ZETA FUNCTIONS OF INTEGRAL GROUP RINGS OF METACYCLIC GROUPS

By

Yumiko Hironaka

Recently, Solomon has introduced a zeta function which counts sublattices of a given lattice over an order ([5]). Let us recall the definition of this zeta function. Let Σ be a (finite dimensional) semisimple algebra over the rational field \mathbf{Q} or over the p-adic field \mathbb{Q}_{p}, and let Λ be an order in $\Sigma . \Lambda$ is a \boldsymbol{Z}-order when Σ is a \boldsymbol{Q}-algebra, while Λ is a \boldsymbol{Z}_{p}-order when Σ is a \boldsymbol{Q}_{p}-algebra, where $\boldsymbol{Z}_{\boldsymbol{p}}$ is the ring of p-adic integers. Throughout this paper, p stands for a rational prime and the subscript p indicates the p-adic completion.

Let V be a finitely generated left Σ-module, and let L be a full Λ-lattice in V. Solomon's zeta function is defined as

$$
\zeta_{A}(L ; s)=\sum_{N}(L: N)^{-s}
$$

where the sum \sum_{N} extends over all full A-sublattices N in $L,(L: N)$ denotes the index of N in L and s is a complex variable. We shall omit the subscript A and write $\zeta(L ; s)$, unless there is danger of confusion. When Σ is a field K and L is the ring of integers in $K, \zeta_{K}(L ; s)$ is the classical Dedekind zeta function, and we shall denote this by $\zeta_{L}(s)$.

We denote by C_{n} the cyclic group of order n. The explicite form of $\zeta(\mathbb{Z} G ; s)$ has been given for each of the cases $G=C_{p}$ and $C_{p^{2}}$ ([4], [5]).

Let q be a prime and let n be a square-free integer coprime to q. Let $C_{n} \cdot C_{q}$ be the semidirect product of C_{n} by C_{q} in which C_{q} acts faithfully on the subgroup C_{p} of C_{n} for every $p \mid n$. The aim of this paper is to give an explicit form of $\zeta\left(\boldsymbol{Z}\left(C_{n} \cdot C_{q}\right) ; s\right)$. We shall use the method introduced in [1].
$\S 1$. Let Λ be a \mathbb{Z}-order in a semisimple \mathbb{Q}-algebra Σ, and let \mathfrak{M} be a maximal \mathbb{Z} order containing Λ. Denote by S the set of primes p for which $\Lambda_{p} \neq \mathbb{M}_{p}$. Since the zeta function satisfies the Euler product identity ([5]), we have

$$
\begin{equation*}
\zeta_{A}(\Lambda ; s)=\zeta_{\mathfrak{M}}(\mathfrak{M} ; s) \times \prod_{p \in S} \frac{\zeta_{A_{p}}\left(\Lambda_{p} ; s\right)}{\zeta_{M_{p}}\left(\mathfrak{M}_{p} ; s\right)} \tag{1.1}
\end{equation*}
$$

[^0]Let \mathfrak{B} be a set of representatives of the isomorphism classes of full Λ_{p}-lattices in Σ_{p} for each $p \in S$. Then

$$
\zeta_{A_{p}}\left(\Lambda_{p} ; s\right)=\sum_{L \in \mathcal{B}} Z_{\Lambda_{p}}\left(\Lambda_{p}, L ; s\right) \quad \text { and } \quad Z_{A_{p}}\left(\Lambda_{p}, L ; s\right)=\sum_{M}\left(\Lambda_{p}: M\right)^{-s},
$$

where the sum extends over all full Λ_{p}-sublattices M in Λ_{p} isomorphic to L.
The following notation will be often used in this paper.
For a ring $R, R^{*}=$ the unit group of R.
For a \boldsymbol{Z}_{p}-order Λ in a semisimple \boldsymbol{Q}_{p}-algebra Σ, and for full lattices L, M in Σ,

$$
(L: M)=(L: L \cap M) /(M: L \cap M),
$$

where the right hand side is defined by the usual index.

$$
\begin{aligned}
& \{L: M\}=\{x \in \Sigma \mid L x \subseteq M\} . \\
& \|x\|_{\Sigma}=(L x: L) \text { for } x \in \Sigma^{*},
\end{aligned}
$$

this norm is independent of the choice of a full Λ-lattice L.
For a \boldsymbol{Q}_{p}-algebra $\Sigma^{\prime}, d^{*} x=$ the Haar measure on Σ^{*} such that the measure $\mu\left(\mathfrak{M}^{*}\right)=$ 1 for a maximal \boldsymbol{Z}_{p}-order \mathfrak{M} in Σ. A Haar measure is decomposed canonically according to a decomposition of Σ as \boldsymbol{Q}_{p}-algebras.

Then it is known that

$$
\begin{equation*}
Z_{\Lambda}(L, M ; s)=\mu\left(\operatorname{Aut}_{A}(M)\right)^{-1}(M: L)^{s} \int_{\left(M: L \cap \cap \Sigma^{*}\right.}\|x\|^{s} d^{*} x \quad([1,(11)]) . \tag{1.2}
\end{equation*}
$$

$\S 2$. Let ε_{d} be a primitive d-th root of unity for every integer $d \geqq 1$, and let $\varphi()$ be the Euler function. The next result has been given in [5]:

$$
\begin{equation*}
\zeta\left(\boldsymbol{Z} C_{p} ; s\right)=\zeta_{\boldsymbol{Z}}(s) \zeta_{\boldsymbol{Z}[p p]}(s)\left(1-p^{-s}+p^{1-2 s}\right) . \tag{2.1}
\end{equation*}
$$

(2.1) is also proved in [1]. Using the method there, we have immediately the following generalization.

Proposition 2.2. Let G be the cyclic group of square-free order n. Then

$$
\zeta(\boldsymbol{Z} G ; s)=\prod_{m \mid n} \zeta_{\left.Z_{[f} \in \boldsymbol{m}\right]}(s) \prod_{p|n d| n / p} \prod_{p}\left(1-p^{-f_{d} s}+p^{f_{d}(1-2 s)}\right)^{g_{d}},
$$

where for each prime $p \mid n$ and $d|n| p, g_{d}$ is the number of distint prime ideals over (p) in $\boldsymbol{Z}\left[\varepsilon_{d}\right]$ and $f_{d}=\varphi(d) / g_{d}$.

For each $p \mid n$, there is a decomposition as Z_{p}-orders

$$
Z_{p} G=\underset{d \| n / \mathcal{P}}{\oplus}\left(\boldsymbol{Z}_{p[}\left[\varepsilon_{d}\right] C_{p}\right)^{\boldsymbol{\sigma}_{d}} .
$$

Since $\underset{m \mid n}{\oplus} \mathbb{Z}\left[\varepsilon_{m}\right]$ is a maximal order of $\mathbb{Q} G$ containing $Z G$, we have, by virtue of (1.1),

$$
\left.\begin{array}{rl}
\zeta(\boldsymbol{Z} G ; s) & =\prod_{m \mid n} \zeta \boldsymbol{Z}_{\left[\varepsilon_{m}\right]}(s) \prod_{p \mid n} \prod_{d \mid n / \boldsymbol{p}}\left(\frac{\zeta\left(\boldsymbol{Z}_{p}\left[\varepsilon_{d}\right] C_{p} ; s\right)}{\zeta \boldsymbol{Z}_{p}\left[\epsilon_{d}\right]} s\right) \zeta_{\boldsymbol{Z}_{p}\left[\varepsilon_{d} p\right.}(s)
\end{array}\right)^{g_{d}} .
$$

Hence (2.2) follows from the next lemma.
Lemma 2.3. Let K be a finite unramified extension of \boldsymbol{Q}_{p} of degree f, and let R be the ring of integers in K. Then

$$
\zeta\left(R C_{p} ; s\right)=\frac{1-p^{-f s}+p^{5(1-2 s)}}{\left(1-p^{-s s}\right)^{2}}
$$

Proof. There are two isomorphism classes of full $R C_{p}$-lattices in $K C_{p}$, which are represented by $R C_{p}$ and $R \oplus R\left[\varepsilon_{p}\right]$. Along the same way as in [1, §3.4], we have

$$
\begin{aligned}
& Z\left(R C_{p}, R C_{p} ; s\right)=1+\left(p^{f}-1\right)\left(\frac{1}{p^{f s}\left(1-p^{-f s}\right)}\right)^{2} \text { and } \\
& Z\left(R C_{p}, R \oplus R\left[\varepsilon_{p}\right] ; s\right)=p^{f s}\left(\frac{1}{p^{s s}\left(1-p^{-f s}\right)}\right)^{2}
\end{aligned}
$$

Thus it follows that

$$
\zeta\left(R C_{p} ; s\right)=\frac{1-p^{-f s}+p^{f(1-2 s)}}{\left(1-p^{-f s}\right)^{2}}
$$

§3. Let q be a prime and let n be a square-free integer coprime to q. Denote by G_{n} the semidirect product $C_{n} \cdot C_{q}$ of C_{n} by C_{q} in which $H=C_{q}$ acts faithfully on the subgroup C_{p} of C_{n} for each $p i n$. Write

$$
G_{n}=\left\langle\sigma, \tau \mid \sigma^{n}=\tau^{q}=1, \tau \sigma=\sigma^{r} \tau\right\rangle
$$

where r is a primitive q-th root of unity modulo p for every $p \mid n$. Let ε_{d} be a primitive d-th root of unity. For each $d \mid n, d \neq 1, H$ acts on $\mathbb{Q}\left(\varepsilon_{d}\right)$ by $\tau \cdot \varepsilon_{d}=\varepsilon_{d}{ }^{r}$. Denote by K_{d} the invariant subfield $\boldsymbol{Q}\left(\varepsilon_{d}\right)^{H}$ and by R_{d} the ring of integers in K_{d}. We will calculate $\zeta\left(\boldsymbol{Z} G_{n} ; s\right)$.

