={s•¸C3; Re s1, Re s2, Re s3>1}.

The p.v. (G, ƒÏ, V) has the following seven Q-regular subspaces: 

{ V, 

V(2)(+)V(3), V(1)(+)V(3), V(1)(+)V(2), 

V(1), V(2), V(3)

Since (G, ƒÏ, V) has obvious symmetry for the permutations of the indices 

1, 2, 3, we shall calculate the explicit forms of the functional equations 

obtained by the partial Fourier transforms with respect to V, E=V(1)

and F=V(2)(+)V(3).

The notions such as ƒÏ*, U, ƒÉ are defined for each Q-regular subspace. 

In order to indicate the dependence on Q-regular subspace, we use the 

subscripts E, F and V. For example, the symbols ƒÏ*v, p*E and ƒÏ*F stand
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for the representations of G (partially) contragredient to ƒÏ with respect 

to V, E and F respectively.

Put J=(0 1-1 0) and identify the vector spaces V*, E* and F* with 

V, E and F via the non-degenerate bilinear forms

<(x, y, z), (x*, y*, z*)>=tx Jx*+tyJy*+tzJz*, <x, x*>=txJx*

and 

<(y, z), (y*, z*)>=tyJy*+tzJz*,

respectively. Then the representations ƒÏ*v, ƒÏ*E, ƒÏ*F are realized on V as 

follows:

ƒÏV (g)v=(hxt1, hyt2, hzt3), 

ƒÏ* E(g)v=(hxt1, hyt2-1, hzt3-1), 

ƒÏ* F(g)v=(hxt-11, hyt2, hzt3).

The singular sets of the p.v.'s (G, pX, V) (X=E, F, V) coincide with 

S and the polynomials P1, P2, P3 are also irreducible relative invariants 

of (G, ƒÏ*X, V). Since ƒÏ|ƒ¡=ƒÏ*E|=ƒ¡=ƒÏ*v|ƒ¡ the zeta functions associ-

ated with (G, ƒÏ*X, V) (X=E, F, V) are also given by the formula (7-3). 

Therefore the conditions (5-1) for K=Q, (5-2), (6-1) and (6-2) are satisfied 

in the present three cases.

By an easy calculation, we get

UV=

Moreover 

ƒÉV=(1,1,1), ƒÉE=(-1,1,1), ƒÉF=(2,1,1).

For an f•¸f(VR), set

ƒ³•}(f; s)=•çV•}|P(v)|sf (v)dv.

Let fVf, FEf and FF f be the (partial) Fourier transforms of f with 
respect to V, E and F respectively.

The explicit forms of the functional equations in Theorem 1 are given 
by the following lemma. 

LEMMA 7.1.

(i)
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Φ+(Fvf;s1, s2, s3)

Φ-(Fvf;s1, s2, s3)

= 2(2ƒÎ)-2(s1+s2+s3)-5ƒ¡(s1+1)ƒ¡(s2+1)ƒ¡(s3+1)ƒ¡(s1+s2+s3+2)

×
( Sin (s1+s2)ƒÎ+sin (s2+s3)ƒÎ+sin (s3+s1)ƒÎ

-sin (s1+s2+s3)ƒÎ-sin ƒÎs1-sin ƒÎs2-sin ƒÎs3

-sin (s1+s2+s3)ƒÎ-sin ƒÎs1-sin ƒÎs2-sin ƒÎs3

sin (s1+s2)ƒÎ+sin (s2+s3)ƒÎ+sin (s3+s1)ƒÎ

×
(ƒ³ +(f;-1-s1,-1-s2, -1 -s3) 

ƒ³ -(f; -1 -s1, -1 -s2, -1-s3).

(ii)
ƒ³+(FEf; s1, s2, s3)

ƒ³-(FEf; s1, s2, s3)

=2(2ƒÎ)-(s2+s3)-2ƒ¡(s2+1)ƒ¡(s3+1)

×
(-cos ((s2+s3)ƒÎ/2) cos ((s2-s3)ƒÎ/2) 

c os ((s2-s3)ƒÎ/2) -cos ((s2+s3)ƒÎ/2)

×
(ƒ³+(f; s1+s2+s3+1, -s3 -1, -s2 -1)

ƒ³_ (f; s1+s2+s3+1, -s3 -1, -s2-1)

(iii)

ƒ³+(FFf; s1, s2, s3)

