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Abstract

Using observations made with MOSFIRE on Keck I as part of the ZFIRE survey, we present the stellar mass
Tully–Fisher relation at < <z2.0 2.5. The sample was drawn from a stellar-mass-limited, Ks-band-selected
catalog from ZFOURGE over the CANDELS area in the COSMOS field. We model the shear of the Hα emission
line to derive rotational velocities at ´2.2 the scale radius of an exponential disk (V2.2). We correct for the blurring
effect of a 2D point-spread function (PSF) and the fact that the MOSFIRE PSF is better approximated by a Moffat
than a Gaussian, which is more typically assumed for natural seeing. We find for the Tully–Fisher relation at
< <z2.0 2.5 that = ( )Vlog 2.18 0.0512.2 +(0.193±0.108) -( )M Mlog 10 and infer an evolution of the

zero-point ofD = - M M 0.25 0.16 dex orD = - M M 0.39 0.21 dex compared to z=0 when adopting
a fixed slope of 0.29 or 1/4.5, respectively. We also derive the alternative kinematic estimator S0.5, with a best-fit
relation =  +( )Slog 2.06 0.0320.5  ( )0.211 0.086  -( )M Mlog 10 , and infer an evolution of D =M M
- 0.45 0.13 dex compared to <z 1.2 if we adopt a fixed slope. We investigate and review various systematics,
such as PSF effects, projection effects, systematics related to stellar mass derivation, selection biases, and slope.
We find that discrepancies between the various literature values are reduced when taking these into account. Our
observations correspond well with the gradual evolution predicted by semianalytic models.
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1. Introduction

A major goal for galaxy evolution models is to understand

the interplay between dark matter and baryons. In the current

ΛCDM paradigm, galaxies are formed as gas cools and accretes

into the centers of dark matter halos. The gas maintains its

angular momentum, settling in a disk at the center of the

gravitational potential well (Fall & Efstathiou 1980) where it

forms stars. This process can be disrupted by galaxy mergers,

gas inflows, active galactic nuclei (AGNs), and star formation

feedback, which can affect the shape, star formation history,

and kinematics of galaxies (e.g., Hammer et al. 2005).
From studies at z=0 of the kinematic properties of disk

galaxies a correlation has emerged between disk rotational

velocity and, initially, luminosity. This relation is now named

the Tully–Fisher relation, first reported by Tully & Fisher

(1977) and originally used as a distance indicator. At z=0 the

Tully–Fisher relation is especially tight if expressed in terms of

stellar mass instead of luminosity (Bell & de Jong 2001). If

studied at high redshift, it can be an important test of the mass

assembly of galaxies over time, as it describes the relation

between angular momentum and stellar mass and the conver-

sion of gas into stars versus the growth of dark matter halos by

accretion (e.g., Fall & Efstathiou 1980; Mo et al. 1998; Sales

et al. 2010). With the increasing success of multiwavelength

photometric surveys to study galaxy evolution, much insight

has already been obtained into the structural evolution of

galaxies to high redshift (e.g., Franx et al. 2008; van der Wel

et al. 2014b; Straatman et al. 2015) and their stellar mass

growth and star formation rate (SFR) histories (e.g., Whitaker
et al. 2012; Tomczak et al. 2014, 2016). The study of galaxy
kinematics at >z 1 has been lagging behind, because of the
faint magnitudes of high-redshift galaxies and the ongoing
development of sensitive near-IR multiobject spectrographs
needed for efficient follow-up observations.
In the past few years, studies of the Tully–Fisher relation at
< <z0 1 were performed with the multiplexing optical

spectrographs DEIMOS on Keck I (Kassin et al. 2007; Miller
et al. 2011) and LRIS on Keck II (Miller et al. 2012) and
optical Integral Field Unit (IFU) spectrographs such as VLT/
GIRAFFE (Puech et al. 2008), but beyond >z 1 progress has
been comparatively slow because of the reliance on mostly
single-object integral field spectrographs, such as SINFONI
(Cresci et al. 2009; Gnerucci et al. 2011; Vergani et al. 2012)
on the VLT. These studies resulted in contrary estimates of a
potential evolution of the stellar mass zero-point of the Tully–
Fisher relation with redshift (Glazebrook 2013). For example,
studies by Puech et al. (2008), Vergani et al. (2012), Cresci
et al. (2009), Gnerucci et al. (2011), and Simons et al. (2016)
indicate evolution already at z 0.6. At z=0.6 this
amounts to D ~ -M M 0.3 dex (Puech et al. 2008). At
~z 2 D ~ -M M 0.4 dex (Cresci et al. 2009; Simons et al.

2016), and at z=3 D ~ -M M 1.3 dex (Gnerucci et al.
2011). At the same time, Miller et al. (2011, 2012) find no
significant evolution up to z=1.7.
Part of the inferred evolution, however, or lack thereof,

could be explained by selection bias, for example, by
preferentially selecting the most dynamically evolved galaxies
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at each redshift. This acts as a progenitor bias (van Dokkum &
Franx 2001), where the high-redshift sample is an increasingly
biased subset of the true distribution, leading to an under-
estimate of the evolution. Dynamically evolved galaxies could
make up only a small fraction of the total population at high
redshift, as irregular, dusty, and dispersion-dominated galaxies
become more common toward higher redshifts (e.g., Abraham
& van den Bergh 2001; Kassin et al. 2012; Spitler et al. 2014),
and in a recent publication, Tiley et al. (2016) showed that the
inferred evolution is indeed larger for more rotationally
supported galaxies. Similarly, previous surveys at the highest
redshift at >z 2 tend to be biased toward the less dust-
obscured or blue star-forming galaxies, such as Lyman break
galaxies, and often required previous rest-frame UV selection
or a spectroscopic redshift from optical spectroscopy (e.g.,
Förster Schreiber et al. 2009; Gnerucci et al. 2011). As a
consequence, these samples may not be representative of
massive galaxies at high redshift, which are more often
reddened by dust obscuration (e.g., Reddy et al. 2005; Spitler
et al. 2014).

The different results between these studies could also be due
to systematics arising from the different methodologies used to
derive stellar mass, rotational velocity, and the different types
of spectral data (1D long-slit spectra versus 2D IFU data). As
Miller et al. (2012) note, a striking discrepancy exists between
their long-slit results (no evolution) and IFU studies by Puech
et al. (2008), Vergani et al. (2012), and Cresci et al. (2009)
(D = -M M 0.3 0.4 dex). Sample size may also play a role:
the highest-redshift studies are based on small samples of only
14 galaxies at z=2.2 (Cresci et al. 2009) and 11 galaxies at
z=3 (Gnerucci et al. 2011).

At face value, a nonevolving Tully–Fisher relation would be
a puzzling result. In the framework of hierarchical clustering at
fixed velocity, the mass of a disk that is a fixed fraction of the
total mass of an isothermal halo is predicted to change
proportionately to the inverse of the Hubble constant (Mo
et al. 1998; Glazebrook 2013). The average properties of
galaxies also evolve strongly with redshift. For example, the
average SFR of star-forming galaxies at fixed stellar mass tends
to increase with redshift (e.g., Tomczak et al. 2016), as does
their gas fraction (e.g., Papovich et al. 2015). At the same time
their average size tends to be smaller (e.g., van der Wel et al.
2014b), which would by itself imply higher velocities at fixed
stellar mass. Yet semianalytic models predict only a weak
change in the stellar mass zero-point, with most of the
evolution occurring along the Tully–Fisher relation (e.g.,
Somerville et al. 2008; Dutton et al. 2011; Benson 2012).

It is clear that more studies with larger numbers of galaxies are
needed to shed light on the observationally key epoch at ~z 2. In
this study we use new spectra of galaxies at < <z2.0 2.5 from
the ZFIRE survey (Nanayakkara et al. 2016). These were obtained
from the newly installed MOSFIRE instrument on Keck I, a
sensitive near-IR spectrograph whose multiplexing capability
allows batch observations of large numbers of galaxies at the
same time to great depth. The primary aim of ZFIRE is to
spectroscopically confirm and study galaxies in two high-redshift
clusters, one in the UDS field (Lawrence et al. 2007) at z=1.62
(Papovich et al. 2010) and one in the COSMOS field (Scoville
et al. 2007) at z=2.095 (Spitler et al. 2012; Yuan et al. 2014).
However, ZFIRE also targets many foreground and background
galaxies at redshifts < <z1.5 4.0. With ZFIRE the Hα (rest-
frame vacuum Å6564.614 ) emission line is observed for a large

number of galaxies at ~z 2, which can be used for studies of
galaxy kinematics. In a recent paper Alcorn et al. (2016) derived
velocity dispersions and virial masses and investigated environ-
mental dependence. In this paper, we use the rich data set over the
COSMOS field to study the Tully–Fisher relation at
< <z2.0 2.5. Our aim is to provide improved constraints on

the evolution of the stellar mass Tully–Fisher relation with redshift.
In Section 2 we describe our data and sample of galaxies, in

Section 3 we describe our analysis, in Section 4 we derive the
Tully–Fisher relation at < <z2 2.5, and in Section 5 we
discuss our results in an evolutionary context. Throughout, we
use a standard cosmology with W =L 0.7, W = 0.3m , and
= - -H 70 km s Mpc0

1 1. At < <z2 2.5, 1 corresponds
to ∼8 kpc.