In this section, assume that $n=p$ is a prime. Let us denote $G=G_{p}, K=K_{p}$ and $R=R_{p}$. Then $\mathfrak{M}=\boldsymbol{Z} \oplus \boldsymbol{Z}\left[\varepsilon_{q}\right] \oplus M_{q}(R)$ is a maximal \boldsymbol{Z}-order in $\boldsymbol{Q} G$. Denote by \hat{K} (resp. \hat{R}) the p-adic completion of K (resp. R). To begin with, $\zeta(\boldsymbol{Z} G ; s)$ is reduced as follows.

Lemma 3.1.

$$
\begin{aligned}
& \zeta(\boldsymbol{Z} G ; s)=\zeta_{\boldsymbol{Z}}(s) \zeta_{\boldsymbol{Z}_{[q q]}}(s) \prod_{i=0}^{q-1} \zeta_{R}(q s-i) \times\left(1-q^{-s}+q^{1-2 s}\right) \frac{\zeta\left(\boldsymbol{Z}_{p} G ; s\right)}{\zeta\left(\mathfrak{M}_{p} ; s\right)} \text { and } \\
& \zeta\left(\mathfrak{M}_{p} ; s\right)^{-1}=\left(1-p^{-s}\right)^{q} \prod_{i=0}^{p-1}\left(1-p^{i-q s}\right) .
\end{aligned}
$$

Proof. $\zeta(\mathfrak{M} ; s)=\zeta_{\mathbb{Z}}(s) \zeta_{\left.Z_{[q]}\right]}(s) \zeta\left(M_{q}(R) ; s\right)$, and by Hey's formula [2, C.7 §8],

$$
\zeta\left(M_{q}(R) ; s\right)=\prod_{i=0}^{q-1} \zeta_{R}(q s-i)
$$

Since $q \mid p-1$, we have

$$
\left.\zeta\left(\mathfrak{M}_{p} ; s\right)=\zeta Z_{p}(s)^{q} \zeta\left(M_{q}(\hat{R}) ; s\right)=\left(1-p^{-s}\right)^{-q} \prod_{i=0}^{q-1} \prod^{\left(1-p^{-q} s\right.}\right)^{-1} .
$$

Only primes l for which $\boldsymbol{Z}_{l} G \neq \mathfrak{M}_{l}$ are p and q. Since $\boldsymbol{Z}_{q} G$ is decomposed as $\boldsymbol{Z}_{q} H \oplus$ $\left.\left(\boldsymbol{Z}_{q} \underset{\boldsymbol{Z}}{ } \boldsymbol{Z}_{\left[\varepsilon_{p}\right]}\right] \cdot H\right)$ and the latter is a maximal order, we have

$$
\frac{\zeta\left(Z_{q} G ; s\right)}{\zeta\left(\mathfrak{M}_{q} ; s\right)}=\frac{\zeta\left(Z_{q} H ; s\right)}{\zeta Z_{q}(s) \zeta_{Z_{q}[\varepsilon q]}(s)}=1-q^{-s}+q^{1-2 s}, \quad \text { by } \quad(2.1)
$$

Then the result follows from the formula (1.1).
By (3.1), it suffices to calculate $\zeta\left(\boldsymbol{Z}_{p} G ; s\right)$. Hereafter we denote $A=\boldsymbol{Z}_{p} G$. Since $q \mid p-1$, there is a primitive q-th root ω of unity in \boldsymbol{Z}_{p}, and $\boldsymbol{Z}_{p} H$ is decomposed as $\boldsymbol{Z}_{p} e_{1} \oplus \cdots \oplus \boldsymbol{Z}_{p} e_{q}$ where $e_{i}(1 \leqq i \leqq q)$ is the idempotent for which $\tau e_{i}=\omega^{i-1} e_{i}$. Then we have

$$
\begin{aligned}
\Lambda & =\Lambda e_{1} \oplus \cdots \oplus \Lambda e_{q} \\
& =\boldsymbol{Z}_{p} C_{p} e_{1} \oplus \cdots \oplus Z_{p} C_{p} e_{q} \quad \text { as } \Lambda \text {-lattices. }
\end{aligned}
$$

Let $N_{0} e_{1}=\boldsymbol{Z}_{p} e_{i} \oplus \boldsymbol{Z}_{p}\left[\varepsilon_{p}\right] e_{i}$ and $N_{1} e_{i}=\boldsymbol{Z}_{p} C_{p} e_{1}$, these are A-lattices in a natural way.
There are 2^{q} isomorphism classes of full Λ-lattices in $\boldsymbol{Q}_{p} \Lambda$, which are represented by

$$
L_{\left(\delta_{1}, \cdots, \delta_{q}\right)}=N_{\hat{\delta}_{1}} e_{1} \oplus \cdots \oplus N_{\hat{\sigma}_{q}} e_{q}, \quad \text { where } \delta_{i}=0 \text { or } 1 .
$$

There is a relation: $A=L_{(1, \ldots, 1)} \subseteq L_{\left(\delta_{1}, \ldots, \delta_{q}\right)} \cong L_{(0, \ldots, 0)}=\mathscr{S}_{\text {(}}$ (say). We have $\mathscr{J}=\boldsymbol{Z}_{p} H \oplus$ $\boldsymbol{Z}_{p}\left[\varepsilon_{p}\right] \circ H$. Since $\mathfrak{A}=\boldsymbol{Z}_{p}\left[\varepsilon_{p}\right] \circ H$ is a hereditary order in $M_{q}(\hat{K})$,

$$
\mathfrak{U}=\left\{\left(x_{i j}\right) \in M_{q}(\hat{R}) \mid x_{i j} \in \pi \hat{R} \quad \text { if } \quad i<j\right\},
$$

where π is a prime element of \hat{R}. Further, by force of the pullback diagram

we may identify

$$
A=\left\{\left(x_{1}, \cdots, x_{q} ;\left(y_{i j}\right)\right) \in \boldsymbol{Z}_{p} \oplus \cdots \oplus Z_{p} \oplus \mathfrak{A} \left\lvert\, \begin{array}{c}
x_{i} \equiv y_{i i} \bmod \pi \hat{R} \\
1 \leqq i \leqq q
\end{array}\right.\right\},
$$

under some rearrangement of e_{i} if necessary.
Lemma 3.2. Let $L=L_{\left(\delta_{1}, \cdots, \delta_{q}\right)}$ and let $r=\sum_{i=0}^{q} \delta_{i}$. Then
i) $(L: \Lambda)=p^{q-r}$.
ii) $\mu\left(\operatorname{Aut}_{A}(L)\right)^{-1}=\prod_{i=1}^{q}\left(\frac{p^{i}-1}{p-1}\right) \times(p-1)^{r}$.

