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Abstract 

We report measurements of the zeta potential on intact limestone samples obtained using the 

streaming potential method (SPM), supplemented by the more ubiquitous electrophoretic 

mobility method (EPM).  The effect of the potential-determining ions (PDI) Ca, Mg and SO4, 

and the total ionic strength controlled by NaCl concentration, is investigated over the range 

typical of natural brines. We find that the zeta potential varies identically and linearly with 

calcium and magnesium concentration expressed as pCa or pMg.  The zeta potential also varies 

linearly with pSO4.  The sensitivity of the zeta potential to PDI concentration, and the IEP 

expressed as pCa or pMg, both decrease with increasing NaCl concentration.  We report 

considerably lower values of IEP than most previous studies, and the first observed IEP 

expressed as pMg. The sensitivity of the zeta potential to PDI concentration is lower when 

measured using the SPM compared to the EPM, owing to the differing location of the shear 
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plane at which the zeta potential is defined. SPM measurements are more appropriate in natural 

porous samples because they reflect the mineral surfaces that predominantly interact with the 

adjacent fluids. We demonstrate that special cleaning procedures are required to return samples 

to a pristine zeta potential after exposure to PDIs.  We apply our results to an engineering 

process: the use of modified injection brine composition to increase oil recovery from 

carbonate reservoirs. We find a correlation between an increasingly negative zeta potential and 

increased oil recovery. 

 

Introduction 

The zeta potential of natural carbonates plays a role in many subsurface processes, governing 

the electrostatic interactions between mineral surfaces and polar species in both aqueous and 

non-aqueous phase liquids (NAPLs).  For example, the self-freshening often observed when 

brackish water invades a freshwater aquifer depends on preferential adsorption of aqueous salt 

species such as Ca and Mg (e.g. Appelo, 1994), while contaminated carbonate aquifers may be 

remediated through sequestration of the contaminant by co-precipitation with the mineral phase 

(Meece and Benninger, 1993). Uptake of contaminants such as heavy metals is related to their 

reactivity as a function of the ionic strength and pH of the aqueous electrolyte (Reeder et al., 

2001).  The wetting state of carbonate oil reservoirs is believed to be influenced by the zeta 

potential (Buckley et al., 1998; Gomari et al., 2006), as is the success of enhanced oil recovery 

by modification of injection brine composition and/or ionic strength (Zhang and Austad, 2006; 

Yousef et al., 2010). Moreover, solubility of CO2 in brine as a trapping mechanism in saline 

aquifers is an important component of carbon capture and storage (Riley, 2010). Compared to 

sandstones, aqueous CO2 solubility is greatly enhanced in the presence of carbonate minerals 

such as calcite (Rosenbauer et al., 2005).  The increase in CO2 concentration has a profound 
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effect on pH (Pokrovsky et al., 2005), which in turn alters the zeta potential of calcite and leads 

to its dissolution (Eriksson et al., 2007). The zeta potential is also an important control on the 

use of self-potential measurements to monitor subsurface fluid flow (e.g. Saunders et al. 2008; 

Gulamali et al., 2011; Jackson et al., 2012a, b). 

The calcite-water interface is electrically charged with the calcite crystal lattice constituents 

Ca2+ and CO3
2- being the main potential determining ions (PDIs, being those ions whose 

concentration in aqueous solution controls the polarity and density of electrical charge on the 

mineral surface; Somasundaran and Agar, 1967). However, it is well known that divalent ions 

such as Mg2+ and SO4
2- are also PDIs (Pierre et al., 1990).  Figure 1 shows that there are 

numerous papers reporting measurements of the zeta potential on calcite. The zeta potential is 

modified by the concentration of both indifferent and potential-determining ions, with the 

concentration of indifferent ions controlling the thickness of the electrical double layer, and the 

concentration of PDIs controlling both the double layer thickness and the mineral surface 

charge. Previous studies of the zeta potential on calcite  have highlighted the difference 

between natural and artificial calcite samples (e.g. Cicerone et al., 1992, Vdovic, 2001), the 

importance of controlling CO2 partial pressure (pCO2) in open or closed-system experiments 

(Thompson and Pownall, 1989; Heberling et al., 2011), the impact of wetting state in the 

presence of NAPLs (e.g. Jackson and Vinogradov, 2012; Kasha et al., 2015), and the effect of 

PDI concentration (Pierre et al., 1990; Zhang and Austad, 2006; Strand et al., 2006; Alotaibi et 

al., 2011; Chen et al., 2014; Alotaibi and Yousef, 2015; Mahani et al., 2015a,b). However, few 

report measurements of zeta potential in carbonates at conditions relevant to natural subsurface 

systems. Most explore only dilute electrolytes, with much lower total ionic strength and PDI 

concentration than subsurface brines, and crushed rather than intact rock samples. Moreover, 

most do not employ an experimental method that establishes equilibrium conditions of pH, 

pCO2 and PDI concentration relevant to subsurface carbonates. Many use artificial calcite, 
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open system measurements with uncontrolled pCO2, or vary pH and/or pCO2 over a broad 

range not relevant to subsurface brines.   

Most previous studies utilised measurements of electrophoretic mobility (EPM) to determine 

the zeta potential (Madsen, 2002).  In this approach, the sample is crushed to a fine powder and 

suspended in a solution of the electrolyte of interest. An electrical potential field is applied 

across the suspension (the field typically oscillates at a controlled frequency, inducing an 

alternating current through the suspension) and the resulting movement of the solid particles is 

used to interpret the zeta potential via the Helmholtz-Smoluchowski equation (see Delgado et 

al., 2007). EPM measurements may not reflect the natural conditions of interest for several 

reasons. First, the samples are crushed, which creates ‘fresh’ mineral surfaces that may have 

different properties to ‘aged’ surfaces that have been previously exposed to fluids in the pore-

space. Second, the ratio of electrolyte volume to mineral surface area is significantly changed 

compared to the natural porous medium, which may be important in systems such as carbonates 

where dissolution and precipitation and/or adsorption and desorption may simultaneously 

modify surface charge and electrolyte composition (Thompson and Pownall, 1989; Pierre et 

al., 1990). Third, the EPM method is limited to representing only one solid or fluid phase in 

addition to the supporting electrolyte. Hence, it cannot be used to obtain multiphase 

measurements when both NAPLs and water are present within the rock pore-space, as is often 

the case in subsurface carbonates.   

The aim of this study is to determine the zeta potential in intact natural carbonate samples 

saturated with aqueous electrolytes containing PDIs at similar concentration to natural brines, 

and with total ionic strength similar to natural brines. We are particularly interested in 

determining how the zeta potential is affected by the concentration of PDIs such as Ca, Mg and 

SO4 over the range found in natural brines. Several previous studies have investigated the 

relationship between Ca concentration and zeta potential, but these typically probed 
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concentration ranges much lower than natural brines (e.g. Foxall et al., 1978; Thompson and 

Pownall, 1989; Pierre et al., 1990; Cicerone et al., 1992). Much less attention has been paid to 

the role of Mg and SO4 as PDIs yet these ions are also abundant in natural brines such as 

seawater (e.g. Zhang and Austad, 2006;). We also wish to determine how the zeta potential is 

affected by the concentration of these PDIs in the presence of Na and Cl ions over the range 

found in natural brines. Na and Cl are by far the most common ionic species found in such 

brines and are believed to be indifferent to the calcite mineral surface; nonetheless, it has not 

yet been determined whether the effect of the known PDIs (Ca, Mg and SO4) on carbonate 

surface charge is modified by the presence of Na and Cl at high concentration.   

