
1148 IEEE Transactions on Consumer Electronics, Vol. 57, No. 3, August 2011

Contributed Paper

Manuscript received 07/15/11

Current version published 09/19/11

Electronic version published 09/19/11. 0098 3063/11/$20.00 © 2011 IEEE

zFTL: Power-Efficient Data Compression Support

for NAND Flash-based Consumer Electronics Devices

Youngjo Park and Jin-Soo Kim, Member, IEEE

Abstract — Flash translation layers play an important role

in determining the storage performance and lifetime of NAND

flash-based consumer electronics devices. In this paper, we

present a flash translation layer called zFTL, which reduces

the amount of data written to NAND flash memory by

supporting on-line, transparent data compression based on

the X-Match algorithm. To minimize compression overhead

and power consumption, we also propose a novel prediction

scheme that identifies incompressible data in advance without

going through full compression.

Our evaluations with five real-world workloads show that

zFTL successfully enhances storage performance and lifetime

by improving the write amplification factor (WAF) by a factor

of 2.6 (geometric mean) compared to the case without

compression support. In addition, we find that the proposed

prediction scheme is effective in reducing power consumption

by skipping compression for incompressible data1.

Index Terms — NAND flash memory, flash translation layer

(FTL), data compression, incompressible data prediction.

I. INTRODUCTION

Recently, NAND flash memory has become a necessity as a

storage medium for mobile consumer electronics devices,

thanks to its non-volatility, superior performance, shock

resistance, and low-power consumption. With technology

advancing, the capacity of NAND flash memory is getting

larger and its price is getting lower.

However, NAND flash memory has several limitations.

First, previous data should be erased before a new data can be

written in the same place. This is usually called erase-before-

write characteristic. Second, normal read and write operations

are performed on a per-page basis, whereas erase operations

on a per-block basis. The erase block size is larger than the

page size by 64-128 times. In MLC (Multi-Level Cell) NAND

flash memory, the typical page size is 4KB and each block

consists of 128 pages. Finally, flash memory has limited

lifetime; MLC NAND flash memory wears out after 1K to 5K

write/erase cycles.

1 This work was supported by Future-based Technology Development

Program (No. 2010-0020730) and by Mid-career Researcher Program (No.

2010-0026511) through the National Research Foundation of Korea (NRF)

funded by the Ministry of Education, Science and Technology.

Youngjo Park is with Memory Division, Samsung Electronics Co.,

Hwasung 445-701, South Korea (e-mail: yj113.park@samsung.com).

Jin-Soo Kim (corresponding author) is with the School of Information and

Communication Engineering, Sungkyunkwan University, Suwon 440-746,

South Korea (e-mail: jinsookim@skku.edu).

The aforementioned limitations are effectively hidden

through the use of an intermediate software layer called Flash

Translation Layer (FTL) [1]. The basic role of the FTL is to

emulate the traditional block interface on top of NAND flash

memory so that the existing disk-based file systems can be

used without any modification. For this reason, many NAND

flash-based consumer electronics devices, such as MP3

players, in-car navigators, smartphones, tablets, and digital

TVs, implement the FTL in the operating system.

Most FTLs employ an address remapping technique, which

writes incoming data into one or more pre-erased pages and

maintains the mapping information between the host’s logical

sector number and the on-flash physical page number. As the

new data are written, the previous version is invalidated, and

those obsolete pages are collected and then eventually

converted to free pages via the procedure known as garbage

collection. To cope with the limited write/erase cycles, FTLs

also perform wear-leveling which distributes erase operations

evenly across the entire flash memory blocks [2], [3].

Although garbage collection and wear-leveling improve the

overall performance and lifetime, they cause additional writes.

One way to quantify the added cost of an FTL is to measure

the write amplification factor (WAF) [4]. The WAF is defined

as the ratio of actual data written into NAND flash memory as

compared to the actual data written by the host system. A

lower WAF is a measure of efficient storage and

housekeeping algorithms inside FTL, improving the overall

life expectancy of NAND flash memory by lowering the total

write/erase cycles required to manage the data stored in flash

memory. Although the WAF of hard disks is 1.0, the WAF

can be as high as 10 on low-end flash memory cards.

In this paper, we present the design and implementation of

a flash translation layer called zFTL, which internally

compresses or decompresses data. Data compression is an

effective way to lower the WAF further down to below 1.0,

thus improving FTL performance and lengthening flash

lifetime. Specifically, this paper discusses and evaluates

several design issues arise when we support on-line,

transparent compression/decompression inside FTL. zFTL is

based on page-level address remapping [5] and the

compression unit size is set to 4KB. We focus on the

management of the compressed data, assuming the actual

compression/decompression is done by dedicated hardware.

