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ZETA REGULARIZED PRODUCTS

J. R. QUINE, S. H. HEYDARI AND R. Y. SONG

Abstract. If Xk is a sequence of nonzero complex numbers, then we define the
zeta regularized product of these numbers, fTjt ̂ -fc > t0 t>e exP(_Z'(0)) where
Z(s) = Yï.kLo^kS ■ We assume that Z(s) has analytic continuation to a neigh-
borhood of the origin. If Xk is the sequence of positive eigenvalues of the
Laplacian on a manifold, then the zeta regularized product is known as det' A ,
the determinant of the Laplacian, and rifcA _ ^) is known as the functional
determinant. The purpose of this paper is to discuss properties of the deter-
minant and functional determinant for general sequences of complex numbers.
We discuss asymptotic expansions of the functional determinant as X —> -oo
and its relationship to the Weierstrass product. We give some applications to
the theory of Barnes' multiple gamma functions and elliptic functions. A new
proof is given for Kronecker's limit formula and the product expansion for
Barnes' double Stirling modular constant.

Introduction

If Xk is a sequence of nonzero complex numbers, then we define the zeta reg-
ularized product of these numbers, Y\zkXk , to be exp(-Z'(0)) where Z(s) -
YlT=oKS • ^e assume that Z(s) has meromorphic continuation with at most
simple poles, to a half-plane containing the origin, and is analytic at the origin.
We call such a sequence zeta regularizable. If Xk is the sequence of positive
eigenvalues of the Laplacian on a manifold, then the zeta regularized product
is known as det' A, the determinant of the Laplacian. This definition was in-
troduced by Ray and Singer [RS]. A study of some of the extremal properties
of the determinant as a function on the space of metrics on surfaces was done
in [OPS].

For these sequences of eigenvalues, the functional determinant \[zk(Xk - %■)
was discussed by Voros [Vo] and its relationship to the Weierstrass product
established. In addition it was shown that by a representation of the functional
determinant as a Laplace integral one could obtain an asymptotic expansion
for it as X —► -co. Voros illustrated his theory of zeta regularized products by
several examples and used it to derive formulas for the functional determinant
on a closed Riemann surface of genus  g > 1   in terms of the Selberg zeta
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214 J. R. QUINE, S. H. HEYDARI AND R. Y. SONG

function. He also illustrated its application to the theory of Barnes' double
gamma function with real zeros.

The sequence of eigenvalues of the Laplacian on a Riemann surface with
metric is such that the trace of the heat kernel, Y,T=o e~Xk' » nas a ^uu asymptotic
expansion as t —> 0+ [MS, G]). This expansion is given in terms of the geometry
of the surface. The theory of Voros applies to more general sequences of positive
numbers such that the sum above has an asymptotic expansion as t —► 0+ .

The purpose of this paper is to extend the theory of Voros to more general
sequences of complex numbers. More care is needed in this situation because
the product depends on the choice of arg Xk . The number of applications of
the theory expands, however. The theory of multiple gamma functions with
complex zeros and their asymptotic expansions due to Barnes [Bl, B2, B3] as
well as parts of elliptic function theory may be considered as a special case of
the theory of zeta regularized products. It is possible, in addition, to study the
determinants the d/dz and d/d z operator on a genus 1 Riemann surface,
operators which have complex eigenvalues. The theory also provides an under-
standing of the functional equations for simple and multiple gamma functions,
the Dedekind eta function, and the Jacobi theta function.

Properties (1) and (2) below follow from the definition of zeta regularized
products. In Theorem 1, we show that if J2Xks is zeta regularizable, then so is
YH^k - X)~k . In Theorem 2, we establish that the relationship given by Voros
[Vo] between the zeta regularized and Weierstrass products holds for complex
sequences. Although the proof given by Voros can probably be extended to this
situation, our proof follows a different approach. Theorems 3 and 4 summarize
well-known results about the analytic extensions and asymptotic expansions of
zeta functions using a representation as Laplace type integrals of YH?=oe~Xk'
together with an asymptotic expansion of the latter as / -» 0+ .

Example 7 shows how Barnes' double gamma function is represented as a
zeta regularized product associated with the doubly indexed sequence Xmn =
mu + nv , m, n > 0. This follows closely Barnes' later approach to multi-
ple gamma functions [B3]. His earlier approach [Bl] was to define the double
gamma function as a Weierstrass product with an exponential factor, this fac-
tor being chosen to give the nicest functional equations (22). The definition
as a zeta regularized product gives these functional equations naturally using
property (2) of this product. The constants in the exponential factor before the
Weierstrass product are given by Theorem 2. Barnes called these modular con-
stants and defined them as constants in certain asymptotic expansions. Their
role is analogous to that of the Euler constant for the simple gamma function.
Theorem 2 shows they can also be described in terms of the finite parts and
residues at integer points of the zeta function of the sequence. We demonstrate
below the equivalence of these two descriptions in the case of the double gamma
function.