Proof. i) $(L: \Lambda)=\left(\boldsymbol{Z}_{p} \oplus \boldsymbol{Z}_{p}\left[\varepsilon_{p}\right]: \boldsymbol{Z}_{p} C_{p}\right)^{q-r}=p^{q-r}$.
ii) For every $i, j, 1 \leqq i, j \leqq q$, it is clear that

$$
\operatorname{Hom}_{A}\left(\boldsymbol{Z}_{p} e_{i}, \boldsymbol{Z}_{p}\left[\varepsilon_{p}\right] e_{j}\right)=\operatorname{Hom}_{A}\left(\boldsymbol{Z}_{p}\left[\varepsilon_{p}\right] e_{i}, \boldsymbol{Z}_{p} e_{j}\right)=0 .
$$

Let $i \neq j$. Then we have $\operatorname{Hom}_{\Lambda}\left(\boldsymbol{Z}_{p} e_{i}, \boldsymbol{Z}_{p} e_{j}\right)=0$. Further, for every f in $\operatorname{Hom}\left(\boldsymbol{Z}_{p}\left[\varepsilon_{p}\right] e_{i}\right.$, $\left.\boldsymbol{Z}_{p}\left[\varepsilon_{p}\right] e_{j}\right)$, we see that $f\left(e_{i}\right) \in\left(\varepsilon_{p}-1\right) \boldsymbol{Z}_{p}\left[\varepsilon_{p}\right] e_{j}$. On the other hand, $f \longmapsto f\left(e_{i}\right)$ induces
$\operatorname{End}_{A}\left(\boldsymbol{Z}_{p} e_{i}\right) \cong \boldsymbol{Z}_{p}, \operatorname{End}_{A}\left(\boldsymbol{Z}_{p}\left[\varepsilon_{p}\right] e_{i}\right) \cong\left(\boldsymbol{Z}_{p}\left[\varepsilon_{p}\right]\right)^{H}$ and $\operatorname{End}_{A}\left(\boldsymbol{Z}_{p} C_{p} e_{i}\right) \cong\left(\boldsymbol{Z}_{p} C_{p}\right)^{H}$.
Thus, each $f \in \operatorname{End} \Lambda(L)$ is given uniquely by

$$
\left(a_{1}, \cdots, a_{q} ;\left(b_{i j}\right)\right) \in \boldsymbol{Z}_{p} \oplus \cdots \oplus \boldsymbol{Z}_{p} \oplus M_{q}\left(\boldsymbol{Z}_{p}\left[\varepsilon_{p}\right]\right),
$$

where $b_{i i} \in \hat{R}, b_{i j} \in\left(\varepsilon_{p}-1\right) \boldsymbol{Z}_{p}\left[\varepsilon_{p}\right]$ if $i \neq j$, and $a_{i} \equiv b_{i i} \bmod \pi \hat{R}$ if $\delta_{i}=1$. It can be shown that $f \in \operatorname{Aut}_{A}(L)$ if and only if $a_{i} \in \boldsymbol{Z}_{p}{ }^{*}$ and $b_{i i} \in \hat{R}^{*}$ for every $i, 1 \leqq i \leqq q$. Therefore we see that

$$
\left(\operatorname{Aut}_{A}(\mathfrak{g}): \operatorname{Aut}_{A}(L)\right)=(p-1)^{r},
$$

and so we have

$$
\mu\left(\operatorname{Aut}_{A}(L)\right)=\mu\left(\operatorname{Aut}_{A}(\mathfrak{j})\right) \times(p-1)^{-r} .
$$

By the way

$$
\mu\left(\operatorname{Aut}_{\Lambda}(\mathfrak{F})\right)=\mu\left(\mathfrak{F}^{*}\right)=\mu\left(\mathfrak{H}^{*}\right)=\left(G L_{q}(\hat{R}): \mathfrak{X}^{*}\right)^{-1}=\prod_{i=1}^{q}\left(\frac{p-1}{p^{i}-1}\right) .
$$

Thus we have

$$
\mu\left(\operatorname{Aut}_{A}(L)\right)^{-1}=\prod_{i=1}^{q}\left(\frac{p^{i}-1}{p-1}\right) \times(p-1)^{r} .
$$

Let $F=\boldsymbol{Z}_{p} \mid p \boldsymbol{Z}_{p} \cong R / \pi R$. For $a_{i} \in F, 1 \leqq i \leqq q$, let us denote

$$
\tilde{J}\left(a_{1}, \cdots, a_{q}\right)=\left\{\left(x_{1}, \cdots, x_{q} ;\left(y_{i j}\right)\right) \in \Lambda \left\lvert\, \begin{array}{c}
x_{i} \bmod p \boldsymbol{Z}_{p}=y_{i i} \bmod \pi \hat{R}=a_{i} \\
1 \leqq i \leqq q
\end{array}\right.\right\}
$$

and

$$
\Delta\left(a_{1}, \cdots, a_{q}\right)=\left\{\left(y_{i j}\right) \in \mathfrak{M} \mid y_{i i} \bmod \pi \hat{R}=a_{i}, \quad 1 \leqq i \leqq q\right\}
$$

Lemma 3.3. i) Let $L=L_{\left(\delta_{1}, \ldots, o_{q}\right)}$ and let $r=\sum_{i=1}^{q} \delta_{i}$. Then

Let $a_{i} \in F, 1 \leqq i \leqq q$, and let k be the number of i such that $a_{i} \neq 0$. Then

Proof. i) $\{L: A\}=\{x \in A \mid L x \subseteq A\}$. since $1 \in L$,

$$
\begin{aligned}
& =\left\{x \in \Lambda \mid e_{i} x \in \Lambda \text { for every } i, \frac{\Phi_{p}(\sigma)}{p} e_{j} x \in \Lambda \text { if } \delta_{j}=0\right\} \\
& =\left\{x \in \Lambda \left\lvert\, x \frac{\Phi_{p}(\sigma)}{p} e_{j} \in p \boldsymbol{Z}_{p} e_{j}\right., \quad x\left(1-\frac{\Phi_{p}(\sigma)}{p}\right) e_{j} \in\left(1-\varepsilon_{p}\right) Z_{p}\left[\varepsilon_{p}\right] e_{j} \text { if } \delta_{i}=0\right\} \\
& =\underset{\substack{a_{i} \in F \\
a_{i}=0, i j j_{i}=\delta_{i}=1 \\
\text { is } \\
1 \leqslant i \leq q}}{ } \dot{J}\left(a_{1}, \cdots, a_{q}\right),
\end{aligned}
$$

where $\Phi_{p}(\sigma)$ is the p-th cyclotomic polynomial.
ii) Since there exist $A, B \in G L_{q}(\hat{R})$ such that

$$
A \Delta\left(a_{1}, \cdots, a_{q}\right) B=\Delta(\underbrace{\cdots}_{k}, 1,0, \cdots, 0)
$$

the integral over $\Delta\left(a_{1}, \cdots, a_{q}\right)$ is equal to that over $\Delta(\underbrace{1, \cdots, 1,0}_{k}, \cdots, 0)$.
iii) Let $Z\left(a_{i}\right)=\left\{z \in \boldsymbol{Z}_{p} \mid z \bmod p \boldsymbol{Z}_{p}=a_{i}\right\}, 1 \leqq i \leqq q$. Then

$$
\tilde{A}\left(a_{1}, \cdots a_{q}\right)=\underset{i=1}{q} Z\left(a_{i}\right) \oplus \Delta\left(a_{1}, \cdots, a_{q}\right),
$$

and we see that

Zeta functions of integral group rings of metacyclic groups

$$
\int_{Z\left(a_{i}\right) \cup \boldsymbol{Q}_{p^{*}}}\|x\|_{\boldsymbol{Q}_{p}}^{s} d^{*} x=\left\{\begin{array}{lll}
\frac{1}{p-1} & \text { if } & a_{i} \neq 0 \\
\frac{1}{p^{s}-1} & \text { if } & a_{i}=0
\end{array}\right.
$$

Thus we have, by force of ii),

$$
\int_{\widetilde{\sim}\left(a_{1}, \cdots, a_{q}\right) \cap \boldsymbol{Q}_{q^{4}}}\|x\|_{Q_{q}{ }^{1}}^{s} d^{*} x=\frac{\int_{\Delta(1, \cdots, 1,0, \cdots, 0) \cap G L q(\widehat{K})}\|x\|_{M q(\widehat{K})}^{s} d^{*} x}{\left(p^{s-1)^{q-k}(p-1)^{k}}\right.}
$$

We shall use the following notation:
for an integer $n \geqq 1$,

$$
\begin{aligned}
& \Sigma_{n}=M_{n}(\hat{K}) \\
& \Gamma_{n}=\left\{\left(x_{i j}\right) \in M_{n}(\hat{R}) \mid x_{i j} \in \pi \hat{R} \quad \text { for } 1 \leqq i<j \leqq n\right\} \\
& E_{n}=\Gamma_{n}^{*}=\left\{\left(x_{i j}\right) \in \Gamma_{n} \mid x_{i i} \in \hat{R}^{*} \text { for } 1 \leqq i \leqq n\right\} \\
& d_{n}=\mu\left(E_{n}\right)=\prod_{i=1}^{n}\left(\frac{p-1}{p^{i}-1}\right)
\end{aligned}
$$

and for an integer $k, 0 \leqq k \leqq n$,

$$
\Delta_{n}(k)=\left\{\begin{array}{l|l}
\left(x_{i j}\right) \in \Gamma_{n} & \begin{array}{ll}
x_{i i} \in \hat{R}^{*} & \text { for } 1 \leqq i \leqq k \\
x_{i i} \in \pi \hat{R} & \text { for } k+1 \leqq i \leqq n
\end{array}
\end{array}\right\}
$$