Rather than the EPM used in most previous studies, we used the streaming potential method 

(SPM) described by Jackson and Vinogradov and co-workers (Jaafar et al., 2009; Vinogradov 

et al., 2010; Vinogradov and Jackson, 2011; Jackson and Vinogradov, 2012).  The advantage 

of the SPM is that it can be used with intact samples, including the cylindrical core plugs that 

are ubiquitously obtained from subsurface reservoirs (Jaafar et al., 2009), is suitable for high 

ionic strength (>2M, where M represents moles/litre) electrolytes (Vinogradov et al., 2010), 

can be used to measure zeta potential during multiphase flow and for varying wettability 

(Vinogradov and Jackson, 2011; Jackson and Vinogradov, 2012), and can be extended to the 

elevated temperatures (up to 150oC) often found in deep saline aquifers, hydrocarbon 

reservoirs, and geothermal systems (Vinogradov and Jackson, 2015). The SPM measurements 

were complemented by pH and electrical conductivity measurements, and chemical analysis of 

the effluent electrolyte, to ensure accuracy of the reported compositions and monitor any 

adsorption/desorption and/or dissolution/precipitation that occurred during the experiments. In 

addition, we report zeta potential measurements using EPM for the same materials (rock and 

electrolytes) and preparation procedure, which allows direct comparison between these two 

electrokinetic methods.   
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Our approach contrasts with many previous studies because the experimental method is 

specifically designed to ensure the equilibrium achieved between sample and electrolyte is 

consistent with natural processes. The results are directly applicable to a wide variety of natural 

subsurface carbonates. Here we apply our results to a key engineering process relevant to 

subsurface carbonates: the use of modified injection brine composition to increase oil recovery 

in a process termed controlled salinity waterflooding (CSW). 

 

Methodology 

Materials and sample preparation 

The rock samples used in the experiments are Portland limestone from the Portland quarry on 

the south coast of the UK (Table 1).  We used two different types of electrolyte.  The first 

comprised reagent-grade NaCl, CaCl2.2H2O, Na2SO4 (Sigma-Aldrich), MgCl2.6H2O (Fluka 

Analytical) solutions in deionized water (DIW) from a Thermo Scientific filtered system with 

electrical conductivity below 1 µS/cm. In these electrolytes, the maximum concentration 

probed was 2M for NaCl, 0.42M for CaCl2 and MgCl2, and 0.13M for Na2SO4.  The second 

comprises natural seawater (SW) from the Arabian Gulf, collected from Dammam, Saudi 

Arabia.  The natural seawater sample was treated with UV light and then filtered through 5 µm 

filter paper. Table 2 lists the compositions of the electrolytes used, including the natural 

seawater and synthetic formation brine (FMB) typical of oil reservoirs and deep saline aquifers 

(e.g. Romanuka et al., 2012). 
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The majority of limestone formations are directly deposited in seawater (Morse, 1986; Morse 

and Mackenzie, 1990) and the seawater is in equilibrium with both calcite and CO2 (Stumm 

and Morgan, 1996).  Any factor, such as organic activity, CO2 partial pressure, or temperature 

that modifies the equilibrium will result in precipitation or dissolution of calcite. Carbonate 

minerals are soluble in water and dissolution yields carbonate ions (CO3) that can react to form 

bicarbonate (HCO3) and hydroxide (OH) ions according to the equilibrium reaction 

CaCO3 (s) ↔ Ca2+ + CO3
2- 

CO3
2- + H2O ↔ HCO3

- +OH- 

If the system is open, atmospheric CO2 dissolves into the water, reacting directly with 

hydroxide to form bicarbonate and hence reducing the pH according to the equilibrium reaction 

CO2(aq) + OH- ↔ HCO3
- 

Equilibrium between calcite and water in the presence of CO2 is reached when most of the 

carbonate ions are turned into bicarbonate (Krauskopf, 1989); this corresponds to a minimum 

aqueous concentration of carbonate and carbonic acid, and a maximum for bicarbonate (Figure 

2b).  The equilibrium is affected by the total ionic strength, including the concentration of Na 

and Cl ions that are often found in natural brines.  In simple solutions of CaCO3 exposed to 

CO2 at 25oC the equilibrium pH is 8.3-8.4 (Garrels and Christ, 1965, Stumm and Morgan, 

1996; Figure 2a). 

These conditions of carbonate/water/CO2 equilibrium were replicated here using the following 

two-stage equilibration procedure. For DIW-based electrolytes, we began by preparing a NaCl 

solution of the desired concentration in DIW. In the first stage of the equilibration procedure, 

this solution was placed in a beaker with offcuts of the Portland limestone, maintaining an air 

layer in the beaker to provide a source of atmospheric CO2 but sealing the beaker to prevent 

(1) 

(2) 
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evaporation. Monitoring of the pH (using a Five-Go Mettler-Toledo pH meter with their 3-in-

1 pH electrode LE438, implementing where necessary the manufacturer’s recommended 

calibration and correction procedures at high ionic strength) and Ca concentration (described 

below) confirmed the dissolution of calcite and associated pH changes discussed above (e.g. 

Figure 2b). The initial increase in pH reflects the formation of hydroxide ions according to the 

equilibrium reaction (1). The subsequent decrease in pH reflects the formation of bicarbonate 

according to the equilibrium reaction (2). In this case the final pH of the equilibrated solution 

was c. 8.2, consistent with the predicted value for a simple open system CaCO3 solution (Figure 

2a). Dissolution of calcite is demonstrated by the increase in Ca concentration from zero to 

approximately 0.001±0.0001 M (Figure 2a). The resulting equilibrated NaCl solution was 

termed NaCl-EQ, and this first stage of equilibration mimics the open-system conditions when 

the carbonate sediments are first deposited. For the experiments reported below, equilibrated 

solutions of three different NaCl concentrations (0.05M, 0.5M, and 2M) were prepared. 

Equilibrium was assumed to have been reached when the measured change in both pH and pCa 

(where p represents the negative logarithm) was zero within experimental error over a timespan 

>350 hours (two weeks). The equilibrium pH was found to be consistently 8.2±0.2 for 0.05M 

and 0.5M NaCl electrolytes, and 8.3±0.3 for 2M NaCl electrolyte. The NaCl-EQ solution was 

then used directly in zeta potential measurements, or was modified by addition of PDIs. This 

first stage of the equilibration procedure is essential to ensure equilibrium between calcite, 

water and atmospheric CO2 and prevent calcite dissolution and associated changes in surface 

charge during measurements of zeta potential. 

The core flooding apparatus used to measure the zeta potential in the SPM (described below) 

is closed to the atmosphere, and the second stage of equilibration prior to measuring the zeta 

potential was to ensure equilibrium between the electrolyte of interest (NaCl-EQ after the 

addition of any PDIs to be studied) and the rock sample at the closed-system conditions 
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pertaining to a rock-brine system at depth. The rock sample was pre-saturated with the selected 

electrolyte at open-system conditions and then confined in the core holder at closed-system 

conditions, and the electrolyte was pumped through the sample from the (closed) inlet reservoir 

to the (closed) outlet reservoir and back again.  The repeated flow of the electrolyte through 

the sample at closed system conditions mimics migration of the electrolyte into the carbonate 

rock at depth. At regular intervals, the electrical conductivity and pH of the electrolyte in the 

reservoirs was measured, and equilibrium was assumed to have been reached when the 

conductivity and pH of the electrolyte in each reservoir differed by <5%.  The pH varied over 

a small range in all experiments and was consistent with reported values for natural brines in 

carbonate rocks (pH in the range 7-8; Yousef et al., 2012). Addition of Ca or Mg reduced the 

pH to the range 7.2-8, while addition of SO4 caused a smaller change, yielding pH in the range 

7.9-8.1. The uncertainty in the measured values of pH was always less than ±0.3. 