The methods described in Theorems 3 and 4 can be used to derive the asymp-
totic expansion at infinity of the double gamma function (32). The constant
term in this expansion, p2(u, v), is called the double Stirling modular constant.
Barnes gave an expression for it as a contour integral. Shintani [SI] gave an
expression for it as an infinite product (see equations (20) and (21)). His proof
depends on results from an earlier paper [S2]. We give a short, self-contained
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ZETA REGULARIZED PRODUCTS 215

derivation of this formula based on the theory developed here.
In Example 9 we show how the ideas used here can be used to give a new

proof of Kronecker's limit formula. See [SI] and the references given there
for other proofs of it. This formula can be used to give an expression for the
determinant of the Laplacian on a flat torus of modulus t . In Examples 10-13
we derive expressions for the Dedekind eta function and Jacobi theta function
as zeta regularized products, and derive an expression for a zeta regularized
determinant of J= (an operator with complex eigenvalues) on the torus. We
note the fact that, contrary to expectation, det' -¡^   det' J=   ^ det' -^ J= .

For other applications of these techniques, we note papers [QS and CQ].
In [QS] we derive an asymptotic expansion for a generalized factorial which
is related to the Kronecker limit formula. In [CQ] we provide factorizations
of riz^k _ ^) mt0 multiple gamma functions, where Xk is the sequence of
eigenvalues of the Laplacian or conformai Laplacian on an n sphere.

Main Theorems

Suppose Xk is a sequence of nonzero complex numbers such that

a - inf l s £ R Y2 \h I  * < °° f
k=0

is positive and finite. The zeta function YlT=oKS ~ ^(s) is defined and analytic
for Re 5 > a. If the sequence is zeta regularizable, then we define the zeta
regularized product

oo

k=0

to be exp(-Z'(0)). We remark that the definition of the zeta regularized prod-
uct depends on the choices of arg/l^ , although if a finite number of arguments
are changed by an integer multiple of 2n, the product will not change. In
general we will assume the set {argA¿.} is bounded. Since the series for Z(s)
converges absolutely, the product is the same for any rearrangement of the se-
quence.

Two properties of the zeta regularized product are easily established from the
definition. First, if a is any nonzero complex number, then

oo oo

(d nz^="z<o)ii^
A:=0 *=0

provided the arguments are chosen so that arg aXk = arg a + arg Xk . Secondly,
if Xk is the union of two sequences Xxk and X2k , renumbered in any way then

oo oo oo

(2) 11,** = II, 4 EL*
k=0 k=0        k=0

In principle, the properties are easy to use, but Z(0) must be determined
and care must be taken with arg/t,¿.. The examples will illustrate this.

For X ^ Xk we will also consider the shifted sequences, Xk - X, and the
associated zeta function, Z(s, -X) = J2T=o^k - ^)~s> which converges for
Res > a. In determining the choice of arg(A^ - X) from the choice of arg/lA ,
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216 J. R. QUINE, S. H. HEYDARI AND R. Y. SONG

we adopt the following convention: for \Xk\ large, arg^j. - X) is near arg 4
This will define the product unambiguously.

Theorem 1. If Xk is zeta regularizable, then so is Xk- X.
Proof. Let X be fixed. For \Xk\ sufficiently large, Taylor expansion gives

fs + j-\\(X^Jih-*-rs = Ks¿Z
7=0

Xk

Let h = [a] and define

(3) Gk(s) = (Xk-xys-Y,
7=0

's + j-l -(s+j) XJ.

We have |(JJ£5)| < (|s| + 1)A+1 (w+/_1) so

\Gk(s)\ =
j=h+\

s + j-l
j

x-{s+J)xJ

<(i5i + ir'iA-A+lir(*+l+s), m/i+1\x\* 1 -

ResNow for s in a compact set, \Xks\ = \Xk\~Res exp((aTgXk)(ln\s)) < Ci\Xk\
since {arg 4} is bounded so for \Xk\ sufficiently large,
(4) |G,(5)|<C2|A|A+1|4r(/!+1+Rei).

