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ABSTRACT: Physico−chemical characterization of nano-
particles in the context of their transport and fate in the
environment is an important challenge for risk assessment of
nanomaterials. One of the main characteristics that defines the
behavior of nanoparticles in solution is zeta potential (ζ). In
this paper, we have demonstrated the relationship between
zeta potential and a series of intrinsic physico−chemical
features of 15 metal oxide nanoparticles revealed by computa-
tional study. The here-developed quantitative structure−
property relationship model (nano-QSPR) was able to predict
the ζ of metal oxide nanoparticles utilizing only two
descriptors: (i) the spherical size of nanoparticles, a parameter
from numerical analysis of transmission electron microscopy
(TEM) images, and (ii) the energy of the highest occupied molecular orbital per metal atom, a theoretical descriptor calculated
by quantum mechanics at semiempirical level of theory (PM6 method). The obtained consensus model is characterized by
reasonably good predictivity (QEXT

2 = 0.87). Therefore, the developed model can be utilized for in silico evaluation of properties
of novel engineered nanoparticles. This study is a first step in developing a comprehensive and computationally based system to
predict physico−chemical properties that are responsible for aggregation phenomena in metal oxide nanoparticles.

■ INTRODUCTION

Apart from the many benefits related to wide application of
nanomaterials in every-day-life products, rapidly developing
nanotechnology may result in many serious threats such as
environmental contamination and possible human health
problems. Thus, the designing of new nanomaterials should be
always accompanied by a comprehensive risk assessment.1

Toxicity of nanoparticles to living organisms depends on
various structural features (intrinsic properties), such as chemical
composition, crystalline form, size, shape, porosity, surface area,
and surface chemistry.2 According to changes in the dispersing
environment, nanoparticles can rapidly agglomerate and, in
effect, form particles having large diameters. On the contrary,
when an organism uptakes an agglomerate of nanoparticles from
the environment, depending on the biological conditions
(mainly pH) the agglomerate may dissociate and, like a Trojan

horse, become a source of much smaller (often also more toxic)
particles in the body.3 Thus, the agglomeration phenomenon
largely influences toxicity of nanoparticles.4 Such properties of
nanoparticles that describe their behavior are known as extrinsic
properties.
The ease of formation of agglomerates strongly depends on

the surface charge that stabilizes dispersed nanoparticles and
prevents them from agglomeration. However, the available
experimental techniques are unable to measure surface charge
directly; its value can only be estimated by measuring zeta
potential (ζ) in a given medium.4b Therefore, zeta potential (in
the limit of ζ ± 30 eV) is an extremely important parameter in
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determining stability of nanoparticles in complex media.
Theoretical and experimental results have confirmed that zeta
potential is affected not only by the suspension conditions, such
as pH, temperature, ionic strength, and even the types of ions, but
also by the intrinsic particle properties such as size and
concentration.4b,5

Zeta potential has been used to diagnose cellular interaction
with charged ions or molecules. It was shown that the presence of
negatively charged ions or molecules decreases the surface zeta
potential and that on the contrary the presence of positively
charged ions increases the surface zeta potential.6

There are also additional factors influencing agglomeration/
aggregation phenomena that come into play when serum is
introduced to the cell culture media. The proteins in the serum
can both discourage agglomeration of some nanoparticles after
dispersion4a as well as cause nanoparticle agglomeration because
of the adsorption of serum proteins onto the surface.4c The
formation of the corona is a complex and dynamic phenomenon,
which requires considerably more research in order to elucidate
not only the factors that contribute to its formation but also how
it may affect the agglomeration of nanoparticles.
Numerous studies have attempted to address the character-

ization and evaluation of nanoparticle behavior experimentally.
Experimental evaluation of nanoparticle interactions with
biological systems is expensive and time-consuming. Thus,
there is an increased interest in the application of faster andmuch
less expensive computational techniques such as quantitative
structure−property relationship (QSPR) models. The use of
QSPR not only eliminates the need of extensive experimental
testing but also provides valuable suggestions on the mechanism
of the studied phenomena at the molecular level.1,7 Our group
previously investigated various nanoparticles’ properties, and
developed efficient nano-QSAR and nano-QSPR models.1,7b,c,8

In this work, we applied the nano-QSPR approach together
with novel nanostructural descriptors derived from transmission
electron microscopy (TEM) images to describe relationships
between zeta potential (ζ) and structural features of 15 metal
oxide nanoparticles (MeOx-NPs).