Prior to a given experiment, the rock sample was cleaned in a Soxhlet apparatus with methanol 

for 48 hours. It was then dried for at least 12 hours in a vacuum oven at 80oC. Then, it was 

allowed to cool at room temperature for a minimum of 6 hours. This is a standard core sample 

cleaning procedure used in many previous studies and was used with fresh samples here (e.g., 

Jaafar et al., 2009). However, for reasons discussed later in the paper, after a series of 

experiments using electrolytes with elevated PDI concentration, the rock samples were flooded 

with at least 2 pore-volumes (PV) of deionized water (DIW) prior to the methanol cleaning 

step, and were then flooded with a further 4 PV of 0.05M NaCl-EQ electrolyte. The 

conductivity of the effluent electrolyte was measured in order to confirm it was the same as 

that obtained on the fresh samples using the same electrolyte within a 5% tolerance.   

For comparison, the zeta potential of one selected sample was also measured using the EPM 

method (described below).  Off-cuts of fresh Portland Limestone were cleaned for 48 hours in 

methanol and then crushed using a jaw crusher.  A Tema Mill with an agate vessel was then 
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used to obtain a fine powder of the sample. NaCl-EQ was used to prepare solutions with 

different Ca content.  Suspensions of 0.05g of Portland powder in 50mL (1 wt. %) of the desired 

electrolyte were prepared and left for a minimum of 1 hour, to allow the fraction of larger 

suspended particles to settle out of solution. For each sample, the suspension was injected via 

a syringe into a capillary cell in order to obtain the zeta potential measurement.  Care was taken 

to ensure no air bubbles were left in the cells. 

Measurement of Zeta Potential 

Streaming Potential Measurement (SPM) 

The zeta potential was measured using the SPM described by Vinogradov et al. (2010).  Only 

a brief summary of the method is provided here. The carbonate core samples were tightly 

confined within an embedded rubber sleeve in a stainless steel core holder with non-metallic 

end caps. A syringe pump was used to induce a fluid pressure difference across the sample, 

causing the electrolyte to flow through the sample from reservoirs connected to each side of 

the core holder (Figure 3).  Synthetic oil was used to translate the induced pressure from the 

pump to the brine in the inlet reservoir, which maintains closed-system conditions by 

preventing exposure of the electrolyte to atmosphere. The pump maintains constant rate to high 

accuracy and flow can be directed in either direction through the sample.   

The pressure difference across the sample was measured using a pair of pressure transducers 

(calibrated Druck PDCR 810 with accuracy 0.1% of measured value, resolution 70 Pa) and the 

voltage across the sample was measured using non-polarizing Ag/AgCl electrodes and an 

NI9219 voltmeter (internal impedance >1GΩ, accuracy 0.18%, resolution 50 nV). The noise 

level of the measurements is dictated by the stability of the electrodes, rather than the 

performance of the voltmeter. The electrodes were positioned out of the flow path, in an 
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electrolyte reservoir of a NaCl solution of the same ionic strength as that used in the 

experiments. 

We used the ‘paired-stabilization’ or PS method of Vinogradov et al. (2010) to measure the 

streaming potential across the sample, in which flow is induced through the sample at the same 

rate but in opposing directions.  The method eliminates the effect of temporal variations in the 

static voltage and demonstrates that electrode polarization effects are negligible through 

confirmation that the change in potential induced by flow in one direction is equal and opposite 

to the change in potential induced by flow in the opposite direction. To ensure that exclusion-

diffusion potentials were eliminated during measurements of the streaming potential, uniform 

and constant electrolyte conductivity and pH in each reservoir, and uniform and constant 

temperature (23°C), were maintained within a 5% tolerance. Redox potentials, which may 

affect the measured voltage if metals such as steel are in contact with the saline electrolyte, 

were eliminated by electrically isolating all metallic components from the electrolyte except 

for the Ag/AgCl electrodes.    

Interpretation of the results from the PS experiments follows from the observation that at 

steady-state, the streaming current induced by the flow is balanced by a conduction current to 

maintain overall electrical neutrality. It is reasonable to assume that the currents follow 

approximately the same 1-D path along the samples, in which case the streaming potential 

coupling coefficient can be determined using 

𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆 =  
𝛥𝛥𝛥𝛥
𝛥𝛥𝛥𝛥

 (3) 

where ∆V and ∆P are the stabilized voltage and pressure measured across the plug, 

respectively.  The coupling coefficient is given by the slope of a linear regression through a 

plot of voltage against pressure difference obtained for a number of different flow rates (e.g. 

Figure 4c, d).  An effective value for the zeta potential for the sample was obtained using a 
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modified version of the Helmholtz-Smoluchowski equation that accounts for surface electrical 

conductivity (e.g. Jackson, 2015) 

𝜁𝜁 =  
 𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆𝜇𝜇𝜎𝜎𝑟𝑟𝑟𝑟𝐹𝐹

𝜀𝜀
 (4) 

where F is the formation factor, which is the ratio of the conductivity of the electrolyte to the 

conductivity of the saturated rock sample when surface conductivity is negligible (e.g. 

Jouniaux and Pozzi, 1995), ε is the permittivity of the electrolyte, µ is the electrolyte viscosity 

and σrw is the electrical conductivity of the saturated rock sample.  The formation factor and 

electrical conductivity were measured following the methodology of Vinogradov et al. (2010) 

(Table 1). Note that the zeta potential obtained is an effective value because it reflects the 

average streaming charge density transported by the flow of the electrolyte; at the pore-level, 

the zeta potential may vary.  The viscosity and permittivity of the electrolyte as a function of 

ionic strength were also determined using the approach of Vinogradov et al. (2010).  

Uncertainty in the reported value of zeta potential reflects the range of possible regressions that 

can be fitted to the measured streaming potential data within experimental error (Figure 4). 

Electrophoretic Mobility Measurement (EPM) 

The zeta potential for one powdered sample in suspension was also obtained for comparison 

with the SPM using a Brookhaven ZetaPALS zetameter to measure the electrophoretic mobility 

ue of the suspension; this is related to the zeta (shear plane) potential using the Helmholtz-

Smoluchowski equation for electrophoresis (Delgado et al, 2007): 

𝜁𝜁 =  
 𝑢𝑢𝑒𝑒𝜇𝜇
𝜀𝜀

 (5) 

As noted above, the zeta potential obtained is an effective value because it reflects the average 

surface charge on the particles in suspension; at the particle level, the zeta potential may vary. 

The measurement of each sample consisted of 5 runs; each run consisted of 10 cycles. The 
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mean of all the runs for each sample is reported as the zeta potential and the error bars represent 

the standard deviation. 

Measurement of Electrolyte Composition 

Electrolyte composition was determined using inductively coupled plasma atomic emission 

spectroscopy (ICP-AES). The analysis was carried out in the Analytical Chemistry Laboratory 

at the Natural History Museum, London. 

Electrolyte samples from the SPM measurements were collected from the core holder via a 

valve on the outlet flow line at the end of a given suite of zeta potential measurements for the 

chosen electrolyte; each effluent sample had therefore interacted with the rock sample for a 

minimum volume of 10 PV spread over a minimum of two days. These samples are referred to 

as the final effluent electrolytes.  Appropriate dilutions were prepared for each sample prior to 

analysis depending on the total ionic strength and relative abundance of the PDIs of interest. 

All samples were acidified with 2% HNO3 to prevent formation of complexes that might affect 

the interpreted concentrations.   

Reference standard solutions at concentrations ranging from 0.5 - 200 ppm containing all the 

ions of interest (Na, Ca, Mg, and S) were prepared to represent the ion matrix of the effluent 

samples. The accuracy of the method was determined using certified check solutions and the 

repeatability by conducting 5 repeat measurements on all the samples whose standard deviation 

is represented by the error bars. 

