ZETA FUNCTIONS OF INTEGRAL GROUP RINGS OF METACYCLIC GROUPS

By

Yumiko Hironaka

Recently, Solomon has introduced a zeta function which counts sublattices of a given lattice over an order ([5]). Let us recall the definition of this zeta function. Let Σ be a (finite dimensional) semisimple algebra over the rational field Qor over the *p*-adic field Q_p , and let Λ be an order in Σ . Λ is a *Z*-order when Σ is a *Q*-algebra, while Λ is a *Z_p*-order when Σ is a *Q_p*-algebra, where *Z_p* is the ring of *p*-adic integers. Throughout this paper, *p* stands for a rational prime and the subscript *p* indicates the *p*-adic completion.

Let V be a finitely generated left Σ -module, and let L be a full A-lattice in V. Solomon's zeta function is defined as

$$\zeta_{\Lambda}(L;s) = \sum_{N} (L:N)^{-s},$$

where the sum \sum_{N} extends over all full Λ -sublattices N in L, (L:N) denotes the index of N in L and s is a complex variable. We shall omit the subscript Λ and write $\zeta(L; s)$, unless there is danger of confusion. When Σ is a field K and L is the ring of integers in K, $\zeta_{K}(L; s)$ is the classical Dedekind zeta function, and we shall denote this by $\zeta_{L}(s)$.

We denote by C_n the cyclic group of order *n*. The explicite form of $\zeta(\mathbb{Z}G; s)$ has been given for each of the cases $G = C_p$ and C_{p^2} ([4], [5]).

Let q be a prime and let n be a square-free integer coprime to q. Let $C_n \cdot C_q$ be the semidirect product of C_n by C_q in which C_q acts faithfully on the subgroup C_p of C_n for every p|n. The aim of this paper is to give an explicit form of $\zeta(\mathbf{Z}(C_n \cdot C_q); s)$. We shall use the method introduced in [1].

§1. Let Λ be a **Z**-order in a semisimple **Q**-algebra Σ , and let \mathfrak{M} be a maximal **Z**-order containing Λ . Denote by S the set of primes p for which $\Lambda_p \neq \mathfrak{M}_p$. Since the zeta function satisfies the Euler product identity ([5]), we have

(1.1)
$$\zeta_{\mathcal{A}}(\Lambda; s) = \zeta_{\mathfrak{M}}(\mathfrak{M}; s) \times \prod_{p \in S} \frac{\zeta_{Ap}(\Lambda_{p}; s)}{\zeta_{\mathfrak{M}_{p}}(\mathfrak{M}_{p}; s)}.$$

Received April 17, 1981.

Let \mathfrak{P} be a set of representatives of the isomorphism classes of full Λ_p -lattices in Σ_p for each $p \in S$. Then

$$\zeta_{A_p}(A_p; s) = \sum_{L \in \mathfrak{P}} Z_{A_p}(A_p, L; s) \quad \text{and} \quad Z_{A_p}(A_p, L; s) = \sum_{M} (A_p; M)^{-s},$$

where the sum extends over all full Λ_p -sublattices M in Λ_p isomorphic to L.

The following notation will be often used in this paper.

For a ring R, R^* = the unit group of R.

For a \mathbb{Z}_p -order Λ in a semisimple \mathbb{Q}_p -algebra Σ , and for full lattices L, M in Σ ,

$$(L:M) = (L:L \cap M)/(M:L \cap M),$$

where the right hand side is defined by the usual index.

$$\{L: M\} = \{x \in \Sigma | Lx \subseteq M\}.$$
$$||x||_{\Sigma} = (Lx: L) \text{ for } x \in \Sigma^*,$$

this norm is independent of the choice of a full A-lattice L.

For a Q_p -algebra Σ , $d^*x =$ the Haar measure on Σ^* such that the measure $\mu(\mathfrak{M}^*) =$ 1 for a maximal \mathbb{Z}_p -order \mathfrak{M} in Σ . A Haar measure is decomposed canonically according to a decomposition of Σ as Q_p -algebras.

Then it is known that

(1.2)
$$Z_{A}(L, M; s) = \mu(\operatorname{Aut}_{A}(M))^{-1}(M; L)^{s} \int_{\{M: L\} \cap \Sigma^{*}} ||x||^{s} d^{*}x \quad ([1, (11)]).$$

§2. Let ε_d be a primitive *d*-th root of unity for every integer $d \ge 1$, and let $\varphi()$ be the Euler function. The next result has been given in [5]:

(2.1)
$$\zeta(\mathbf{Z}C_p; s) = \zeta_{\mathbf{Z}}(s)\zeta_{\mathbf{Z}[s_p]}(s)(1-p^{-s}+p^{1-2s})$$

(2.1) is also proved in [1]. Using the method there, we have immediately the following generalization.

PROPOSITION 2.2. Let G be the cyclic group of square-free order n. Then

$$\zeta(\mathbf{Z}G;s) = \prod_{m|n} \zeta_{\mathbf{Z}[\varepsilon_m]}(s) \prod_{p|n} \prod_{d|n/p} (1 - p^{-fd^s} + p^{fd^{(1-2s)}})^{g_d},$$

where for each prime p|n and d|n/p, g_d is the number of distint prime ideals over (p) in $\mathbb{Z}[\varepsilon_d]$ and $f_d = \varphi(d)/g_d$.

For each p|n, there is a decomposition as Z_p -orders

$$Z_pG = \bigoplus_{d \mid n/p} (Z_p[\varepsilon_d]C_p)^{g_d}.$$

Since $\bigoplus_{m|n} \mathbb{Z}[\varepsilon_m]$ is a maximal order of QG containing $\mathbb{Z}G$, we have, by virtue of (1.1),

$$\begin{aligned} \zeta(\mathbf{Z}G\,;\,s) &= \prod_{m\mid n} \zeta_{\mathbf{Z}[\varepsilon_m]}(s) \prod_{p\mid n} \prod_{d\mid n/p} \left(\frac{\zeta(\mathbf{Z}_p[\varepsilon_d]C_p\,;\,s)}{\zeta_{\mathbf{Z}_p[\varepsilon_d]}(s)\zeta_{\mathbf{Z}_p[\varepsilon_dp]}(s)} \right)^{q_d} \\ &= \prod_{m\mid n} \zeta_{\mathbf{Z}[\varepsilon_m]}(s) \prod_{p\mid n} \prod_{d\mid n/p} \left(\frac{\zeta(\mathbf{Z}_p[\varepsilon_d]C_p\,;\,s)}{(1-p^{-f_ds})^2} \right)^{q_d}. \end{aligned}$$

Hence (2.2) follows from the next lemma.

LEMMA 2.3. Let K be a finite unramified extension of Q_p of degree f, and let R be the ring of integers in K. Then

$$\zeta(RC_p; s) = \frac{1 - p^{-fs} + p^{f(1-2s)}}{(1 - p^{-fs})^2} \,.$$

PROOF. There are two isomorphism classes of full RC_p -lattices in KC_p , which are represented by RC_p and $R \oplus R[\varepsilon_p]$. Along the same way as in [1, § 3.4], we have

$$\begin{split} &Z(RC_p, RC_p; s) = 1 + (p^f - 1) \left(\frac{1}{p^{fs}(1 - p^{-fs})}\right)^2 \quad \text{and} \\ &Z(RC_p, R \oplus R[\varepsilon_p]; s) = p^{fs} \left(\frac{1}{p^{fs}(1 - p^{-fs})}\right)^2. \end{split}$$

Thus it follows that

$$\zeta(RC_p; s) = \frac{1 - p^{-fs} + p^{f(1-2s)}}{(1 - p^{-fs})^2} \,.$$

§3. Let q be a prime and let n be a square-free integer coprime to q. Denote by G_n the semidirect product $C_n \cdot C_q$ of C_n by C_q in which $H=C_q$ acts faithfully on the subgroup C_p of C_n for each p|n. Write

$$G_n = \langle \sigma, \tau | \sigma^n = \tau^q = 1, \tau \sigma = \sigma^r \tau \rangle,$$

where r is a primitive q-th root of unity modulo p for every p|n. Let ε_d be a primitive d-th root of unity. For each $d|n, d\neq 1$, H acts on $Q(\varepsilon_d)$ by $\tau \cdot \varepsilon_d = \varepsilon_d^r$. Denote by K_d the invariant subfield $Q(\varepsilon_d)^H$ and by R_d the ring of integers in K_d . We will calculate $\zeta(\mathbb{Z}G_n; s)$.