2. Observations and Selections

2.1. Observations

2.1.1. Spectroscopic Data

This study makes use of data obtained with the Multi-Object
Spectrometer for InfraRed Exploration (MOSFIRE; McLean
et al. 2010) on Keck I on Maunakea in Hawaii. The
observations over COSMOS were carried out in six pointings
with a ¢ ´ ¢6.1 6.1 field of view. The observations were
conducted on 2013 December 24–25 and 2014 February
10–13. Galaxies were observed in eight masks in the K band,
which covers m–1.93 2.45 m, and can be used to measure Hα
and [N II] emission lines for galaxies at ~z 2. Two H-band
masks were also included in the observations. The H-band
coverage is m–1.46 1.81 m, covering bH and [O III]. For this
work, we limit the analysis to the Hαemission line data in the K
band. Further details on the H-band masks can be found in
Nanayakkara et al. (2016).
The total exposure time was 2 hr for each K-band mask. A
0. 7 slit width was used, yielding a spectral resolution of
R=3610. At z=2.2, the median redshift of the sample of
galaxies in this study, this corresponds to ∼26 km s−1 per
pixel. The seeing conditions were  –0. 65 1. 10, with a median of
0. 7. We used a standard two-position dither pattern (ABBA).
Before and after science target exposures, we measured the
spectrum of an A0V-type standard star in 0 7 slits to be used
for telluric corrections and standard stars to be used for flux
calibration in a slit of width 3″ to minimize slit loss. Each
individual mask also contained a star for monitoring purposes,
such as measuring the seeing conditions.
The raw data were reduced using a slightly modified version

of the publicly available 2015A data reduction pipeline8

developed by the MOSFIRE instrument team, resulting in 2D
spectra that were background subtracted, rectified, and
wavelength-calibrated to vacuum wavelengths, with a typical
residual of< Å0.1 (Nanayakkara et al. 2016). To make up for
the lack of sky lines at the red end of the K band, we used both
night-sky lines and a neon arc lamp for wavelength calibration.
Based on the standard star, we applied a telluric correction

and flux calibration to the 2D spectra, similar to the procedure
used by Steidel et al. (2014), and using our own custom IDL
routines. We subsequently scaled the flux values to agree with
the photometric Ks-band magnitudes from the FourStar
(Persson et al. 2013) Galaxy Evolution Survey (ZFOURGE;

8
The modified version is available at https://github.com/themiyan/

MosfireDRP_Themiyan.
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Straatman et al. 2016), resulting in a final median uncertainty of

0.08 mag (see also Nanayakkara et al. 2016).
In Figure 1 we show two example spectra at z=2.175 and

z=2.063, with strong Hα emission at observed frame

l = Å20843.2 and l = Å20109.6 , respectively. Other lines

are visible in the spectrum as well, most notably [N II]

ll6550, 6585 and [S II] ll6718, 6733.

2.1.2. Continuum Subtraction

From each 2D spectrum we extracted spectral image stamps of

Å300 wide (46 pixels) centered on the Hα emission lines. Night-

sky emission was masked using the publicly available night-sky

spectra taken during 2012 May engineering, at wavelengths

where the sky spectrum exceeds 10−24 erg s−1 - -cm arcsec2 2 .

We also masked Å40 wide boxes centered on the Hα line and

the [N II] doublet. We subtracted the continuum using the

following method: for each pixel row (one row corresponding to

a 1D spectrum with a length of Å300 ) we determined the median

flux and the standard deviation. Next, we iteratively rejected

pixels at s>2.5 from the median and recalculated both values.

We repeated this a total of three times. The final median flux was

our estimate of the continuum in that particular pixel row, which

was then subtracted accordingly.

2.1.3. Point-spread Function Determination

The galaxies in this study are small (< 0. 7; see Section 4.1),
so the point-spread function (PSF) needs to be properly
characterized. Not only does the FWHM of the PSF need to be
tracked, but even the detailed shape of the PSF can have a
noticeable effect on the smoothing of the Hα line and its
rotation profile. A simple Gaussian is often assumed, but this
leads to underestimating the shear of the emission line—and
hence the velocity—if the true PSF has stronger wings.
Because the Tully–Fisher relation is very steep (e.g., Bell & de
Jong 2001; Reyes et al. 2011), a small change in velocity could
lead to significant offsets.
We first attempted to derive the PSF from the collapsed spectra

of the monitor stars, which received the same exposure as the
galaxies in the masks. The collapsed spectra were obtained by
averaging over the flux in the wavelength direction, after masking
sky lines. The intensity profile had a very steep profile, which was
superficially well fit by a Gaussian profile. Although adopting a
Gaussian profile is common (e.g., Kriek et al. 2015), this was
unexpected, because the MOSFIRE PSF in deep Ks-band imaging
(D. Marchesini 2017, private communication) clearly has strong
wings, which generally are better fit with a Moffat profile (see
Figure 2). Even small wings are important, because the effect of
the PSF on convolution does not scale with the amount of flux
in the wings, but with the second-order moment of the PSF

Figure 1. Two example Keck MOSFIRE spectra (inverted gray scale) at z=2.175 and z=2.063, with Hαl6565 clearly visible at l = Å20843.2 (top) and

l = Å20109.6 (bottom). Other lines are visible as well, most notably [N II] ll6550, 6585 and [S II] ll6718, 6733.

Figure 2. Left: surface brightness profile of the 2D Ks-band image PSF (dots) as a function of radius, with the best-fit Moffat (solid red line) and Gaussian (dashed
green line). The Gaussian is quite steep, whereas the Moffat gives a better approximation of the flux at large radii. Right: simulated 1D spectral PSF, obtained from
integrating the 2D Ks-band PSF and the best fits in a 0 7 virtual slit. The second-order moment of the Moffat is close to that of the actual PSF, but that of the Gaussian
is much smaller.
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(Franx et al. 1989). Even a few percent flux in the wings can have
a significant effect, due to the r2 weighting. For illustration, we
calculate the second moment for a simulated spectral PSF derived
from a deep MOSFIRE image at FWHM=0 6 seeing. The
image PSF was created by median stacking five unsaturated bright
stars, after background subtraction and normalization. First, we
measured the brightness profile of this 2D PSF as a function of
radius and fitted both a Moffat and a Gaussian function, as shown
in the left panel of Figure 2. To reproduce the 1D spectral PSFs,
we integrated the 2D image PSF and its two model fits within a
0 7 virtual slit. Finally, we calculated the second-order moments,
F2 for the PSF, G2 for the Gaussian model, and M2 for the
Moffat model. As shown in the right panel of Figure 2, the true
PSF ( =F 3.82 ) is severely underestimated by a Gaussian
approximation ( =G 3.12 ), whereas a Moffat fit produces good
correspondence ( =M 3.72 ).9

Clearly it is important to account for the flux in the wings of
the PSF. However, it turns out to be rather difficult to
reconstruct the true shape of the PSF accurately from the spatial
profile of a monitor star spectrum. The reason is that standard
reduction of the ABBA dither pattern results in one positive
and two negative imprints each 2. 52 apart, meaning that the
PSF wings are largely subtracted out and the resulting profile is
too steep. The problem is seeing dependent and becomes worse
if the seeing is larger. We therefore proceeded to reconstruct
the true PSF separately for every mask (with seeing varying
from 0 65 to 1 1). As the central regions of the PSFs are still
well approximated by a Gaussian, we used Gaussian fits to the
collapsed spectra of the monitor stars to characterize the seeing
FWHM for each of the eight K-band masks. We then
reconstructed the approximate true PSF by first integrating a
2D Moffat (b = 2.5) PSF over the width of a 0. 7 wide virtual
slit and subtracting 1/2 times the intensity offset by 2. 52 on
either side to simulate the reduction process. Because the
FWHM of a Gaussian fit to the resulting spectral PSF is 12%
broader than the original Moffat FWHM, we scaled the FWHM
of the 2D Moffat to match the simulated spectral PSF to the
observations. Figure 3 illustrates two extreme cases of best and
worst seeing for our data.

We verified the effect of using a Gaussian or Moffat profile
in our modeling by calculating rotational velocities using either
the Moffat PSFs derived above or Gaussian fits to the collapsed
star spectra. The mean velocity is 4% smaller if a Gaussian is
assumed, with up to 15% effects for some individual cases.

2.2. Target Sample Selection

The primary ZFIRE sample was designed to spectro-
scopically confirm a large cluster of galaxies at z=2.095
(Spitler et al. 2012; Yuan et al. 2014) within the COSMOS field
(Scoville et al. 2007). The sample was optimized by focusing
mostly on near-IR star-forming galaxies, with strong expected
signatures such as Hα emission. Star-forming galaxies as part
of the cluster were selected based on their rest-frame U−V
and V−J colors, with photometric redshifts between
< <z2.0 2.2. K-band magnitudes of <K 24 were priority

sources, but fainter sources could be included as well. Non star-
forming galaxies were prioritized next, and lastly, field galaxies
(not necessarily at the cluster redshift) could be used as fillers
for the mask. In total, 187 unique sources were listed for
K-band observations. A total of 36 of these were observed in
two different masks and two in three different masks, leading to
a total of 224 spectra.
Spectroscopic targets were originally obtained from the

photometric redshift catalogs of ZFOURGE. These were
derived from ultra-deep near-IR Ks-band imaging (∼25.5
mag). FourStar has a total of six near-IR medium bandwidth
filters (J J J H H, , , ,s l1 2 3 ), which accurately sample the rest-

frame Å4000 /Balmer break at redshifts < <z1.5 4. We
combined these with a wealth of already-public multiwave-
length data at m–0.3 24 m to derive photometric redshifts, using
the EAZY software (Brammer et al. 2008). These redshifts
were used as a prior for the MOSFIRE masks. The typical
redshift uncertainty is 1%–2% for galaxies at < <z1.0 2.5
(Straatman et al. 2016).
For this work we make use of the ZFOURGE stellar masses.

These were calculated by fitting Bruzual & Charlot (2003)
stellar template models, using the software FAST (Kriek et al.
2009), assuming a Chabrier (2003) initial mass function (IMF),
exponentially declining star formation histories, solar metalli-
cities, and a Calzetti et al. (2000) dust law. Galaxy sizes, axis
ratios, and position angles are obtained from the size catalog of

Figure 3. Examples of spatial profiles of MOSFIRE PSFs. The solid and dashed curves are theoretically derived Moffat and Gaussian intensity profiles, respectively.
They are shown at logarithmic scale in the left panel. A Moffat is a good representation of the original MOSFIRE PSF, but sky subtraction in the reduction process
leaves negative imprints on each side, which will subtract the strong wings. This makes the reduced PSF appear Gaussian. This is illustrated by the two examples of
spatial profiles of monitor stars in the middle and right panels, with best and worst seeing, respectively. The black data points represent the star spectra collapsed in the
wavelength direction. The solid and dashed lines are the reconstructed Moffat PSFs and the 1D Gaussian fits, showing that they are nearly indistinguishable in one
dimension.