For this reason, zFTL uses the X-Match [6] algorithm which

allows for fast hardware implementation. In addition, this

paper proposes a novel prediction scheme called

Incompressible Data Predictor (IDP) for the X-Match

Y. Park and J.-S. Kim: zFTL: Power-Efficient Data Compression Support for NAND Flash-based Consumer Electronics Devices 1149

algorithm, which identifies incompressible data before they

are fully compressed. The purpose of the IDP is to avoid data

compression for incompressible data, thereby saving time and

power consumption.

zFTL is evaluated with five real-world workloads. Our

results show that the use of data compression improves the

WAF by a factor of 1.8 to 4.7. We also find that the proposed

IDP is effective in reducing power consumption especially

when many of the input data are incompressible. From these

results, we believe zFTL is a power-efficient way of

enhancing the storage performance and lifetime of NAND

flash-based consumer electronics devices.

The rest of the paper is organized as follows. The next

section discusses the related work. Section III introduces the

overall architecture and design issues of zFTL. Section IV

describes the proposed IDP scheme in detail. Section V

presents the experimental results and section VI concludes the

paper.

II. RELATED WORK

Data compression techniques have been studied in various

layers in computer systems. JFFS2 [7] is a representative

flash-aware file system inspired by the log-structured file

system [8]. JFFS2 provides an option to use Zlib-based data

compression [9]. CramFS [10] and SquashFS [11] are

compressed read-only file systems, mainly targeting the root

file system in small embedded systems. Hyun et al. [12]

proposed LeCramFS which modifies CramFS for NAND flash

memory. These flash-aware file systems do not require FTL,

as they work directly on NAND flash memory.

Yim et al. [13] studied a flash compression layer for

SmartMedia card system, proposing an internal packing

scheme (IPS) to manage internal fragmentation. The IPS best-

fit scheme can reduce the internal fragmentation effectively,

but it may incur some read overhead as unrelated logical

sectors are packed together to minimize internal fragmentation.

Chen et al. [14] proposed another internal packing scheme

called IPS real-time. In the IPS real-time scheme, the

compressed data can be stored into consecutive flash pages,

but it has no consideration for random reads; it needs to access

two flash pages to read a sector which spans two pages. Both

approaches focused only on reducing internal fragmentation,

without considering other issues such as mapping information

management and garbage collection under the presence of

compressed data. In addition, they are devised for old 512-

byte flash page size, which has been outdated by new

generations of NAND flash memory chips.

Special hardware compressor/decompressor engines have

been proposed in several literatures. The Memory Expansion

Technology (MXT) [15] performs compression and

decompression between the shared cache and the main

memory, to expand the effective main memory size using

hardware implementation of the LZ77 algorithm [16], [17].

Benini et al. [18] investigated a hardware-assisted data

compression for memory energy minimization. They describe

the implementation of hardware compression algorithms

including LZ-like one in detail and show no penalty in

performance. Kjelso et al. [6] proposed the X-Match

compression algorithm for main memory, which is easy to

implement in hardware. X-Match is another variant of LZ77,

differing in that phrases matching works in four bytes unit

[19]. For brevity, we assume data compression and

decompression is assisted by special hardware that is fast

enough to hide its overhead.

Write Buffer (WB) Read Buffer (RB)

Incompressible

Data Predictor (IDP)

Compressor

Flash Write Buffer
(FWB)

Flash Read Buffer
(FRB)

Decompressor

Address translation Garbage collection

NAND Flash Memory

Host (File System)

Write sectors Read sectors

zFTL

Fig. 1. The overall system architecture of zFTL. The shaded area

indicates the added components to support data compression in zFTL.

III. ZFTL

A. System Architecture

Fig. 1 shows the overall architecture of zFTL. File systems

issue read/write requests to zFTL. The size of each request is a

multiple of the disk sector size (512B). For write requests,

zFTL aggregates the requested data in the Write Buffer (WB),

whose size is equal to the compression unit size. If the WB is

full, the data in the buffer are compressed and the compressed

data (called a “chunk”) are appended into the Flash Write

Buffer (FWB). The size of the FWB is a multiple of the flash

page size (4KB in MLC NAND). Although the compression

unit size is fixed, the resulting chunk is highly variable in size.

Hence, the FWB may hold a number of chunks depending on

the compression ratio.