In this section, assume that n=p is a prime. Let us denote $G=G_p$, $K=K_p$ and $R=R_p$. Then $\mathfrak{M}=\mathbb{Z}\oplus\mathbb{Z}[\varepsilon_q]\oplus M_q(R)$ is a maximal Z-order in QG. Denote by \hat{K} (resp. \hat{R}) the *p*-adic completion of K (resp. R). To begin with, $\zeta(\mathbb{Z}G; s)$ is reduced as follows. Lemma 3.1.

$$\begin{aligned} \zeta(\mathbf{Z}G\,;\,s) &= \zeta_{\mathbf{Z}}(s)\zeta_{\mathbf{Z}[rq]}(s)\prod_{i=0}^{q-1}\zeta_{R}(qs-i)\times(1-q^{-s}+q^{1-2s})\frac{\zeta(\mathbf{Z}_{p}G\,;\,s)}{\zeta(\mathfrak{M}_{p}\,;\,s)} \quad \text{and} \\ \zeta(\mathfrak{M}_{p}\,;\,s)^{-1} &= (1-p^{-s})^{q}\prod_{i=0}^{p-1}(1-p^{i-qs})\,. \end{aligned}$$

PROOF. $\zeta(\mathfrak{M}; s) = \zeta_{\mathbf{Z}}(s)\zeta_{\mathbf{Z}[\mathfrak{c}_{q_2}]}(s)\zeta(M_q(R); s)$, and by Hey's formula [2, C.7 §8],

$$\zeta(M_q(R); s) = \prod_{i=0}^{q-1} \zeta_R(qs-i) \, .$$

Since q|p-1, we have

$$\zeta(\mathfrak{M}_{p};s) = \zeta_{\mathbb{Z}_{p}}(s)^{q} \zeta(M_{q}(\hat{R});s) = (1-p^{-s})^{-q} \prod_{i=0}^{q-1} (1-p^{i-qs})^{-1}.$$

Only primes l for which $Z_l G \neq \mathfrak{M}_l$ are p and q. Since $Z_q G$ is decomposed as $Z_q H \oplus (Z_q \bigotimes_{\sigma} Z[\varepsilon_p] \cdot H)$ and the latter is a maximal order, we have

$$\frac{\zeta(\mathbf{Z}_qG;s)}{\zeta(\mathfrak{M}_q;s)} = \frac{\zeta(\mathbf{Z}_qH;s)}{\zeta_{\mathbf{Z}_q}(s)\zeta_{\mathbf{Z}_q[s_q]}(s)} = 1 - q^{-s} + q^{1-2s}, \quad \text{by (2.1)}$$

Then the result follows from the formula (1.1).

By (3.1), it suffices to calculate $\zeta(\mathbb{Z}_pG; s)$. Hereafter we denote $A = \mathbb{Z}_pG$. Since $q \mid p-1$, there is a primitive q-th root ω of unity in \mathbb{Z}_p , and \mathbb{Z}_pH is decomposed as $\mathbb{Z}_pe_1 \bigoplus \cdots \bigoplus \mathbb{Z}_pe_q$ where e_i $(1 \leq i \leq q)$ is the idempotent for which $\tau e_i = \omega^{i-1}e_i$. Then we have

$$\begin{split} & \Lambda = \Lambda e_1 \bigoplus \cdots \bigoplus \Lambda e_q \\ & = \boldsymbol{Z}_p C_p e_1 \bigoplus \cdots \bigoplus \boldsymbol{Z}_p C_p e_q \quad \text{as } \Lambda \text{-lattices.} \end{split}$$

Let $N_0e_1 = \mathbb{Z}_pe_i \oplus \mathbb{Z}_p[\varepsilon_p]e_i$ and $N_1e_i = \mathbb{Z}_pC_pe_1$, these are Λ -lattices in a natural way.

There are 2^q isomorphism classes of full Λ -lattices in $Q_p\Lambda$, which are represented by

 $L_{(\delta_1,\dots,\delta_q)} = N_{\delta_1} e_1 \oplus \dots \oplus N_{\delta_q} e_q$, where $\delta_i = 0$ or 1.

There is a relation: $\Lambda = L_{(1,\dots,1)} \subseteq L_{(\delta_1,\dots,\delta_q)} \subseteq L_{(0,\dots,0)} = \mathfrak{H}$ (say). We have $\mathfrak{H} = \mathbb{Z}_p H \oplus \mathbb{Z}_p[\varepsilon_p] \circ H$. Since $\mathfrak{A} = \mathbb{Z}_p[\varepsilon_p] \circ H$ is a hereditary order in $M_q(\hat{K})$,

$$\mathfrak{A} = \{(x_{ij}) \in M_q(\widehat{R}) | x_{ij} \in \pi \widehat{R} \quad \text{if} \quad i < j\},\$$

where π is a prime element of \hat{R} . Further, by force of the pullback diagram

we may identify

$$\Lambda = \left\{ (x_1, \cdots, x_q; (y_{ij})) \in \mathbb{Z}_p \oplus \cdots \oplus \mathbb{Z}_p \oplus \mathfrak{A} \middle| \begin{array}{c} x_i \equiv y_{ii} \mod \pi \hat{R} \\ 1 \leq i \leq q \end{array} \right\},\,$$

under some rearrangement of e_i if necessary.

LEMMA 3.2. Let $L = L_{(\delta_1}, \dots, \delta_{q})$ and let $r = \sum_{i=0}^{q} \delta_i$. Then

- i) $(L:\Lambda)=p^{q-r}$.
- ii) $\mu(\operatorname{Aut}_{\operatorname{A}}(L))^{-1} = \prod_{i=1}^{q} \left(\frac{p^{i}-1}{p-1} \right) \times (p-1)^{r} .$

PROOF. i) $(L:\Lambda) = (\mathbf{Z}_p \bigoplus \mathbf{Z}_p[\varepsilon_p]: \mathbf{Z}_p C_p)^{q-r} = p^{q-r}$. ii) For every $i, j, 1 \leq i, j \leq q$, it is clear that

$$\operatorname{Hom}_{\Lambda}(\boldsymbol{Z}_{p}e_{i},\boldsymbol{Z}_{p}[\varepsilon_{p}]e_{j}) = \operatorname{Hom}_{\Lambda}(\boldsymbol{Z}_{p}[\varepsilon_{p}]e_{i},\boldsymbol{Z}_{p}e_{j}) = 0.$$