9
Note that to avoid noise amplification at large radii due to the r2 weighting,

we evaluate the second-order moment at < r 2. 6. The Gaussian is scaled up by
12% for a consistent comparison to a Moffat in one dimension.
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galaxies from the 3D-HST/CANDELS survey (Skelton et al.
2014; van der Wel et al. 2014b). These were cross-matched to
ZFOURGE by looking for matches within < 0. 7. The sizes
were derived by fitting 2D Sérsic (Sérsic 1968) surface
brightness profiles to HST/WFC3/F160W images, using the
software GALFIT (Peng et al. 2010).

From the original N=224 ZFIRE Ks-band sample, we first
selected 151 unique galaxies with < <z2.0 2.5spec , where we
used spectroscopic redshifts derived from 1D collapsed spectra
(Nanayakkara et al. 2016). Using the F160W position angles,
we determined offsets with respect to the MOSFIRE masks:
a aD = -PA mask, with PA the position angle of the major

axis of the galaxy and amask the slit angle from the mask. We
refined the sample by selecting only galaxies with aD < ∣ ∣ 40
to minimize slit angle corrections, resulting in a sample of 81
galaxies. Some were included in more than one mask, and we
have 102 spectra in total that follow these criteria. The Hα
emission was inspected by eye for contamination from sky
lines, and we only kept those instances that were largely free
from sky lines, removing 25. Out of the remaining 77 spectra,
29 have very low signal-to-noise ratio (S/N) and were also
omitted. We also looked for signs of AGNs, by cross-matching
with radio and X-ray catalogs (Cowley et al. 2016). This
revealed one AGN, which we removed. Finally, we removed
five spectra without corresponding HST/WFC3/F160W
imaging. The final high-quality sample contains 42 spectra of
38 galaxies, and these form the basis for the kinematic analysis,
which we discuss next.

3. Analysis

3.1. Hα Rotation Model

We modeled the rotation curves by fitting 2D (l r, ) intensity
models. We used the empirically motivated arctan function to
model the velocity curve (Courteau 1997; Willick 1999; Miller
et al. 2011):

p
= +

-⎛

⎝
⎜

⎞

⎠
⎟( ) ( )v r V V

r r

r

2
arctan , 1a

t
0

0

with v(r) the velocity at radius r, V0 the central velocity, Va the

asymptotic velocity, r0 the dynamic center, and rt the turnover,

or kinematic, scale radius. rt is a transitional point between the

rising and flattening of the arctan curve.
For relatively small proper motion if viewed on a

cosmological scale, we can express the velocity as a function
of the wavelength difference with respect to the central
wavelength l0 as

l
l

l l
l

=
D

=
-

( )
v

c
. 2

0

0

0

Therefore, we initially fit our model in wavelength space,
and afterward we convert the offset in λ to velocity. In terms of
wavelength, Equation (1) becomes

l l
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We also model the spatial intensity of the emission,
assuming an exponential disk:

=
- -⎡

⎣
⎢

⎤

⎦
⎥( )
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0

with I(r) the intensity at radius r and I0 the central intensity. r0
is the same in Equations (1), (3), and (4), and the coordinates

l( )r,0 0 represent the velocity centroid of the galaxy in Hα. Rs

is the scale length of an exponential disk. At a given r, the

intensity as a function of wavelength is modeled by a Gaussian

profile, centered on l ( )r :
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with σ the velocity dispersion and sinstr the instrumental

broadening. s = Å2.4instr was obtained from a Gaussian fit to a

sky line. We allowed σ to vary in the fit, but assumed it to be

independent of radius.
With Equations (3)–(5) we built a 2D model of the Hα

emission line, which was then smoothed with the PSF derived
in Section 2.1.3. To avoid undersampling effects, we built the
initial model on a grid with ´3 the spatial and wavelength
resolution of the spectra. We also used a ´3 refined PSF. After
convolving we rebinned the model by a factor of 1/3. We also
subtracted half the intensity of the model at ±14 pixels to
reproduce the dithering pattern. Parameters that can vary in the
model are l l r r I R, , , , ,a t s0 0 0 , and σ.

3.2. Fitting Procedure

We fit the intensity model to Å100 wide spectral image
stamps, centered on the Hα emission line. We used the Python
scipy optimize.curve_fit algorithm, which is based on
the Levenberg–Marquardt algorithm. This algorithm can be
used to solve nonlinear least-squares minimization problems.
The Levenberg–Marquardt algorithm can find local minima,
but these are not necessarily the global minima, i.e., the best
fits, that we are looking for. Therefore, we assessed each
galaxy’s spectral image stamp individually, and we chose
initial parameters for the model to be a reasonable match to the
observed Hα emission.
In addition to the Hα stamps, we extracted corresponding

images from the error spectra that are available for each
observation. The error spectra represent standard errors on the
flux in each pixel. The error stamps were matched by
wavelength location to the Hα spectral image stamps, and we
included these as weight arrays in the fit. We did not mask sky
lines or pixels with low S/N, but simply used the (much)
smaller weights from the error images at those locations.
In Figure 4 we show the initial guesses and best-fit models for

four example galaxies. The best-fit models are good representa-
tions of the Hα emission, with small residuals. We also show the
unconvolved arctangent functions constructed from the best-fit
parameters using Equation (3). In the Appendix we show the
spectral image stamps and best fits for the whole sample with
additional radial velocity profiles derived from the emission in
individual rows of each spectrum.
We estimated uncertainties on the parameters l l r r, , , ,a t0 0

I R, s0 , and σ, by applying a Monte Carlo procedure. For every
source, we subtracted the best-fit 2D model from the spectral
image stamp, obtaining the residual images shown in Figure 4.
We then shifted the residual pixels by a random number of
rows and columns, preserving local pixel-to-pixel correlations.
The magnitude of the shift was drawn from a Gaussian
distribution centered on zero, allowing negative values, i.e.,
shifting in the opposite direction, and with a standard deviation
of 2 pixels. The numbers of rows and columns to be shifted
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were generated independently from each other. We then added
the best-fit model back to the shifted residual and reran our
fitting procedure. We repeated this process 200 times, obtaining
for each parameter a distribution of values. We calculated the
standard deviations for each parameter and used these as the
uncertainties.

3.3. Velocities

We measured the velocities from Equation (1) at 2.2 times
the scale radius (Rs) of the exponential brightness profile. We
chose =r R2.2 s as this is the radius where the rotation curve of
a self-gravitating ideal exponential disk peaks (Freeman 1970).
It is also a commonly adopted parameter in literature (e.g.,
Miller et al. 2011). Its main advantage is that it gives a
consistent approximation of the rotational velocity across the
sample, while avoiding extrapolations toward large radii and
low-S/N regions of the spectrum.

We corrected the velocities for inclination using

¢ =
( )

( )v
v

isin
, 62.2

2.2

with

=
-

-
- ( )

( )i
b a q

q
cos

1
. 71

2
0
2

0
2

We adopt here the convention that = i 0 for galaxies
viewed face-on and = i 90 for edge-on galaxies. We used the
axis ratios (b/a) derived with GALFIT from van der Wel et al.
(2014b). Uncertainties on the axis ratio were propagated and
added to the velocity uncertainty from the Monte Carlo
procedure.

-q 0.1 0.20 represents the intrinsic flattening ratio of an
edge-on galaxy. Following convention, we adopt q0=0.19
(Haynes & Giovanelli 1984; Pizagno et al. 2007). It has been
shown that galaxies with < <M M9 log 10 at >z 1 have a
higher fraction of more elongated systems (e.g., van der Wel et al.
2014a). We note that using the axis ratios to derive the inclination

may therefore lead to underestimated corrections for some of the
galaxies in our sample, as 9/21 have <M Mlog 10.

3.4. Two-dimensional PSF and Projection Effects

When considering slit spectra, with one spatial dimension,
we need to account for systematic effects due to the 2D nature
of the PSF smoothing, as well as any mismatch between the slit
angle and kinematic angle, here assumed to be the F160W
position angle. The main effect is that 2D smoothing will
effectively lead to an underestimation of the line-of-sight
motion captured in 1D spectra, as a flux component from lower
velocity regions is mixed in. The effect depends on the
apparent size of the galaxy relative to the size of the PSF and
the size of the slit, i.e., mixing occurs even for an infinitely thin
slit if the seeing is significant, and vice versa.
To assess this effect, we generated a suite of 500 emission-line

models (Bekiaris et al. 2016) of infinitely thin galaxies with
similar sizes and velocities to our sample. We projected these
onto the MOSFIRE 2D space, using various inclination angles
(  < < i0 90 ) and slit angles relative to the major axes
( a < D < ∣ ∣0 45 ), a finite slit width of 0. 7, and a 2D Moffat
PSF with FWHM=0 5 and b = 2.5. This PSF results in a
Gaussian approximation of the seeing of 0. 6 in 1D. In the
simulations Rs was varied between 1 and 5 kpc, σ between 20
and 100 km s−1, and Va between 100 and 400 km s−1. rt was
defined as R 3s , typical of the galaxies in this study. We added
noise based on the noise spectrum of observed galaxy 4037 and
scaled to match the typical Hα S/N of the galaxies in our sample
with a median of S/N=25 (see Section 3.5 for details on how
we derive S/N). We included two negative imprints to simulate
the ABBA pattern. The Bekiaris et al. (2016) models are part of
a fitting code designed to diagnose IFU data and are therefore an
excellent sanity check on methods used for single-slit modeling.
We measured the rotational velocity in the same way as for

the observed spectra, including the correction for inclination
angle. The ratio between V2.2;in (the actual rotational velocity)
and ¢v 2.2;out (the measured rotational velocity) is shown in
Figure 5. There is a slight trend with inclination, with on one
side larger scatter for face-on galaxies, due to the general

Figure 4. Best-fit models. For each subsequent panel from left to right: the spectral image stamps, the best-fit model, the residual after subtracting the best-fit model.
The blue dashed curves are the model arctan functions.
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difficulties of measuring at small inclination. On the other side
we find, as expected, an increase in both the scatter and the
ratio ¢V v2.2;in 2.2;out for very inclined galaxies, which suffer the
most from 2D smoothing effects. There is a strong trend of
increasing ¢V v2.2;in 2.2;out toward higher aD∣ ∣, but we do not find
a significant trend with input radius. In general, the result is that
the recovered velocities are too small by a median factor of
1.19, depending on aD∣ ∣, with a scatter of 0.24.