When the FWB has not enough space for the incoming

chunk, the FWB is flushed into flash memory. Before flushing

data, the corresponding logical sectors are remapped to new

physical pages by zFTL. In case the previous data are

available in any of buffers, they are removed from the buffer,

ensuring data consistency and preventing the invalidated data

from being flushed into flash memory. If the number of free

blocks is below a certain threshold, zFTL initiates garbage

collection to reclaim erase blocks. We will discuss the garbage

collection process of zFTL in section III.D.

For reads, zFTL first searches for the requested data in the

WB as it may have the most recent version of the data. When

the search fails, zFTL looks up the data in the FWB. If the

data are found in the FWB, the corresponding chunk is

decompressed and then loaded into the Read Buffer (RB).

When the data are still not found in the FWB, zFTL examines

1150 IEEE Transactions on Consumer Electronics, Vol. 57, No. 3, August 2011

the RB and the Flash Read Buffer (FRB). Note that the two

write buffers (WB and FWB) should be looked up before the

two read buffers (RB and FRB), as they may keep the up-to-

date data. While the requested data are stored in any of these

buffers, the read request can be satisfied without issuing any

flash read operations. Otherwise, zFTL needs to decompress

the requested chunk after reading the corresponding page

from flash memory.

Some data are inherently incompressible. This happens if

the data belong to multimedia files (such as *.jpg, *.mp3,

*.avi, *.mpg, etc.) or compressed archive files (such as *.zip,

*.rar, *.gz, etc.). zFTL identifies those incompressible data

based on the resulting size after compression. When the

compression ratio is not good enough to justify the overhead

of storing the data in compressed form (currently, 6 bytes for

each chunk), zFTL stores the original (uncompressed) data

into flash memory in order to save space. While reading these

data, zFTL directly copies the contents of the FRB to the RB,

bypassing the decompressor. This also saves the time and

energy that might be spent on decompressing such data.

One problem with this approach is that it is uncertain

whether the current data are sufficiently compressible or not

until the entire data are processed by the compressor engine. If

we could determine whether the incoming data are

incompressible or not in advance before the actual

compression, the compression overhead can be avoided for

incompressible data. In Fig. 1, the Incompressible Data

Predictor (IDP) is introduced for this reason. The IDP

examines a small subset of data in the WB and predicts

whether the current data are incompressible or not. If the data

are predicted incompressible, the compressor engine is

bypassed and the original data are forwarded to the FWB. The

prediction scheme used in the IDP will be described in detail

in section IV.

B. Compression Algorithms

The choice of compression algorithms is one of the

important design issues, because it determines the speed of

compression/decompression, the compression ratio, and the

complexity of hardware implementation. Many hardware

implementations of LZ77 [16] or variants have been proposed

in previous studies. Among them, we choose a variant of

LZ77 called the X-Match [6] algorithm for zFTL. X-Match

not only shows fairly reasonable compression ratio across the

workloads, but also allows for efficient hardware

implementation. Moreover, we show that it is possible to

develop an effective Incompressible Data Predictor (IDP) for

the X-Match algorithm in section IV.

The unit of data compression is another important factor

affecting the compression ratio and speed. In particular,

dictionary-based algorithms such as LZ77 and X-Match have

the characteristic that the bigger compression unit tends to

yield the better compression ratio. This is because these

algorithms replace a repeated pattern of strings within the

compression unit by a much shorter but uniquely identifiable

string.

We have considered two options related to the unit of

compression. One is to compress the variable-sized data as a

whole as it is delivered by a single write request from the file

system. The number of sectors written by a write request is

usually a multiple of the file system block size and can be as

large as 256 sectors (i.e., 128KB) for sequential writes. Thus,

this scheme can improve the overall compression ratio and

reduce the number of mapping entries. However, the use of

the variable-sized compression unit presents a number of

issues that need careful handling. For example, when a portion

of the compressed data is read by a read request, the entire

compressed data should be fetched from flash memory for

decompression. An even worse scenario occurs when the

compressed data are partly updated by a later write operation.

In this case, the original data should be merged with the new

data after decompression. Then, it can be either recompressed

and stored into flash memory as a single compression unit, or

split into two or three pieces each of which is separately

compressed and stored.

Another option is to compress a fixed size of data at a time.

In fact, any power of two multiple of the sector size, such as

512B, 1KB, 2KB, 4KB, 8KB, etc., can be used as the

compression unit size. As discussed before, the use of larger

compression unit size is favored for better compression ratio.