Let $i \neq j$. Then we have $\operatorname{Hom}_{A}(\mathbb{Z}_{p}e_{i},\mathbb{Z}_{p}e_{j})=0$. Further, for every f in $\operatorname{Hom}(\mathbb{Z}_{p}[\varepsilon_{p}]e_{i},\mathbb{Z}_{p}[\varepsilon_{p}]e_{j}]$, we see that $f(e_{i})\in(\varepsilon_{p}-1)\mathbb{Z}_{p}[\varepsilon_{p}]e_{j}$. On the other hand, $f \longmapsto f(e_{i})$ induces $\operatorname{End}_{A}(\mathbb{Z}_{p}e_{i})\cong\mathbb{Z}_{p}$, $\operatorname{End}_{A}(\mathbb{Z}_{p}[\varepsilon_{p}]e_{i})\cong(\mathbb{Z}_{p}[\varepsilon_{p}])^{H}$ and $\operatorname{End}_{A}(\mathbb{Z}_{p}C_{p}e_{i})\cong(\mathbb{Z}_{p}C_{p})^{H}$. Thus, each $f \in \operatorname{End} A(L)$ is given uniquely by

$$(a_1, \cdots, a_q; (b_{ij})) \in \mathbb{Z}_p \oplus \cdots \oplus \mathbb{Z}_p \oplus M_q(\mathbb{Z}_p[\varepsilon_p]),$$

where $b_{ii} \in \hat{R}$, $b_{ij} \in (\varepsilon_p - 1) \mathbb{Z}_p[\varepsilon_p]$ if $i \neq j$, and $a_i \equiv b_{ii} \mod \pi \hat{R}$ if $\delta_i = 1$. It can be shown that $f \in \operatorname{Aut}_A(L)$ if and only if $a_i \in \mathbb{Z}_p^*$ and $b_{ii} \in \hat{R}^*$ for every $i, 1 \leq i \leq q$. Therefore we see that

$$(\operatorname{Aut}_{\Lambda}(\mathfrak{H}):\operatorname{Aut}_{\Lambda}(L))=(p-1)^{r},$$

and so we have

$$\mu(\operatorname{Aut}_{A}(L)) = \mu(\operatorname{Aut}_{A}(\mathfrak{H})) \times (p-1)^{-r}.$$

By the way

$$\mu(\operatorname{Aut}_{A}(\mathfrak{H})) = \mu(\mathfrak{H}^{*}) = \mu(\mathfrak{A}^{*}) = (GL_{q}(\widehat{R}) : \mathfrak{A}^{*})^{-1} = \prod_{i=1}^{q} \left(\frac{p-1}{p^{i}-1} \right).$$

Thus we have

$$\mu(\operatorname{Aut}_{A}(L))^{-1} = \prod_{i=1}^{q} \left(\frac{p^{i}-1}{p-1} \right) \times (p-1)^{r}.$$

Let $F = \mathbb{Z}_p | p\mathbb{Z}_p \cong R | \pi R$. For $a_i \in F$, $1 \le i \le q$, let us denote

Yumiko HIRONAKA

$$\tilde{\mathcal{A}}(a_1, \cdots, a_q) = \left\{ (x_1, \cdots, x_q; (y_{ij})) \in \mathcal{A} \middle| \begin{array}{c} x_i \mod p \mathbb{Z}_p = y_{ii} \mod \pi \hat{R} = a_i \\ 1 \leq i \leq q \end{array} \right\}$$

and

$$\Delta(a_1, \cdots, a_q) = \{(y_{ij}) \in \mathfrak{A} | y_{ii} \mod \pi \hat{R} = a_i, \quad 1 \leq i \leq q\}$$

LEMMA 3.3. i) Let $L = L_{(\delta_1, \dots, \delta_q)}$ and let $r = \sum_{i=1}^q \delta_i$. Then $\{L : \Lambda\} = \bigcup_{\substack{a_i \in P \ o_i \neq 0 \ o_i \neq 0 \ i \neq \delta_i = 0 \\ 1 \le i \le q}} \widetilde{\Delta}(a_1, \dots, a_q) \quad (disjoint \ union).$

Let $a_i \in F$, $1 \leq i \leq q$, and let k be the number of i such that $a_i \neq 0$. Then

$$\begin{array}{ll} \text{ii)} & \int_{J(a_1,\cdots,a_q)\cap GL_q(\widehat{K})} ||x||_{M_q(\widehat{K})}^s d^*x = \int_{J(\underbrace{1,\cdots,1,0,\cdots,0})\cap GL_q(\widehat{K})} ||x||_{M_p(\widehat{K})}^s d^*x \\ \text{iii)} & \int_{\widetilde{J}(a_1,\cdots,a_q)\cap Q_q!^*} ||x||_{Q_p,l}^s d^*x = \frac{1}{(p^s-1)^{q-k}(p-1)^k} \int_{J(\underbrace{1,\cdots,1,0,\cdots,0})\cap GL_q(\widehat{K})} ||x||_{M_q(\widehat{K})}^s d^*x \ . \end{array}$$

PROOF. i)
$$\{L:A\} = \{x \in A | Lx \subseteq A\}$$
, since $1 \in L$,

$$= \left\{ x \in A \mid e_i x \in A \text{ for every } i, \quad \frac{\Phi_p(\sigma)}{p} e_j x \in A \text{ if } \delta_j = 0 \right\}$$

$$= \left\{ x \in A \mid x \frac{\Phi_p(\sigma)}{p} e_j \in p \mathbb{Z}_p e_j, \quad x \left(1 - \frac{\Phi_p(\sigma)}{p} \right) e_j \in (1 - \varepsilon_p) \mathbb{Z}_p[\varepsilon_p] e_j \text{ if } \delta_i = 0 \right\}$$

$$= \bigcup_{\substack{a_i \in F \text{ if } \delta_i = 1 \\ a_i = 0 \text{ for } i \neq \delta_i = 1 \\ 1 \leq i \leq q}} \tilde{A}(a_1, \dots, a_q),$$

where $\Phi_p(\sigma)$ is the *p*-th cyclotomic polynomial.

ii) Since there exist $A, B \in GL_q(\hat{R})$ such that

$$A \Delta(a_1, \cdots, a_q) B = \Delta(1, \cdots, 1, 0, \cdots, 0),$$

the integral over $\Delta(a_1, \dots, a_q)$ is equal to that over $\Delta(1, \dots, 1, 0, \dots, 0)$.

iii) Let $Z(a_i) = \{z \in \mathbb{Z}_p | z \mod p \mathbb{Z}_p = a_i\}, 1 \leq i \leq q$. Then

$$\widetilde{\mathcal{A}}(a_1,\cdots,a_q) = \bigoplus_{i=1}^q Z(a_i) \bigoplus \mathcal{A}(a_1,\cdots,a_q) ,$$

and we see that

Zeta functions of integral group rings of metacyclic groups

$$\int_{Z(a_i)\cup \mathbf{Q}_{p^*}} ||x||_{\mathbf{Q}_p}^s d^*x = \begin{cases} \frac{1}{p-1} & \text{if } a_i \neq 0\\ \\ \frac{1}{p^s-1} & \text{if } a_i = 0 \end{cases}.$$

Thus we have, by force of ii),

$$\int_{\widetilde{\mathcal{I}}(a_1,\cdots,a_q)\cap \mathcal{Q}_{q^{A^*}}} ||x||_{\mathcal{Q}_{q^A}}^s d^*x = \frac{\int_{\mathcal{I}(1,\cdots,1,0,\cdots,0)\cap GLq(\widehat{K})} ||x||_{Mq(\widehat{K})}^s d^*x}{(p^{s}-1)^{q-k}(p-1)^k}.$$

We shall use the following notation: for an integer $n \ge 1$,

$$\begin{split} \Sigma_n &= M_n(\hat{K}); \\ \Gamma_n &= \{ (x_{ij}) \in M_n(\hat{R}) | x_{ij} \in \pi \hat{R} \quad \text{for } 1 \leq i < j \leq n \}; \\ E_n &= \Gamma_n^* = \{ (x_{ij}) \in \Gamma_n | x_{ii} \in \hat{R}^* \quad \text{for } 1 \leq i \leq n \}; \\ d_n &= \mu(E_n) = \prod_{i=1}^n \left(\frac{p-1}{p^i - 1} \right); \end{split}$$

and for an integer k, $0 \leq k \leq n$,

$$\mathcal{A}_n(k) = \left\{ (x_{ij}) \in \Gamma_n \middle| \begin{array}{ll} x_{ii} \in \hat{R}^* & \text{for } 1 \leq i \leq k \\ x_{ii} \in \pi \hat{R} & \text{for } k+1 \leq i \leq n \end{array} \right\}.$$

We shall omit the subscript n, unless there is danger of confusion.