Now (4) shows that the function
oo

(5) F{s) = Y,Gk(s)
fc=0

converges absolutely and uniformly on compact subsets of Res > a - (h + 1)
to an analytic function of 5 . This open half-plane contains 5 = 0. By (3), for
Res > a we have

(6) F(s) = £(4-A)-S-E
k=0 7=0

s + j-\ Z(s + j)XJ.

Equation (6), then, gives us a meromorphic continuation of YlT=o^k - X) s,
to a half-plane containing 0.   D

We now establish that for a zeta regularizable complex sequence, the relation-
ship between the zeta regularized product and the Weierstrass product given by
Voros [Vo] holds. Recall that if h is an integer such that h + 1 > a we can
define the Weierstrass product

"w»)-nO-ç)"»Kç
7=0

where P¡,(x) = x + \ H-\~ T • At any 5o , we define the finite part of Z at
so, FPZ(so), to be the constant term in the Laurent expansion for Z at so .
Also let ResZ(so) denote the residue of Z at so • Note that ResZ(s0) = 0 if
So is not a pole.
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ZETA REGULARIZED PRODUCTS 217

Theorem 2. Suppose h is an integer with h + 1 > a, and that F has poles of
order at most 1 at integer points then

nff*~A) =e-^Wh(X)
where

Qh(X) = ¿ FPZ(j)*j + ¿ ResZ(y) ( 1 + \ + • • • + -^ y.
;=1 ^       7=2 V J      l/ J

Proof. From (3) and (5) above we have
OO        y-

no) = £
;,_n   >•

log(A^-A) + log4-FJ —
/c=0

hence
1FA(A) = exp(-F'(0)).

Now using (6) above we get

(7) F(0) = Z'(0,-A)-Z'(0)-¿^(\5)z(S + 7
h

(~xy.
s=0

To evaluate the derivative above, write Z(s + j) = Aj/s + Bj + 0(s) for 5 near
0. Then for ; ^ 1

^y{S+j) = ^-(-l)i+X (l+J(l + ^ + ... + _!_)) +(_1)7>1S^ + 0(S2)

Hence

is (71 sm*w+-"+¿ii+»-
If j =1, then

4:(~f\ds\ 1
Hence by (7)

-F'(0) = -Z'(0,-A) + Z'(0) + ¿^ + ¿4^1n + '-+717y
j=\   J j=2   J    K J '

and the theorem follows by exponentiating both sides.   D

The zeta function is easiest to study for a class of sequences that we will call
admissible. We will call the sequence Xk admissible if ( 1 ) the sequence lies in
the half-plane ReX > 0, (2) the function YlV=oe~lkt converges absolutely for
t > 0 and has a full asymptotic expansion YlT=o CUtJ" > Jo < j\ < jï <-> °° >
as t -» 0, and (3) lim^0E^=ole_/l*'l^ = ° for some ß > °- The sequences
we study below will be rotations of admissable sequences, i.e., of the form aXk
for an admissible sequence Xk .
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218 J. R. QUINE, S. H. HEYDARI AND R. Y. SONG

With the knowledge of the function Y,r=oe~Xkt > we can study the analytic
continuation of Z(s) for an admissible sequence. We first write Z(s) as a
Laplace type integral, or Mellin transform. Write

/•OO

T(s)= /    e-'ts'xdt,        Res>0,
Jo

and make the change of variables t —> Xt (X ̂  0) getting

T(s)=Xs [ e~ktts-xdt

where L is the ray from the origin through l/X. If Re X > 0, it follows by
integrating over a closed contour consisting of a wedge of an annulus, and letting
the outer radius go to infinity and the inner radius to zero, that

fOO
-XtfS-X,T(s) = Xs f e-uts~xdt.

Jo
Now for Res > ß we sum over X = Xk , getting

i     r°°
(8) £v = r4/ E^v-1^.

k V  ' J0       k

Now Z(s) can be analytically continued using the following:

Theorem 3. Suppose <j>(t) is a complex valued continuous function of a real
positive variable t, with |</>(i)| < e~bt for some b > 0 and t large. If <j>(t) has
the asymptotic expansion

OO

(9) </>it)~z2cJ»tS*    ast^Q+>
i/=0

Jo<J\ <-» oo, then

4>(t)ts-xdt

converges for Res > -jo to an analytic function and can be analytically contin-
ued to a function meromorphic in the complex plane with simple poles -jv and
residues Cjv.
Proof. For A > 0, let