ƒ³_(F Ff; s1, s2, s3)

=2(2ƒÎ)-(2s1+s2+s3)-3ƒ¡(s1+1)ƒ¡(s1+s2+s3+2)

×

( -sin ((s2+s3)ƒÎ/2) sin ((2s1+s2+s3)ƒÎ/2)

s in ((2s1+s2+ s3)ƒÎ/2)-sin ((s2+s3)ƒÎ/2)

×
ƒ³ +(f; -s1- s2 -s3 -2, s3, s2) 

ƒ³_ (f; -s1- s2 -s3 -2, s3, s2),

By Lemma 5.9, we are able to reduce the lemma to the following 
well-known formula (cf. [4, p. 360]):

•ç|ys+ e2ƒÎixydy 

•ç| y|s-e2ƒÎixydy)

=•ã-1(2ƒÎ)-s-1 ƒ¡(s+1)
eƒÎs•ã-1/2 -e-ƒÎs •ã-1/2

- e-ƒÎs•ã-1/2 eƒÎs s•ã-1/2

|x|- 1-s+|x|-1-s-

We omit further detail of the proof of Lemma 7.1.
The polynomials bv(s), bE(s) and bF(s) are easily computed by (5-8) 

and the lemma above: 

LEMMA 7.2.

by(s)=-s1s2s3(s1+s2+s3+1)(s1+s2+s3)(s1+s2+s3-1), 

bE(s)=s2s3, bF(s)=-s1(s1-1)(s1-2)(s1+s2+s3+1).
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Let L(1), L(2), L(3) be SL(2)z-invariant lattices in M(2,1; Q) and put 

L(i)*={x*•¸V(i)Q; txJx*•¸Z for all x•¸L(i)}.

We set 

L=L(1)(+)L(2)(+)L(3), L*V=L(1)*(+)L(2)*(+)L(3)*, 

L*E=L(1)*(+)L(2)(+)L(3), and L*F=L(1)(+)L(2)*(+)L(3)*

THEOREM 3. (i) The Dirichlet series ƒÌ•}(L; s), ƒÌ•}(L*V; s), ƒÌ•}(L*E; s), 

ƒÌ•} (L*F; s) have analytic continuations to meromorphic functions of s in 

C3.

(ii) These functions multiplied by (s1-1)(s2-1)(s3-1)(s1+s2+s3-2) 

are entire functions.

(iii) They satisfy the following functional equations:

v(L*v)
ξ+(L*V;1-s1, 1-s2, 1-s3)

ξ_(L*V; 1-s1, 1-s2, 1-s3)

=2(2π)-2(s1+s2+s3)+1Γ(s1)Γ(s2)Γ(s3)Γ(s1+s2+s3-1)

×
(sin(s1+s2)π+sin(s2+s3)π+sin(s3+s1)π

sin(s1+s2+s3)π+sinπs1+sinπs2+sinπs3

sin(s1+s2+s3)π+sinπs1+sinπs2+sinπS3

sin(s1+s2)π+sin(s2+s3)π+sin(s3+s1)π

×
(ξ+(L;s1, s2, s3)

ξ_(L;s1, s2, 83)

v(L(1)*) (
ξ+(L*E; s1+s2+s3-1, 1-s3, 1-s2)

ξ_(L*E; s1+s2+s3-1, 1-s3, 1-s2)

=2(2π)-s2-83Γ(s2)Γ(s3)

×(
cos((s2+s3)π/2)cos((s2-s3)π/2) ξ+(L; s1, s2, s3)

cos((s2-s3)π/2)cos((s2+83)π/2) ξ_(L; s1, s2, s3),

v(L(2)*(+)L(3)*)
 (ξ+(L*F; 2-s1-s2-s3, s3, s2)

ξ_(L*F; 2-s1-s2-s3, s3, s2))

=2(2π)-(2s1+s2+83)+1Γ(s1)Γ(s1+s2+s3-1)

×(
sin((s2+s3)π/2)sin((2s1+s2+s3)π/2) ξ+(L; s1, s2, s3)

sin((2s1+s2+s3)π/2 sin((s2+s3)π/2) ξ_(L;s1, s2, s3)).