We shall omit the subscript n, unless there is danger of confusion.
E_{n} acts on $\Gamma_{n} \cap \Sigma_{n}{ }^{*}$ by left multiplication. As a full set of representatives of $E_{n} \backslash \Gamma_{n} \cap \Sigma_{n}^{*}$, we can take the set $T_{n}=\bigcup_{c \in S_{n}}^{0} T_{n, a}$, where S_{n} is the symmetric group on n symbols, and each $T_{n, \sigma}$ is the set of matrices $\left(x_{i j}\right) \in \Sigma_{n}{ }^{*}$ such that
i) for $1 \leqq j \leqq n, x_{\sigma(j), j}=\pi^{m_{j}}$, where $m_{j} \geqq 0$ if $\sigma(j) \geqq j$ and $m_{j} \geqq 1$ if $\sigma(j)<j$,
ii) for $j+1 \leqq i \leqq n, x_{o(i), j}=0$
iii) for $1 \leqq i \leqq j-1, x_{\sigma(i), j}$ ranges over all representatives of

$$
\begin{cases}\pi \hat{R} / \pi^{m_{j+1}} \hat{R} & \text { if } \sigma(i)<j \text { and } \sigma(i)<\sigma(j) \\ \hat{R} / \pi^{m_{j}+1} \hat{R} & \text { if } j \leqq \sigma(i)<\sigma(j) \\ \pi \hat{R} / \pi^{m_{j}} \hat{R} & \text { if } \sigma(j)<\sigma(i)<j \\ \hat{R} / \pi^{m_{j}} \hat{R} & \text { if } \sigma(i) \geqq j \text { and } \sigma(i)>\sigma(j)\end{cases}
$$

where $m_{j}, 1 \leqq j \leqq n$, are as in i).
We note here that, for the matrix $\left(x_{i j}\right)$ as above, $\operatorname{det}\left(x_{i j}\right)= \pm p^{\sum_{i=1}^{n m j}}$.

Lemma 3.4. Let $n \geqq 1$ be an integer. Then
i) There exists a polinomial $G_{n}(x)$ over \mathbb{Z} with $p^{n(n-1) / 2} X^{n}$ as the highest term and X as the lowest term such that

$$
\int_{d_{n}(0) \cap \Sigma_{n}}\|x\|_{\Sigma_{n}}^{s} d^{*} x=\frac{d_{n} G_{n}\left(p^{-n s}\right)}{\prod_{i=0}^{n-1}\left(1-p^{i-n s}\right)}
$$

ii) For every integer $k, 0 \leqq k \leqq n$,

$$
\int_{d_{n}(k) \cap I_{n}^{*}}\|x\|_{\Sigma_{n}} d^{*} x=\frac{d_{n} G_{n-k}\left(p^{k-n s}\right)}{\prod_{i=k}^{n-1}\left(1-p^{i-n s}\right)} .
$$

Proof. i) We see that E_{n} acts on $A_{n}(0) \cap \Sigma_{n}{ }^{*}$, and that $T_{n} \cap A_{n}(0)$ form a full set of representatives of $E_{n} \backslash \Delta_{n}(0) \cap \Sigma_{n}{ }^{*}$. Thus we have

$$
\int_{d_{n}(0) \cap \Sigma_{n^{*}}}\|x\|_{\Sigma_{n}}^{s} d^{*} x=\mu\left(E_{n}\right) \sum_{o \in S_{n}} \sum_{M \in T_{n, \sigma} \sim \Lambda_{n}(0)}\|\operatorname{det} M\|_{\hat{K}}^{-n s} .
$$

Let $\sigma \in S_{n}$. For each $j, 1 \leqq j \leqq n$, let $m_{j} \geqq 0$ if $\sigma(j)>j$ and let $m_{j} \geqq 1$ if $\sigma(j) \leqq j$. Further, let $t_{j}=\#\{i \mid 1 \leqq i \leqq j-1$ and $j<\sigma(i)<\sigma(j)\}$ and let $v_{j}=\#\{i \mid 1 \leqq i \leqq j-1$ and $\sigma(j)<\sigma(i) \leqq j\}$. Then $0 \leqq t_{j}, v_{j} \leqq j-1$ and $t_{j} v_{j}=0$. There are $p^{(j-1) m_{j}} p^{t_{j}-v_{j}}$ ways of the choice of the j-th column among $\left\{\left(x_{i j}\right) \in T_{n, o} \cap \Delta_{n}(0) \mid x_{o(j), j}=\pi^{m_{j}}\right.$ for $\left.1 \leqq j \leqq n\right\}$. Thus we have

$$
\begin{aligned}
& =\frac{p^{\sigma_{0}}\left(p^{-n s}\right)_{e_{0}}}{\prod_{i=0}^{n-1}\left(1-p^{i-n s}\right)},
\end{aligned}
$$

where $e_{\sigma}=\#\{j \mid 1 \leqq j \leqq n$ and $\sigma(j) \leqq j\}$ and $c_{\sigma}=\sum_{\substack{1 \leq j \leq n \\ \sigma(j)>j}} t_{j}+\sum_{\substack{1 \leq j \leq n \\ \sigma(j) \leq j}}\left(j-1-v_{j}\right)$. If $\sigma=i d$, then $e_{\sigma}=n$ and $t_{j}=v_{j}=0$ for $1 \leqq j \leqq n$, and hence $c_{\sigma}=n(n-1) / 2$. If $\sigma=(12 \cdots n)$, then $e_{\sigma}=1$, $t_{j}=0$ for $1 \leqq j \leqq n, v_{j}=0$ for $1 \leqq j \leqq n-1$, and $v_{n}=n-1$, and hence $c_{o}=0$. It is easy to see that $2 \leqq e_{\sigma} \leqq n-1$ if $\sigma \neq i d, \sigma \neq(12 \cdots n)$. Let $G_{n}(X)=\sum_{\sigma \in S_{n}} p^{c_{\sigma}} X^{e_{\sigma}}$, then the highest term $p^{n(n-1) / 2} X^{n}$ comes from $\sigma=i d$ and the lowest term X comes from $\sigma=(12 \cdots n)$. Finally we have

$$
\int_{\Lambda_{n}(0) \cap \Sigma_{n}^{*}}\|x\|_{\Sigma_{n}}^{s} d^{*} x=\frac{d_{n} G_{n}\left(p^{-n s}\right)}{\prod_{i=0}^{n-1}\left(1-p^{i-n s}\right)}
$$

ii) We see that E_{n} acts on $\Delta_{n}(k) \cap \Sigma_{n}{ }^{*}$, and that $T_{n} \cap \Delta_{n}(k)$ form a full set of
representatives of $E_{n} \backslash \Delta_{n}(k) \cap \Sigma_{n}{ }^{*}$. They are of the form

and for each A of $\operatorname{det} A= \pm p^{m}$, there are $p^{k m}$ ways of the choice of B. Let $l=n-k$ and let a_{m} be the cardinary of the set

$$
\left\{A \in T_{l} \cap \Delta_{l}(0) \mid \operatorname{det} A= \pm p^{m}\right\}
$$

Then we have

$$
\begin{aligned}
\int_{\Delta_{n}(k) \cap \Sigma_{n}^{*}}\|x\| \|_{S_{n}}^{s} d^{*} x & =d_{n}\left(\sum_{M \in \sum_{n}^{n} d_{n}(k)}\|\operatorname{det} M\|_{\hat{K}}^{-n s}\right) \\
& =d_{n} \sum_{m \geq 0} p^{k m} a_{m}\left(p^{-n s}\right)^{m}=d_{n} \sum_{m \geq 0} a_{m}\left(p^{k-n s}\right)^{m}
\end{aligned}
$$

Since $\sum_{m=0} a_{m}\left(p^{-l s}\right)^{n}=\frac{G_{l}\left(p^{-l s}\right)}{\prod_{i=0}^{l-1}\left(1-p^{i-l s}\right)}$, we have

$$
\sum_{m \geq 0} a_{m}\left(p^{k-n s}\right)^{m}=\frac{G_{l}\left(p^{k-n s}\right)}{\prod_{i=0}^{l-1}\left(1-p^{i+k-n s}\right)} .
$$

Therefore we have

$$
\int_{A_{n}(k) \cap \Sigma_{n^{*}}}\|x\|_{\Sigma_{n}} d^{*} x=\frac{d_{n} G_{n-k}\left(p^{k-n s}\right)}{\prod_{i=k}^{n-1}\left(1-p^{i-n s}\right)}
$$

Example 3.5. If n is given, then $G_{n}(X)$ can be written explicitly. It is easy to see that $G_{1}(X)=X$ and $G_{2}(X)=p X^{2}+X$. For the case that $n=3$, we have the following table