 E_n acts on $\Gamma_n \cap \Sigma_n^*$ by left multiplication. As a full set of representatives of $E_n \setminus \Gamma_n \cap \Sigma_n^*$, we can take the set $T_n = \bigcup_{\sigma \in S_n} T_{n,\sigma}$, where S_n is the symmetric group on n symbols, and each $T_{n,\sigma}$ is the set of matrices $(x_{ij}) \in \Sigma_n^*$ such that

- i) for $1 \leq j \leq n$, $x_{\sigma(j),j} = \pi^{m_j}$, where $m_j \geq 0$ if $\sigma(j) \geq j$ and $m_j \geq 1$ if $\sigma(j) < j$,
- ii) for $j+1 \leq i \leq n$, $x_{\sigma(i),j}=0$
- iii) for $1 \le i \le j-1$, $x_{\sigma(i),j}$ ranges over all representatives of

$$\begin{cases} \pi \hat{R} / \pi^{m_j + 1} \hat{R} & \text{if } \sigma(i) < j \text{ and } \sigma(i) < \sigma(j) \\ \hat{R} / \pi^{m_j + 1} \hat{R} & \text{if } j \leq \sigma(i) < \sigma(j) \\ \pi \hat{R} / \pi^{m_j} \hat{R} & \text{if } \sigma(j) < \sigma(i) < j \\ \hat{R} / \pi^{m_j} \hat{R} & \text{if } \sigma(i) \geq j \text{ and } \sigma(i) > \sigma(j) \,, \end{cases}$$

where m_j , $1 \leq j \leq n$, are as in i).

We note here that, for the matrix (x_{ij}) as above, $det(x_{ij}) = \pm p^{\sum_{i=1}^{n} m_i}$.

LEMMA 3.4. Let $n \ge 1$ be an integer. Then

i) There exists a polynomial $G_n(x)$ over Z with $p^{n(n-1)/2}X^n$ as the highest term and X as the lowest term such that

$$\int_{d_n(0)\cap \Sigma_n^*} ||x||_{\Sigma_n}^s d^*x = \frac{d_n G_n(p^{-1/3})}{\prod_{i=0}^{n-1} (1-p^{i-n_i})}$$

ii) For every integer k, $0 \leq k \leq n$,

$$\int_{A_{n}(k)\cap S_{n}^{*}} ||x||_{S_{n}}^{s} d^{*}x = \frac{d_{n}G_{n-k}(p^{k-ns})}{\prod_{i=k}^{n-1}(1-p^{i-ns})}$$

PROOF. i) We see that E_n acts on $\Lambda_n(0) \cap \Sigma_n^*$, and that $T_n \cap \Lambda_n(0)$ form a full set of representatives of $E_n \setminus \Lambda_n(0) \cap \Sigma_n^*$. Thus we have

$$\int_{J_{n}(0)\cap \Sigma_{n}^{*}} ||x||_{\Sigma_{n}}^{s} d^{*}x = \mu(E_{n}) \sum_{\sigma \in S_{n}} \sum_{M \in T_{n,\sigma} \cap J_{n}(0)} ||detM||_{\widehat{K}}^{-ns}.$$

Let $\sigma \in S_n$. For each j, $1 \leq j \leq n$, let $m_j \geq 0$ if $\sigma(j) > j$ and let $m_j \geq 1$ if $\sigma(j) \leq j$. Further, let $t_j = \#\{i | 1 \leq i \leq j-1 \text{ and } j < \sigma(i) < \sigma(j)\}$ and let $v_j = \#\{i | 1 \leq i \leq j-1 \text{ and } \sigma(j) < \sigma(i) \leq j\}$. Then $0 \leq t_j$, $v_j \leq j-1$ and $t_j v_j = 0$. There are $p^{(j-1)m_j} p^{t_j - v_j}$ ways of the choice of the j-th column among $\{(x_{ij}) \in T_{n,\sigma} \cap \mathcal{A}_n(0) | x_{\sigma(j),j} = \pi^{m_j} \text{ for } 1 \leq j \leq n\}$. Thus we have

$$\begin{split} \sum_{M \in T_{n,\sigma} \cap \mathcal{A}_{n}(0)} || \det M ||_{\widehat{K}}^{-ns} &= \sum_{\substack{m_{j} \ge 0 \\ m_{j} \ge 1 \\ 1 \le j \le n}} \left(\prod_{\substack{j \le j \le n \\ \sigma(j) > j}} p^{t_{j} - v_{j}} p^{(j-1)m_{j}} p^{-nm_{j}s} \right) \\ &= \frac{1}{\prod_{\substack{i=0 \\ i \le j \le n}}} \left(\prod_{\substack{1 \le j \le n \\ \sigma(j) > j}} p^{t_{j}} \prod_{\substack{1 \le j \le n \\ \sigma(j) \le j}} (p^{j-1-v_{j}} p^{-ns}) \right) \\ &= \frac{p^{e_{\sigma}}(p^{-ns})^{e_{\sigma}}}{\prod_{\substack{i=0 \\ i=0}} (1-p^{i-ns})} \,, \end{split}$$

where $e_{\sigma} = \#\{j | 1 \le j \le n \text{ and } \sigma(j) \le j\}$ and $c_{\sigma} = \sum_{\substack{1 \le j \le n \\ \sigma(j) > j}} t_j + \sum_{\substack{1 \le j \le n \\ \sigma(j) \le j}} (j-1-v_j)$. If $\sigma = id$, then $e_{\sigma} = n$ and $t_j = v_j = 0$ for $1 \le j \le n$, and hence $c_{\sigma} = n(n-1)/2$. If $\sigma = (12\cdots n)$, then $e_{\sigma} = 1$, $t_j = 0$ for $1 \le j \le n$, $v_j = 0$ for $1 \le j \le n-1$, and $v_n = n-1$, and hence $c_{\sigma} = 0$. It is easy to see that $2 \le e_{\sigma} \le n-1$ if $\sigma \neq id$, $\sigma \neq (12\cdots n)$. Let $G_n(X) = \sum_{\sigma \in S_n} p^{e_{\sigma}} X^{e_{\sigma}}$, then the highest term $p^{n(n-1)/2} X^n$ comes from $\sigma = id$ and the lowest term X comes from $\sigma = (12\cdots n)$. Finally we have

$$\int_{\mathfrak{s}_{n}(0)\cap\Sigma_{n}^{*}} ||x||_{\Sigma_{n}}^{s} d^{*}x = \frac{d_{n}G_{n}(p^{-ns})}{\prod\limits_{i=0}^{n-1} (1-p^{i-ns})}$$

ii) We see that E_n acts on $\mathcal{A}_n(k) \cap \Sigma_n^*$, and that $T_n \cap \mathcal{A}_n(k)$ form a full set of

representatives of $E_n \setminus \mathcal{J}_n(k) \cap \mathcal{\Sigma}_n^*$. They are of the form

$$\begin{pmatrix} \overbrace{1,0}^{k} & \overbrace{B}^{n-k} \\ \hline 0 & 1 \\ \hline 0 & A \end{pmatrix}, \text{ where } A \in T_{n-k} \cap \mathcal{A}_{n-k}(0),$$

and for each A of $detA = \pm p^{m}$, there are p^{km} ways of the choice of B. Let l=n-kand let a_{m} be the cardinary of the set

$$\{A \in T_l \cap \mathcal{A}_l(0) | det A = \pm p^m \}.$$

Then we have

$$\begin{split} \int_{a_n(k)\cap\Sigma_n^*} ||x||_{\Sigma_n}^s d^*x &= d_n \left(\sum_{\substack{M \in \mathcal{T}_n \cap A_n(k) \\ m \ge n}} ||detM||_{\widehat{K}}^{-ns}\right) \\ &= d_n \sum_{\substack{m \ge n \\ m \ge n}} p^{km} a_m (p^{-ns})^m = d_n \sum_{\substack{m \ge n \\ m \ge n}} a_m (p^{k-ns})^m \end{split}$$

Since $\sum_{m \ge 0} a_m (p^{-ls})^m = \frac{G_l(p^{-ls})}{\prod\limits_{k=0}^{l-1} (1-p^{i-ls})}$, we have $\sum_{m \ge 0} a_m (p^{k-ns})^m = \frac{G_l(p^{k-ns})}{\prod\limits_{k=0}^{l-1} (1-p^{i+k-ns})}$.