PROOF. Since G is reductive, the first assertion is a special case of 

Corollary 1 to Theorem 2. The third assertion follows from Theorem 2 

(iii) and Lemma 7.1. By Corollary 1 and Corollary 2 to Theorem 2, the 

functions bv(s-1)ƒÌ•}(L; s) and bE(s-1)bF(s-1)ƒÌ•}(L; s) are entire func-
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tions. Here s-1=(s1-1, s2-1, s3-1). Hence Lemma 7.2 implies the 

second assertion.

REMARK. For L=Vz, the results in Theorem 3 are consistent with 

the functional equation of the Riemann zeta function.

7.2. Example (B). Let A(m, n) be the number of distinct solutions 

of the congruence x2•ßn (mod m). We define four Dirichlet series ƒÌi(s1, s2) 

and ƒÌ*i (s1, 82) (i=1, 2) by the following formulas: 

ƒÌi(s1, s2)=2-1 •‡ƒ°m,n=1A(4m, (-1)i-1n)m-s1n-s2 

ƒÌ*i (s1, s2)=•‡ƒ°m,n=1 A(m, (-1)i-1n)m-s1(4n)-S2.

These Dirichlet series were closely investigated by Shintani in [17, Chap-

ter 1]. In particular he proved that:

THEOREM 4 (Shintani). (i) The Dirichlet series ƒÌi(s1, s2) and ƒÌ*i(s1, 82) 

(i=1, 2) multiplied by

ƒ¡ ((s1+1)/2)-1s1(2s1-1)ƒÄ(2s1)(s2-1)(s1-1)2(2s1+2s2-3)

have analytic continuations to entire functions in C2.

(ii) They satisfy the following functional equations:

(ξ1(s1, 3/2-s1-s2).

ξ2(s1, 3/2-s1-s2))

=2-1π1/2(2/π)s1+2s2Γ(s2)Γ(s1+s2-1/2)

×(
sin((s1+2s2)π/2)sin(πs1/2) ξ*i(s1,s2)

cos(πs1/2) cos((s1+2s2)π/2)). ξ*2(s1,s2)

(iii) The functions

(2π)-s1(sin(πs1/2))-1Γ(s1)ζ(2s1)ξ1(s1, s2),

(2π)-s1Γ(s1)ζ(2s1)ξ2(s1, s2),

(2π)-s1(sin(πs1/2))-1Γ(s1)ζ(2s1)ξ*1(s1, s2),

(2π)-s1Γ(s1)ζ(2s1)ξ*2(s1, s2)

are all invariant under the substitution (s1, s2)•¨(1- s1, s1+s2-1/2).

We shall give a proof of the theorem above as an application of the 

results in •˜6.

Let E be the vector space of 2 by 2 symmetric matrices and set 

F=C2. In the following we consider an element y of F as a column 

vector y=t(y1, y2). Put G=GL(2)•~GL(1) and V=E(+)F. Define a
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representation ƒÏ of G on V by setting

ρ(g,t)(x,y)=(gxtg,t・tg-1y).

The triple (G, ƒÏ, V) is a p.v. with irreducible relative invariants

P1(x, y)=tyxy, P2(x, y)=P2(x)=det x

and the singular set S is given by

S={(x, y), P1(x, y)=0}•¾{(x, y); P2(x)=0}.

The characters X1 and X2 defined by

X1(g, t)=t2 and X2(g, t)=det g2

correspond to P1 and P2 respectively.

We consider the standard Q-structure on (G, ƒÏ, V):

GQ=GL(2)Q×GL(1)Q, VQ={E∩M(2;Q)}(+)Q2,

Gz=GL(2)z×{±1}, Vz={E∩M(2;Z)}(+)Z2.

Then the p.v. (G, ƒÏ, V) has the three Q-regular subspaces E, F and V. 

Identify E and F with their dual vector spaces via the bilinear forms

<x, x*>=tr(xJx* tJ) (x, x*•¸E) and <y, y*>=tyJy (y, y*•¸F) 

where J=(0 1-1 0). The representations ƒÏ*E, ƒÏ*F and ƒÏ*V (partially) con-

tragredient to ƒÏ are given by

ρ*E(g, t)(x, y)=(det g-2・gxtg,t・tg-1y), 

ρ*F(g, t)(x, y)=(gxtg,detg・t-1・tg-1y)

and

ρ*V(g, t)(x, y)=(det g-2・gxtg, detg・t-1・tg-1y),

respectively. Here the subscripts E, F and V have the same meaning 

as in Example (A). These formulas show that the triple (G, ƒÏ*E, V), 

(G, ƒÏ*F, V) and (G, ƒÏ*V, V) are p.v.'s with the same relative invariants and 

the same singular set as those of (G, ƒÏ, V).