σ	$(T)_{3, \sigma}$	e_{σ}	c_{σ}
$i d$	$\left\{\left(\begin{array}{ccc}\pi^{l} & a & b \\ 0 & \pi^{m} & c \\ 0 & 0 & \pi^{n}\end{array}\right) \left\lvert\, \begin{array}{l}l, m, n \geqq 1 \\ a \in \pi \hat{R} / \pi^{n+1} \hat{R}, \quad b, c \in \pi \hat{R} / \pi^{n+1} \hat{R}\end{array}\right.\right\}$	3	3
(23)	$\left\{\left(\begin{array}{ccc}\pi^{l} & a & b \\ 0 & 0 & \pi^{n} \\ 0 & \pi^{m} & c\end{array}\right) \left\lvert\, \begin{array}{l}l, n \geqq 1, \quad m \geqq 0 \\ a \in \pi \hat{R} / \pi^{m+1} \hat{R}, \quad b \in \pi \hat{R} / \pi^{n+1} \hat{R}, \quad c \in \pi \hat{R} / \pi^{n} \hat{R}\end{array}\right.\right\}$	2	1

(12)	$\left\{\left(\begin{array}{llc}0 & \pi^{m} & b \\ \pi^{l} & a & c \\ 0 & 0 & \pi^{n}\end{array}\right) \left\lvert\, \begin{array}{l}l \geqq 0, \quad m, n \geqq 1 \\ a \in \pi \hat{R} / \pi^{m} \hat{R}, \quad b, c \in \pi \hat{R} / \pi^{n+1} \hat{R}\end{array}\right.\right\}$	2	2
(123)	$\left\{\left(\begin{array}{lll}0 & 0 & \pi^{n} \\ \pi^{l} & a & b \\ 0 & \pi^{m} & c\end{array}\right) \left\lvert\, \begin{array}{l}l, m \geqq 0, \quad n \geqq 1 \\ a \in \pi \hat{R} / \pi^{m+1} \hat{R}, \quad b, c \in \pi \hat{R} / \pi^{n} \hat{R}\end{array}\right.\right\}$	1	0
(132)	$\left\{\left(\begin{array}{ccc}0 & \pi^{m} & b \\ 0 & 0 & \pi^{n} \\ \pi^{l} & a & c\end{array}\right) \left\lvert\, \begin{array}{l}l \geqq 0, \quad m, n \geqq 1 \\ a \in \hat{R} / \pi^{m} \hat{R}, \quad b \in \pi \hat{R} / \pi^{n+1} \hat{R}, \quad c \in \pi \hat{R} / \pi^{n} \hat{R}\end{array}\right.\right\}$	2	2
(13)	$\left\{\left(\begin{array}{ccc}0 & 0 & \pi^{n} \\ 0 & \pi^{m} & b \\ \pi^{l} & a & c\end{array}\right) \left\lvert\, \begin{array}{l}l \geqq 0, \quad m, n \geqq 1 \\ a \in \hat{R} / \pi^{m} \hat{R}, \quad b, c \in \pi \hat{R} / \pi^{n} \hat{R}\end{array}\right.\right\}$	2	1

Thus we see that

$$
G_{3}(X)=p^{3} X^{3}+2\left(p^{2}+p\right) X^{2}+X .
$$

Now we have prepared to show
Proposition 3.6.

$$
\zeta\left(\boldsymbol{Z}_{p} G ; s\right)=\sum_{k=0}^{q} \frac{{ }_{k} C_{k}\left(1+(p-1) p^{-s}\right)^{q-k} G_{q-k}\left(p^{k-q s}\right)}{\prod_{i=k}^{q-1}\left(\left(1-p^{-s}\right)\left(1-p^{i-q s}\right)\right)},
$$

where ${ }_{q} C_{k}$ is the binomial coefficient, and we define $G_{0}(X)=1$ and $\prod_{i=q}^{q-1}\left(\left(1-p^{-s}\right)(1-\right.$ $\left.\left.p^{i-q s}\right)\right)=1$.

Proof. Let $L=L_{\left(i_{1}, \ldots, \delta_{q}\right)}$ and let $r=\sum_{i=1}^{q} \delta_{i}$. Then, by force of (1.2), (3.2) and (3.3),

$$
\begin{aligned}
& =d_{q}^{-1}(p-1)^{r} p^{(q-r) s}\left[\sum_{k=0}^{r} \frac{C_{k}}{\left(p^{s}-1\right)^{q-k}} \int_{\Delta\left(1, \ldots, G_{k}, 0, \ldots, 0\right) \cap .}\|x\| \|_{\Sigma} d^{*} x\right] \\
& =d_{q}^{-1}(p-1)^{r} p^{(q-r) s}\left[\sum_{k=0}^{r} \frac{r C_{k}}{(p-1)^{k}\left(p^{s}-1\right)^{q-k}} \int_{\Delta(k) \cap \sum^{*}}\|x\|_{s}^{s} d^{*} x\right] \\
& =\sum_{k=0}^{r}\left[\frac{r C_{k}\left((p-1) p^{-s}\right)^{r-k}}{\left(1-p^{-s}\right)^{q-k}} \cdot \frac{G_{q-k}\left(p^{k-q s}\right)}{\prod_{i=k}^{q-1}\left(1-p^{i-q s}\right)}\right] \text {, by }(3.4 \mathrm{ii}) \text {. }
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
& \zeta(\Lambda ; s)=\sum_{\substack{L=L \\
\hat{\sigma}_{i}=0,1}} Z(\Lambda, L ; s) \\
& =\sum_{r=0}^{q}{ }_{q} C_{r} Z(\Lambda,{\underset{r}{L}(\underset{r}{1, \ldots, \ldots, 0)}} ; s) \\
& =\sum_{r=0}^{q} \sum_{k=0}^{r} \frac{{ }_{q} C_{r} \cdot{ }_{r} C_{k}\left((p-1) p^{-s} r^{r-k} G_{q-k}\left(p^{k-q s}\right)\right.}{\left(1-p^{-s}\right)^{q-k} \prod_{i=k}^{q-1}\left(1-p^{i-q s}\right)} .
\end{aligned}
$$

Since ${ }_{q} C_{r} \cdot{ }_{r} C_{k}={ }_{q} C_{k} \cdot{ }_{q-k} C_{r-k}$, we have

$$
\begin{aligned}
& \zeta(\Lambda ; s)=\sum_{k=0}^{q} \sum_{r=k}^{q} \frac{{ }_{q} C_{k} \cdot q-k}{} C_{r-k} \cdot\left((p-1) p^{-s}\right)^{r-k} G_{q-k}\left(p^{k-q s}\right) \\
&\left(1-p^{-s}\right)^{q-k} \prod_{i=k}^{q-1}\left(1-p^{i-q s}\right) \\
&=\sum_{k=0}^{q} \frac{{ }^{i} C_{k}\left(1+(p-1) p^{-s}\right)^{q-k} G_{q-k}\left(p^{k-q s}\right)}{\prod_{i=k}^{q-1}\left(\left(1-p^{-s}\right)\left(1-p^{i-q s}\right)\right)} .
\end{aligned}
$$

Combining (3.1) with (3.6), we have
Theorem 3.7.

$$
\begin{aligned}
\zeta(\boldsymbol{Z} G ; s)= & \zeta_{\boldsymbol{Z}(s)} \zeta_{\boldsymbol{Z}_{[q q]}(s)} \prod_{i=0}^{q-1} \zeta_{R}(q s-i) \times\left(1-q^{-s}+q^{1-2 s}\right) \\
& \times\left[\sum_{k=0}^{q}\left\{{ }^{q} C_{k}\left(1+(p-1) p^{-s}\right)^{q-k} G_{q-k}\left(p^{k-q s}\right) \prod_{i=0}^{k-1}\left(\left(1-p^{-s}\right)\left(1-p^{i-q s}\right)\right)\right\}\right]
\end{aligned}
$$

Example 3.8. We note here for the case that $q=2$ (dihedral group) and $q=3$.