■ EXPERIMENTAL SECTION

Nanoparticles and Characterization. Data contained the
experimental values of zeta potential (end point) of selected 15
MeOx-NPs (Table 1) that were acquired from our previous study where
human keratinocyte cell line (HaCaT) was investigated.8d

To verify morphology and size, one drop of a 100 μg/mL solution
(RPMI-1640 media, at pH 7.5 (ATCC, Manassas, VA) supplemented
with 10% (v/v) fetal bovine serum (FBS, ATCC) and 1% (w/v)
penicillin/streptomycin (Sigma, St. Louis, MO) was spotted on a
forever/carbon-coated TEM grid (EMS Diasum, Hatfield, PA) and
allowed to dry.

Once dried, the nanoparticles were viewed using a Hitachi H-7600
TEM (Schaumburg, IL) at 120 kV. Dynamic light scattering (DLS) for
characterization of nanoparticle size and zeta potential (ζ) in cell culture
media (serum-free) was done using a Malvern Instruments zeta-sizer
Nano-ZS instrument according to the procedure described by Murdock
et al.4a The details can be found in ref 8d.

Descriptors Calculation. Each of 15 metal oxide nanoparticles was
characterized by a series of 28 descriptors, including 11 microscopic-
image-based and 17 theory-based (calculated) descriptors.

The first group of 11 descriptors has been derived from images
obtained with Hitachi H-7600 TEM capable of 0.35 nm point-to-point
resolution. Each image has been converted to numerical format, by
converting pixels to certain values. In the 8-bit monochrome image
(called gray scale image), each pixel has been assigned a value from 0 to
255. The assigned values depend on the image gray levels (255 is the
total blackness, whereas 0 represents the lowest level). With use of in-
house-developed algorithms,8c we calculated descriptors related to size
distribution, agglomeration state, shape, porosity, and surface area of the
studied MeOx-NPs.

Then, the next 17 theoretical quantum−mechanical descriptors were
calculated at the semiempirical level of theory with the use of PM6
method implemented in MOPAC2009 software.9 These calculations
were carried out on simplified molecular models of the studied
nanoparticles’ surface (molecular clusters). The clusters were
constructed by employing XP software.10 All necessary crystallographic
data have been collected from Cambridge Crystallographic Data Center
(CCDC)11 and reported in the Supporting Information in Table S1.

The quantum−mechanical calculations included two steps: (i)
optimization of the cluster’s geometry with respect to the decreasing
energy gradient and (ii) calculation of the descriptors on the basis of the
optimized geometry. The calculated descriptors (i.e., energy of the
highest occupied molecular orbital, energy of the lowest unoccupied
molecular orbital, electronic energy, and total energy) describe
electronic properties of the MeOx-NPs. Nanostructural descriptors
(Table S2 in Supporting Information) have been subjected to an
autoscaling operation of which all average values were equal to 0,
whereas all variances were equal to 1.

In Figure 1 is represented the distribution of values for two
descriptors: spherical size (ψ) and quantum−mechanical (εHOMO/nMe)
by utilizing star diagrams. It can be seen that the distribution of these
values is quite different between descriptors.