The matrix U and the vectors ƒÉ, ƒÂ are easily calculated and we get

UE=

λE=(0, 3/2), λF=(1, -1/2), λv=(1, 1), 

δ=δ*E=δ*F=δ*V=(1, 1).

Let GR be the connected component of the identity element of GR. 

The GR-orbit decomposition of VR-SR does not depend on the represen-
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tations ƒÏ, ƒÏ*E, ƒÏ*F and ƒÏ*V, and is given by

VR-SR=V+1•¾V-1•¾V+2•¾V-2

where

V•}i+=(x, y)•¸VR;
 sgn P1(x, y)=•}1

sgn P2(x, y)=(-1)i)} (i=1, 2).

The group ƒ¡ coincides with SL(2)z•~{1}.

For any (x, y)•¸VR-SR and for any representation of ƒÏ, ƒÏ*E, ƒÏ*F, 

and ƒÏ*v, the group Gx,y=ƒ¡x ,y are trivial. Let dx=dx11dx12dx22 for x=

(xij)i,j=1,2 and dy=dy1dy2 for y=t(y1, y2). Then we can normalize a Haar 

measure dgd•~t on G+R such that

+f (x, y)|P1(x, y)|-1|P2(x)|-1dxdy 

=f (ƒÏ(g, t)(x0, y0))dgd•~t

=f (ƒÏ*x(g, t)(x0, y0))dgd•~t

(X=E, F, V, (x0, y0)•¸V•}i, f•¸L1(V•}i, |P1P2|-1dxdy)).

The normalization is independent of the choice of (x0, y0).

Notice that ƒÏ|ƒ¡=ƒÏ*E|ƒ¡=ƒÏ*F|ƒ¡=ƒÏ*V|ƒ¡. Hence, for any ƒ¡-invariant 

lattice L in VQ, the zeta functions associated with (G, ƒÏ, V), (G, ƒÏ*E, V), 

(G, ƒÏ*F, V) and (G, ƒÏ*V, V) are given by

(L, s1, s2)=x)|-s2

. Since the mapping (x, y)•¨(-x, y) induces a one to one correspondence 

between ƒ¡/L•¿V•}i and ƒ¡/L •¿V-i, we obtain

ƒÌ+i (L; s1, s2)=ƒÌ-i(L; s1, s2) (i=1, 2).

From now on, we simply write ƒÌi(L; s1, s2) for ƒÌi (L; s1, s2).

Let Ez=E•¿M(2; Z) and Fz=Z2. Then

E*z=(
x1* x*2/2

x*2/2 x*3); 
x*i•¸Z}

is the lattice dual to Ez. It is easy to check that 

(7-5) (EZ(+)Fz; s1, s2)=22s2ƒÄ(2s1)ƒÌ*i (s1, s2), 

(7-6) (E*Z(+)Fz; s1, s2)=22s2ƒÄ(2s1)ƒÌ1(s1, s2) (i=1, 2).

This shows that the Dirichlet series ƒÌi(L; s1, s2) are absolutely convergent
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for Re sl, Re s2>1. Thus we can see that the conditions (5-1) for K=Q, 

(5-2), (6-1) and (6-2) are satisfied by the Q-regular subspaces E, F and V. 

For an f•¸f (VR), put

(f; s)=P1(x, y) P2(x)s2f (x, y)dxdy (i=1, 2).

Denote by FEf, FFf, Fvf the (partial) Fourier transforms of f•¸V(VR) 

with respect to E, F and V respectively.

LEMMA 7.3. The functions (f; s) satisfy the following functional 

equations:

(7-7)
 FE f; s)

Φ2(FEf; s)

=Γ(s2+1)Γ(s1+s2+3/2)2-s1-2s2-2π-5/2-s1-2s2

×
-cos((s1+2s2)π/2) -sin(πs1/2)

cos(πs1/2) sin((s1+2s2)π/2)

×
Φ1(f; s1, -3/2-s1-s2)

Φ2(f;s1, -3/2-s1-s2)

(7-8)
Φ1(FFf; s)

0 -sin(πs1)

×(
Φ1(f; -s1-1, s1+s2+1/2)

Φ2(f; -s1-1, s1+s2+1/2)),

(7-9) 
(Φ1(Fvf; s)

Φ2(Fvf; s)

=Γ(s1+1)2Γ(s2+1)Γ(s1+s2+3/2)2-s1-2s2-2π-9/2-3s1-2s2

×(
2sin2(πs1/2)cos((s1+2s2)π/2) sin(πs1)sin(πs1/2)

sin(πs1)sin(πs1/2) -sin((s1+2s2)π/2)sin(πs1)

×
(Φ1(f; -1-s1, -1-s2)

(f;-1-s1, -1-s2).