$$
\begin{aligned}
\zeta\left(\boldsymbol{Z} D_{p} ; s\right)= & \zeta_{z}(s)^{22} \zeta_{R}(2 s) \zeta_{R}(2 s-1) \times\left(1-2^{-s}+2^{1-2 s}\right) \\
& \times\left(1-2 p^{-s}+(p+1) p^{-2 s}+2 p^{2-3 s}-\left(p^{2}+p\right) p^{-4 s}+p^{3-6 s}\right)
\end{aligned}
$$

where $R=Z\left[\varepsilon_{p}+\varepsilon_{p}{ }^{-1}\right]$, and

$$
\begin{aligned}
\zeta\left(\boldsymbol{Z}\left(C_{p} \cdot C_{3}\right) ; s\right)= & \zeta \zeta_{Z}(s) \zeta_{\left[Z_{y}\right]}(s) \zeta_{R}(3 s) \zeta_{R}(3 s-1) \zeta_{R}(3 s-2) \times\left(1-3^{-s}+3^{1-2 s}\right) \\
& \times\left(\begin{array}{l}
(1-y)^{4}\left(1-y^{3}\right)\left(1-p y^{3}\right)\left(1-p^{2} y^{3}\right) \\
+3(1-y)^{2}\left(1-y^{3}\right)\left(1-p y^{3}\right)(1+(p-1) y) p^{2} y^{3} \\
+3(1-y)\left(1-y^{3}\right)(1+(p-1) y)^{2}\left(p y^{3}+p^{3} y^{6}\right) \\
+(1+(p-1) y)^{3}\left(y^{s}+2\left(p^{2}+p\right) y^{6}+p^{3} y^{9}\right)
\end{array}\right)
\end{aligned}
$$

where $y=p^{-s}$ and R is the ring of integers in $Q\left(\varepsilon_{p}\right)^{c_{3}}$.
§4. Let G_{n} and H be the groups defined at the beginning of $\S 3$:

$$
G_{n}=\left\langle\sigma, \tau \mid \sigma^{n}=\tau^{q}=1, \tau \sigma=\sigma^{\tau} \tau\right\rangle \quad \text { and } \quad H=\langle\tau\rangle .
$$

Then we have $\boldsymbol{Q} G_{n}=\boldsymbol{Q} H \oplus \underset{\substack{d \mid \nmid / p \\ d \neq 1}}{\oplus} M_{q}\left(K_{d}\right)$ as algebras. For each $p \mid n$, there is a decom . position as \boldsymbol{Z}_{p}-orders

$$
\boldsymbol{Z}_{p} G_{n}=\boldsymbol{Z}_{p} G_{p} \oplus \oplus_{\substack{d \nmid n / p \\ d \neq 1}}^{\oplus}\left(\boldsymbol{Z}_{p}\left[\xi_{d}\right] \circ G_{p}\right)^{g_{d}}
$$

Here g_{d} is the number of distinct prime ideals over (p) in R_{d}, and $\boldsymbol{Z}_{p}\left[\xi_{d}\right]=\boldsymbol{Z}_{p}[X] /$ $\left(\Psi_{d}(X)\right.$), where $\Psi_{d}(X)$ is the minimal monic polynomial over Z_{p} such that $\Psi_{d}\left(\varepsilon_{d}{ }^{r i}\right)=$ $0,0 \leqq i \leqq q-1$. On the other hand, there is a decomposition as \boldsymbol{Z}_{q}-orders

$$
\boldsymbol{Z}_{q} G_{n}=\boldsymbol{Z}_{q} H \oplus\left(\underset{\substack{d \mid n \\ d \neq 1}}{\oplus} \boldsymbol{Z}_{q} \underset{\boldsymbol{Z}}{\bigotimes} \boldsymbol{Z}\left[\varepsilon_{d}\right] \circ H\right)
$$

where the latter factor is a maximal \boldsymbol{Z}_{q}-order.
Let $\mathfrak{M}=\boldsymbol{Z} \oplus \boldsymbol{Z}\left[\varepsilon_{q}\right] \oplus \underset{\substack{d \mid n \\ d \neq 1}}{\oplus} M_{q}\left(R_{d}\right)$. Then \mathfrak{M} is a maximal \boldsymbol{Z}-order in $\boldsymbol{Q} G_{n}$. Then, by virtue of (1.1) and Hey's formula, we have

Lemma 4.1.

$$
\begin{aligned}
& \zeta\left(\boldsymbol{Z} G_{n} ; s\right)=\zeta(\mathfrak{M} ; s) \times\left(1-q^{-s}+q^{1-2 s}\right) \prod_{p \mid n} \frac{\zeta\left(\boldsymbol{Z}_{p} G_{p} ; s\right) \prod_{d|n| p, d \neq 1}\left(\zeta\left(\boldsymbol{Z}_{p}\left[\xi_{d}\right] \circ G_{p} ; s\right)\right)^{q_{d}}}{\zeta\left(\mathfrak{M}_{p} ; s\right)}, \\
& \zeta(\mathfrak{M} ; s)=\zeta Z_{[\varepsilon q]}(s) \prod_{\substack{d \mid n \\
d \neq 1}}^{\prod_{i=0}^{q-1} \zeta_{R_{d}}(q s-i), \quad \text { and for each } p \mid n,} \\
& \zeta\left(\mathfrak{M}_{p} ; s\right)^{-1}=\left(1-p^{-s}\right)^{q} \prod_{i=0}^{q-1}\left(1-p^{i-q s}\right) \prod_{\substack{d \eta|n| \\
d \neq 1}} \prod_{i=0}^{q-1}\left(1-p_{d}^{i-q s}\right)^{2 q_{d}},
\end{aligned}
$$

where $p_{d}=p^{\varphi(d) / q g_{d}}$.
Let $\Lambda=\boldsymbol{Z}_{p}\left[\xi_{d}\right] \circ G_{p}$, where $d|n| p$ and $d \neq 1$, be a factor of $\boldsymbol{Z}_{p} G_{n}$ as above. To determine $\zeta\left(\boldsymbol{Z} G_{n} ; s\right)$, we have only to treat $\zeta(\Lambda ; s)$, because $\zeta\left(\boldsymbol{Z}_{p} G_{p} ; s\right)$ has been determined in $\S 3$.

Denote by $\hat{K}_{d}, \hat{K}_{d p}, \hat{R}_{d}$ and $\hat{R}_{d p}$ the p-adic completion of $K_{d}, K_{d p}, R_{d}$ and $R_{d p}$, respectively. As in $\S 3$, we write $\boldsymbol{Z}_{p}\left[\xi_{d}\right] \circ H=\boldsymbol{Z}_{p}\left[\xi_{d}\right] e_{1} \oplus \cdots \oplus \boldsymbol{Z}_{p}\left[\xi_{d}\right] e_{q}$ and let $N_{0} e_{i}=$ $\boldsymbol{Z}_{p}\left[\xi_{d}\right] e_{i} \oplus \boldsymbol{Z}_{p}\left[\xi_{d}, \varepsilon_{p}\right] e_{i}$ and $N_{1} e_{i}=\boldsymbol{Z}_{p}\left[\xi_{d}\right] C_{p} e_{i}, 1 \leqq i \leqq q$. These are 1 -lattices in a natural way. There are 2^{q} isomorphism classes of full Λ-lattices in $\boldsymbol{Q}_{p} \Lambda$, which are represented by

$$
L_{\left(\delta_{1}, \cdots, \delta_{q}\right)}=N_{\delta_{1}} e_{1} \oplus \cdots \oplus N_{\dot{\delta}_{1}} e_{q}, \quad \text { where } \delta_{i}=0 \text { or } 1 .
$$

There is a relation: $\Lambda=L_{(1, \ldots, 1)} \subseteq L_{\left(\delta_{1}, \ldots, q_{q}\right)} \subseteq L_{(0, \ldots, 0)}$. We have $L_{(0, \ldots, 0)}=\mathfrak{A} \oplus \mathfrak{B}$ as \boldsymbol{Z}_{p}-orders, where $\mathfrak{A}=\boldsymbol{Z}_{p}\left[\xi_{d}\right] \circ H$ and $\mathfrak{B}=\boldsymbol{Z}_{p}\left[\xi_{d}, \varepsilon_{p}\right] \circ H$. Since the extensions $\boldsymbol{Q}\left(\varepsilon_{d}\right) / K_{d}$ and $\boldsymbol{Q}\left(\varepsilon_{d p}\right) / K_{d p}$ are unramified at p, \mathfrak{H} and \mathfrak{B} are maximal \boldsymbol{Z}_{p}-orders (cf. [3, §40]), and hence we may identify \mathfrak{A} with $M_{q}\left(\hat{R}_{d}\right)$ and \mathfrak{B} with $M_{q}\left(\hat{R}_{d p}\right)$. Let π be a prime
element of $\hat{R}_{d p}$. Then $\hat{R}_{d} / p \hat{R}_{d} \cong \hat{R}_{d p} / \pi \hat{R}_{d p}=F$ (say), and $|F|=p_{d}=p^{\varphi(d) / q g_{d}}$. Let us denote $P=p_{d}$.

Lemma 4.2. Let $L=L_{\left(\hat{o}_{1} \cdots, \hat{o}_{q}\right)}$ and let $r=\sum_{i=1}^{q} \delta_{i}$. Then
i) $(L: \Lambda)=P^{q(q-r)}$
ii) $\mu\left(\operatorname{Aut}_{\Lambda}(L)\right)^{-1}=\prod_{i=0}^{r-1} \frac{\left(P^{q}-P^{i}\right)^{2}}{P^{r}-P^{i}}$.