Data Set Splitting. The data related to the 15MeOx-NPs were split
into two sets: a training set (to be used to develop a nano-QSPRmodel)

Table 1. Sumary Characterization of Data Used in the Study

MeOx-NPs particle size (nm) size in media (nm) spherical size (ψ) εHOMO/nMe (eV) observed ζ (mV)

V2O3 n/a 433.9 ± 40.1 5.20 × 10−05 −2.5 −22.8

Al2O3 44.0 372.3 ± 17.9 5.44 × 10−05 −4.3 −20.2

Fe2O3 32.0 297.6 ± 6.9 5.63 × 10−05 −4.5 −18.1

Sb2O3 90.0−210.0 640.3 ± 77.9 4.95 × 10−05 −4.0 −13.3

La2O3 46.0 672.9 ± 79.1 5.21 × 10−05 −5.5 −12.8

ZnO 71.0 188.9 ± 37.2 5.15 × 10−05 −11.4 −10.8

Y2O3 38.0 1222.9 ± 351.7 4.80 × 10−05 −2.0 −10.7

SnO2 46.1 264.9 ± 64.9 5.06 × 10−05 −7.0 −10.5

In2O3 29.8 224.3 ± 63.1 4.69 × 10−05 −5.2 −9.6

TiO2 42.3 1307.0 ± 313.7 4.77 × 10−05 −7.1 −9.6

WO3 30.0−70.0 179.6 ± 63.2 5.19 × 10−05 −10.4 −9.1

ZrO2 46.7 661.4 ± 14.4 4.99 × 10−05 −8.9 −8.5

SiO2 15.0 809.7 ± 97.4 4.89 × 10−05 −7.1 −8.1

CoO <100 257 ± 11.9 4.52 × 10−05 −9.2 −3.4

Bi2O3 90.0 2029 ± 150.7 4.16 × 10−05 −4.5 −2.3
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and a validation set (to be used only for validating the model’s predictive
ability). To perform a splitting, the nanoparticles were sorted along with
the increasing values of zeta potential. Then, every third NP was
included in the validation set (V), whereas the remaining NPs formed
the training set (T). Becausemodels developed on the basis of very small
data sets might not be robust enough, we have carried out multiple
splittings to investigate the potential influence of the splitting procedure
on the modeling results.8f Because two metal oxides (TiO2 and In2O3)
were characterized by the same values of zeta potential (−9.6 mV), we
carried out two additional combinations of the prepared splits (Table 2).
Nano-QSPR model development. In the present study,

QSARINS12 software has been used to develop nano-QSPR models.
For every split, we developed a separate nano-QSPR model with
multiple linear regression (MLR) technique.13 In MLR, the end point
(yi) is described as the best combination of the most relevant autoscaled
descriptors used as independent variables (x1, x2, ..., xn), expressed as

= + + + +b b b by x x x...
i n n0 1 1 2 2 (1)

The best combination of the most relevant descriptors was selected
with use of the genetic algorithm (GA)14 implemented in the QSARINS
software. Figure 2 summarizes the methodological steps carried out for
the development of each model.
We used the correlation coefficient (R2, eq 2) and the root-mean-

square error of calibration (RMSEC, eq 3) as the measures of goodness-
of-fit for each developed model.
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where yi
obs is the experimental (observed) value of the property for the

ith compound from the training set, yi
pred is the predicted value for ith

compound from the training set, y ̃obs is the mean experimental value of

the property in the training set, and n is the number of compounds in the

training set.

Figure 1. Representation of the distribution of spherical size (ψ) and
εHOMO/nMe descriptor values using star diagrams (left and right,
respectively).

Table 2. Scheme of Data Spliting Towards the Development of Nano-QSPR Modelsa

split for In2O3 in the validation set split for TiO2 in the validation set

MeOx-NPs split 0 split 1 split 2 split 3 split 0 split 1 split 2 split 3

V2O3 V T T V V T T V

Al2O3 T T V T T T V T

Fe2O3 T V T T T V T T

Sb2O3 V T T V V T T V

La2O3 T T V T T T V T

ZnO T V T T T V T T

Y2O3 V T T V V T T V

SnO2 T T V T T T V T

In2O3 T VIn2O3
T

2O3
T T VTiO2

T
2O3

T

TiO2 VIn2O3 T TTiO2
V

2O3
VTiO2

T TTiO2
VTiO2

WO3 T T V T T T V T

ZrO2 T V T T T V T T

SiO2 T T T V T T T V

CoO V T V T V T V T

Bi2O3 T V T T T V T T

aT = training set, V = validation set.