Therefore we have

$$\int_{a_n(k)\cap S_n^*} ||x||_{S_n}^s d^*x = \frac{d_n G_{n-k}(p^{k-ns})}{\prod\limits_{i=k}^{n-1} (1-p^{i-ns})}.$$

EXAMPLE 3.5. If *n* is given, then $G_n(X)$ can be written explicitly. It is easy to see that $G_1(X)=X$ and $G_2(X)=pX^2+X$. For the case that n=3, we have the following table

σ	(<i>T</i>) _{3, σ}	eσ	Cσ
id	$\left\{ \begin{pmatrix} \pi^{l} & a & b \\ 0 & \pi^{m} & c \\ 0 & 0 & \pi^{n} \end{pmatrix} \middle \begin{matrix} l, m, n \ge 1 \\ a \in \pi \hat{R} / \pi^{m+1} \hat{R} , & b, c \in \pi \hat{R} / \pi^{n+1} \hat{R} \end{matrix} \right\}$	3	3
(23)	$\left\{ \begin{pmatrix} \pi^{\iota} & a & b \\ 0 & 0 & \pi^{n} \\ 0 & \pi^{m} & c \end{pmatrix} \middle \begin{array}{l} l, n \ge 1, m \ge 0 \\ a \in \pi \hat{R} / \pi^{m+1} \hat{R}, b \in \pi \hat{R} / \pi^{n+1} \hat{R}, c \in \pi \hat{R} / \pi^{n} \hat{R} \end{array} \right\}$	2	1

(12)	$\begin{cases} \begin{pmatrix} 0 & \pi^m & b \\ \pi^l & a & c \\ 0 & 0 & \pi^n \end{pmatrix} \middle l \ge 0, m, n \ge 1 \\ a \in \pi \hat{R} / \pi^m \hat{R}, b, c \in \pi \hat{R} / \pi^{n+1} \hat{R} \end{cases}$	2	2
(123)	$\begin{cases} \begin{pmatrix} 0 & 0 & \pi^n \\ \pi^l & a & b \\ 0 & \pi^m & c \end{pmatrix} \begin{vmatrix} l, m \ge 0, & n \ge 1 \\ a \epsilon \pi \hat{R} / \pi^{m+1} \hat{R}, & b, c \epsilon \pi \hat{R} / \pi^n \hat{R} \end{cases}$	1	0
(132)	$\left\{ \begin{pmatrix} 0 & \pi^m & b \\ 0 & 0 & \pi^n \\ \pi^l & a & c \end{pmatrix} \middle \begin{matrix} l \ge 0 , & m, n \ge 1 \\ a \in \hat{R} / \pi^m \hat{R} , & b \in \pi \hat{R} / \pi^{n+1} \hat{R} , & c \in \pi \hat{R} / \pi^n \hat{R} \end{matrix} \right\}$	2	2
(13)	$\left\{ \begin{pmatrix} 0 & 0 & \pi^n \\ 0 & \pi^m & b \\ \pi^l & a & c \end{pmatrix} \middle \begin{array}{l} l \ge 0 \ , m, n \ge 1 \\ a \in \widehat{R} / \pi^m \widehat{R} \ , b, c \in \pi \widehat{R} / \pi^n \widehat{R} \end{array} \right\}$	2	1

Thus we see that

$$G_3(X) = p^3 X^3 + 2(p^2 + p)X^2 + X.$$

Now we have prepared to show

PROPOSITION 3.6.

$$\zeta(\mathbf{Z}_{p}G;s) = \sum_{k=0}^{q} \frac{qC_{k}(1+(p-1)p^{-s})^{q-k}G_{q-k}(p^{k-qs})}{\prod_{i=k}^{q-1}((1-p^{-s})(1-p^{i-qs}))},$$

where ${}_{q}C_{k}$ is the binomial coefficient, and we define $G_{0}(X)=1$ and $\prod_{i=q}^{q-1}((1-p^{-s})(1-p^{i-qs}))=1$.

PROOF. Let $L = L_{(\delta_1, \dots, \delta_q)}$ and let $r = \sum_{i=1}^{q} \delta_i$. Then, by force of (1.2), (3.2) and (3.3),

$$\begin{split} Z(\Lambda,L;s) &= d_q^{-1}(p-1)^r p^{(q-r)s} \bigg[\sum_{k=0}^r (p-1)^k r C_k \int_{\widetilde{\mathcal{U}}_{1,\cdots,1,0,\cdots,0} \cap Qp_{\ell}} ||x||_{Qp_{\ell}}^s d^*x \bigg] \\ &= d_q^{-1}(p-1)^r p^{(q-r)s} \bigg[\sum_{k=0}^r \frac{r C_k}{(p^{s-1})^{q-k}} \int_{\mathcal{U}_{1,\cdots,1,0,\cdots,0} \cap \mathcal{L}^s} ||x||_{\Sigma}^s d^*x \bigg] \\ &= d_q^{-1}(p-1)^r p^{(q-r)s} \bigg[\sum_{k=0}^r \frac{r C_k}{(p-1)^k (p^s-1)^{q-k}} \int_{\mathcal{U}_{k} \cap \mathcal{L}^s} ||x||_{\Sigma}^s d^*x \bigg] \\ &= \sum_{k=0}^r \bigg[\frac{r C_k ((p-1)p^{-s})^{r-k}}{(1-p^{-s})^{q-k}} \cdot \frac{G_{q-k}(p^{k-qs})}{\prod_{i=k}^{q-1} (1-p^{i-qs})} \bigg], \quad \text{by (3.4 ii).} \end{split}$$

Thus we have

$$\begin{split} \zeta(\Lambda;s) &= \sum_{\substack{L=L(\delta_1,\cdots,\delta_q)\\ \delta_{\delta_q}=0,1}} Z(\Lambda,L;s) \\ &= \sum_{r=0}^{q} {}_{q} C_r Z(\Lambda,L_{(\underbrace{1}\cdots,0,\cdots,0)};s) \\ &= \sum_{r=0}^{q} \sum_{k=0}^{r} {}_{q} \frac{qC_{r\cdot r} C_k((p-1)p^{-s})^{r-k} G_{q-k}(p^{k-qs})}{(1-p^{-s})^{q-k} \prod_{i=k}^{q-1} (1-p^{i-qs})} \end{split}$$

Since $_{q}C_{r} \cdot _{r}C_{k} = _{q}C_{k} \cdot _{q-k}C_{r-k}$, we have

$$\begin{aligned} \zeta(\Lambda;s) &= \sum_{k=0}^{q} \sum_{r=k}^{q} \frac{{}_{q}C_{k} \cdot {}_{q-k}C_{r-k} \cdot ((\not p-1)\not p^{-s})^{r-k}G_{q-k}(\not p^{k-qs})}{(1-\not p^{-s})^{q-k}\prod_{i=k}^{q-1} (1-\not p^{i-qs})} \\ &= \sum_{k=0}^{q} \frac{{}_{q}C_{k}(1+(\not p-1)\not p^{-s})^{q-k}G_{q-k}(\not p^{k-qs})}{\prod_{i=k}^{q-1} ((1-\not p^{-s})(1-\not p^{i-qs}))} \,. \end{aligned}$$

Combining (3.1) with (3.6), we have

Theorem 3.7.