N
4>N(t) = Cb(t) -Y.0!»1'"

v=0

and write
/•oo /-I    N »1

F(s)=       <f>(t)ts-xdt+ /  Vcy>»+,-I+ /  (ßN(t)ts-xdt
J\ Jo v=0 Jo
N 1

u=0       Jv + S

where A(s) is analytic for Re5 > -//v+i • This holds for Res > -jo but pro-
vides an analytic continuation to a function meromorphic in Res > —Jn+i ■   n
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Applying Theorem 3 to Z(s) for an admissible sequence, letting cb(t) =
^2k e-A*', and Z(s) = F(s)/T(s), we see that if ;'„ / 0, 1, 2,... then Z(s)
has a pole at -jv with residue CjJT(-jv). We also see that if m = 0, 1, 2, ... ,
then Z(-m) = cm(-l)mm\ where by convention, cm = 0 if m ^ y„ for some
v . In particular, Z(0) = Co . Similarly, letting </>(/) = e~at YJn e~lnt, we get

(10) Z(0, a) =$>_„£
m>0

m

m\'

This is very useful in view of property (1).
We have the following theorem [SG, p. 458].

Theorem 4. Let 9(t) denote a function of the real positive variable t possessing
an asymptotic expansion

0(0-£<*/*
i/=0

as t -+ 0, where -I < Icq < ki < ■ ■■ —► oo. Assuming that the Laplace integral
/•oo

<p(a)= /    e-at6(t)dt
Jo

has a half-plane of simple convergence, then <p(a) possesses the asymptotic ex-
pansion

oo

ç>(a)~5>J(^ + l)tf-^+1>
v=0

as a —> oo in the angular sector | arga| < ô < §.

We remark that the theorem holds also for complex kv with -1 < Re k0 <
Reki <-» oc .

For admissible sequences, Theorems 3 and 4 give us asymptotic expansions
for Z(s, a) and nz(^/t + a) as a ~y °° > provided we have an asymptotic
expansion (8) for (¡>(t) - Y^keXkl as t -» 0. Apply Theorem 4 using 6(t) -
4>(t)ts~x and k„ = jv +s — 1 we get for Re5 > -jo the expansion

Z(s,a)^YíTÍY¿r^a-{U+S)
V

as a —> oo , | arga| < «5 < f . We may use instead 4>(t) = (6(t)-J2ju<ocjJJ")tS~l
to get for Re s > 0

(»)        z(*. «)- E ET^^Û"0"+Î) = W)[me~a'dt

where we note that the poles of the left-hand side cancel out for Res > 0. Now
differentiating both sides at 5 = 0, get

7„<0 7„<0
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220 J. R. QUINE, S. H. HEYDARI AND R. Y. SONG

Applying Theorem 4 we get

[~Jol (_\\m / i \
-lognz(4+ «) =Z'(0, a) ~^i-^^c_wl+ ••• + --log«

(13) * w=o       • v J

+       Y.       v(jv)a-i"ch
¿,7*0,-1,-2,...

as a —► oo, | arga| < 8 < f .

Examples
Example 1.

oo

il«
n=l

The classical formula for the derivative of the Riemann zeta function at 0,
£'(0) = -logv^ [SG, p. 378] gives

(14) ~[7n = V2Ü.

Example 2.

lz
n=\

oo

n=\

J]  m

We get by (1) and the fact that £(0) = -\ (which can be deduced from (10))
that

oo ooIL«=*-1/2IL».
n=\

or

(15) [J «t = V2ñr-l/2.
n=\

Example 3.

n (»+«)■
n=l

Since FPÇ(l) = y, Theorem 2 together with (14) gives
oo °°     / \ / \

Ylz(n + a) = aV2^e^l{(l + ̂ e,p(^)
n=0 n=\  v 7 v        7

hence by the well-known canonical product for the gamma function,
oo /*

(16) nz(w + û)=V_.
«=o v y

This is essentially the formula for the derivative of the generalized Riemann
zeta function at s = 0 [SG, p. 378].
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Theexpansion Y,T=i e"" = ie'~l)~l = *~l-¿+¿Z?=i(-l)k~lBkt2lc~l/(2k)\,
where Bk , k = 1, 2, ... , are the Bernoulli numbers, together with (13) give
the full Stirling expansion for the gamma function

k=\

[ (nu + a).
Lz

+ a) = u  2 H1 + Í)"

as a —► oo , | arga| <ô<\

Example 4.