Design of Experiments 

In this work, we investigated the effect of three key PDIs (Ca, Mg and SO4) on the zeta potential 

of natural limestone in two ways. The first approach was to systematically vary the 

concentration of each PDI over the range found in natural brines to establish its effect on the 

zeta potential. For each range of PDI concentrations, we tested three different NaCl (0.05M, 
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0.5M and 2M) concentrations to determine whether this changes the relationship between the 

PDI concentration and surface charge.  The 0.5M NaCl concentration represents seawater and 

is similar to the ‘ZP brine’ of Zhang and Austad (2006) and Zhang et al. (2007) which contained 

0.573M NaCl, allowing direct comparison of results.  The 0.05M NaCl concentration 

represents a tenfold dilution of seawater and approximates the injection brine used in controlled 

salinity waterflooding (CSW) for enhanced oil recovery (Yousef et al, 2010), while the 2M 

NaCl concentration represents the saline brines found in many deep saline aquifers.  The second 

approach was to combine all three PDIs in the proportions and total concentration typical of (i) 

natural saline brines, and (ii) natural seawater, and compositions derived from seawater similar 

to those used in CSW.  

Results 

Measurements of streaming potential and interpretation of zeta potential 

Figure 4(a, b) shows typical results for the PS experiments for low and high ionic strength 

electrolytes respectively. The pressure response to pumping is clear and the pressure difference 

across the samples reached a stable value (fluctuations <500 Pa around an induced pressure 

difference of c. 500kPa) in all experiments.  The voltage response is also clear and reached a 

stable value with fluctuations typically below ±5µV at high ionic strength (e.g., FMB) and 

below ±50µV at low ionic strength (<0.5M NaCl) in all experiments. The interpreted values of 

stabilized pressure and voltage are denoted by the dashed lines, while the error bars show the 

interpreted spread. The stabilized voltage was reproducible within ±25µV across three repeat 

experiments at a given flow rate for high ionic strength and ±35µV for low ionic strength. The 

voltage fluctuations, and reproducibility of the stabilized voltage measurements, are similar to 

previous experiments conducted on limestone samples saturated with electrolytes of similar 
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ionic strength (Jackson and Vinogradov, 2012). An important aspect of the SPM is that the 

polarity of the surface charge is very clear: if the polarity of the voltage response is in the 

opposite sense to the pressure response (i.e. a more positive pressure difference yields a more 

negative voltage difference relative to a common reference pressure and voltage at one end of 

the sample) then the surfaces are negatively charged, and vice-versa. This allows the iso-

electric point (IEP) to be accurately determined even when the zeta potential is close to zero. 

Figure 4 (c, d) shows typical plots of the stabilized voltage plotted against the corresponding 

stabilized pressure difference from each pair of PS experiments for the same electrolytes shown 

in Figs (a, b) respectively. The error bars represent the reproducibility of (typically) three repeat 

measurements at each flow rate.  The streaming potential coupling coefficient, obtained from 

a linear regression through the measured data (equation 3), is clearly negative in Fig 4c and 

positive in Fig. 4d and the linear regression is well constrained by the relatively small error 

bars associated with each value of stabilized voltage (Fig. 4a,b).  We calculate the associated 

zeta potential using equation (4). The uncertainty in the streaming potential coupling 

coefficient arising from the range of linear regressions that can be forced through the stabilized 

voltage and pressure data was used to determine the associated uncertainty in zeta potential 

reported in the following sections. 

Impact of Ca, Mg and SO4 concentration on zeta potential 

We begin by reporting experiments in which the concentration of each PDI was systematically 

varied in pre-equilibrated 0.05M NaCl electrolytes (NaCl-EQ).  Figure 5 shows the zeta 

potential as a function of calcium, magnesium and sulfate concentration. We plot concentration 

as pPDI. Note that in all cases the lowest concentration (highest pPDI) investigated corresponds 

to the equilibrated concentration in the NaCl-EQ electrolyte.  We notice first that a linear 

regression provides an excellent fit to the data for each PDI (R2 >0.98) and that the gradient of 

the regression for Ca and Mg is identical within experimental error (-5.10 ± 0.47 mV/decade).   
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Moreover, the zeta potential is negative at high pCa or pMg (i.e. low Ca or Mg concentration), 

becomes less negative with decreasing pCa or pMg, and becomes positive at low pCa or pMg.  

The IEP (defined as pPDI) is identical for Ca and Mg (pPDI = 0.60±0.03) within experimental 

error. However, the behaviour of SO4 is very different.  The zeta potential remains negative 

regardless of pSO4 and becomes increasingly negative with decreasing pSO4 (i.e. increasing 

SO4 concentration). Moreover, the gradient of the linear regression that best fits the data is 

much smaller than that observed for Ca and Mg (1.9 ±0.3 mV/decade). These results suggest 

that Ca and Mg behave almost identically as PDIs at room temperature and can have a 

significant impact on zeta potential, yielding positive zeta potential at pPDI < 0.60. However, 

the zeta potential is much less sensitive to pSO4.   

Impact of varying the concentration of NaCl 

Figure 6 shows the zeta potential as a function of Ca concentration for each of the three NaCl 

concentrations investigated (Figure 6a), and as a function of SO4 concentration for two of the 

NaCl concentrations investigated (Figure 6b). Considering first the impact of Ca concentration, 

we again find that a linear regression provides an excellent fit to the data for each value of 

NaCl concentration (R2 > 0.98) and that the gradient of the linear regression decreases with 

increasing NaCl concentration (Figure 6c). Thus, the zeta potential becomes less sensitive to 

pCa as the NaCl concentration increases.  In all cases, the zeta potential is negative at high pCa 

(i.e. low Ca concentration), becomes less negative with decreasing pCa, and becomes positive 

at low pCa.  The IEP (defined as pCa) decreases with increasing NaCl concentration although 

the change only exceeds experimental error for the lowest NaCl concentration investigated 

(Figure 6c). Considering next the impact of SO4 concentration, we observe similar behaviour. 

A linear regression again provides an excellent fit to the data, and the gradient of the regression 

decreases with increasing NaCl concentration (Figure 6b). However, the zeta potential remains 

negative over the range of pSO4 investigated.   
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Effect of varying multiple PDIs 

In this section, we report measurements of zeta potential using electrolytes containing all three 

PDIs (Ca, Mg, and SO4) at the concentrations found in typical formation brine (FMB; Table 2) 

and seawater (SW; Table 2).  The formation brine yields a positive zeta potential, which is the 

same within experimental error as the zeta potential obtained by adding a comparable amount 

of Ca to 2M NaCl electrolyte (see the filled square in Fig. 5).  The natural seawater yields a 

negative zeta potential, which is more negative than the zeta potential obtained by adding a 

comparable amount of Ca to 0.05M NaCl electrolyte (see the open square in Fig. 5).  Thus the 

zeta potential in subsurface saline brine appears to be controlled primarily by the Ca content, 

with Mg and SO4 playing a minor role; in contrast, the presence of SO4 in seawater leads to a 

more negative zeta potential. 

We also investigate the effect of diluting seawater and adding SO4 to seawater.  Both of these 

approaches to modifying the brine injected into carbonate oil reservoirs have been suggested 

to yield enhanced oil recovery (Zhang and Austad, 2006; Yousef et al. 2011). In the 

experiments conducted here, seawater (SW) was diluted twice (1/2SW), ten times (1/10SW) 

and twenty times (1/20SW), and SO4 was added to yield twice (2SW), three times (3SW) and 

four times (4SW) the natural seawater concentration.  In all cases, the measured zeta potential 

is negative (Figure 7a); however, the least negative (or smallest in magnitude) zeta potential is 

observed for seawater, and the zeta potential becomes increasingly negative (and larger in 

magnitude) as the seawater is diluted or SO4 is added.  The zeta potential increases in 

magnitude with both increasing and decreasing total ionic strength (Figure 7b); the ionic 

strength increases as SO4 is added, but decreases as the seawater is diluted.   