Proof. i) $(L: \Lambda)=\left(\boldsymbol{Z}_{p}\left[\xi_{d}\right] \oplus \boldsymbol{Z}_{p}\left[\xi_{d}, \varepsilon_{p}\right]: \boldsymbol{Z}_{p}\left[\xi_{d}\right] \boldsymbol{C}_{p}\right)^{q-r}$ $=\left|\boldsymbol{Z}_{p}\left[\xi_{d}\right] / p \boldsymbol{Z}_{p}\left[\xi_{d}\right]\right|^{q-r}=P^{q(q-r)}$.
ii) Let ω be the primitive q-th root of unity in \boldsymbol{Z}_{p} for which $\tau e_{i}=\omega^{i-1} e_{i}$. Let $Y_{k}=\sum_{i=0}^{q-1} \omega^{-k i \xi_{d}^{r i}}$, where $k \in Z$, then $\tau Y_{k}=\omega^{k} Y_{k} \tau$. Since d is square-free and coprime to p, ε_{d} is a generator of a normal basis for $\boldsymbol{F}_{p}\left(\varepsilon_{d}\right) / \boldsymbol{F}_{p}$, and so $\sum_{i=0}^{q-1} \bar{\omega}^{-k i} \varepsilon_{d}{ }^{r i} \neq 0$ in $\boldsymbol{F}_{p}\left(\varepsilon_{d}\right)$. Thus we see that Y_{k} is a unit in $\boldsymbol{Z}_{p}\left[\xi_{d}\right]$. Then there is an isomorphism between

$$
\left\{\left(\left(a_{i j}\right),\left(b_{i j}\right)\right) \in M_{q}\left(\hat{R}_{d}\right) \oplus M_{q}\left(\hat{R}_{d p}\right) \left\lvert\, \begin{array}{lll}
a_{i j} \equiv b_{i j} \bmod \pi \hat{R}_{d p} & \text { if } \quad \delta_{j}=1, \quad \text { in particular, } \\
a_{i j}, b_{i j} \in \pi \hat{R}_{d p} & \text { if } \quad \delta_{i}=0 \quad \text { and } \quad \delta_{j}=1
\end{array}\right.\right\}
$$

and $\operatorname{End}_{A}(L)$, induced by

$$
\left(\left(a_{i j}\right),\left(b_{i j}\right)\right) \longmapsto f: f\left(e_{i}\right)=\left(\sum_{j=1}^{q} Y_{i-j} a_{i j} e_{j}, \sum_{j=1}^{q} Y_{i-j} b_{i j} e_{j}\right) \in \mathfrak{A} \oplus \mathfrak{B}, \quad 1 \leqq j \leqq q
$$

Hence we see that

$$
\begin{aligned}
\mu\left(\operatorname{Aut}_{A}(L)\right)^{-1} & =\mu\left(\operatorname{Aut}_{A}(\mathfrak{H} \oplus \mathfrak{B})\right)^{-1}\left(\operatorname{Aut}_{A}(\mathfrak{H} \oplus \mathfrak{B}): \operatorname{Aut}_{A}(L)\right) \\
& =\frac{\left|G L_{q}(F)\right|^{2}}{\left|G L_{r}(F)\right|\left|G L_{q-r}(F)\right|^{2} P^{2 r(q-r)}} \\
& =\prod_{i=0}^{r-1} \frac{\left(P^{q}-P^{i}\right)^{2}}{P^{r}-P^{i}}
\end{aligned}
$$

Let $\mathfrak{X}=M_{q}(F)$ and, for each $X \in \mathfrak{X}$, let $\Delta(X)=\left\{A \in M_{q}\left(\hat{R}_{d}\right) \mid A \bmod p M_{q}\left(\hat{R}_{d}\right)=X\right\}$. To simplify the notation, denote by $\int_{\Delta(X)}$ the integral $\int_{\Delta(X) \cap G L q\left(\widehat{K}_{d}\right)}\|x\|_{M_{q}\left(\widehat{K}_{d}\right)}^{s} d^{*} x$. Then we have

Lemma 4.3. Let $L=L_{\left(\hat{o}_{1}, \cdots, \hat{o}_{q)}\right.}$ and let $r=\sum_{i=1}^{q} \delta_{i}$. Then

$$
\int_{(L: A) \cap Q_{q^{A^{*}}}}\|x\|_{Q p \Delta}^{s} d^{*} x=\sum_{X \in \tilde{X}_{T}}\left(\int_{\Delta(X)}\right)^{2}
$$

where $\mathfrak{X}_{r}=\left\{\left(x_{i j}\right) \in \mathfrak{X} \mid x_{i j}=0\right.$ for $\left.r+1 \leqq i \leqq q, 1 \leqq j \leqq q\right\}$.

Proof. $\{L: \Lambda\}=\{x \in \Lambda \mid L x \subseteq \Lambda\}$, since $1 \in L$,

$$
=\left\{x \in \Lambda \left\lvert\, \frac{\Phi_{p}(\sigma)}{p} e_{j} x \in p_{\mathfrak{M}}\right. \text { and }\left(1-\frac{\Phi_{p}(\sigma)}{p}\right) e_{j} x \in\left(1-\varepsilon_{p}\right) \mathfrak{B} \quad \text { if } \quad \delta_{j}=0\right\}
$$

Every element of Λ can be written as

$$
\begin{aligned}
& \sum_{1 \leq i, j \leq q} e_{i} \xi_{d}{ }^{j} \sigma^{j} z_{i j}(\sigma), \quad z_{i j}(\sigma) \in\left(\boldsymbol{Z}_{p}\left[\xi_{d}\right] C_{p}\right)^{H} \\
& \quad=\left(\sum_{i, j} e_{i} \xi_{d}^{j} z_{i j}(1), \quad \sum_{i, j} e_{i} \xi_{d}^{j} \varepsilon_{p}^{j} z_{i j}\left(\varepsilon_{p}\right)\right) \in \mathfrak{M} \oplus \mathfrak{B}
\end{aligned}
$$

Hence $\{L: \Lambda\}$ may be identified with

$$
\begin{aligned}
& \left\{\left(\left(x_{i j}\right),\left(y_{i j}\right)\right) \in M_{q}\left(\hat{R}_{d}\right) \oplus M_{q}\left(\ddot{R}_{d p}\right) \left\lvert\, \begin{array}{l}
x_{i j} \equiv y_{i j} \bmod \pi \hat{R}_{d p} \text { for } 1 \leqq i, j \leqq q \\
x_{k j,}, y_{k j} \in \pi \hat{R}_{d p} \text { for } r+1 \leqq k \leqq q
\end{array}\right.\right\} \\
& \quad=\bigcup_{x \in x_{r}} \Delta(X) \oplus \Delta^{\prime}(X)
\end{aligned}
$$

where $\Delta^{\prime}(X)=\left\{B \in M_{q}\left(\hat{R}_{d p}\right) \mid B \bmod \pi M_{q}\left(\hat{R}_{d p}\right)=X\right\}$. Thus we see that

$$
\begin{aligned}
& \int_{\left(L: \Lambda \cap \cap \boldsymbol{Q}_{p^{*}}\right.}\|x\|_{\boldsymbol{Q}_{p^{1}}}^{s} d^{*} x \\
& \quad=\sum_{X \in \mathfrak{X}_{r}}\left[\int_{A_{(X) \cap G L q}\left(\widehat{K}_{d,}\right)}\|x\|_{M_{q}\left(\widehat{K}_{d}\right)}^{s} d^{*} x \int_{A^{\prime}(X) \cap a L q\left(\widehat{K}_{d p}\right)}\|x\|_{M_{q}\left(\widehat{K}_{d p}\right)}^{s} d^{*} x\right]
\end{aligned}
$$

Since $\hat{R}_{d} / p \hat{R}_{d} \cong \hat{R}_{d p} / \pi \hat{R}_{d p}$, we have

$$
\int_{\left(L: A \cap \cap Q_{p} A^{*}\right.}\|x\|_{Q p A}^{s} d^{*} x=\sum_{X \in \mathfrak{x}_{r}}\left(\int_{\Delta(X)}\right)^{2}
$$

Each $X \in X$ becomes the standard form $X_{h}=\left(\begin{array}{lll}1 & \ddots \\ 0 & \ddots & 0\end{array}\right)$, for some $0 \leqq h \leqq$ q, by elementary transformations. Therefore there exist $A, B \in G L_{q}(F)$ such that $A X B=X_{h}$. Let $\tilde{A}, \tilde{B} \in G L_{q}\left(\hat{R}_{d}\right)$ such that $\tilde{\Lambda} \bmod p M_{q}\left(\hat{R}_{d}\right)=A$ and $\tilde{B} \bmod p M_{q}\left(\hat{R}_{d}\right)=B$. Then we have $\tilde{A} \Delta(X) \tilde{B}=\Delta\left(X_{h}\right)$. From this it follows that $\int_{\Delta(X)}=\int_{\Delta\left(X_{h}\right)}$.