We found similar results for different seeing values or a
factor of 2 lower S/N. Given that there is a clear trend with slit
angle mismatch, we derived a aD∣ ∣-dependent correction to our
velocities, using the median offset in ¢V v2.2;in 2.2;out in a five-

degree bin around the value of aD∣ ∣ associated with each
spectrum. We propagated the scatter around the median offset
into the velocity uncertainty already derived from the Monte
Carlo procedure. From hereon we use the symbol V2.2 for the
final slit angle and projection-corrected velocities.

3.5. Results

The best-fit parameters of the rotation model and their
uncertainties, along with v2.2 and V2.2, are shown in Table 1. Of
the 42 spectra in the high-quality sample, we obtained good fits
for 24 (of 22 galaxies), while for 18 spectra we obtained poorly
constrained fits, with large random uncertainties (>30%) on the
velocities. We therefore removed these 18 spectra (of 16

galaxies) from the sample. To evaluate whether removing the
failed fits introduces biases relative to the target sample, we
show the distribution of the Ks-band magnitudes and sizes in
Figure 6. The Ks-band magnitudes for the good fits are brighter
than those of the full target sample (median Ks=22.8 versus
median Ks=23.5), and the galaxies are slightly larger (median
= R 0. 40e versus = R 0. 26e ). So removing these galaxies

does bias the sample to somewhat brighter and larger galaxies.
The 22 galaxies for which we will derive the Tully–Fisher

relation have high velocities and velocity dispersions, with a
median =V 1642.2 km s−1, s = -53 km s 1, and s =V 3.5.
We note that these dispersions could be slightly overestimated,
e.g., the dispersion reflects mixing of velocity gradients on
scales smaller than the seeing.
In the case of high S/N the uncertainties are not dominated

by random errors and the Monte Carlo procedure would result
in relatively small errors. Because it is unlikely that we can
derive velocities with more than 10% accuracy, we impose a
minimum error of 10% of the measured velocities for all
sources.
At high redshift measuring the kinematic profile of a galaxy

is more difficult, due to the smaller angular scales for distant
galaxies, and seeing effects and S/N play a larger role. We
therefore verified our size measurements. We converted the
best-fit Rs derived from the K-band spectra to effective radius
(Re), using =R R1.678e s (valid for exponential disks), and

Figure 5. Results of simulating 500 MOSFIRE spectra, with a 0 6 PSF and typical S/N. We show the offset between input and measured velocity as a function of
inclination, aD∣ ∣, and input Rs. The red lines are the running median and s1 percentiles. There is a slight trend with inclination, indicating that mixing of light plays a
role, no trend with input Rs, and a strong trend with slit mismatch.
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Table 1

Results

ID Mask Seeing zcentroid Va rt Rs aS NH

(arcsec) (km s−1
) (arcsec) (arcsec)

1814 KbandLargeArea4 0.65 2.1704±0.00016 60.6±83.0 6.5e-10±1.3e-01 0.09±0.03 46

2715 mask2 0.67 2.0824±0.00004 52.3±90.5 8.2e-07±1.6e-01 0.16±0.03 22

2723 mask2 0.67 2.0851±0.00004 102.1±105.7 2.7e-06±1.6e-04 0.13±0.03 12

2765 mask1 0.71 2.2279±0.00008 242.6±83.2 3.5e-01±1.7e-01 0.24±0.03 36

3074 mask1 0.71 2.2267±0.00005 117.8±114.4 2.6e-02±2.6e-02 0.37±0.05 16

3527 KbandLargeArea4 0.65 2.1890±0.00004 87.9±3.2 1.6e-03±3.4e-04 0.23±0.01 71

3598 mask2 0.67 2.2279±0.00006 145.3±19.5 1.3e-01±3.6e-02 0.34±0.05 11

3633 DeepKband2 0.80 2.0991±0.00008 170.7±22.2 7.9e-02±2.8e-02 0.44±0.09 20

3655 KbandLargeArea3 1.09 2.1263±0.00003 110.0±31.5 2.2e-01±1.7e-01 0.35±0.06 41

3680 mask3 0.68 2.1753±0.00005 132.7±31.7 1.2e-01±6.4e-02 0.19±0.04 10

3714 mask3 0.68 2.1761±0.00005 81.1±76.7 2.1e-02±1.2e-02 0.22±0.01 33

3844 DeepKband2 0.80 2.4404±0.00001 177.5±181.8 1.2e-01±1.3e-01 0.70±0.02 16

4010 KbandLargeArea4 0.65 2.2216±0.00011 56.2±24.9 6.4e-09±2.3e-01 0.21±0.05 18

4037 DeepKband2 0.80 2.1750±0.00004 212.2±212.9 1.5e-01±1.5e-01 0.33±0.04 16

L mask2 0.67 2.1747±0.00005 190.8±23.5 8.9e-02±3.0e-02 0.34±0.03 20

4099 mask3 0.68 2.4391±0.00002 51.1±52.0 1.3e-02±1.2e-02 0.28±0.03 15

4645 DeepKband1 1.10 2.1011±0.00005 184.7±27.7 1.7e-01±4.6e-02 0.26±0.03 3

4930 DeepKband2 0.80 2.0974±0.00002 70.4±27.6 1.5e-01±1.9e-01 0.24±0.03 14

5630 KbandLargeArea4 0.65 2.2427±0.00003 152.1±61.9 2.2e-01±2.2e-01 0.27±0.02 26

5870 mask4 0.66 2.1036±0.00006 51.7±8.6 3.2e-06±1.0e-02 0.20±0.05 18

6908 DeepKband2 0.80 2.0633±0.00002 145.8±17.1 8.3e-02±3.4e-02 0.30±0.02 19

L mask1 0.71 2.0632±0.00004 144.4±142.5 4.1e-02±3.6e-02 0.33±0.05 26

8108 mask2 0.67 2.1622±0.00005 230.9±54.0 1.5e-01±5.8e-02 0.15±0.03 21

9420 mask3 0.68 2.0633±0.00016 344.0±337.2 4.2e-01±4.0e-01 0.28±0.05 5

ID mask σ v2.2 V2.2 V2.2;in/v
′
2.2;out sin(i) αmask

(km s−1
) (km s−1

) (km s−1
) (deg)

1814 KbandLargeArea4 47.2±10.6 60.6±15.7 115.5±29.0 1.20±0.14 0.63 2.0

2715 mask2 57.0±5.6 52.3±11.5 72.2±15.3 1.11±0.08 0.81 −47.3

2723 mask2 69.4±6.1 102.1±7.4 283.4±46.2 1.36±0.23 0.49 −47.3

2765 mask1 83.6±11.0 150.2±29.4 242.0±68.0 1.26±0.31 0.78 134.0

3074 mask1 79.4±11.7 115.4±14.3 144.9±19.1 1.10±0.07 0.87 134.0

3527 KbandLargeArea4 68.4±4.1 87.7±3.3 107.2±7.5 1.09±0.07 0.89 2.0

3598 mask2 75.8±12.8 128.9±19.4 184.8±36.1 1.39±0.20 0.97 −47.3

3633 DeepKband2 52.2±4.9 161.9±19.3 202.9±29.1 1.19±0.12 0.95 −62.0

3655 KbandLargeArea3 27.3±10.5 90.5±10.9 288.2±39.6 1.10±0.09 0.35 59.0

3680 mask3 0.0±17.4 108.9±19.5 154.9±38.6 1.24±0.26 0.87 14.8

3714 mask3 70.2±4.4 78.9±7.4 130.9±15.6 1.19±0.11 0.72 14.8

3844 DeepKband2 52.8±4.5 168.6±3.1 251.5±22.8 1.10±0.11 0.73 −62.0

4010 KbandLargeArea4 104.6±9.8 56.2±14.1 72.8±18.1 1.10±0.11 0.85 2.0

4037 DeepKband2 21.9±8.9 185.1±9.2 283.0±29.4 1.10±0.11 0.72 −62.0

L mask2 61.0±12.8 176.5±12.2 270.4±30.8 1.10±0.11 − −47.3

4099 mask3 25.8±5.2 50.4±7.7 86.8±20.3 1.24±0.26 0.72 14.8

4645 DeepKband1 0.0±7.8 151.1±16.3 164.8±21.4 1.05±0.08 0.97 2.0

4930 DeepKband2 50.0±5.1 57.8±12.0 70.9±21.9 1.23±0.26 1.00 −62.0

5630 KbandLargeArea4 65.9±10.4 117.8±21.8 163.3±34.9 1.37±0.19 0.99 2.0

5870 mask4 21.1±10.1 51.7±6.9 74.9±11.6 1.10±0.11 0.76 −63.0

6908 DeepKband2 46.1±7.8 134.0±11.0 324.9±46.7 1.36±0.18 0.56 −62.0

L mask1 86.9±11.3 139.3±22.0 298.0±53.7 1.20±0.15 − 134.0

8108 mask2 45.6±16.8 168.8±21.8 190.9±27.8 1.11±0.08 0.98 −47.3

9420 mask3 36.7±23.8 212.9±40.7 257.2±51.6 1.19±0.11 0.99 14.8

Note. Columns explained from left to right.