$$\begin{aligned} \zeta(\mathbf{Z}G;s) &= \zeta_{\mathbf{Z}}(s)\zeta_{\mathbf{Z}[\iota_{q}]}(s)\prod_{i=0}^{q-1}\zeta_{R}(qs-i)\times(1-q^{-s}+q^{1-2s}) \\ &\times \left[\sum_{k=0}^{q} \left\{ {}_{q}C_{k}(1+(p-1)p^{-s})^{q-k}G_{q-k}(p^{k-qs})\prod_{i=0}^{k-1}((1-p^{-s})(1-p^{i-qs})) \right\} \right]. \end{aligned}$$

EXAMPLE 3.8. We note here for the case that q=2 (dihedral group) and q=3.

$$\begin{split} \zeta(\mathbf{Z}D_p;s) = & \zeta_{\mathbf{Z}}(s)^2 \zeta_{\mathbf{R}}(2s) \zeta_{\mathbf{R}}(2s-1) \times (1-2^{-s}+2^{1-2s}) \\ & \times (1-2p^{-s}+(p+1)p^{-2s}+2p^{2-3s}-(p^2+p)p^{-4s}+p^{3-6s}), \end{split}$$

where $R = \mathbf{Z}[\varepsilon_p + \varepsilon_p^{-1}]$, and

$$\begin{split} \zeta(\pmb{Z}(C_p\cdot C_3);\,s) = & \zeta_{\pmb{Z}}(s)\zeta_{\pmb{Z}[\imath_{\$}]}(s)\zeta_{\pmb{R}}(3s)\zeta_{\pmb{R}}(3s-1)\zeta_{\pmb{R}}(3s-2) \times (1-3^{-s}+3^{1-2s}) \\ & \times \begin{pmatrix} (1-y)^4(1-y^3)(1-py^3)(1-p^2y^3) \\ +3(1-y)^2(1-y^3)(1-py^3)(1+(p-1)y)p^2y^3 \\ +3(1-y)(1-y^3)(1+(p-1)y)^2(py^3+p^3y^6) \\ +(1+(p-1)y)^8(y^8+2(p^2+p)y^6+p^3y^9) \end{pmatrix}, \end{split}$$

where $y = p^{-s}$ and R is the ring of integers in $Q(\varepsilon_p)^{C_3}$.

§4. Let G_n and H be the groups defined at the beginning of §3:

$$G_n = \langle \sigma, \tau | \sigma^n = \tau^q = 1, \tau \sigma = \sigma^r \tau \rangle$$
 and $H = \langle \tau \rangle$.

Then we have $QG_n = QH \bigoplus_{\substack{d \mid n/p \\ d \neq 1}} M_q(K_d)$ as algebras. For each $p \mid n$, there is a decomposition as Z_p -orders

$$Z_pG_n = Z_pG_p \bigoplus_{\substack{d \mid n/p \\ d \neq 1}} (Z_p[\xi_d] \circ G_p)^{g_d}.$$

Here g_d is the number of distinct prime ideals over (p) in R_d , and $\mathbb{Z}_p[\xi_d] = \mathbb{Z}_p[X]/(\Psi_d(X))$, where $\Psi_d(X)$ is the minimal monic polynomial over \mathbb{Z}_p such that $\Psi_d(\varepsilon_d^{ri}) = 0$, $0 \leq i \leq q-1$. On the other hand, there is a decomposition as \mathbb{Z}_q -orders

$$Z_q G_n = Z_q H \bigoplus (\bigoplus_{\substack{d \mid n \\ d \neq 1}} Z_q \bigotimes_Z Z[\varepsilon_d] \circ H),$$

where the latter factor is a maximal Z_q -order.

Let $\mathfrak{M} = \mathbb{Z} \oplus \mathbb{Z}[\varepsilon_q] \oplus \bigoplus_{d \mid n \\ d \neq 1} M_q(\mathbb{R}_d)$. Then \mathfrak{M} is a maximal \mathbb{Z} -order in $\mathbb{Q}G_n$. Then, by virtue of (1.1) and Hey's formula, we have

Lemma 4.1.

$$\begin{split} \zeta(\mathbf{Z}G_{n};s) &= \zeta(\mathfrak{M};s) \times (1-q^{-s}+q^{1-2s}) \prod_{p|n} \frac{\zeta(\mathbf{Z}_{p}G_{p};s) \prod_{d|n/p,d\neq 1} (\zeta(\mathbf{Z}_{p}[\xi_{d}] \circ G_{p};s))^{g_{d}}}{\zeta(\mathfrak{M}_{p};s)} ,\\ \zeta(\mathfrak{M};s) &= \zeta_{\mathbf{Z}[\iota_{q}]}(s) \prod_{\substack{d|n\\d\neq 1}} \prod_{i=0}^{q-1} \zeta_{R_{d}}(qs-i) , \text{ and for each } p|n, \\ \zeta(\mathfrak{M}_{p};s)^{-1} &= (1-p^{-s})^{q} \prod_{i=0}^{q-1} (1-p^{i-qs}) \prod_{\substack{d|n/p\\d\neq 1}} \prod_{i=0}^{q-1} (1-p_{d}^{i-qs})^{2g_{d}} , \end{split}$$

where $p_d = p^{\varphi(d)/qg_d}$.

Let $A = \mathbb{Z}_p[\xi_d] \circ G_p$, where d|n/p and $d \neq 1$, be a factor of \mathbb{Z}_pG_n as above. To determine $\zeta(\mathbb{Z}G_n; s)$, we have only to treat $\zeta(\Lambda; s)$, because $\zeta(\mathbb{Z}_pG_p; s)$ has been determined in § 3.

Denote by \hat{K}_d , \hat{K}_{dp} , \hat{R}_d and \hat{R}_{dp} the *p*-adic completion of K_d , K_{dp} , R_d and R_{dp} , respectively. As in § 3, we write $\mathbb{Z}_p[\xi_d] \circ H = \mathbb{Z}_p[\xi_d] e_1 \oplus \cdots \oplus \mathbb{Z}_p[\xi_d] e_q$ and let $N_0 e_i = \mathbb{Z}_p[\xi_d] e_i \oplus \mathbb{Z}_p[\xi_d, \varepsilon_p] e_i$ and $N_1 e_i = \mathbb{Z}_p[\xi_d] C_p e_i$, $1 \leq i \leq q$. These are Λ -lattices in a natural way. There are 2^q isomorphism classes of full Λ -lattices in $\mathbb{Q}_p\Lambda$, which are represented by

$$L_{(\delta_1, \dots, \delta_q)} = N_{\delta_1} e_1 \bigoplus \dots \bigoplus N_{\delta_1} e_q, \text{ where } \delta_i = 0 \text{ or } 1.$$

There is a relation: $\Lambda = L_{(1,\dots,1)} \subseteq L_{(\delta_1,\dots,\delta_q)} \subseteq L_{(0,\dots,0)}$. We have $L_{(0,\dots,0)} = \mathfrak{A} \oplus \mathfrak{B}$ as \mathbb{Z}_p -orders, where $\mathfrak{A} = \mathbb{Z}_p[\xi_d] \circ H$ and $\mathfrak{B} = \mathbb{Z}_p[\xi_d, \varepsilon_p] \circ H$. Since the extensions $Q(\varepsilon_d)/K_d$ and $Q(\varepsilon_{dp})/K_{dp}$ are unramified at p, \mathfrak{A} and \mathfrak{B} are maximal \mathbb{Z}_p -orders (cf. [3, §40]), and hence we may identify \mathfrak{A} with $M_q(\hat{R}_d)$ and \mathfrak{B} with $M_q(\hat{R}_{dp})$. Let π be a prime

element of \hat{R}_{dp} . Then $\hat{R}_d/p\hat{R}_d \cong \hat{R}_{dp}/\pi \hat{R}_{dp} = F$ (say), and $|F| = p_d = p^{\varphi(d)/qg_d}$. Let us denote $P = p_d$.