Lemma 4.4.

$$
\int_{\Delta\left(X_{h}\right)}=\frac{P^{-q(q-h) s}}{\prod_{i=0}^{h-1}\left(P^{q}-P^{i}\right) \prod_{i=h}^{q-1}\left(1-P^{i-q s}\right)}
$$

Then E acts on $\Delta\left(X_{h}\right) \cap G L_{q}\left(\hat{K}_{d}\right)$ by left multiplication. As a full set of representatives of $E \backslash \Delta\left(X_{h}\right) \cap G L_{q}\left(\hat{K}_{d}\right)$, we can choose the set of matrices $\left(x_{i j}\right) \in G L_{q}\left(\hat{K}_{d}\right)$ such that
i) for $1 \leqq j \leqq h, x_{j j}=1$
ii) for $h+1 \leqq j \leqq q, x_{j j}=p^{m_{j}}$, where $m_{j} \geqq 1$
iii) for $1 \leqq j \leqq h$ and $i \neq j$, and for $h+1 \leqq j \leqq q$ and $i>j, x_{i j}=0$
iv) for $h+1 \leqq j \leqq q$ and $i<j, x_{i j}$ ranges over all representatives of $p R_{d} / p^{m_{j}} R_{d}$, where $m_{j}, h+1 \leqq j \leqq q$, are as in ii). If $m_{j}, h+1 \leqq j \leqq q$, are given, there are $\prod_{j=h+1}^{q} P^{\left(m_{j}-1\right)(j-1)}$ matrices of the form

$$
\left(\begin{array}{ccc|ccc}
1 & \ddots & 0 & & & \\
& \ddots & & & & \\
& \ddots & & & \\
\hline 0 & & 1 & & & \\
\hline & & & p^{m^{h+1}} & & \\
& & & \ddots & \\
& & & 0 & \ddots & \\
& & & p^{m_{q}}
\end{array}\right)
$$

among the above $\left\{\left(x_{i j}\right)\right\}$. Thus we have

$$
\begin{aligned}
\int_{\Delta\left(X_{h}\right)} & =\mu(E) \sum_{\substack{m_{1} \leqslant 1 \\
h+1 \leqslant i \leqslant q}} \prod_{i=h+1}^{q}\left[\left(\frac{P^{m_{i}}}{P}\right)^{i-1} P^{-q m_{i} s}\right] \\
& =\frac{P^{q-q(q-h) s}}{\prod_{i=0}^{h-1}\left(P^{q}-P^{i}\right) \prod_{i=h}^{q-1}\left(1-P^{i-q s}\right)} .
\end{aligned}
$$

Proposition 4.5.

$$
\zeta\left(\mathscr{Z}_{p}\left[\xi_{d}\right] \circ G_{p} ; s\right)=\sum_{r=0}^{q} \sum_{h=0}^{r}\left[{ }_{Q} C_{r} \prod_{i=h}^{r-1} \frac{\left(P^{q}-P^{i}\right)^{2}}{P^{r}-P^{i}} \times\left(\prod_{i=0}^{h-1} \frac{P^{q}-P^{i}}{P^{h}-P^{i}}\right) \times \frac{P^{-q(q+r-2 h) s}}{\prod_{i=h}^{q-1}\left(1-P^{i-q s}\right)^{2}}\right]
$$

Proof. Let $r \geqq h$ be integers. Then there are $n_{r, h}=\prod_{i=0}^{h-1} \frac{P^{r}-P^{i}}{P^{h}-P^{i}}$ distinct F subspaces of dimension h contained in an F-space of dimension r, and there are $m_{h}=\prod_{i=0}^{h-1}\left(P^{q}-P^{i}\right)$ ways of permutations of q vectors in an F-space V of dimension h which span V. Then, in \mathfrak{X}_{r}, there are $n_{r, h} m_{h}$ matrices with standard form X_{h} for each $0 \leqq h \leqq r$. Let $L=L_{\left(\delta_{1}, \ldots, \delta_{q}\right)}$ and let $r=\sum_{i=1}^{q} \delta_{i}$. Then, by force of (1.2), (4.2) and (4.3), we have

$$
\begin{aligned}
Z(\Lambda, L ; s) & =\prod_{i=0}^{r-1} \frac{\left(P^{q}-P^{i}\right)^{2}}{P^{r}-P^{i}} P^{q(q-r) s}\left[\sum_{h=0}^{r}\left\{n_{r, h} m_{h}\left(\int_{\Delta\left(X_{h}\right)}\right)^{2}\right]\right] \\
& =\sum_{h=0}^{r}\left[\prod_{i=h}^{r-1} \frac{\left(P^{q}-P^{i}\right)^{2}}{P^{h}-P^{i}} \times\left(\prod_{i=0}^{h-1} \frac{P^{p}-P^{i}}{P^{h}-P^{i}}\right) \times \frac{P^{-q(q+r-2 h) s}}{\prod_{i=1}^{q-1}\left(1-P^{i-q s}\right)^{2}}\right], \quad \text { by (4.4). }
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
\zeta(A ; s) & =\sum_{r=0}^{q}{ }_{q} C_{r} Z\left(\Lambda, L_{(1, \ldots 1,0 . .0)} ; s\right) \\
& =\sum_{r=0}^{q} \sum_{h=0}^{r}\left[{ }_{q} C_{r} \prod_{i=h}^{r-1} \frac{\left(P^{q}-P^{i}\right)^{2}}{P^{r}-P^{i}} \times\left(\prod_{i=0}^{h-1} \frac{P^{q}-P^{i}}{P^{h}-P^{i}}\right) \times \frac{P^{-q(q+r-2 h) s}}{\prod_{i=h}^{q-1}\left(1-P^{i-q s}\right)^{2}}\right]
\end{aligned}
$$

Let us recall the polynomial $G_{n}(X)$ defined in (3.4). By the proof of (3.4), we may view $G_{n}(X)=\sum_{0 \in S_{n}} p^{e_{\sigma}} X^{e_{\sigma}}$ as a polynomial both in p and X. From this point of view, we will write $G_{n}(p, X)$ instead of $G_{n}(X)$. Put $G_{0}(p, X)=1$. Then, combining (4.1), (3.7) and (4.5), we have

Theorem 4.6. Let q be a prime and let n be a square-free integer coprime to q. Let $C_{n} \cdot C_{q}$ be the semidirect product of C_{n} by C_{q} in which C_{q} acts faithfully on the subgroup C_{p} of C_{n} for every $p \mid n$. Then

$$
\left.\begin{array}{rl}
\zeta\left(\boldsymbol{Z}\left(C_{n} \cdot C_{q}\right) ; s\right)= & \zeta_{\boldsymbol{Z}}(s) \zeta_{\mathbb{Z} \cdot q]}(s)\left(\prod_{\substack{d \mid n \\
d \neq 1}} \prod_{i=0}^{q-1} \zeta_{R_{d}}(q s-i)\right)\left(1-q^{-s}+q^{1-2 s}\right) \\
& \times \prod_{p \mid n}\left(F_{p, 1}(s) \prod_{\substack{d \mid n / p \\
d \neq 1}}\left(F_{p, d}(s)\right)^{g_{d}}\right)
\end{array}\right\}
$$

and for $d \neq 1$,

$$
F_{p, d}(s)=\sum_{r=0}^{q} \sum_{n=0}^{r}\left[{ }_{q} C_{r} \prod_{i=h}^{r-1} \frac{\left(p_{d}^{q}-p_{d}\right)^{2}}{p_{d}^{r}-p_{d}{ }^{i}} \prod_{i=0}^{h-1}\left(\frac{p_{d}^{q}-p_{d}^{i}}{p_{d}^{h}-p_{d}^{i}}\left(1-p_{d}^{i-q s}\right)^{2}\right) \times p_{d}^{-q(q+r-2 h) s}\right]
$$

Zeta functions of integral group rings of metacyclic groups
where for each $p \mid n$ and $1 \neq d|n| p, g_{d}$ is the number of distinct prime ideals over (p) in R_{d} and $p_{d}=p^{\varphi(d) / q g_{d}}$.

References

[1] Bushnell, C. J. and Reiner, I., Zeta functions of arithmetic orders and Solomon's conjectures, Math. Zeit. 173 (1980), 135-161.
[2] Deuring, M., Algebren, Springer, 1935.
[3] Reiner, I., Maximal orders, Academic Press, 1975.
[4] Reiner, I., Zeta functions of integral representations, Comm. algebra 8 (10) (1980), 911925.
[5] Solomon, L., Zeta functions and integral representation theory, Advances in Math. 26 (1977), 306-326.
[6] Weil, A., Basic number theory, Springer, 1967.
University of Tsukuba

[^0]: Received April 17, 1981.