PROOF. The functional equation (7-7) follows easily from Lemma 5.9 

and [17, Chapter 1, Lemma 1(i)]. By Lemma 5.9, the functional equation 

(7-8) is reduced to the formulas for the Fourier transforms of |x2•}y2|s 

(cf. [4, Chapter III 2.6]). Combining (7-7) with (7-8), we obtain the last 

functional equation (7-9).

The partial b-functions with respect to the regular subspaces E, F 

and V are easily computed.

LEMMA 7.4. We have, up to non-zero constant multiples,
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bE(s)=s2(s2-1)(s1+s2+1/2), bF(s)=s21, 

bv(s)=s21s2(s1+s2+1/2)(s1+s2-1/2).

Let M and N be ƒ¡-invariant lattices in EQ and FQ respectively. We 

denote by M* (resp. N*) the lattice dual to M (resp. N). Set

L=M(+)N, L*E=M*(+)N, L*F=M(+1)N*, L*V=M*(+)N*.

THEOREM 5. (i) The Dirichlet series ƒÌi(L; s), ƒÌi(L*E; s), ƒÌi(L*F; s) and 

ƒÌi (L*v; s) (i=1, 2) multipled by (s1-1)2(s2-1)(s1+s2-3/2) have analytic 

continuations to entire functions in C2.

(ii) They satisfy the following functional equations:

ξ1(L*E; s1, 3/2-s1-s2)

ξ2(L*E; s1, 3/2-s1-s2)

=v(M*)-121-s1-2s2π1/2-s1-2s2Γ(s2)Γ(s1+s2-1/2)

×
(sin((s1+2s2)π/2) sin(πs1/2) ξ1(L; s1, s2)

cos(πs1/2) cos((s1+2s2)π/2) ξ2(L; s1, s2)

ξ1(L*F; 1-s1, s1+s2-1/2)

ξ2(L*F; 1-s1, s1+s2-1/2)

=v(N*)-1π-2s1Γ(s1)2 
(2cos2(πs1/2) 0) ξ1(L; s1, s2)

0 sin (πs1) ξ2(L; s1, s2)),

(ξ1(L*V; 1-s1, 1-s2)

ξ2(L*V; 1-s1, 1-s2))

=v(L*v)-121-s1-2s2π-3s1-2s2+1/2Γ(s1)2Γ(s2)Γ(s1+s2-1/2)

×
2cos2(πs1/2)sin(π(s1+2s2)/2) sin(πs1)cos(πs1/2)

sin(πs1)cos(πs1/2) sin(πs1)cos(π(s1+2s2)/2)

×
ξ1(L; s1, s2)

ξ2(L; s1, s2)).

PROOF. As in the proof of Theorem 3, Corollaries 1, 2 to Theorem 
2 and Lemma 7.4 imply the first assertion. The functional equations are 
immediate consequences of Theorem 2 (iii) and Lemma 7.3.

Now the theorem of Shintani is easily derived from (7-5) (7-6) and 
Theorem 5. Moreover Shintani's result on singularities of ei and is 
improved in our Theorem 5 (i).

REMARK 1. Shintani's method for proving Theorem 4 (ii) is essentially 
the same as ours. For the functional equations in Theorem 4 (iii), he 
reduced them to the functional equation of the Legendre function (see
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the proof of [17, Lemma 1(ii)]). We note that the functional equation 

of the Legendre function is derived from (7-8) which is the base of the 

functional equations of ƒÌi(L; s) with respect to the Q-regular subspace F.

REMARK 2. Suzuki gave a generalization of this example to the 

vector space of n by n symmetric matrices for n•†4 in [20]. Another 

generalization will be seen in [24, •˜4]. More precise investigation of 

zeta functions associated with the p.v. treated here will be made in 

[25, •˜2].
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