Figure 2. Detailed procedure of developing nano-QSPR models.
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To verify the stability of the models (sensitivity on the composition of
the selection of the training set), in each case we calculated the cross-
validated coefficient QLOO

2 (leave-one-out method) and root-mean-
square error of cross-validation (RMSECV). Both statistics were
calculated according to eqs 4 and 5, represented as

= −
∑ −

∑ − ̃

=

=

Q
y y

y y
1

( )

( )

i

n

i i

i

n

i

LOO
2 1

obs predcv 2

1
obs obs 2

(4)

=
∑ −= y y

n
RMSECV

( )
i

n

i i1
obs predcv 2

(5)

where yi
obs is the experimental (observed) value of the property for the

ith compound, yi
predcv is the cross-validated predicted value for ith

compound, y ̃obs is the mean experimental value of the property in the
training set, and n is the number of compounds in the training set.
Following the recommendations by Gramatica and Lin,15 we

calculated the concordance correlation coefficient (CCC, eq 6) as a
more restrictive parameter for expressing external predictivity of each
model than the commonly used external validation coefficient (QEXT

2 , eq
7) and root-mean-square error of prediction (RMSEP, eq 8). In this
work, we applied all three statistics.
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where yj
obs is the experimental (observed) value of the property for the

jth compound from the validation set, yj
pred is the predicted value for jth

compound from the validation set, y ̂obs is the mean experimental value of
the property in the validation set, and k is the number of compounds in
the validation set.
In addition, we applied the leverage approach and Williams plot to

assess the applicability domain (AD) of the finally selected models. This
was done to verify the space defined by structural similarity of
nanoparticles and the values of zeta potential in which the model can
make predictions with the most optimal reliability.16

Consensus Modeling. Consensus modeling combines the results
of multiple individual models (called member models hereafter), which
are constructed by choosing the different training subsets from the
whole training set.17 The basic idea of consensus modeling is that
multiple models will effectively identify and encode more aspects of the
relationship between independent and dependent variables than will be
possible using a single model. It has the advantage of reducing
dependence on single sample to obtain prediction results by randomly
altering the training set. Therefore, it can be expected to solve overfitting

problems caused by the small training set and thereby enhance the
stability of the predictions. Theoretically, the error of consensus model

̅
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b x( )0 can be represented as in ref 7a:
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where Nm is the number of the model, x⇀ is the vector of the
independent variables, y is the dependent variable, yî is the prediction
result of the ith member model, and y ̂ is the prediction of the consensus
model, which is obtained by averaging of the prediction results of
multiple member models by the equation represented as

∑̂ = ̂
α=
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In the application of GA to seven data set splits (Table 2), we have
created seven individual nano-QSPR models. Then, we used the
obtained models to perform consensus modeling.We developed a single
consensus model as a combination of all models’ coefficients (b0̅, b1̅, b2̅).
The goodness-of-fit and prediction ability of the consensus model were
estimated on a single training and test set (for split 2, where both of NPs
are in training data set, see Table 2).

■ RESULTS AND DISCUSSION

In the present study, we have developed a consensus nano-QSPR
model predicting zeta potential (ζ) for 15 MeOx-NPs that is
based on seven models with different splits. The models were
developed in accordance to OECD QSAR recommendations.18

Each of the models is based on the same two molecular
descriptors, namely: spherical size (ψ) and the weighted energy
of the highest occupied molecular orbital (εHOMO/nMe).
Their goodness-of-fit measured by the regression coefficient

(R2) is high; it ranges between 82 and 94% (Table 3 and Figure
S3 in Supporting Information). However, the indicators of
stability (QLOO

2 ) and predictive power (QEXT
2 and CCC) of the

particular models vary, depending on the split (55% < QLOO
2 <

86%; 62% < QEXT
2 < 92%; 71% < CCC < 96%). Although the

variation is within a reasonable robustness range, it indicates that
the model is sensitive to the way of splitting data. This is because
an individual nano-QSPR model developed with a limited
number of data points might ignore and/or underestimate some
important information.17 Therefore, the use of a consensus
model, rather than a model based on a single split, is more