By (1), (10), and (16),
00

(18) H(nu
n=\

If Re« > 0, we can expand Y^=i e~nut as above and using (13), we get
(19)

-iognz(«M+û)~(-+-jiogfl--+Y:(-i)->^^(-j    .

as a-too, |arga| < ¿ < § . Now using (18), we see that (17) holds with a
replaced by a/u with Re a > 0 and Re u > 0. This shows that ( 17) holds as
a—»oo, |arga|<<5<7r. Thus we get the full Stirling expansion in its strongest
form. This shows the advantage of allowing Xn (= nu) to take complex values
in this theory.
Example 5.

oo

[ (mu + nv),        -£(-oo,0],  —n < argi> - arg» < n.íxz U
m,n=\

Let Z(s) = Ylm n=\imu + nv)~s. Since Z(0) remains unchanged if u and
v are replaced by au and av respectively (a / 0), we may assume for the
purpose of computing Z(0) that Reu > 0 and Rev > 0. Since as t —> 0,

oo . .
Ee-(mu+nv)t _        l_*

eut _ J evi _ 1
m ,n=\

11        1/1        1\ 1        1 1   (u       V\       ., .
= Hv-T2-2{-u + v)l + -4 + r2{v+û)+0{t)

we see by (10) that Z(0) = \ + -^(t + \) where x = v/u. Thus by (1),
oo oo

[ (mu + nv) = M4 + 72(r+7) J [ (m + nx).
m,n=\ m,n=\

To compute the latter product, we let Z(s) = Y^ „=i(w+WT)_s and Z\(s, a)
— Em=i(m + a)~s > where we understand these functions to be analytically con-
tinued to entire meromorphic functions. Theorem 4 and the methods outlined
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above show that letting B(s, a) = Zx(s, a) - ^jya1"-5 + \a~s - fia~l~s > we
have B(s,a) = 0(|a|_3_í) for Res > -3 as a -> oo, |arga| < <î < n.
Letting A(s) = Z(s) - ^£{s - 1) + \x~sC(s) - -fex^-'Cis + 1) we have for
Res > -2, A(s) - ¿^=i 5(s> "T) • We now differentiate both sides get-
ting A'(0) = £~=1£'(0, m)- UsinB the fact that C(-i) = tÎ , C(0) = -\,
C(0) = -ilog27r, and Z,'(0, a) = log(V2*/r(l + a)), we get

-Z'(0) = (l„gt)(I + 1L(I+I))-TZi-i-Il„g2, + ra-l)

+ Y i-logT(l + nx) + (- + nx\lognx - nx + logV2n + —— j .

Exponentiating both sides of the above equation gives
oo oo

\(m + nx) = (27t)-h^+^+^eP{r) JJ T(l + nx)-xeQ{nr)
m,n=l «=1

(2°) where F(t) = -^--^ + tC'(-1) and
IzT        12

Q(x) = ( x + x j logx - x + log \Í2~ñ + —\2x

Example 6.
oo

ni V(mu + nv),        -£(-oo,0],  -n < argv - argu < n.
z U

m ,n=0

We have by (2) that
■^ oo oo oo

[ (mu + nv) = J[ (m«)[[ (nv) J [ (mu + nv)
m=\ n=\ m,n=\

oo

= 2nu~?v~2 J [ (mu + nv).

m,n=0 m=\ n=\ m,n=\
oo

m, n=\

Thus
dc

[ (mu + nv) = 2nu  4 + i2(t+t>t  z][ (w + «t),
m,n=0 m,n=\

and the latter product is given by (20). In particular, for n - 1, v = x,
oo

(21) p(l,r) = (2n)lx-*+-b{x+']epW J]T(l + nx)~xeQ^
n=l

where P and ß are as in (20). (See [SI, p. 193].)
We remark that p2(u, v) is Barnes' double Stirling modular form. It is so

called because logp2(u, v) is the constant term in the asymptotic expansion
for Barnes' double gamma function, as we will show in the discussion of the
next example.
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Example 7.
oo

[ (z + mu + nv)   with v/u £ (-00, 0],
m ,n=0

The function

T2(z; u, v) = p2(u, v)/ Y[ (z + mu + nv)
z

m,n=0

is essentially Barnes' double gamma function defined in analogy with (16). By
definition limz_ozr2(z) = 1. The functional equations for T2 are easily de-
rived from (1) and (2). We have

00 00

F2(z + u)/T2(z) = l[(z + nv) = v$-i J} (n + -) = ui"f v^r/Tí.-).
n=0 n=0

Thus we have the functional equation

(22) r(^\r2(z + u) = V2Hvi2-vr2(z).

The same equation holds with u and v interchanged.
We remark that T2(z; 1, l)(2n)~zl2 is the double gamma function as re-

ferred to in [Va] and [Vi]. The normalizations used here and in those papers
are not the same as in Barnes.