However, if the compression unit size becomes too large, the

system suffers from unnecessary overhead when the

compressed data are partly read or updated. Moreover,

enlarging the compression unit size has a diminishing return

in the compression ratio. Burrows et al. [20] and Yim et al.

[13] have shown that there is no significant difference in the

compression ratio for 2KB to 8KB compression unit sizes.

For the above reasons, zFTL uses a fixed compression unit

size of 4KB. Since most file systems use at least 4KB as the

file system block size, they rarely issue I/O operations smaller

than this size and the read/write request sizes are usually a

multiple of 4KB. In addition, the compression unit size of

4KB is large enough to achieve good compression ratio.

C. Address Mapping

zFTL employs a page-level mapping technique [5] where a

per-page mapping entry from the logical page number to the

physical flash page number is maintained in the Page Mapping

Table (PMT). Similar to other FTLs with page-level mapping,

PMT is accessed by the logical page number. To support data

compression, zFTL extends the structure of PMT slightly.

Each 32-bit mapping entry includes the incompressible data

flag (FLAG) and the page index (IDX), as well as the physical

page number (PPN) where the page is stored. FLAG indicates

whether the corresponding logical page is compressed or not.

Since a single flash page may accommodate compressed

chunks from several logical pages in zFTL, IDX is used to

represent the relative position of each logical page within the

physical page. Fig. 2 illustrates an example of PMT in zFTL.

Note that PMT entries for the logical page number 100, 101,

and 102 have the same value for the PPN field, representing

that the data for those logical pages are compressed and stored

Y. Park and J.-S. Kim: zFTL: Power-Efficient Data Compression Support for NAND Flash-based Consumer Electronics Devices 1151

in the same physical page number 320 in the order indicated

by the IDX value. For incompressible data, the corresponding

FLAG is set to 1 (cf. the PMT entry of the logical page number

103 in Fig. 2).

Fig. 2. The structure of page mapping table (PMT) and on-flash layout

in zFTL. The contents of logical page numbers (LPNs) 100-102 are

compressed and stored in physical page number (PPN) 320. The data in

LPN 103 are incompressible (FLAG==1), hence they are stored

uncompressed in PPN 400.

Depending on FLAG, the physical flash page has two

different structures. For incompressible data (FLAG = 1), the

entire page is devoted to the (uncompressed) original data.

When the page size is larger than the compression unit size,

each data block is identified by IDX. On the other hand, when

the value of FLAG is 0, the related physical page includes such

information as the total number of chunks in the page, a set of

offsets for each chunk, and a set of chunks, as depicted in Fig.

2. The offset indicates the last byte position of the

corresponding chunk in the page.

D. Garbage Collection

As in other FTLs, zFTL reserves a set of erase blocks (5%

of the total erase blocks, by default) to absorb the incoming

write requests. When zFTL runs out of available erase blocks,

garbage collection is invoked to reclaim the space allocated to

obsolete pages. zFTL uses the greedy policy to choose a

victim erase block, i.e., the erase block which has the smallest

number of valid pages is selected as a victim. During garbage

collection, the remaining valid pages in the victim erase block

are copied into another erase block and the victim erase block

is cleared to be used later.

Since each physical page normally contains the data from

more than one logical page in zFTL, it can be partially

invalidated by subsequent write operations. Therefore, zFTL

should be able to identify the current status of each chunk

stored in the same physical page, in order to copy only the

valid chunk during garbage collection. For this reason, zFTL

maintains the Page Status Table (PST) in memory. Unlike

PMT, PST is indexed by the physical page number, and each

PST entry keeps track of the number of valid chunks and the

bitmap for each chunk stored in the given physical page

number. The bitmap indicates whether the corresponding

chunk is valid or not.

Fig. 3 shows an example 8-bit PST entry designed for 4KB

physical pages. Fig. 3 represents that two chunks (the second

and the third one) are currently valid in the physical page

number 330. Under this PST structure, up to five logical pages

can be packed into a 4KB physical page. Our experiments

show that about three chunks are stored in a single 4KB flash

page on average for the most of well-compressed workloads.

Thus, we believe the 8-bit entry is sufficient for 4KB flash

pages. If the page size is increased, we can add a few more

bits to each PST entry.

Fig. 3. An example PST (Page Status Table) entry. This example shows

that there are two valid chunks (the second and the third one) in physical

page number (PPN) 330.