ID: galaxy ID; mask: observing mask; seeing: measured Gaussian seeing; zcentroid: redshift based on kinematic center; Va: best-fit Va; rt: best-fit rt; Rs: best-fit Rs;

aS NH : signal-to-noise ratio of the Hα emission line; σ: best-fit intrinsic velocity dispersion; v2.2: velocity derived at R2.2 ;s V2.2: velocity after correcting for

inclination, projection effects, and slit misalignment; ¢V v2.2;in 2.2;out: median input versus output ratio of emission-line models for the given aD∣ ∣; ( )isin : inclination

correction; amask: slit angle.

The final velocity was derived from v2.2 as = ¢( ( ))( )V v i V vsin2.2 2.2 2.2;in 2.2;out .
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compared this with the effective radii from the HST/WFC3/
F160W image reported by van der Wel et al. (2014b). On
average we find good agreement, with some scatter, and we
derived a bootstrapped median D = R R 0.05 0.08e e

(Figure 7). The most prominent outliers, with D >∣ ∣R R 0.5e e ,
occur for two small galaxies, which have <R 25%s of the
seeing. One additionally has a very irregular morphology and
was flagged by van der Wel et al. (2014b) as a suspicious
GALFIT result.

We note that 7/25 fits resulted in very small rt, with
< r 0. 02t . This is clearly much less than the resolution of a

pixel: 0. 18. To investigate the potential impact of small rt on
the velocities, we refit these spectra limiting rt to > r 0. 02t ,
obtaining a median velocity that is 10% higher. This may
indicate that the velocities are underestimated for sources with
small rt, but without knowing the true rt, the effect is difficult to
quantify.

The total S/N is included in Table 1. We measured the S/N
within 5Rs above and below the center of the line, but never

beyond 1. 26 to avoid the negative imprints of the emission line

in the spectrum. We also defined a wavelength region within

which to measure S/N, defined by the maximum shear of the

line, plus a buffer of s s= +l ( ) Å3FWHM 3 2 2 ln 2 2
instr
2 .

The S/N within these limits was calculated by summing the

flux and summing the squares of the equivalent pixels in the

noise spectrum, and dividing the first by the square root of the

latter.
Two galaxies were included in two masks (4037 and 6908 in

Table 1). As they were observed under different seeing

conditions and have different S/N and slit angle, they provide

a useful check on consistency. Encouragingly, we find that

these galaxies have velocities, redshifts, and scale parameters

that agree between masks within their uncertainties. We

Figure 6. Ks-band magnitude and effective F160W radius Re stacked histograms of 38 galaxies in the high-quality sample. For 18 spectra of 16 galaxies the fits were
poorly constrained or could not be fit with an exponential brightness profile. The remaining 22 galaxies were used to derive the Tully–Fisher relation. The removed
galaxies have fainter Ks-band magnitudes and smaller sizes on average, which resulted in a selection bias toward larger and/or brighter galaxies.

Figure 7. Left: = *R R1.678e s in the K band from our fits vs. Re in the HST/WFC3/F160W band measured by van der Wel et al. (2014b), for 25 spectra. The dotted
line indicates the one-to-one relation. Right: D = -( )R R R R Re e e e e;FIT ;FIT ;3DHST ;FIT as a function of Re,FIT. The bootstrapped median and s1 error on the median
(excluding any GALFIT bad fits indicated by red crosses) are shown as the solid and dashed blue lines, respectively.
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averaged their velocities to derive the Tully–Fisher relation in
the next section.

4. The Tully–Fisher Relation at < <z2.0 2.5

4.1. Tully–Fisher Sample

We show F160W images of the remaining 22 galaxies in the
Tully–Fisher sample in Figure 8 and illustrate the orientation of
their major axis and the MOSFIRE slits. Physical properties of
the sample are shown in Table 2 and Figures 9 and 10. We also
compare with the primary 187 ZFIRE targets, as well as with
the general population of galaxies at this redshift obtained from
ZFOURGE. For the ZFOURGE sample we selected galaxies
with stellar mass >M M 109. The 19 galaxies in our sample
cover the full range of the star-forming region of the UVJ
diagram (below the red line), but they have higher SFRs
compared to the SFR–stellar mass relation for star-forming
galaxies at < <z2.0 2.5 (Tomczak et al. 2016). They lie at the
bright, high-mass end of the general galaxy population. They
have a large spread in size (Figure 10), including even a
massive compact galaxy with effective size = R 0. 14e , but on
average they are larger than predicted by the size–mass relation
at < <z2.0 2.5 (van der Wel et al. 2014b).

Of the 22 galaxies, 6 are spectroscopically confirmed to be
part of the z=2.095 galaxy cluster. However, due to the small
number of cluster galaxies in this sample, a study of the effects
of environment on the evolution of the Tully–Fisher relation is
not feasible here. Alcorn et al. (2016) measured the velocity
dispersions of a larger sample of ZFIRE cluster galaxies and
found no evidence for environmental effects at this redshift.

4.2. The Tully–Fisher Relation

The Tully–Fisher relation is the relation between rotational
velocity and stellar mass. We show our rotation measurements
(also shown in Table 3) versus stellar mass in the left panel of
Figure 11, using the stellar masses taken from the ZFOURGE
catalogs and averaging values if galaxies were observed in two
masks. We performed a linear regression to the data following

= + -( ) ( )V B A M Mlog log 10 . 82.2

The Tully–Fisher relation is by convention shown in
diagrams with stellar mass on the y-axis. However, the
dominant uncertainty here is that in velocity, and therefore
we performed regression with V2.2 as the dependent variable.
This is also a method very commonly used in literature, which
acts against Malmquist bias (Bamford et al. 2006; Weiner
et al. 2006b; Kelly 2007).

We obtain from the fit = ( )B 2.18 0.051 and
= ( )A 0.193 0.108 . We derived the uncertainties by boot-

strapping the sample 1000 times and taking the standard deviation
from the bootstrapped distributions of B and A. The slope of the
Tully–Fisher relation, ( )0.193 0.108 , is consistent with
previous results at z=0. For example, Reyes et al. (2011) find
A=0.29, and Bell & de Jong (2001) find = =A 1 4.5 0.22.
Our study has too few numbers to significantly constrain
evolution in the slope between z=0 and < <z2 2.5,
but if we fix the slope to that at lower redshift, we can study
the evolution of the zero-point. Setting A=0.29, we find
= ( )B 2.17 0.047 . Compared to z=0 (Reyes et al. 2011),

this implies an evolution of the zero-point (in stellar mass) of
D = - M M 0.25 0.16 dex. We included here a small
correction of −0.05 dex in stellar mass to account for the

Kroupa (2001) IMF used by Reyes et al. (2011) instead of the
Chabrier (2003) IMF used here. Similarly, we can compare
to the z=0 result of Bell & de Jong (2001), by setting the
slope to 1/4.5. This results in an observed evolution of
D = - M M 0.39 0.21 dex. These offsets in stellar mass
are consistent with the findings of Cresci et al. (2009) and Simons
et al. (2016), who derived D = - M M 0.41 0.11 dex and
D = - M M 0.44 0.16, respectively.

As an additional consistency check, we investigated the
effects of sample selection. First, we refined the sample even
more and fitted the Tully–Fisher relation only to the galaxies
with highest S/N, fixing the slope to A=0.29 or 1/4.5. We
obtained consistent results withD = - M M 0.27 0.17 dex
and D = - M M 0.43 0.23 dex, respectively, for the 11
galaxies with spectra with >S N 20. Then we tested applying
a less severe sample selection, including spectra with velocity
errors <50% instead of <30%. This resulted in D =M M
- 0.18 0.16 dex andD = - M M 0.29 0.21 dex, respec-
tively, for a sample of 27 galaxies. This is a rather large
difference, and we take note that it may be a potential caveat if
one selects the brightest (and therefore easiest to fit) galaxies.
To investigate whether there are remaining systematic trends,

we show in Figure 12 the velocity residuals of the best-fit Tully–
Fisher relation with respect to various parameters and properties
of the galaxies (such as SFR). We define the residual as
D = -V V Vlog log log2.2 2.2 TFR, with VTFR the rotational velo-
city predicted from the fit for a specific stellar mass. There are no
systematic effects related to Sérsic index, Rs, stellar mass, SFR,
specific SFR (sSFR), or offset from the SFR–stellar mass relation
at < <z2.0 2.5 (Tomczak et al. 2016). In addition, there is no
clear relation with inclination, PA, or seeing. A few prominent
outliers have a negativeD Vlog 2.2, i.e., they are located to the left
of the Tully–Fisher relation in Figure 11. These have average
values of very small rt, the kinematic scale radius. As we have
shown in Section 3.3, resolution effects may play a role in
determining rt, and we derive somewhat higher velocities
if we limit rt to > r 0. 02t for these spectra, resulting
in D = - M Mlog 0.31 0.14 dex and D =M Mlog
- 0.47 0.17 dex for slopes of 0.29 and 1/4.5, respectively,
for the whole sample. We note that a value of zero for rt is
possible in the presence of noncircular motion, for example, if the
galaxy has a bar (Franx & de Zeeuw 1992). We inspected the
F160W images, but found no indications of a bar-like
morphology.
The scatter of the residual velocities with respect to the

Tully–Fisher relation is significant, with s = 0.19 dex. This is
more than at z=0 and could partly be due to the low rt
outliers. It may also be related to star-forming galaxies at high
redshift showing more variety in kinematics and the increase of
nonrotationally supported galaxies (e.g., Kassin et al. 2007).
An alternative to the stellar mass–velocity relation is the stellar

mass–S0.5 relation, with s= +S V0.50.5 2.2
2 2 . This relation

was first coined by Weiner et al. (2006a), and Kassin et al.
(2007) showed that the scatter decreases significantly if S0.5 is
used. They also found that it does not evolve significantly
between z=0.1 and 1.2.
We calculated S0.5 for the galaxies in our sample (right panel

in Figure 11) and find that the scatter is indeed smaller:
s = 0.15rms dex, similar to what Kassin et al. (2007) derived at