Effect of sample preparation 

Many experimental studies use a limited number of samples that are cleaned before each 

experiment. However, none have confirmed that the typical laboratory cleaning protocol 
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(described here in the methodology) restores the zeta potential of natural carbonates to a 

consistent and repeatable value for a given electrolyte. To confirm the repeatability of zeta 

potential measurements obtained using the SPM, and determine the effect of sample cleaning, 

the zeta potential for three selected fresh samples was initially measured using 0.05M NaCl-

EQ electrolyte (circles in Fig. 8). The samples were then used in experiments in which the Ca 

or Mg concentration was increased (triangles in Fig. 8; these data are also shown in Fig. 5).  

The samples were then cleaned using a standard laboratory cleaning protocol and the zeta 

potential was measured again (diamonds in Fig. 8). Finally the samples were cleaned using the 

enhanced cleaning protocol reported here (squares in Fig. 8). It is clear that the standard 

cleaning procedure fails to return pMe (representing the Ca + Mg concentration) or zeta 

potential to their original fresh values after the samples are exposed to elevated PDI 

concentrations. It is important to use the enhanced cleaning procedure reported here to flush 

PDIs from the mineral surfaces and return the zeta potential to its pristine value. 

Discussion 

Comparison with previous studies of the effect of PDI concentration on zeta 

potential in natural and synthetic calcite/carbonates 

We have demonstrated here that Ca and Mg change the zeta potential of intact natural limestone 

samples, causing a linear decrease in the magnitude of the negative zeta potential with 

increasing concentration (expressed as pPDI), and causing polarity inversion to positive zeta 

potential at high concentration; moreover, the two PDIs behave identically within experimental 

error.  Similarly, SO4 changes the zeta potential of natural limestone, causing a linear increase 

in the magnitude of the negative zeta potential with increasing concentration (expressed as 

pPDI), but the gradient of the linear regression that best fits the data is lower than that of the 

cations. We have also demonstrated that the gradient of the zeta potential with respect to pCa 
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and pSO4 decreases with increasing NaCl concentration.  The relationship between zeta 

potential and pPDI is linear across the entire range of pPDI investigated. 

No previous studies have determined the relationship between zeta potential and pMg, but 

several have reported a linear relationship between zeta potential (or its proxy, electrophoretic 

mobility) and pCa as observed here (e.g. Foxall et al., 1979; Thompson and Pownall, 1989; 

Pierre et al. 1990).  However, these studies were conducted using electrolytes of much lower 

ionic strength than those considered here (e.g. Fig. 9a).  Other studies have observed a non-

linear relationship between zeta potential and pCa (e.g. Cicerone et al. 1992; Chen et al., 2014). 

Linear behaviour is expected if the calcite surface behaviour is Nernstian and the lattice ions 

Ca and CO3 are the PDIs, and the electrical double layer is described by the Gouy-Chapman-

Grahame model (e.g. Hunter, 1981). Under these circumstances, the gradient of the zeta 

potential with respect to pPDI can be expressed as (e.g. Foxall et al., 1979) 

 

𝑑𝑑𝜁𝜁
𝑑𝑑𝑑𝑑𝛥𝛥𝑑𝑑𝑑𝑑

�
𝜁𝜁⟶0

=  
−2.303 𝑘𝑘𝑘𝑘𝑧𝑧𝑧𝑧

�1 + 𝐶𝐶𝑑𝑑
𝐶𝐶𝑠𝑠
� exp(𝜅𝜅Δ)

 (5) 

 

where k is Boltzmann’s constant, T is the temperature, z is the valence of the PDI, e is the 

charge on an electron, Cd and Cs are the capacitance per unit area of the diffuse and Stern layers 

respectively, κ is the inverse Debye length, and ∆ is the distance of the shear plane from the 

Stern plane.  For low zeta potential, Cd is given approximately by κε where ε is the permittivity. 

Cicerone et al. (1992) argued that the relationship between zeta potential and pPDI is linear 

only close to the IEP; away from the IEP, zeta potential values level off, because the Stern 

layer capacitance Cs varies, or because the Gouy-Chapman-Grahame model breaks down. We 
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do not observe this levelling off, despite the broad range of pCa values investigated. Equation 

5 can be used to fit our experimental data for pCa (and pMg).  However, the decrease in gradient 

with increasing NaCl concentration can only be matched by adjusting the Stern capacitance 

(see Table 3; these values are discussed in more detail in the next section). Large values of 

Stern capacitance are required in the range 1.13-2.75 Fm-2, which are at least twice those 

determined previously, but these values were obtained at considerably lower ionic strength 

(Foxall et al., 1979; Thompson and Pownall, 1989; Cicerone et al., 1992). For the 0.05M NaCl 

electrolyte (the lowest concentration investigated), the predicted diffuse layer thickness at the 

ionic strength corresponding to the IEP (0.8M) is very small (the Debye length is 0.342nm). 

Given that the calcium ion has a hydrated diameter of 0.59nm (Diebler et al, 1969), it is not 

clear whether such a diffuse layer thickness is physically meaningful as it cannot accommodate 

even a single calcium ion. Vinogradov et al. (2010) suggested that the diffuse layer thickness 

decreases until it reaches the radius of the hydrated counter-ion, and then remains constant 

regardless of increasing ionic strength. However, their model does not account for changes in 

the Stern layer capacitance with changing ionic strength, and cannot explain the data reported 

here. 

Figure 9b shows the effect of varying SO4 concentration, comparing our data obtained for the 

0.5M NaCl electrolyte against that of Zhang and Austad (2006). These are the only comparable 

data for SO4 reported previously. Both datasets yield a linear relationship between zeta 

potential and pSO4, although the gradient of the linear regression is smaller for the Zhang and 

Austad data than that obtained here. As discussed in the next section, we suggest this is a 

consequence of the differing measurement methods: Zhang and Austad used the EPM, in 

contrast to the SPM used here. Moreover, extrapolating the linear regression in each case to 

obtain the IEP suggests very different values in terms of pSO4.   
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In the single PDI experiments reported here (Figs. 5, 6), precipitation of salts such as CaSO4 

and MgCO3 in the pore-space was prevented because each PDI (Ca, Mg or SO4) was added to 

NaCl-EQ electrolyte containing only trace or zero concentration of cations or anions other than 

Na and Cl. Moreover, in the experiments utilising seawater (SW) and formation brine (FMB), 

we saw no evidence that these salts were deposited. There was no decrease in the concentration 

of Ca, Mg and SO4 ions in the equilibrated electrolyte within experimental error, inconsistent 

with the deposition of salts containing these ions. Indeed, when adding SO4 we observed a 

small increase in Ca concentration during equilibration. We also observed no decrease in 

permeability, or increase in sample mass, within experimental error, and no solids were 

observed in the effluent electrolyte. Moreover, we note that the zeta potential obtained using 

FMB was the same within experimental error as the zeta potential obtained by adding a 

comparable amount of Ca to 2M NaCl electrolyte, suggesting the presence of Ca, Mg and SO4 

did not cause any compositional change at the mineral surfaces. 

 

Effect of electrokinetic measuring technique 

A common difference between our data and that reported in previous studies is that we use the 

SPM to obtain the zeta potential, whereas previous studies have primarily used the EPM.  