Theorem 2 gives the double gamma function in terms of a Weierstrass prod-
uct. We consider the case when u = 1, v = x . Let Z(s) = Y!m,n=oim + nx)~s ■
Denoting T2(z ; 1, t) by Y2(z ; t) , we have

00

(23) r2(z; r)"1 = ze<™ [f    * + ̂ 7 V*^

where Q(z) = FPZ(l)z - (FPZ(2) + Res Z(2))¿ and P2(x) = x + ¿ .
By use of Theorem 3, we can easily determine that Res Z(2) = \ . The num-

bers FPZ(l) and FPZ(2) are related to Barnes'double modular constants yi2
and 722 [B]. Barnes defined these as constant terms in certain asymptotic ex-
pansions. To show the equivalence of the two formulations, we define Barnes'
modular constants C(t) and D(x) by

¿ y/(nx) = C(x) + (a + X- - ¿) log At - A + o(^j ,

t,'(nx) = D(x) + ^l + 0(^)

as A —> 00, where  y/(z) = ^logT(z).   The existence of these constants is
assured by the Euler-Maclaurin summation formula [B].

It can be shown that

(25) FPZ(l) = -C(x) + y,    FPZ(2) = D(x) + \ - \.0      x

(24)
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_-i+l

We will demonstrate only the equation for FPZ(2) in (25), the equation
for FPZ(l) being obtained similarly.   Let Z\(s) = ¿3^ n=x(m + nx)~s and
Z2(s, a) = J2m=\im + a)~s ■ Using Theorem 4 we obtain that Z2(s, ¿z)-^zy- =
0(\a\~s) for s > 0 and a —> oo, | arga| < ô < n . Note that the function on
the left-hand side is analytic for Res > 0. Now letting a = nx and summing
we get for Res > 0,

(26, |(z2(s,„t,-i^).z,(S)-fcii

Now taking finite parts of both sides of (26) at s = 2 we get

(27) ±(z2(2,nx)-±)=FPZi(2)-l+l- + ^l.
^—' \ nx j xx        x

The left-hand side of (27) is evaluated using the fact that

(28) z2(2,nx) = ys'(nx)--^

and

(29)      Êr^+'+0(s)' ¿¿ = t+0G?)n=\ v     ' n=\ v     '

as A -> oo . It follows from (27), (28) and (29) that

(30) f(z2,2,„t,-±)^(t)4^-ï.
Hence by (27) and (30),

(31) FPZi(2) = D(x)---^.X        OTz

Now Z(s) = Z\(s) + C(s)(l + x~s) and taking finite parts of both sides gives
FPZ(2) in (25). To get FPZ(l) in (25), one proceeds similarly using Z2(s, a)
-*=T + ¿a~s = 0(\a\~x~s) for Res > -1 .

We now explain the role of p2(u, v) in the asymptotic expansion of T2(z) -
T2(z; u,v). We have

oo

Y'e-^^' = --\ + \(- + -)---¡ + -k(- + -)+0(t)t— uv   t2     2\u     v)   t     4     12 Vf     u)m, n=0 v ' x '

as t ^0+. Hence by (13)

logJi<£L     '±z2(|_logz)_'(i + I)(1_logz)
(32) P2Íu,v)     2uv    \2 j     2\u     v)

{-l + UM)h'+<$
as z —» oo in any closed sector not containing the closed sector between the
vector -u and -v . Thus logp2(u, v) is the constant term in the asymptotic
expansion of logT2(z), analogous to log\/27r in the Stirling expansion for the
gamma function.
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Example 8.

IL i«+ a\2, a-b + ci.

By Theorem 2, we have

OO OO OO y 2 \

(33)      nzi"+«i2=nz(«+*)2 n i+7^)
n=—oo n=-oo n=-oo ^ v '   '

We note that for Xk real (argXk = 0),

Uz(Xk + a)2=(Hz(Xk+a)\
k Z \ k Z Ik \ k

Now by (16) and the identity r(z)T(l - z) = ncscnz we get
oo

(34) Y[(n + b)2 = 4 sin2 nb
n=—oo

Thus by (33) and (34),
oo °°       / l \ 2     oo       / 2\n,i.+«iî-«îrr(i+i) n 0+^

= 4*2|a|2 u'

n=-oo

2
1 +

Hence

(35)

Example 9.

|/j + a|2 = 4|sin/Ta|2.
Lz

H=-oo

|w + «t|2,        lmr>0.
m ,n=-oo

The evaluation of this product is Kronecker's limit formula,
oo

(36) fj',  \™ + nx\2 = (2n)2\r1(x)\4
m ,n=—oo

where n is Dedekind's eta function n(x) = enhlxl UTi1 ~ e2n,kx), Imx > 0.
Using the theory above, we are able to give a new derivation of (36). Let