< <z0.1 1.2 (0.16 dex) and to a recent study by Price et al.
(2016), using MOSFIRE at < <z1.4 2.6 (0.17 dex). We
derived the best-fit relation to the data with A and B free in the
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Figure 8. HST/WFC3/F160W images of the galaxies in our Tully–Fisher sample. The green box shows the dimensions and orientation of the slit compared to the
galaxies. The dotted line indicates the PA of the major axis.
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fit and found = ( )Slog 2.06 0.0320.5 + ( )0.211 0.086
-( )M Mlog 10 . Here the slope is steeper than at

< <z0.1 1.2, where Kassin et al. (2007) found that
A=0.34. This is in agreement with the previous study by
Cresci et al. (2009), who did not derive a best-fit to their data,
but they do find higher S0.5 values toward smaller stellar mass
compared to the < <z0.2 1.2 relation. Keeping the slope
fixed at A=0.34, we found = ( )B 2.03 0.032 . This
implies a zero-point evolution of D = - M M 0.45
0.13 dex compared to < <z0.1 1.2. Price et al. (2016) also
find an offset in DM M for galaxies at high redshift,
implying D ~ -M M 0.3 dex, and their data do not indicate a
steeper slope. Their offset from < <z0.1 1.2 is inconsistent
with and less than what we find, which could be due to the
inclusion of galaxies at <z 2, their assumption of a Gaussian
PSF, and our correction for 2D PSF effects. If we account for the
Gauss–Moffat difference and remove the correction for smoothing
and slit misalignment, the inferred evolution compared with
<z 1.2 is less: D = - M M 0.26 0.12 dex. Both the

findings from Price et al. (2016) and ours point toward evolution
of the zero-point of the stellar mass–S0.5 relation between <z 1.2
and z 2, but no evolution for the scatter in S0.5.

One caveat could be the possible misclassification of
mergers as rotating disks in our sample. As Hung et al.
(2015) showed using artificially redshifted IFU data, a large
fraction of high-redshift ( >z 1.5) interacting galaxies would
still be kinematically classified as single rotating disks.
Inspection of Figure 8 indicates that some of the galaxies here
have multiple components with small angular separations, e.g.,

1814, 4930, and 6908. Such components may contribute
differently to the kinematics of the system, but to investigate
this in detail is beyond the scope of this paper.

5. Discussion

5.1. Comparison to Literature

To put our results into context, we show the evolution of the
stellar mass zero-point in Figure 13 and include previous
results from the literature. These were all derived from the
stellar mass–velocity relation, with quite strong discrepancies
between different studies10 at >z 0.5. However, before
comparing with other studies at different redshifts, several
major caveats have to be taken into account: studies use
different galaxy selections, different methodologies to derive
velocity and stellar mass, and different types of spectroscopic
observations. We will discuss these first and then review and
compare the studies.
The first is selection bias. At >z 2 star-forming galaxies

have different properties on average than at z=0. For
example, they have higher SFRs, higher gas masses, and
smaller sizes (e.g., van der Wel et al. 2014b; Papovich et al.
2015). At >z 2 dust-obscured galaxies are more common, and
for these galaxies the Hα luminosity is attenuated (e.g., Reddy

Table 2

Full Sample

ID R.A. Decl. Ks F160W M 1010 SFR Re GALFIT b/a nSérsic P.A.

(deg) (deg) (AB mag) (AB mag) ( )M -
( )M yr 1 (arcsec) Flaga (deg)

1814 150.1680908 2.2112861 23.0 23.3 0.6 17.5 0.31±0.01 0 0.79±0.02 0.6 −17.6

2715 150.0895386 2.2235634 22.6 23.0 0.8 34.4 0.52±0.02 1 0.61±0.03 0.6 −37.9

2723 150.1172638 2.2238791 21.5 22.0 7.8 66.4 0.14±0.00 0 0.88±0.02 4.5 −13.6

2765 150.119339 2.2241209 21.9 22.5 2.4 101.1 0.29±0.01 0 0.64±0.01 1.8 −73.9

3074 150.1209106 2.2288201 22.2 22.6 1.4 30.9 0.69±0.04 0 0.51±0.02 2.3 −59.2

3527 150.1825714 2.2358665 21.9 22.5 2.1 168.8 0.39±0.01 0 0.48±0.01 1.0 −9.5

3598 150.1120911 2.2368469 22.9 23.7 2.3 69.9 0.59±0.05 0 0.30±0.03 1.1 −10.0

3633 150.1249237 2.236979 22.1 22.7 2.5 150.5 0.51±0.02 1 0.37±0.02 0.9 −84.5

3655 150.1691284 2.2383816 21.9 22.4 2.1 127.3 0.56±0.01 0 0.94±0.01 1.1 44.7

3680 150.063446 2.237031 24.0 24.1 0.2 16.9 0.34±0.02 0 0.51±0.04 0.9 −10.2

3714 150.0707703 2.2381561 22.7 23.3 1.5 23.1 0.33±0.01 0 0.71±0.02 0.7 −6.3

3844 150.1094666 2.2400432 22.4 23.0 1.5 65.2 0.64±0.02 2 0.69±0.02 0.2 −68.3

4010 150.1798706 2.2423265 23.0 23.5 1.1 131.2 0.28±0.01 0 0.55±0.02 0.4 −5.8

4037 150.0981293 2.2428052 22.2 23.1 4.9 95.7 0.39±0.01 0 0.71±0.02 0.6 −54.8

4099 150.0718231 2.243396 23.1 23.7 2.2 57.5 0.46±0.04 0 0.71±0.03 1.7 −10.6

4645 150.0743256 2.2516196 23.6 23.8 0.3 14.1 0.33±0.01 0 0.32±0.03 0.5 −0.5

4930 150.0559387 2.2557058 23.5 23.8 0.3 15.3 0.41±0.02 2 0.09±0.02 0.2 87.6

5630 150.2009735 2.2665324 22.9 23.3 0.9 111.3 0.44±0.03 0 0.24±0.02 2.4 −34.9

5870 150.0609436 2.2696433 23.1 23.5 0.8 15.2 0.38±0.02 0 0.67±0.02 0.7 −71.0

6908 150.0834198 2.2857671 21.7 22.2 3.0 138.9 0.51±0.01 0 0.84±0.01 0.4 −25.6

8108 150.0622711 2.3044007 23.8 24.1 0.5 16.3 0.31±0.02 2 0.27±0.03 0.2 −37.3

9420 150.0947418 2.3236084 23.6 24.0 0.7 17.1 0.60±0.03 0 0.24±0.03 0.5 36.3

Note. Columns explained from left to right.

ID: galaxy ID; R.A.: right ascension; Decl.: declination; Ks: total FourStar/Ks- band magnitude; F160W: total HST/WFC3/F160W magnitude; M: stellar mass; SFR:

star formation rate; Re: effective radius from van der Wel et al. (2014b); GALFIT flag: quality flag provided by van der Wel et al. (2014b); b/a: axis ratio; nSérsic:
Sérsic index; P.A.; position angle of the major axis.
a
0: good fit; 1: suspicious fit; 2: bad fit (van der Wel et al. 2012).

10
We show the stellar mass zero-point offsets as quoted by the authors, which

were carefully derived and corrected for the different IMFs used in z=0
studies. We verified the corrections applied to each data point, but could not
confirm the IMF correction by Conselice et al. (2005). The correction from
Vergani et al. (2012) was unclear.
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et al. 2005; Spitler et al. 2014). Samples that are UV or Hα
selected may therefore not be a complete distribution of star-
forming galaxies at high redshift, and changes in incomplete-
ness may mimick evolution with redshift. Mergers and galaxies
with irregular morphologies are also more common than at
z=0 (e.g., Abraham & van den Bergh 2001; Mortlock
et al. 2013). These galaxies have less ordered velocity fields
(e.g., Kassin et al. 2007) and higher velocity dispersions
relative to circular velocities, and they are often excluded from
Tully–Fisher samples because it is difficult to describe these
galaxies with smooth rotating models (Cresci et al. 2009;
Gnerucci et al. 2011). At high redshift the angular extent of
galaxies is often small compared to the seeing, which may give
the appearance that the galaxy is dispersion dominated if the
velocity gradient is unresolved (e.g., Miller et al. 2012). If the
selection requires ordered rotation, this leads to biases toward
larger galaxies.

Here we have attempted to introduce as little selection bias
as possible, but it could not be entirely avoided. As described in
Section 3.5, we have excluded galaxies with poor fits, which
tended to be galaxies with smaller sizes and fainter magnitudes
than the overall photometric sample. Despite the large
uncertainties on the velocities of these poor fits, in Section 4.2
we have shown that such a selection may indeed bias the result
toward larger average velocities and hence a stronger evolution
of the stellar mass zero-point.