Several studies have suggested that the two methods may yield different results (e.g. Vernhet 

et al, 1994; Delgado et al., 2007). To test this, we compare zeta potential measurements 

obtained using both methods on the Portland Limestone, varying pCa in 0.05M NaCl 

electrolyte (Figure 10). We find that the IEP is identical within experimental error, although 

uncertainty in the IEP derived from the EPM data is significantly greater than for the SPM data, 

because positive and negative values of zeta potential were observed across a range of pCa 

(0.71-0.50).  There was no such ambiguity in the SPM data.  
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Both methods also yield a linear relationship between zeta potential and pCa, although the 

gradient of the linear regression obtained from the EPM data  is twice that obtained from the 

SPM data (-10.45±0.55 mV/decade for the EPM versus -5.10 ± 0.47 mV/decade for the SPM).  

We fit the EPM data using equation 5 and the values reported in Table 3, assuming ∆ = 0 (i.e. 

assuming the shear plane corresponds with the Stern plane) in common with previous studies 

using the EPM on calcite (Foxall et al., 1979; Thompson and Pownall, 1989; Pierre et al. 1990; 

Cicerone et al., 1992).  We then fit our SPM data using the same parameters, but adjusting ∆ 

to obtain a match, yielding a value of 0.245nm.  This is a very small offset for the shear plane, 

and reflects the very small thickness of the diffuse layer at the IEP as discussed in the previous 

section. Nonetheless, the difference in gradient is consistent with that expected when there are 

differences in the relative position of the shear plane in natural porous media and powder 

suspensions. The complex geometry of natural pore-spaces, including the presence of sharp-

angled corners and crevices, means that the effective location of the shear plane lies further 

from the mineral surface than in powder suspensions. SPM measurements are more relevant 

when quantifying the zeta potential of natural samples, because the measurements reflect the 

mineral surfaces that predominantly interact with the adjacent fluids. 

 

Effect of NaCl concentration on the IEP  

No previous studies have determined the IEP for natural and artificial calcite expressed as pMg, 

but several have reported values of the IEP expressed as pCa (Table 4).  The values observed 

are typically much higher (i.e. the IEP was observed at lower calcium concentration) than those 

determined here.  Only Chen et al. (2014) have observed the IEP at a comparably low value of 

pCa; they investigated natural limestone consistent with our study, but employed the EPM 

method and DIW electrolyte, rather than the SPM and NaCl electrolytes used here.  It is not 
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clear why the IEP for natural Portland limestone occurs at such low values of pCa compared 

to the majority of previous studies.  Pierre et al. (1990) suggested that the IEP is governed by 

the relative magnitude of the equilibrium constants KCa and KCO3 governing the adsorption of 

Ca and CO3 ions on the calcite mineral surface.  The IEP shifts to lower pCa if KCO3 > KCa ; 

that is, if the calcite surfaces show greater affinity for CO3 than Ca.  Pierre et al. (1990) found 

the IEP differed for synthetic and natural calcite and argued that this reflected the differing 

affinity for Ca and CO3.   

The Pierre et al. model suggests that the natural Portland limestone investigated here has a 

much greater affinity for CO3 than Ca.  Thus, the difference may be related to sample type: 

most previous studies used synthetic calcite or natural chalk, rather than the natural limestone 

used here.  It may also be related to the pH and/or the establishment of the initial equilibrium 

conditions.  Thompson and Pownall (1989) and Cicerone et al. (1992) conducted experiments 

over the pH range 7-11 and 8.5-10.5 respectively; the higher pH values do not represent 

equilibrium conditions.  Zhang et al. (2006) and Chen et al. (2014) kept the pH fixed at 8.4 and 

8 respectively, but do not report the pre-equilibration steps used here.  The pH was fixed in our 

experiments by the procedure used to ensure the sample was in equilibrium with the electrolyte 

prior to starting the experimental measurements. 

We have also found that the IEP for Portland limestone decreases with increasing NaCl 

concentration over the range 0.05M – 0.5M.  Previous studies have argued that the IEP is 

independent of NaCl concentration, as Na and Cl are indifferent ions to the calcite surface (e.g. 

Pierre et al., 1990).  We suggest that the difference in IEP between the 0.05M and 0.5M/2M 

NaCl electrolytes observed here is due to the reduced ability of the calcium ions to interact 

with the calcite surface, owing to (i) the collapse of the double layer and (ii) increasing 

occupancy of the diffuse part of the double layer by hydrated sodium ions, which have a smaller 

radius than the calcium ions at 0.47nm (Vinogradov et al., 2010).  However, we note this 
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hypothesis fails to explain the data of Chen et al. (2014), as they observed a comparable IEP to 

ours at much lower NaCl concentration.   

Implications for controlled salinity waterflooding (CSW) 

We have shown that the zeta potential of intact natural limestone samples is positive at elevated 

Ca and Mg concentration below the IEP (pCa = pMg = 0.63 – 0.41 as discussed above) and 

becomes negative as the Ca and or Mg concentration is decreased; it also becomes increasingly 

negative as the SO4 concentration is increased. We have also shown that the zeta potential of 

natural limestone saturated with formation brine, rich in Ca ions, is positive, consistent with 

previous studies (Jackson and Vinogradov, 2012; Chen et al., 2014; Mahani et al., 2015; see 

Figure 9a). In such formations, an attractive electrostatic force will act between the positively 

charged mineral surfaces and the negatively charged oil-brine interface, promoting wettability 

alteration to oil-wet conditions (e.g. Buckley et al., 1989).  However, if the concentration of Ca 

or Mg in the injection brine during controlled salinity waterflooding (CSW) is decreased below 

the IEP, the zeta potential changes polarity to negative leading to electrostatic repulsion, which 

may lead to wettability alteration to more water-wet conditions, releasing previously adsorbed 

crude oil from the calcite mineral surfaces and therefore improving oil recovery. It has been 

shown by Jackson and Vinogradov (2012) that more water-wet conditions in natural carbonate 

samples correlate with a more positive zeta potential. 

Previous reported values of the IEP expressed as pCa suggest that considerable reduction in Ca 

concentration is required to change the polarity of calcite (Table 4; see also Fig. 9a); however, 

our results suggest that reducing the concentration of Ca in the injection brine (selectively or 

by bulk dilution) by a factor of only 2 relative to the formation brine can lead to inversion of 

the surface charge.  Injection of seawater will also cause inversion of the calcite surface charge, 

because of the lower Ca concentration and higher SO4 concentration.  This can explain why 

improved recovery in carbonates during CSW has been observed in response to relatively 
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minor levels of injection brine dilution, compared to sandstones in which improved recovery 

is only observed for very low salinity injection brines (<0.05M; see Jackson et al., 2015 for a 

review). 

Previous studies have also suggested that improved oil recovery in corefloods or spontaneous 

imbibition (SI) experiments can be observed by either diluting seawater as the injection fluid 

(Yousef et al., 2011), or adding SO4 to seawater as the imbibing fluid (Zhang and Austad, 

2006).  In one case, the total ionic strength is simply decreased; in the other, the ionic strength 

is increased but the relative concentration of ions is changed. Here we show the change in zeta 

potential is almost identical; diluting seawater and adding SO4 causes the negative zeta 

potential to increase in magnitude i.e. become more negative (Figure 7). As discussed above, 

this can cause wettability alteration to more water-wet conditions and release previously 

trapped oil in coreflooding experiments, or cause increased imbibition in SI experiments. 

Simple dilution causes expansion of the double layer and hence a more negative zeta potential 

(Ligthelm et al, 2009; Nasralla and Nasr-El-Din, 2014); addition of SO4 yields a more negative 

zeta potential by increasing the negative charge on the calcite mineral surface (e.g. Fig. 5). 