Z(*) = £~=i£~=-oo(l'" + '»l2)-i,and 2,(5,c) = Em=-oo(l^ + û|2r where
a = b + ic, b fixed. Using Theorem 4, we can get an asymptotic expansion for
Zi, as c -* oo if we have an expansion for ]Cm=-oo e~(m+b) ' as í -* 0+ . The
corresponding integral is

/oo e-e+bf'dx = Vñrl,
'OO
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and as i—>0, the difference between the sum and the integral can easily be
shown to be 0(tn) for all n > 0. This also follows from Jacobi's identity [DM,
p. 52]. Thus,

oo

(37) Y, ?"(ra+i)2,~v^r5
m=—oo

as t —► 0+ is a full asymptotic expansion. Now Theorem 4 and (37) give that

(38) Zi(s,c) - V^ril^c"2""1 = 0(c-2i"2)
as c —► oo for Res > -1.

Letting a = n(x + iy), equation (39) gives upon summation over n

£ (Zi(s, n2y2) - v^r(:jct5W)-2'+1)
(39) "=»V (j 7

= Z(s)-Ar(^|5)C(2s-l)y'-^

for Res > -1. Now differentiating (39) at s = 0 and using (34), Ç(-l) = —fj ,
and T(-j) = -2,/ñ we get

oo

(40) V(-log4| sin«7TT|2 + 2nny) = Z'(0) - ?f.
n=l

Exponentiating both sides gives
oo

(41) H    \m + nx\2 = \n(x)\2.
m- —oo

Now (36) easily follows from (1) since
oo

nzm2=(27T)2.
m=—oo

Example 10.
oo

(m + a),        Ima^O,  -7t < arg(w + a) < n .
Lz

m=—oo

If Im a > 0, we have -(/n + a) = £*'(/« -t-a), hence
oo oo oo

(m + a) = aj[ (w + a)f[ eni(m-a)
m=\ m=\

2.71   „,y_1j.„^   V^TT . 27ri'a
Y(a)e Y(-a)

where we have used (1), (10), (16) and the identity r(a)r(l - a) = n/sinna .
We get a similar result for Im a < 0. Summarizing,

oo , j _   2nia        ima>0,
(42) (m + a) = iv    ' LLzy I 1 -e-2n,a,    lma<0.
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Example 11.
oo

(m + nx),        Im x > 0, -n < arg(w + nx) < n.
m,n=—oo

Let Zi(s, a) denote the analytic continuation of X)m=i(m + a)~s ■ We nave
seen from Theorem 4 that

Zi(s, a) = ^ - \a~s + ±a-l-s + 0(M"3-)

for Res > -3, a —> oo, | arga| < n - S . Likewise Z2(s, a) = enisZi(s, en'a)
is the analytic continuation of Y^=\i~m + a)~s where arg(-m) = -ni, and
substituting in the above, we get

ax~s     1 s
Z2(s, a) = —— - rfl"s - -rxa~l~s + 0(\a\~3~s)   as a->oo

as above. Letting Z(s, a) be the analytic continuation of Ylm=-ooim + a)~s
we have

Z(s, a) — Zi(s, a) + a~s + Z2(s, a)
and adding the two above asymptotic expansions, we have

(43) Z(s,a) = 0(\a\-i~s)
for Res > -3, as a —> oo , -n+ô < arga < -â or ô < arga < n-ô . Checking
the residues, we see that the function (43) in an entire function of s. Also by
(43),

OO

(44) £(/w + at)-'= 5^'z(í,«t)
n^O n=-oo

and the sum over n on the right converges absolutely for Res > -2, and the
analytic continuation of (44) is also an entire function of s. Now (44) and the
remark following imply that we can take the iterated product:

oo     oo

[ (m + nx) = J     (m + nx)
-—oo m=—oo

oo    oo c

=n nz(m+"T)ii nz(™-nt)
n={   m=—oo n=\   m=—oo
oo

= Y[(l -e2n,nx)2 = n2(x)e^r

n^O n=—oo m=—oo

oo    oo oo    oo

n=\

where we have used Example 10. Now
oo

m — ni
m=—oo

using (1) and Example 1. Hence finally for Imr > 0,
oo oo

(45) ]'  (m + nx) = 2nit]2(x)e-*-£ =2ni\[(l-e2ninxf
m,n=—oo n=\
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Comparing (45) and (41) or (42) and (35) we see that in general, T[Xk T[Xk í
ni4i2.