LEMMA 4.2. Let
$$L = L_{(\tilde{a}_1, \dots, \tilde{a}_q)}$$
 and let $r = \sum_{i=1}^q \delta_i$. Then

i) $(L:\Lambda) = P^{q(q-r)}$

ii)
$$\mu(\operatorname{Aut}_{A}(L))^{-1} = \prod_{i=0}^{r-1} \frac{(P^{q} - P^{i})^{2}}{P^{r} - P^{i}}.$$

PROOF. i)
$$(L:\Lambda) = (\mathbf{Z}_p[\xi_d] \bigoplus \mathbf{Z}_p[\xi_d, \varepsilon_p] : \mathbf{Z}_p[\xi_d]C_p)^{q-r}$$

 $= |\mathbf{Z}_p[\xi_d]/p\mathbf{Z}_p[\xi_d]|^{q-r} = P^{q(q-r)}.$

ii) Let ω be the primitive q-th root of unity in \mathbb{Z}_p for which $\tau e_i = \omega^{i-1} e_i$. Let $Y_k = \sum_{i=0}^{q-1} \omega^{-ki} \xi_d^{ri}$, where $k \in \mathbb{Z}$, then $\tau Y_k = \omega^k Y_k \tau$. Since d is square-free and coprime to p, ε_d is a generator of a normal basis for $\mathbb{F}_p(\varepsilon_d)/\mathbb{F}_p$, and so $\sum_{i=0}^{q-1} \overline{\omega}^{-ki} \varepsilon_d r^i \neq 0$ in $\mathbb{F}_p(\varepsilon_d)$. Thus we see that Y_k is a unit in $\mathbb{Z}_p[\xi_d]$. Then there is an isomorphism between

$$\left\{ ((a_{ij}), (b_{ij})) \in M_q(\hat{R}_d) \oplus M_q(\hat{R}_{dp}) \middle| \begin{array}{l} a_{ij} \equiv b_{ij} \mod \pi \hat{R}_{dp} & \text{if } \delta_j = 1 \text{, in particular,} \\ a_{ij}, b_{ij} \in \pi \hat{R}_{dp} & \text{if } \delta_i = 0 \text{ and } \delta_j = 1 \end{array} \right\}$$

and $\operatorname{End}_{A}(L)$, induced by

$$((a_{ij}),(b_{ij}))\longmapsto f:f(e_i)=\left(\sum_{j=1}^q Y_{i-j}a_{ij}e_j,\sum_{j=1}^q Y_{i-j}b_{ij}e_j\right)\in\mathfrak{A}\oplus\mathfrak{B}, \quad 1\leq j\leq q.$$

Hence we see that

$$\mu(\operatorname{Aut}_{A}(L))^{-1} = \mu(\operatorname{Aut}_{A}(\mathfrak{A} \oplus \mathfrak{B}))^{-1}(\operatorname{Aut}_{A}(\mathfrak{A} \oplus \mathfrak{B}) : \operatorname{Aut}_{A}(L))$$

$$= \frac{|GL_{q}(F)|^{2}}{|GL_{r}(F)||GL_{q-r}(F)|^{2}P^{2r(q-r)}}$$

$$= \prod_{i=0}^{r-1} \frac{(P^{q} - P^{i})^{2}}{P^{r} - P^{i}}.$$

Let $\mathfrak{X} = M_q(F)$ and, for each $X \in \mathfrak{X}$, let $\mathcal{A}(X) = \{A \in M_q(\hat{R}_d) | A \mod pM_q(\hat{R}_d) = X\}$. To simplify the notation, denote by $\int_{\mathcal{A}(X)}$ the integral $\int_{\mathcal{A}(X) \cap GL_q(\hat{R}_d)} ||x||_{\mathcal{M}_q(\hat{R}_d)}^s d^*x$. Then we have

LEMMA 4.3. Let $L = L_{(\hat{\sigma}_1, \dots, \hat{\sigma}_q)}$ and let $r = \sum_{i=1}^q \delta_i$. Then $\int_{(L:A) \cap Q_q A^*} ||x||_{Q_{pd}}^s d^*x = \sum_{X \in \tilde{X}_r} \left(\int_{A(X)} \right)^2,$

where $\mathfrak{X}_r = \{(x_{ij}) \in \mathfrak{X} | x_{ij} = 0 \text{ for } r+1 \leq i \leq q, 1 \leq j \leq q\}.$

PROOF. $\{L: \Lambda\} = \{x \in \Lambda | Lx \subseteq \Lambda\}$, since $1 \in L$,

$$= \left\{ x \in \Lambda \left| \frac{\Phi_p(\sigma)}{p} e_j x \in p \mathfrak{A} \quad \text{and} \quad \left(1 - \frac{\Phi_p(\sigma)}{p} \right) e_j x \in (1 - \varepsilon_p) \mathfrak{B} \quad \text{if} \quad \delta_j = 0 \right\} \right\}.$$

Every element of Λ can be written as

$$\sum_{\substack{1 \le i,j \le q}} e_i \xi_a^j \sigma^j z_{ij}(\sigma) , \quad z_{ij}(\sigma) \in (\mathbb{Z}_p[\xi_d] C_p)^H$$
$$= (\sum_{i,j} e_i \xi_a^j z_{ij}(1) , \quad \sum_{i,j} e_i \xi_a^j \varepsilon_p^j z_{ij}(\varepsilon_p)) \in \mathfrak{A} \oplus \mathfrak{B}$$

Hence $\{L: \Lambda\}$ may be identified with

$$\begin{cases} ((x_{ij}), (y_{ij})) \in M_q(\hat{R}_d) \oplus M_q(\hat{R}_{dp}) \\ \vdots \\ x_{kj}, y_{kj} \in \pi \hat{R}_{dp} & \text{for } 1 \leq i, j \leq q \\ x_{kj}, y_{kj} \in \pi \hat{R}_{dp} & \text{for } r+1 \leq k \leq q \end{cases}$$

where $\Delta'(X) = \{B \in M_q(\hat{R}_{dp}) | B \mod \pi M_q(\hat{R}_{dp}) = X\}$. Thus we see that

$$\begin{split} & \int_{(L:4)\cap Q_{p^{A^*}}} ||x||_{Q_{p^A}}^s d^*x \\ & = \sum_{X \in \mathfrak{X}_p} \left[\int_{\mathcal{A}(X)\cap GLq(\widehat{K}_d)} ||x||_{Mq(\widehat{K}_d)}^s d^*x \int_{\mathcal{A}'(X)\cap GLq(\widehat{K}_dp)} ||x||_{Mq(\widehat{K}_dp)}^s d^*x \right]. \end{split}$$

Since $\hat{R}_d/p\hat{R}_d \cong \hat{R}_{dp}/\pi \hat{R}_{dp}$, we have

$$\int_{\{L: A\}\cap Q_{p}A^*} ||x||_{Q_{p}A}^s d^*x = \sum_{X \in \mathfrak{X}_r} \left(\int_{A(X)} \right)^2.$$

Each $X \in \mathfrak{X}$ becomes the standard form $X_h = \begin{pmatrix} 1, & h \\ 0 & 1 \end{pmatrix}$, for some $0 \leq h \leq$

q, by elementary transformations. Therefore there exist $A, B \in GL_q(F)$ such that $AXB = X_h$. Let $\tilde{A}, \tilde{B} \in GL_q(\hat{R}_d)$ such that $\tilde{A} \mod pM_q(\hat{R}_d) = A$ and $\tilde{B} \mod pM_q(\hat{R}_d) = B$. Then we have $\tilde{A} d(X) \tilde{B} = d(X_h)$. From this it follows that $\int_{d(X)} = \int_{d(X_h)} d(X_h) d(X_$

Lemma 4.4.