Figure 11 shows the incremental recovery observed by diluting seawater, or adding SO4 to 

seawater, in the experiments reported by Yousef et al. (2011) and Zhang and Austad (2006), 

plotted against the change in zeta potential we observed here by modifying the composition of 

seawater in the same way. There is a clear correlation between increasingly negative zeta 

potential change and improved recovery, irrespective of how the seawater composition is 

changed. We suggest that a similar change in zeta potential occurred during the experiments of 

Yousef et al. (2011) and Zhang and Austad (2006), but was unrecorded because the zeta 

potential was not measured.  However, we note that the samples and experimental methods and 

conditions are inconsistent across the three sets of experimental results correlated in Figure 11. 

Future work relevant to CSW should focus on testing the link between brine composition, zeta 
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potential and increased oil recovery using integrated experiments with consistent materials and 

experimental conditions. 

One final point relevant to CSW relates to the repeatability of laboratory coreflooding 

experiments. In many studies, a small number of samples are used repeatedly and are cleaned 

in between experiments. The cleaning protocol typically focuses on ensuring that crude oil is 

removed from the pore-space. However, we show here that standard cleaning protocols does 

not restore the zeta potential to its pristine state. This may impact on how the surfaces interact 

with PDIs in the aqueous phase and polar species in the oil phase, during aging and subsequent 

waterfloods. If the zeta potential is not returned to its pristine state then the experiments may 

not be repeatable. We recommend the zeta potential is measured on intact samples before, 

during and after controlled salinity waterflooding experiments to constrain the behaviour of 

this key surface property.   

Conclusions 

We report here measurements of the zeta potential on intact Portland limestone obtained 

primarily using the streaming potential method (SPM), supplemented by a smaller number of 

measurements of the more widely applied electrophoretic mobility method (EPM). The 

experiments were designed to determine how the zeta potential is affected by the concentration 

of Ca, Mg and SO4 over the range found in natural brines, and also how the zeta potential is 

affected by the concentration of these potential-determining ions in the presence of Na and Cl 

over the range found in natural brines. Our approach contrasts with many previous studies 

because the experimental method is specifically designed to ensure the equilibrium achieved 

between rock and electrolyte is consistent with natural processes. The results are directly 

applicable to a wide variety of natural systems including carbonate oil reservoirs and deep 

saline aquifers. The key findings can be summarized as follows: 
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• Ca and Mg change the zeta potential of intact natural limestone samples, causing a 

decrease in magnitude of the negative zeta potential with increasing concentration and 

causing polarity inversion to positive zeta potential at high concentration.  We show for 

the first time that the two PDIs behave identically within experimental error, and the 

zeta potential varies linearly with both pCa and pMg over the broad range found in 

natural brines. 

• SO4 changes the zeta potential of natural limestone, causing an increase in the 

magnitude of the negative zeta potential with increasing concentration, and the zeta 

potential varies linearly with pSO4 over the broad range found in natural brines.  

However, the gradient of the liner regression is lower than for Ca and Mg.   

• We show for the first time that the IEP (expressed as pCa or pMg) decreases with 

increasing NaCl concentration.  We report considerably lower values of IEP than most 

previous studies of calcite and chalk, and suggest that this may result from differences 

in the mineral surfaces (synthetic and natural calcite, natural chalk) compared to the 

natural limestone investigated here, and the careful method used to establish the initial 

equilibrium conditions between sample and electrolyte.  We recommend this method 

in all studies of natural carbonates. 

• We show for the first time that the IEP (expressed as pCa) obtained using SPM and 

EPM measurements on the same Portland Limestone are identical within experimental 

error, but the error is much larger for the EPM method.  Both methods show a linear 

relationship between zeta potential and pCa, but the gradient is a factor of two larger 

for the EPM method, consistent with a change in the location of the shear plane.  SPM 

measurements are more relevant when quantifying the zeta potential of natural porous 

samples, because the measurements reflect the mineral surfaces that predominantly 

interact with the adjacent fluids. 
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• Standard laboratory cleaning protocols do not return carbonate mineral surfaces to a 

repeatable ‘pristine’ state, which may affect the repeatability of subsequent experiments 

on the same sample, including the coreflooding/spontaneous imbibition experiments 

used to investigate controlled salinity waterflooding. 

• Changes in wettability and oil recovery during controlled salinity waterflooding are 

consistent with the changes in zeta potential observed here.  Carbonates saturated with 

formation brine rich in Ca are likely to have positively charged mineral surfaces 

(electrostatic attraction), encouraging wettability alteration to oil-wet conditions.  

Injecting seawater or diluted formation brine can reduce the Ca and/or Mg 

concentration below the IEP; note that the lower IEP observed here suggests that much 

less dilution is required than predicted previously. This yields negatively-charged 

mineral surfaces (electrostatic repulsion), increasing recovery by releasing previously 

trapped oil. Diluting seawater, or adding SO4, both yield increasingly negative zeta 

potential, consistent with experimental studies that report improved recovery in both 

cases.  
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Figure 1. Zeta potential as a function of pH reported on various artificial and natural calcite 

and limestone samples for various electrolyte compositions and ionic strength.  Unless 

otherwise stated, measurements were obtained using the electrophoretic mobility method 

(EPM). Vdovic (2001) (Ref. 1) used synthetic calcite (labelled 1), natural limestone (2), and 

lake sediments (3) in 10-3M NaCl electrolyte. Cicerone et al. (1992) (Ref. 2) used synthetic 

calcite in 0.03M KCl (4), 0.001M CaCl2 (5) and 0.01M CaCl2 (6) electrolytes, and natural 

calcite in 0.03M KCl electrolyte (7).  Thompson and Pownall (1989) (Ref. 3) used the 

streaming potential method (SPM) on synthetic calcite in 5x10-4M CaCl2 (8) and 0.005M NaCl 

(9) electrolytes. They did not correct for surface electrical conductivity.  Sondi et al. (2009) 
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(Ref. 4) used natural calcite in 0.001M NaCl electrolyte (10). Somasundaran and Agar (1967) 

(Ref. 5) used the SPM on calcite in deionized water after no mixing (11), mixing for one week 

(12), and mixing for two months (13). They did not correct for surface electrical conductivity.  

Heberling et al. (2011) (Ref. 6) used the SPM on calcite in non-equilibrated 0.01M NaCl and 

0.005M CaCl2 electrolytes (14), and the EPM on calcite in 0.1M NaCl in equilibrium with 

p(CO2)=1 bar (15).  They did not correct for surface electrical conductivity.   
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Figure 2. Calcite-water-CO2 equilibrium for I = 0.05 M NaCl. (a) Calcium concentration and 

pH measured here as a function of time during equilibration of the natural Portland rock 

samples with DIW. (b) Carbon speciation into H2CO3, HCO3
-, and CO3

2- as a function of pH 

(modified after Stumm and Morgan, 1996). 

 

Table 1. Properties of Portland rock samples used in this study. 

Sample Porosity (%) Permeability (mD) Formation Factor (F) 

P1 20 3 21.3 

P2 19.5 2.2 22.4 

P3 21 3.5 20.6 
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Table 2. Composition of the synthetic Formation Brine (FMB) and natural seawater (SW) and 

derived compositions used in this study.  The seawater was twice (½SW), ten times (1/10SW), 

and twenty times (1/20SW) diluted, and also had SO4 added to yield twice (2SW), three times 

(3SW), and four times (4SW) the natural concentration. 