We could also demonstrate (45) by writing the product on the left in terms
of the product of 4 products of the type in Example 6 and using the identity
p2(l, x)p2(l, -r) = (27r)3/2T-1/2f7(T)exp((7r//12)(3 + \)).

Example 12.
oo

(m + nx),        lmr>0, argt - 2n < arg(m + nx) < argr,
m, n=—oo

0 < arg t < n.

This example, when compared with Example 11, illustrates the dependence
of the zeta regualrized product on the argument of the factors. Let P2(x) be
the product with the argument chosen as in Example 12 and Pi(x) with the
argument chosen as in Example 11. We have by (2),

(46) P2(x) =

P\(x)Xlze      i-m + nx

f[z(-m + nx)
n=l

Letting Z(s) = Ylm=o n=\i~m + nx) s we compute using computations in Ex-
ample 5 that Z(Q) = -\- ±(x + \). Now using (2) and (46), we get

(47) P2(x) = iPi(x)e%(x+'].

Also by ( 1 ) we get

(48) Pi(-^ = (-x)P2(x).

Equations (47),(45) and (48) easily imply the functional equation >72(-1/t) =
-/Tf72(T) for the eta function, giving another approach to this identity using
zeta regularized products. For other proofs, see [A, Chapter 3].

Example 13.
oo

(m + nx + z),        lmr>0,  -n < arg(m + nx) < n.
m,n=—oo

Let Z(s) = zCyeijy~s where Q. is the lattice with basis  1 ,  x and -n <
arg y < n . We have

(49) Z(s) = C(s) + (e-ni)-sC(s) + Yim + nt)~S-
nJO

The latter sum can be converted to an iterated sum as in (44). Since Z is an
entire function of s, Theorem 2 gives

\\z(y + z)=(\Xj\exp(-?^z2 + Z(l)z\o(z)
yen Vn    '        V /
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where a is the Weierstrass product associated with the sequence y, i.e., the
Weierstrass sigma function.

To compute Z(2) and Z(l), note that by (49) and (44) we can compute
these values by iterated summation. For Z(2) this is just Eisenstein summation,
which is equivalent to analytic continuation. By the well-known Eisenstein
summation formula [A, p. 71, problem 5]

(50) Z(2) = -4*'^.

We may compute directly from (49) that
(51) Z(l) = -ni,      Z(0) = -1.
(For a discussion of the relationship between Eisenstein summation and analytic
continuation, see [W].)

Hence, finally, using (49), (50), (51) and Example 11,

(52) l[(y + z) = 2nin2(x) exp ( - ™ + 27"'^t$z2 " niz\a(z).

If ûi(z) in Jacobi's theta function as in [SG] we can derive the relationship

a(z) = #i(z)(27r)-V3(T)exp(-27r/-'/'( nir)
Hence the theta function is given as a zeta regularized product by

(53) J] (y + z) = in-l(x) exp ( - ™ - niz^z).

We note that the functional equation for (53) can be written

\[(y + (z + x)) = -e-2*«*^ \\(y + z).

This can also be derived from property ( 1 ) of the zeta regularized product with
an argument similar to the one in Example 12. Care must be taken to distinguish
between \[z(y + (z + x)) and Y\z((y + x) + z) as indicated by the convention
before Theorem 1.

Equation (45) can be used to find the product of the nonzero eigenvalues of
d/dz on a flat torus. If the torus is C/A, where A is the lattice generated by
1 and x, Im x > 0, then the eigenvalues of d/dz are niy* for y* in the dual
lattice Q* generated by i(Imx)~x and íi(Imí)"1 . Likewise the eigenvalues of
d/dz are niy* and of (d/dz)(d/dz) = |A are n2\y*\2. If we let det' d/dz
denote the zeta regularized product of the nonzero eigenvalues, then

dct'-^^]X2(-n)(lmx)-xy.
yea

If we use the principal value of arg as in Example 11, then using (1) and (45)
we get

(54) det' ^- - -2i(lmx)n2(x)e-"~ir.
oz

Similarly, detd/dz is the conjugate of (54). We note that by (41),

(55) det'AiL = 4|ImT|2|,7(T)|4
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hence (54), (55) and (56) show that

t*,\ ,   i d   t   , d    , ,   i d   d56 det' — det' — / det' — —.dz        dz dzdz
The following additional references containing related results on zeta regular-

ized products have come to our attention since this paper was written. Compare
with [DP, p. 1002].
J. Jorgenson and S. Lang, Some analytic properties of regularized products,

preprint.
C. Deninger, Local L-factors of motives and regularized products, Invent. Math.

107(1992), 135-150.
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