$$\int_{\mathcal{A}(\mathcal{X}_{h})} = \frac{P^{-q(q-h)s}}{\prod\limits_{i=0}^{h-1} (P^{q} - P^{i}) \prod\limits_{i=h}^{q-1} (1 - P^{i-qs})}$$

PROOF. Let
$$E = \begin{pmatrix} 1+pR & & \\ pR & & \\ pR & & \\ pR & & \\ gR & & \\$$

Then E acts on $\Delta(X_h) \cap GL_q(\hat{K}_d)$ by left multiplication. As a full set of representatives of $E \setminus \Delta(X_h) \cap GL_q(\hat{K}_d)$, we can choose the set of matrices $(x_{ij}) \in GL_q(\hat{K}_d)$ such that

- i) for $1 \leq j \leq h$, $x_{jj} = 1$
- ii) for $h+1 \leq j \leq q$, $x_{jj} = p^{m_j}$, where $m_j \geq 1$
- iii) for $1 \le j \le h$ and $i \ne j$, and for $h+1 \le j \le q$ and i > j, $x_{ij}=0$

iv) for $h+1 \le j \le q$ and i < j, x_{ij} ranges over all representatives of $pR_d/p^{m_j}R_d$, where m_j , $h+1 \le j \le q$, are as in ii). If m_j , $h+1 \le j \le q$, are given, there are $\prod_{j=h+1}^{q} P^{(m_j-1)(j-1)}$ matrices of the form

among the above $\{(x_{ij})\}$. Thus we have

$$\begin{split} \int_{d(X_h)} &= \mu(E) \sum_{\substack{m_1 \geq 1 \\ h+1 \leq i \leq q}} \prod_{\substack{i=h+1 \\ l+1 \leq i \leq q}}^{q} \left[\left(\frac{P^{m_i}}{P} \right)^{i-1} P^{-qm_i s} \right] \\ &= \frac{P^{-q(q-h)s}}{\prod_{i=0}^{h-1} (P^q - P^i) \prod_{i=h}^{q-1} (1 - P^{i-qs})}. \end{split}$$

PROPOSITION 4.5.

$$\zeta(\mathbb{Z}_{p}[\xi_{d}] \circ G_{p}; s) = \sum_{r=0}^{q} \sum_{h=0}^{r} \left[{}_{q}C_{r} \prod_{i=h}^{r-1} \frac{(P^{q} - P^{i})^{2}}{P^{r} - P^{i}} \times \left(\prod_{i=0}^{h-1} \frac{P^{q} - P^{i}}{P^{h} - P^{i}} \right) \times \frac{P^{-q(q+r-2h)s}}{\prod_{i=h}^{q-1} (1 - P^{i-qs})^{2}} \right]$$

PROOF. Let $r \ge h$ be integers. Then there are $n_{r,h} = \prod_{i=0}^{h-1} \frac{P^r - P^i}{P^h - P^i}$ distinct *F*-subspaces of dimension *h* contained in an *F*-space of dimension *r*, and there are $m_h = \prod_{i=0}^{h-1} (P^q - P^i)$ ways of permutations of *q* vectors in an *F*-space *V* of dimension *h* which span *V*. Then, in \mathfrak{X}_r , there are $n_{r,h}m_h$ matrices with standard form X_h for each $0 \le h \le r$. Let $L = L_{(\delta_1, \dots, \delta_q)}$ and let $r = \sum_{i=1}^{q} \delta_i$. Then, by force of (1.2), (4.2) and (4.3), we have

$$Z(\Lambda, L; s) = \prod_{i=0}^{r-1} \frac{(P^q - P^i)^2}{P^r - P^i} P^{q(q-r)s} \left[\sum_{h=0}^r \left\{ n_{r,h} m_h \left(\int_{J(X_h)} \right)^2 \right\} \right]$$
$$= \sum_{h=0}^r \left[\prod_{i=h}^{r-1} \frac{(P^q - P^i)^2}{P^h - P^i} \times \left(\prod_{i=0}^{h-1} \frac{P^p - P^i}{P^h - P^i} \right) \times \frac{P^{-q(q+r-2h)s}}{\prod_{i=1}^{q-1} (1 - P^{i-qs})^2} \right], \quad \text{by (4.4)}.$$

Thus we have

$$\begin{aligned} \zeta(\Lambda;s) &= \sum_{r=0}^{q} {}_{q} C_{r} Z(\Lambda, L_{(\underbrace{1,\dots,1},0\dots,0)};s) \\ &= \sum_{r=0}^{q} \sum_{h=0}^{r} \left[{}_{q} C_{r} \prod_{i=h}^{r-1} \frac{(P^{q} - P^{i})^{2}}{P^{r} - P^{i}} \times \left(\prod_{i=0}^{h-1} \frac{P^{q} - P^{i}}{P^{h} - P^{i}} \right) \times \frac{P^{-q(q+r-2h)s}}{\prod_{i=h}^{q-1} (1 - P^{i-qs})^{2}} \right] \end{aligned}$$

Let us recall the polynomial $G_n(X)$ defined in (3.4). By the proof of (3.4), we may view $G_n(X) = \sum_{\sigma \in S_n} p^{e_\sigma} X^{e_\sigma}$ as a polynomial both in p and X. From this point of view, we will write $G_n(p, X)$ instead of $G_n(X)$. Put $G_0(p, X) = 1$. Then, combining (4.1), (3.7) and (4.5), we have

THEOREM 4.6. Let q be a prime and let n be a square-free integer coprime to q. Let $C_n \cdot C_q$ be the semidirect product of C_n by C_q in which C_q acts faithfully on the subgroup C_p of C_n for every p|n. Then

$$\begin{aligned} \zeta(\mathbf{Z}(C_n \cdot C_q); s) = & \zeta_{\mathbf{Z}}(s) \zeta_{\mathbf{Z}[\iota_q]}(s) \left(\prod_{\substack{d \mid n \\ d \neq 1}} \prod_{i=0}^{q-1} \zeta_{R_d}(qs-i) \right) (1-q^{-s}+q^{1-2s}) \\ & \times \prod_{p \mid n} \left(F_{p,1}(s) \prod_{\substack{d \mid n/p \\ d \neq 1}} (F_{p,d}(s))^{g_d} \right), \\ F_{p,1}(s) = \sum_{k=0}^{q} \left[{}_{q}C_{k}(1+(p-1)p^{-s})^{q-k}G_{q-k}(p,p^{k-qs}) \prod_{i=0}^{k-1} ((1-p^{-s})(1-p^{i-qs})) \right] \end{aligned}$$

,

and for $d \neq 1$,

$$F_{p,d}(s) = \sum_{r=0}^{q} \sum_{h=0}^{r} \left[{}_{q}C_{r} \prod_{i=h}^{r-1} \frac{(p_{d}^{q} - p_{d}^{i})^{2}}{p_{d}^{r} - p_{d}^{i}} \prod_{i=0}^{h-1} \left(\frac{p_{d}^{q} - p_{d}^{i}}{p_{d}^{h} - p_{d}^{i}} (1 - p_{d}^{i-qs})^{2} \right) \times p_{d}^{-q(q+r-2h)s} \right],$$

where for each p|n and $1 \neq d|n/p$, g_d is the number of distinct prime ideals over (p) in R_d and $p_d = p^{\varphi(d)/q_{g_d}}$.

References

- Bushnell, C. J. and Reiner, I., Zeta functions of arithmetic orders and Solomon's conjectures, Math. Zeit. 173 (1980), 135-161.
- [2] Deuring, M., Algebren, Springer, 1935.
- [3] Reiner, I., Maximal orders, Academic Press, 1975.
- [4] Reiner, I., Zeta functions of integral representations, Comm. algebra 8 (10) (1980), 911-925.
- [5] Solomon, L., Zeta functions and integral representation theory, Advances in Math. 26 (1977), 306-326.
- [6] Weil, A., Basic number theory, Springer, 1967.

University of Tsukuba