Concentration 

(M) 
FMB SW 1/2SW 1/10SW 1/20SW 2SW 3SW 4SW 

Na 2 0.5 0.25 0.05 0.025 0.5 0.5 0.5 

Ca 0.42 0.012 0.006 0.0012 0.0006 0.012 0.012 0.012 

Mg 0.07 0.05 0.025 0.007 0.00025 0.05 0.05 0.05 

SO4 0.0033 0.033 0.016 0.0033 0.0016 0.066 0.099 0.13 

pH 7.15 8 8 8 8 8 8 8 

Total 2.49 0.615 0.107 0.061 0.0107 0.648 0.681 0.715 
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Figure 3. Experimental setup for measuring the streaming potential, which consists of a 

pressure vessel (core holder), electrolyte reservoirs, pump, flow lines (solid lines) and electrical 

connections (dashed lines).  The oil column in the electrolyte reservoirs serves to isolate the 

electrolyte from the atmosphere (closed-system).  The flow valves V1 – V6 allow the pump the 

flow electrolyte through the sample in opposing directions.  Modified from Jaafar et al. (2009). 
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Figure 4. Typical experimental results used to determine the streaming potential coupling 

coefficient.  Plots (a) and (b) show the voltage and pressure variation in experiments at a given 

flowrate using (a) low ionic strength 0.05M NaCl-EQ electrolyte and (b) high ionic strength 

synthetic formation brine (FMB).  The horizontal dashed lines show the stabilized voltage and 
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pressure, and the error bar denotes the spread in these values.  Plots (c) and (d) show the 

stabilized voltage plotted against stabilized pressure for the same electrolytes shown in (a) and 

(b).  The gradient of a linear regression through these data yields the streaming potential 

coupling coefficient.  

 

Figure 5. Effect of Ca, Mg and SO4 concentration (expressed as pPDI) in 0.05M NaCl 

electrolyte on the zeta potential of Portland limestone. The pH varied in the range 7.2-8±0.3 

for the Ca and Mg effluent electrolytes, and 7.9-8±0.3 for the SO4 effluent electrolytes.  Also 

shown are the results for the synthetic formation brine (FMB) and natural seawater (SW) 

plotted as a function of pCa + pMg. 
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Figure 6. Effect of NaCl concentration on the relationship between PDI concentration and zeta 

potential of Portland limestone.  (a) Effect of Ca concentration (expressed as pCa) in three 

different NaCl electrolytes (0.05M, 0.5M and 2M) on the zeta potential of Portland limestone, 

pH in the range 7.2-8±0.3. (b) Effect of SO4 concentration (expressed as pSO4) in two different 

NaCl electrolytes (0.05M, 0.5M) on the zeta potential of Portland limestone, pH in the range 

7.9-8.1±0.3. (c) Effect of NaCl concentration on the IEP (expressed as pCa) and zeta potential 

sensitivity to pCa (expressed as the gradient of the linear regressions shown in (a)).   
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Figure 7. (a) Relationship between zeta potential and electrolyte compositions derived from 

seawater (SW), pH=8±0.3. (b) Zeta potential of the same compositions plotted as a function of 

ionic strength (I). 
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Figure 8. Zeta potential as a function of Ca + Mg concentration (expressed as pMe) for fresh 

samples (circles), pH = 8.2±0.2, experiments at elevated Ca and Mg concentration (triangles), 

pH in the range 7.2-7.5±0.3, after standard cleaning with methanol (diamonds), and after the 

enhanced cleaning with DIW used in this study (squares), pH = 8.2±0.2.   
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Figure 9. Comparison of the data obtained here and previously published measurements for the zeta 

potential sensitivity to (a) Ca and (b) SO4.  Errors are shown where reported by the authors.  Thompson 

and Pownall (1989) used the SPM method, synthetic calcite and 0.002M NaCl electrolyte over the pH 

range 7-11.  All other published studies used the EPM method.  Cicerone et al. (1992) used synthetic 

calcite and 0.03M KCl electrolyte over the pH range 8.5-10.5 (error not reported).  Zhang et al. (2006) 

used powered Stevns Klint chalk and 0.573M NaCl electrolyte at pH = 8.4 (error not reported).  These 
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conditions are the most similar to those used here.  Chen et al. (2014) used powdered natural limestone 

and DIW at pH = 8 (error not reported).  The various labelled diamonds in (a) show data obtained using 

natural or synthetic formation brine (FMB). 

 

 

 

Table 3.  Values of the Stern layer capacitance and shear plane location used to match the 

experimental data using equation (5).  The value of Cs was identified first for the EPM data 

using ∆ = 0, consistent with previous studies.  The value of Cs was then fixed for the SPM data 

at the same NaCl concentration matched by adjusting ∆ to account for the complex pore-space.  

It was not possible to match the other NaCl concentrations tested without further adjusting Cs.  

The shear plane location is not expected to be significantly affected by the increase in ionic 

strength. 

Method NaCl 

concentration (M) 

Stern Layer 

capacitance Cs (F/m2) 

Shear plane 

location ∆ (nm) 

EPM 0.05 1.13 0 

SPM 0.05 1.13 0.245 

SPM 0.5 1.76 0.245 

SPM 2 2.75 0.245 
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Figure 10. Comparison between zeta potential as a function of pCa obtained using the SPM 

and EPM method for the same natural Portland limestone and 0.05M NaCl electrolyte, pH = 

7.2-8±0.3. 
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Table 4.  Compilation of reported IEP values, including the electrolyte, type of calcite, pCa and 

whether the IEP was directly measured or extrapolated. 

Reference Background 

Electrolyte 

Calcite IEP, pCa Determination 

Somasundaran 

and Agar (1967) 

DIW Synthetic 3.72 extrapolated 

Fuerstenau et al. 

(1968) 

10-3M (SiO2/Na2O) Synthetic 4.1 extrapolated 

Mishra (1978) 2x10-3M NaClO4 Natural 3.09 extrapolated 

Foxall et al. (1979) 0.01-.15M NaCl Synthetic 4.4 extrapolated 

Amankonah and 

Somasundaran 

(1985) 

2x10-3M KNO3 Synthetic 4.08 extrapolated 

Thompson and 

Pownall (1989) 

2x10-3-10-2M 

(NaCl/HCl/NaOH) 

Synthetic 2.02 direct 

Thompson and 

Pownall (1989) 

2x10-3-10-2M 

(NaCI/NaHCO3/HCl

/NaOH) 

Synthetic 1.92 direct 

Thompson and 

Pownall (1989) 

2x10-3-10-2M 

(NaCl/CaCl2/HCl/N

aOH) 

Synthetic 2.16 direct 

Thompson and 

Pownall (1989) 

2x10-3-10-2M 

(NaCl/CaCl2/HCl/N

aOH) 

Synthetic 3.4 direct 
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Thompson and 

Pownall (1989) 

2x10-3-10-2M 

(NaCl/H2CO3) 

Synthetic 4 direct 

Thompson and 

Pownall (1989) 

2x10-3-10-2M 

(NaCl/NaHCO3/H2

CO3) 

Synthetic 3.8 direct 

Thompson and 

Pownall (1989) 

2x10-3-10-2M 

(NaCl/NaHCO3/Ca

(OH)2) 

Synthetic 3.8 direct 

Pierre et al. (1990) 10-2M NaCl Synthetic 3.37 direct 

Pierre et al. (1990) 10-3-10-1M NaCl Natural 4 direct 

Pierre et al. (1990) 0.03M NaCl 

(constant pH=8.3) 

Natural 2 direct 

Pierre et al. (1990) 10-2M NaCl 

(constant pH=8.5) 

Synthetic 3.9 direct 

Huang et al. 

(1991) 

DIW Synthetic 4.35 extrapolated 

Cicerone et al. 

(1992) 

0.03M KCl Synthetic 2.7 direct 

Chen et al. (2014) DIW Natural 0.2-0.48 extrapolated 
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Figure 11. Comparison of the change in incremental oil recovery and zeta potential referenced 

to that of seawater for both controlled salinity (CSW) approaches: seawater dilution (Yousef 

et al, 2011) and sulfate addition to seawater (Zhang and Austad, 2006). 
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