Table 3. Summary of Single Models and the Consensus Model Developed within This Work

model id MeOx- NPsa obj. tr. obj. test descriptors R2 QLOO
2 QEXT

2 CCC RMSEC RMSCV RMSEP b0 b1 b2

0 TiO2 10 5 ψ, ε HOMO/nMe 0.92 0.81 0.74 0.96 1.38 2.12 3.23 −11.00 −4.70 −4.61

0 In2O3 10 5 ψ, ε HOMO/nMe 0.91 0.81 0.74 0.95 1.43 2.14 3.25 −11.00 −4.61 −1.72

1 TiO2 10 5 ψ, ε HOMO/nMe 0.86 0.69 0.76 0.91 2.0 3.01 2.46 −12.05 −3.76 −3.15

1 In2O3 10 5 ψ, ε HOMO/nMe 0.85 0.67 0.81 0.93 2.08 3.13 2.19 −12.05 −3.60 −3.06

2 10 5 ψ, ε HOMO/nMe 0.82 0.55 0.92 0.96 2.26 3.61 1.54 −11.38 −4.74 −2.48

3 TiO2 10 5 ψ, ε HOMO/nMe 0.94 0.86 0.62 0.72 1.33 2.01 3.22 −10.53 −5.01 −1.96

3 In2O3 10 5 ψ, ε HOMO/nMe 0.93 0.85 0.62 0.71 1.39 2.05 3.23 −10.53 −4.95 −1.8

cons. 10 5 ψ, ε HOMO/nMe 0.82 0.87 0.96 2.40 1.25 −11.26 −4.46 −2.39
aModels with combination of either TiO2 or In2O3 metal oxide in test set
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reasonable. The application of such strategy helps to overcome
the problem: the consensus model averages the influence of splits
on the modeling results. Moreover, it gives better statistical fit
and predictive ability than does the best single model.8g,19 Similar
strategy has been suggested and successfully applied by
Gramatica et al.15a,20

The plot of the experimental versus predicted values (Figure
3) showed very good agreement between the observed and

predicted values of zeta potential for the 15 MeOx-NPs from
both the training set and validation set and additionally
confirmed the predictive capability of the developed model.
The applicability domain of the best model has been evaluated

by theWilliams plot (Figure 4).When analyzing the standardized

residual values (yobs − ypred) for the consensus model, we did not
observe any outlying predictions (with residuals differing by
more than three standard deviations from the average residual
value). In addition, none the structures of the studied NPs were
substantially different from the training set nanoparticles; all of
them were characterized by the leverage values hi < h* = 0.6.
Thus, the model can be successfully applied to predict zeta
potential of all studied metal oxides nanoparticles and for other
untested metal oxides, if the calculated hi value is lower than the
critical one (h* = 0.6).
However, one should remember that the leverage values hi

used for assessing the applicability domain are calculated from
the structural descriptors included in the model, according to the
equation

= −h x X X x( )i i i
T T 1

(13)

where xi is a row vector of molecular descriptors for ith
nanoparticle and X is a matrix of descriptors for the training set.
Thus, they do not include structural variability different than that
expressed by the selected descriptors. In consequence, the
application of the model, by definition, is restricted to the
structures similar to those used for training (i.e., spherical
nanoparticles with uncoated surface). As such, it might be
inappropriate for other types of nanoparticles (e.g., nanoparticles
sterically stabilized by various coatings).
The developed consensus nano-QSPR model is described by

eq 14. Please note that the coefficients provided in eq 14 have
been derived for the standardized values of descriptors.

ζ ψ ε= − − − n11.26 4.46 2.39 /HOMO Me (14)

Interpretation of the descriptors brings significant insight into
the current knowledge on structural factors that are likely to
affect zeta potential of the studied nanoparticles. The significance
of spherical size ψ (standardized coefficient = −4.46) in the
model is about two times higher than that of the energy of the
highest occupied molecular orbital per metal atom (standardized
coefficient = −2.39). Spherical size is inversely proportional to
the surface area of the MeOx-NPs, expressed as21

ψ
π

=
V

A

61/3 2/3

(15)

where V is a NP’s volume size and A is a NP’s surface area. A
negative coefficient ψ indicates that the values of zeta potential
decrease with the increasing volume (V).22