Another caveat when comparing different results from
literature is methodology. In many studies the PSF is assumed
to be Gaussian, but for our MOSFIRE data a Moffat profile is a
better approximation. The difference between using a Gaussian
and a Moffat in our modeling leads to a 0.06–0.08 dex shift in
the stellar mass zero-point of the Tully–Fisher relation,
depending on the slope. In addition, several different
possibilities exist to model the velocity field, e.g., the 1D
arctan model we used here (and also used by, e.g., Miller
et al. 2011, 2012) or a 2D integrated mass model (Cresci
et al. 2009; Gnerucci et al. 2011). Different choices for the
radius at which to evaluate velocity exist as well. In some cases
R80 is used, encapsulating 80% of the optical light (Reyes
et al. 2011). In other cases Vmax is used, or the asymptotic
velocity Va in the arctan model, which is often extrapolated at a
radius beyond the optically observed extent of the galaxy (e.g.,

Weiner et al. 2006b). Most studies in Figure 13 employ Vmax.
We prefer V2.2, because it is more robust, and it is used in
several other studies (e.g., Miller et al. 2011, 2012). The
relation Reyes et al. (2011) derived for V80, which is close to
Vmax, implies a 4% increase in velocities relative to V2.2, or a
∼0.06–0.08 dex effect on the inferred stellar mass zero-point.
Lastly, uncertainty on the stellar mass has to be taken into
account. We derived our stellar mass from fitting to spectral
energy distributions (SEDs) obtained from photometry, which
depends on several assumptions of the stellar population
models. Differences between a Salpeter (1955), Kroupa (2001),
Diet Salpeter (Bell et al. 2003), and Chabrier (2003) IMF are

–0.05 0.3 dex. In addition, different stellar population models
can produce stellar masses different by a factor of 2 (e.g., the
review of Conroy 2013). Also, fitting models to SEDs versus
applying M/L ratios based on (g− r) colors (Bell et al. 2003;
Puech et al. 2008) can amount to up to a factor of 2 differences
(Reyes et al. 2011).
Another important issue is simply that the data sets between

surveys are of a different kind, such as single-slit data versus
integral field spectroscopy. For example, Cresci et al. (2009),
who use IFS, employ a 3D method, by modeling a datacube
with x, y, and λ dimensions. This kind of modeling already
includes effects from the 2D PSF and projection, whereas (y, λ)

modeling of single-slit data using a 1D PSF (as performed in
this study and by Conselice et al. [2005], Kassin et al. [2007],
and Miller et al. [2011, 2012] at high redshift) results in
systematically underestimating the velocity.
In summary, methodology and data sets can introduce

significant velocity offsets. Reviewing the studies at different
redshifts with this in mind, we can try to understand these
discrepancies. For example, there exist clear differences
between Puech et al. (2008) and other studies (e.g., Conselice
et al. 2005; Kassin et al. 2007; Miller et al. 2011) at ~z 0.5 of

–0.3 0.4 dex. There is also a strong apparent evolution between
z=1.7 (Miller et al. 2012, based on 1D modeling of single-slit
data) and our results at z=2.2. This can at least in part be
explained if we take into account our slit misalignment and
projection corrections (see Section 3.4). For example, Weiner
et al. (2006a) already speculated that velocities may become
underestimated for larger aD∣ ∣, and based on this, Kassin et al.
(2007) select sources with aD < ∣ ∣ 40 , but do not correct for

Figure 9. Rest-frame U−V colors, stellar masses, and ZFOURGE Ks-band magnitudes for the 22 galaxies used here to derive the Tully–Fisher relation (green), the

ZFIRE target sample (light blue), and a parent sample drawn from ZFOURGE with < <z2 2.5 and >M M 109 (gray). The gray histograms were reduced by a
factor of three for reasons of visibility. The 22 galaxies of this study have a large range in U−V, stellar mass, and brightness.
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slit misalignment. In Section 3.4, however, we showed that the
effects of slit misalignment are still strong even for
aD < ∣ ∣ 40 . Miller et al. (2011) and Miller et al. (2012) apply

a correction for slit misalignment (Miller et al. 2011,
Equation (4)), but if we apply the same to our simulations,
we still find a residual ¢ =V v 1.12.2;in 2.2;out , independent of

aD∣ ∣. We show the median correction applied to our data in
both panels of Figure 13. It is likely that a similar correction is
applicable to all single-slit studies based on 1D modeling, but
we also note that such corrections are dependent on slit width,
as well as the angular size of a galaxy. The effect may thus be

smaller at <z 1. Encouragingly, Harrison et al. (2017) derive a
similar median correction of 7% on circular velocities
measured in virtual single slits projected on IFU data of
~z 0.9 galaxies. The differences at z=0.6 with the result

from Puech et al. (2008) may further be explained by a
different conversion from light to stellar mass (M/L ratios
versus SED fitting).
The effects of sample selection on the observed evolution have

been shown by Tiley et al. (2016), who measured the stellar mass
Tully–Fisher relation both for a parent sample of more general
properties, e.g., Hα detected, nonzero rotation with <30%
uncertainties, and for a subsample of rotation-dominated galaxies
with s >v 3. They found a D =M M 0.39 dex difference,
with stronger evolution for the rotation-dominated sample. The
median sV2.2 of our sample is 3.5, and we must keep in mind
that our sample may trace the evolution of the more rotationally
supported disks. The differences between < <z0 2 studies and
the z=3 result of Gnerucci et al. (2011) could be related to their
rest-frame UV selection and requirement of optical (rest-UV)

spectroscopic redshifts, which tends to be much bluer than near-
IR-selected samples at < <z1 2.
Different studies also compare to different z=0 relations. The

most common references are the results from Bell & de Jong
(2001), Pizagno et al. (2005), and Reyes et al. (2011). These are
based on different IMF, choice of velocity indicator, and method
to derive stellar mass. In most high-redshift studies, estimates of
the evolution of the Tully–Fisher relation are derived very
carefully, but a major factor of uncertainty is the derived slope of
the relation at z=0. For example, Bell & de Jong (2001) derive a
much steeper slope, with =A 1 4.5, than Pizagno et al. (2005)
and Reyes et al. (2011). This is illustrated by Vergani et al. (2012),
who find a −0.36±0.11 dex evolution compared to Pizagno
et al. (2007) and only −0.05±0.16 dex compared to Bell & de
Jong (2001). Other studies that compare to Bell & de Jong (2001)
are those by Conselice et al. (2005), Dutton et al. (2011, based on
the results of Kassin et al. 2007), Cresci et al. (2009), and
Gnerucci et al. (2011). Miller et al. (2011, 2012) and Simons et al.
(2016) use the z=0 relation from Reyes et al. (2011), while
Puech et al. (2008) and Tiley et al. (2016) derive the stellar mass
Tully–Fisher relation at both z=0 and the redshift of their study
and compare internally.

Figure 10. Left: UVJ diagram of the ZFIRE sample (open symbols) and the 22 galaxies studied in this work (squares). The underlying histogram is the full distribution

of < <z2.0 2.5 galaxies with >M 109 M from ZFOURGE. This diagram separates quiescent galaxies from star-forming galaxies based on their rest-frame U−V
and V−J colors, obtained from ZFOURGE photometry. The 22 galaxies in the sample span the full range in color typical of star-forming galaxies (region below the
red line). Middle: stellar mass vs. the logarithm of SFR. The orange line shows the median SFR as a function of stellar mass of star-forming galaxies at < <z2.0 2.5
(Tomczak et al. 2016). Most of the galaxies in the sample are above the SFR–stellar mass relation at that redshift (Tomczak et al. 2016). Right: stellar mass vs.
effective radius, with the size–mass relation at < <z2.0 2.5 for star-forming galaxies shown as a blue line. The dashed lines are the corresponding 16th and 84th
percentiles. Open square data points are flagged as suspicious or bad fits in the catalogs of van der Wel et al. (2014b).

Table 3

Tully–Fisher Variables

ID V2.2;TF S05;TF σTF

(km s−1
) (km s−1

) (km s−1
)

1814 115.5±29.0 94.4±18.5 47.2±10.6
2715 72.2±15.3 76.5±8.3 57.0±5.6

2723 283.4±46.2 212.1±31.0 69.4±6.1

2765 242.0±68.0 190.4±43.5 83.6±11.0

3074 144.9±19.1 129.6±12.9 79.4±11.7
3527 107.2±10.7 102.1±6.3 68.4±4.1

3598 184.8±36.1 151.1±23.0 75.8±12.8

3633 202.9±29.1 152.7±19.4 52.2±4.9
3655 288.2±39.6 205.6±27.8 27.3±10.5

3680 154.9±38.6 109.5±27.3 0.0±17.4

3714 130.9±15.6 116.2±9.2 70.2±4.4

3844 251.5±25.2 185.5±17.1 52.8±4.5
4010 72.8±18.1 116.6±10.5 104.6±9.8

4037 276.7±42.6 200.0±29.7 41.5±15.6

4099 86.8±20.3 66.6±13.4 25.8±5.2

4645 164.8±21.4 116.5±15.1 0.0±7.8
4930 70.9±21.9 70.8±11.5 50.0±5.1

5630 163.3±34.9 132.9±22.1 65.9±10.4

5870 74.9±11.6 57.0±8.5 21.1±10.1
6908 311.5±71.2 230.1±48.4 66.5±13.7

8108 190.9±27.8 142.5±19.4 45.6±16.8

9420 257.2±51.6 185.5±36.1 36.7±23.8

Note. V2.2;TF, S05;TF, and sTF were used to generate Figure 11. For sources with

observations in multiple masks, they are average values.
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Despite potential selection effects and differences in
methodology, our results are consistent with the two other
studies at ~z 2 (Cresci et al. 2009; Simons et al. 2016) and
suggest that the stellar mass Tully–Fisher relation has evolved
since ~z 2.2.

5.2. Interpretation of the Evolution of the Tully–Fisher Relation

Taking into account the various systematic differences
between studies at high redshift, we now discuss the
observations in a framework of dark matter halo physics and
semianalytical models. First, we calculate the expected disk
mass evolution assuming an isothermal dark matter halo and a
constant fraction of the total halo mass corresponding to the
disk (see also Equation (4) of Mo et al. 1998). Here the
evolution scales with the inverse of the Hubble constant:
~ ( )H z1 (solid gray line). In reality it is likely that the disk
mass fraction evolves over time (e.g., Papovich et al. 2015).
We therefore matched the predicted mass growth of a halo of
1013 M at z=0 with the results from Behroozi et al. (2010),
who analyzed the relation of stellar mass to halo mass for
galaxies between z=0.1 and 4. Here we assumed a zero gas
fraction for the disk. This resulted in softer evolution (dot-
dashed gray line).

An even more detailed approximation for the evolution of a
disk is explored with the semianalytic models of Somerville
et al. (2008) (long-dashed line) and Dutton et al. (2011) (dotted
line for the stellar mass and dashed line for the baryonic disk
mass evolution). The key difference between these models is
that Somerville et al. (2008) allow for halo contraction and
halos with a mass distribution following the prescription of
Navarro et al. (1997) and assume purely stellar disks, whereas
Dutton et al. (2011) assume isothermal halos without
contraction and include gas in their models. The semianalytic
models also predict a softer evolution of the stellar mass zero-
point than for a simple isothermal halo. It is also worth noting
that Dutton et al. (2011) find a more gradual evolution for the

full baryonic disk mass than for the stellar mass only at fixed

velocity. The stellar mass growth of a galaxy will be affected

by internal feedback processes, which are not addressed here.

However, these could further dampen the predicted evolution

(Sales et al. 2010).
Our result at z=2.2 is consistent with these predictions, if

we assume the slope of either Bell & de Jong (2001) or Reyes

et al. (2011). There is good agreement between the models and

most of the observations, given the uncertainties due to mass

derivation and sample selection, with a gradual zero-point

evolution. We note that our median corrections as indicated by

the downward-pointing arrows in Figure 13, if applied to

single-slit observations at <z 1.7, could potentially move

these data points toward a more negativeDM/ M . This would

bring earlier studies into better agreement with each other, but

would also lead to a stronger observed evolution than predicted

at this redshift. At the same time, if such corrections become

less severe owing to the increasing median size of galaxies

toward lower redshift (e.g., van der Wel et al. 2014b), it may be

possible to reconcile the apparent strong observed evolution

between z=1.7 (Miller et al. 2012) and ~z 2.2, while lower-
redshift results still remain consistent with the models. The data

point from Gnerucci et al. (2011) is still an outlier, and if

representative, it may point to non-self-similar evolution at

high redshift ( >z 3).
As a final note, the increase in stellar mass at fixed velocity

over time could simply reflect the conversion of gas into

stellar mass. The median s ~V 3.5 for galaxies in our

sample is larger than the median of, e.g., Price et al. (2016) at

< <z1.4 2.6 of s =V 2.1, and above the threshold of what

Kassin et al. (2012) consider a kinematically settled disk. This

could be due to our selection of bright galaxies with clear

rotation. Nevertheless, it confirms the emerging picture that at

high redshift disk galaxies are more often pressure supported

and the evolution that we observe in the stellar mass zero-

point could partly reflect the conversion from gas to stars over

Figure 11. Left: stellar mass vs. velocity and the best-fit Tully–Fisher relation for galaxies at < <z2.0 2.5: = ( )Vlog 2.18 0.0512.2 + (0.193±0.108)
-( )M Mlog 10 (blue line). For comparison, the dashed purple line is the ~z 2.2 result from Cresci et al. (2009). The dot-dashed and dotted lines are the z=0

results from Reyes et al. (2011) and Bell & de Jong (2001), respectively. The green and orange lines are the best-fit results with the slope fixed to the respective slopes

at z=0. The scatter in velocity around the relation is 0.19 dex. Right: stellar mass vs. s= +S V0.50.5 2.2
2 2 . The scatter in S0.5 is smaller than in velocity: 0.16 dex.

We derive a best-fit relation =  +  -( ) ( )( )S M Mlog 2.07 0.03 0.224 0.060 log 100.5 (red line), with a steeper slope than at < <z0.1 1.2 (dot-dashed line;
Kassin et al. 2007). The solid red line is the best fit with the slope fixed to match the relation of Kassin et al. (2007). The red dotted line shows the same result if we
remove the smoothing and slit misalignment corrections and assume a Gaussian PSF (velocities 4% smaller).
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time, a scenario that was also suggested by Simons
et al. (2016).

6. Summary

In this work we have derived the stellar mass–velocity and
S0.5–velocity scaling relations at < <z2.0 2.5, making use of
24 MOSFIRE single-slit spectra of 22 star-forming galaxies, as
part of the ZFIRE survey. The diagnostic used was the Hα
emission line, and we fitted model spectral image stamps to the

data to trace the rotational velocities and dispersions of the Hα

gas in the galaxies.
We conducted a careful check of systematics and corrected

our results where necessary, and we subsequently fitted and

interpreted the stellar mass Tully–Fisher evolution to

< <z0 2.5. We found the following main results:

1. The MOSFIRE PSF can be best approached by a Moffat

function with b = 2.5, instead of a Gaussian. Assuming

a Gaussian PSF instead leads to 4% underestimated

Figure 12. Difference between the observed velocity and the velocity predicted by the best-fit Tully–Fisher relation. We plot against model and observational
parameters. From left to right, top to bottom: S/N, log V2.2, log stellar mass, best-fit Rs, best-fit rt, best-fit σ, redshift, inclination, aD , Sérsic index, SFR, SFR minus
predicted SFR at < <z2.0 2.5 (Tomczak et al. 2016), sSFR, seeing, and Rs relative to the seeing. We find almost no correlations, except for best-fit rt, with a negative
offset in ΔlogV2.2 for fits with »r 0t .
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velocities on average, implying a 0.06−0.08 dex effect on
the stellar mass zero-point of the Tully–Fisher relation.

2. Two-dimensional PSF and slit projection effects cause
flux from lower-velocity regions of a galaxy to be mixed
within the slit. From simulations of emission-line models
we derive a bias toward on average 19% smaller
velocities, depending on how well the slit is aligned with
the position angle of the galaxy. Depending on the slope
of the Tully–Fisher relation, this translates into a
0.26–0.34 dex effect on the stellar mass zero-point.

3. Taking this into account, we derived the stellar mass
Tully–Fisher relation = ( )Vlog 2.18 0.0512.2 + (0.193±
0.108) -( )M Mlog 10 and inferred an evolution of
D = - M M 0.25 0.16 dex compared to z=0, assum-
ing a fixed slope of 0.29 orD = - M M 0.39 0.21 dex
assuming a slope of 1/4.5.

4. The best-fit modified Tully–Fisher relation, the S0.5–
velocity relation, is = ( )Slog 2.06 0.0320.5 + (0.211

)0.086 -( )M Mlog 10 , with an inferred zero-point
evolution of D = - M M 0.45 0.13 dex compared
to < <z0.1 1.2.

5. We reviewed previous results in the literature, which
have strong discrepancies between IFS and single-slit
studies over a large redshift range. We give as an
explanation for these discrepancies that single-slit results
may suffer from PSF and projection effects, uncertainties
in stellar mass, and selection bias.

6. The overall evolution of the stellar mass zero-point at
< <z0 2.5 is reasonably well matched by predictions

from hierarchical clustering (Mo et al. 1998) and the
semianalytic models of Somerville et al. (2008) and
Dutton et al. (2011). However, in detail some discre-
pancies with the models remain. Furthermore, our data
confirm previous observations of increased contributions
from nonrotationally supported galaxies, which are not
included in the models. The increase of the average
velocity dispersion toward higher redshift is related to the

higher gas fractions in galaxies, which could drive part of
the evolution inDM M . It is possible that the evolution
in DM/ M is softened by additional processes within a
galaxy, such as stellar feedback.
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Appendix
Individual Fits

In this section we present the spectral image stamps and
best fits for 24 spectra (Figure 14). In addition to the 2D fits,
we derived radial velocity and sigma profiles from Gaussian
fits to the flux intensity of each row of the spectral image

Figure 13. Evolution of the stellar mass zero-point with redshift. The yellow data points represent the observed evolution from our survey at < <z2.0 2.5 for fixed
slopes of 0.29 (left panel) or 1/4.5 (right panel). Uncertainties are derived from bootstrap resampling, and the horizontal error bar indicates the standard deviation of
redshift in our sample. Results from other surveys (as quoted in the corresponding papers) are shown with symbols as indicated in the legend. For studies that do not
compare directly with Bell & de Jong (2001) or Reyes et al. (2011) we use gray symbols. The magnitude of the systematic effects that we have corrected for are
indicated by arrows, and we have also indicated the magnitude of a factor of 2 uncertainty in stellar mass with a vertical error bar (M). We also show the predictions
from semianalytical models (pink lines).
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stamp. The center of each Gaussian traces the relative blue- or

redshift from the center and can be converted to velocity using

the kinematic center from the 2D fits. In this way we can also

derive the radial velocity dispersion profile, which is not

constant owing to the seeing (note that for the 2D model we

assumed an intrinsic constant velocity dispersion). For each

spectrum we repeated this measurement for the modeled

images. The errors on the trace were derived from the

covariance matrix that was produced by the Python scipy

optimize.leastsq algorithm and give an indication of

the goodness of the fits to each row.
The radial velocity profile deviates in the center from the

intrinsic arctangent, because it was measured on the convolved

image. Overall, the original and modeled traces correspond

within the uncertainties, indicating that an arctangent profile is

a reasonable approximation of the velocity curve. These figures

Figure 14. Individual fit results. For each source, from left to right: the original, sky-subtracted spectral image; the best-fit model; the radial velocity profiles of the
data and the best-fit model; and the radial sigma profiles. The dashed lines in each panel are the intrinsic arctangents and velocity dispersions based on the fitted
parameters. In the last two panels individual data points were obtained from Gaussian fits to each row of the spectral image (blue squares) and best-fit model (yellow

bullets). For the original data we only show rows with velocity and sigma errors< -500 km s 1 and >S N 1. For the model profiles we show a spatial range up to 7
pixels to either side of the velocity center, where the dither pattern resulted in a positive signal. The velocities displayed here are not corrected for inclination and slit
orientation.
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further illustrate the advantage of a full 2D analysis: we can
accurately reproduce the velocity curves over a large radial
range, whereas the trace measured from individual rows can
have large uncertainties due to low S/N.
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