Knowledge of the charge-carrier energy levels on the
nanoparticle’s surface is essential for understanding an alteration
in zeta potential of the particles. Energy of the highest occupied
molecular orbital (εHOMO) is usually utilized to describe isolated
molecules ofMeOx (e.g., a single gaseous molecule of TiO2), and
along with Koopman’s theorem, it refers to the negative value of
their ionization potential. In solid-state particles (i.e., nano-
particles) in which “single molecules” form larger molecular
systems, ionization ability can be described by εHOMO/nMe, the
HOMO energy weighed by the number of metal atoms (nMe) in a
single MeOx unit of the nanoparticle. Because the ability of a
given metal oxide to detach electrons (i.e., to form ions on the
surface) directly influences the net charge of the whole
nanoparticle. The energy of the highest occupied molecular
orbital may serve as very informative descriptor.23 In our model
(eq 14), the values of zeta potential of the particles decrease with
the increasing εHOMO/nMe energy.
Interestingly, such descriptors as the energy of the lowest

unoccupied molecular orbital, εLUMO, and the weighted LUMO
energy, εLUMO/nMe, corresponding to electron affinity have not
been selected byGA as descriptors that significantly contribute to
the model. This means that the formation of cations (positive
charge) on the surface of metal oxides is much more favored than
the possibility of formation of anions (negative charge). This
conclusion is in agreement with various experimental stud-
ies.8d,g,24 The leaching of metal cations from the metal oxide
surface and then their interaction with cells is one of the most
probable mechanisms responsible for toxicity of metal oxides
nanoparticles.
Zeta potential of a nanoparticle is a function of both intrinsic

properties of the pristine nanoparticle and parameters describing
the environment (temperature, pH, presence of serum, presence

Figure 3. Plot of experimentally observed versus predicted values of zeta
potential (ζ) for training and validation compounds.

Figure 4. Williams plot for the consensus nano-QSPR model.
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of other compounds, etc.) because they can have influence on the
structure, and it is expressed as

ζ = +f f(intrinsic props of NPs) (environ. params) (16)

In this contribution we have investigated the behavior of
nanoparticles assuming that the environmental parameters are
the same in case of each studied nanoparticle. We demonstrated
that when f (environmental parameters) are constant the values
of zeta potential are decreasing with increasing spherical size and
the energy of the highest occupied molecular orbital.
There is a logical mechanistic explanation of this conclusion.

On one hand, it is known that the ratio between the number of
atoms present on the surface area and the number of atoms inside
the nanoparticle increases with decreasing particle size. There-
fore, small nanoparticles are characterized by a higher mean bond
energy per one atom, and in consequence, particular atoms/ions
might be much more easily leached from the surface. This leads
to the presence of vacancies on the surface; thus, it increases the
surface charge. On the other hand, the value of HOMO energy
determines the release of electrons and thus ion formation on the
surface of particles. Correspondingly, the higher the value of
HOMO, the more ionic the forms of atoms present on the
nanoparticle surface. Zeta potential represents the charge of the
nanoparticle in relation to the surrounding conditions. There-
fore, under the same conditions (i.e., when f (environmental
parameters) is constant) the surface charge is the only parameter
differentiating the values of ζ in the series of metal oxides
nanoparticles.
The results obtained in our study, the influence of nano-

particle’s structure on zeta potential, are in agreement with the
results presented in previously published papers.1,2b,25 For
example, in ref 26, the authors were investigating the electrostatic

interaction forces of spherical particles and concluded that
spherical radius is one of the important components that
influence on zeta potential of these particles. Independently,
Berg et al.25a showed that the potential influence of metal oxide
nature on zeta potential and the effect on agglomeration. This
was confirmed by experiment for cases where agglomeration size
varies significantly, depending upon a variety factors including
both pH and chemical composition. Moreover, in ref 2b, the
authors supported the findings that the composition, size,
architecture and zeta potential of the nanoparticles are
intercorrelated properties. In another work, Powers et al.25b

discussed the importance of size, chemical composition, and
surface charge in the characterization of nanoparticles for
toxicological studies and the relationship of these parameters.
Authors also confirmed that surface charge is controlled by
several mechanisms, including surface ionization, ion adsorption,
and lattice ion dissolution.25b

In general, solutions with zeta potential of ζ < −30 mV or >
+30 mV are considered as very stable.27 When the value of zeta
potential (ζ) tends to 0, the dispersion becomes less stable, and
agglomeration/aggregation phenomena occur much easier. As it
can be seen, all of the studied MeOx-NPs with values quite close
to 0, ζ >−30mV, actually agglomerate forming species of varying
size, when dispersed in cell culture media (Table 1).
Finally, we have applied the model (eq 14) to systematically

simulate the values of ζ for different combinations of the
descriptors ψ and εHOMO/nMe. It might be observed (Figure 5)
that stable dispersions (under the same the experimental
conditions) may exist for nanoparticles having ψ = 6.0 × 10−5

m or greater as well as the energy of the highest occupied
molecular orbital between −2 and 0 eV, for ψ = 6.0 × 10−5 m.
Moreover, for higher values of εHOMO/nMe, dispersion can be

Figure 5. Simulation of zeta potential based on ψ and εHOMO/nMe descriptors.
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lower. Note that regarding the ranges of ψ and εHOMO/nMe of the
training set used for developing the nano-QSPR model the
predictions of ζ may be done using either interpolation (within
the ranges of the training set) or extrapolation (outside the
training set). Although extrapolation is by definition less reliable,
the observed trends are clear. Thus, valuable conclusions might
also be formulated on the basis of the extrapolated data. The
interpolation and extrapolation regions are indicated in Figure 5.
To strengthen the findings of the presented work, we have

decided to verify how a proposed heatmap (Figure 5) works for
zeta potential (ζ) prediction for three additional MeOx-NPs that
were not previously included in the model during developing and
testing (namely, NiO, Cr2O3, and Mn2O3). On the basis of
calculated values of ψ and εHOMO/nMe descriptors for these three
new NPs (Supporting Information, Table S2) and the final
model (eq 14), the following values of zeta potential were
obtained: −10.47, −16.16, and −16.53, for Mn2O3, Cr2O3, and
NiO respectively. As can be observed in Figure 5, the same values
of ζ can be obtained directly from the heatmap. The application
of the heatmap presented above may be a suitable computational
tool for the preliminary estimation of zeta potential for other
MeOx-NPs. It also could be used for the identification of
nanomaterials that may tend to be stable within the different
range of ζ based only on the calculated values of descriptors.
A nano-QSPR approach might find practical applications in

designing new nanoparticles with properties of interest (here
zeta potential). However, the predictions based on the currently
presented model would be reliable only assuming that (i) the
designed structures are similar enough to those used for training
the model and (ii) the predicted zeta potential is correct for the
same environmental conditions (temperature, presence of serum
and other compounds, etc.) as applied when obtaining the
experimental data used this study. Further studies should extend
the presented model onto different environmental conditions.
This, however, requires extensive additional experimental data
for calibrating of the model.

■ CONCLUSIONS

The knowledge of factors that play a prevailing role in zeta
potential values of metal oxide nanoparticles is very important. In
this study, we have applied a series of computational methods to
analyze various factors and to build a model that quantitatively
describes the relationship between the zeta potential and the
structure of metal oxide nanoparticles (nano-QSPR). The
combination of two descriptors(spherical size of nanoparticles
and the weighted energy of the highest occupied molecular
orbital) show a prominent influence of both structural
descriptors on zeta potential (ζ). The finally obtained consensus
model is characterized by good predictive power, with QEXT

2 =
0.87. Therefore, the developed model can be recommended for
further applications in in silico designing of novel nanoparticles.
The proposed nano-QSPR model is the first step in developing a
series of computational tools to predict physico−chemical
properties of nanoparticles. Predicting intrinsic and extrinsic
properties of engineered nanoparticles, such as agglomeration/
aggregation phenomena, would in future play an important role
in risk assessment of currently used and novel nanomaterials.
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