E. Internal Fragmentation

The flash page size is fixed whereas the resulting chunk

size varies after compression. Unless we allow a chunk to be

stored in more than one page, internal fragmentation is

unavoidable. The relative amount of internal fragmentation

will be getting smaller as the page size becomes larger than

the compression unit size. Considering the recent trend in

NAND flash memory architecture where the page size grows

progressively larger, the impact of internal fragmentation can

be of minor significance, compared to the benefit of

compression support.

Currently, zFTL does not implement any special scheme to

reduce internal fragmentation. zFTL simply packs the

incoming data in the order they are issued from the upper

layer. We leave a more comprehensive analysis and possible

optimization on internal fragmentation for future work.

F. Memory Requirement

The memory requirement of zFTL is comparable to other

FTLs with page-level mapping. The use of block-level

mapping can decrease the memory requirement by a factor of

64 to 128, but the increasing number of flash-based storage is

adopting page-level mapping due to its superior performance

and higher flexibility. Since other page-mapping FTLs also

keep page-level address mapping information in memory (i.e.,

PMT in zFTL), only the memory used by PST is the added

cost in zFTL, which requires 512KB for 2GB flash memory

with 4KB page size.

If PMT and PST are too large to be accommodated in

memory, zFTL may use the selective caching method used in

DFTL [5], where the whole mapping table is stored in flash

memory and only the needed part of the mapping table is

loaded into memory.

IV. PREDICTING INCOMPRESSIBLE DATA

A. Overview of the X-Match Algorithm

The goal of the Incompressible Data Predictor (IDP) shown

in Fig. 1 is to identify the incompressible data in advance

without going through full compression. To design an effective

predictor, it is necessary to investigate the characteristics of the

underlying X-Match compression algorithm.

The X-Match algorithm is a dictionary-based lossless data

compression algorithm. X-Match maintains a dictionary of

1152 IEEE Transactions on Consumer Electronics, Vol. 57, No. 3, August 2011

data previously seen and attempts to match the current data

with an entry in the dictionary [6]. Its dictionary is composed

of up to 128 entries and each entry has 4 bytes. X-Match reads

4 bytes from the input data (referred to as a “tuple”) at a time

for matching. Fig. 4 illustrates the basic idea of the X-Match

algorithm with example cases.

If the incoming tuple fully matches with an entry in the

dictionary as shown in Fig. 4(a), a single bit of ‘0’ is emitted

first as an output to indicate a match, followed by the

information on the match location (<ML>) and the match type

(<MT>). The match location is encoded with the phased

binary code and represents the location of the matched

directory entry. The match type denotes the Huffman code for

the full match. Note that the matched directory entry is moved

to the top of the dictionary.

A partial hit occurs when at least any two characters of the

incoming tuple match with a dictionary entry, as depicted in

Fig. 4(b). In this case, the match type encodes (using the

Huffman code) which characters from the incoming tuple

matched a dictionary entry. Any unmatched characters from

the incoming tuple are then sent literally (‘Z’ in Fig. 4(b)).

Otherwise, a miss occurs and a single bit of ‘1’ is transmitted

followed by the tuple itself as illustrated in Fig. 4(c). For a

partial hit or a miss, the incoming tuple is inserted at the top of

the dictionary.

Fig. 4. Example cases of the X-Match algorithm. <ML> represents the

match location (i.e., the location of the matching entry in the dictionary)

encoded with the phased binary code. <MT> indicates the Huffman code

for the match type.

B. Incompressible Data Predictor (IDP)

As described in the previous subsection, X-Match

repeatedly matches a 4-byte tuple against the dictionary

entries. For a tuple to be compressed, at least two characters

should be matched with any of the dictionary entries. Our IDP

is based on the following observations. First, since the

dictionary is gradually filled with the incoming tuples, X-

Match works better if there are many overlapped characters

between tuples. Second, only the overlap of characters in the

same byte position in a tuple matters. For example, although

two tuples “AACC” and “CCAA” have many characters in

common, it is not helpful for X-Match as they have different

characters in each byte position.

The basic idea behind the proposed IDP is to count the

number of distinct characters in each byte position for the

incoming tuples, and then use this count to predict whether the

data will be compressed or not. Fig. 5 presents the case when

the number of tuples is eight. Each tuple is arranged vertically,

and we count the number of unique characters in each column,

C1, C2, C3, and C4. If this count is small, it means that many

characters are overlapped in the particular column. The large

count indicates that there are many unique characters in that

column, lowering the possibility of full hits or partial hits.

Fig. 5. The basic idea of predicting incompressible data. The number of

unique characters in each column can be used to predict whether the data

are incompressible or not.

To confirm this idea, we have conducted an experiment

with real data. Fig. 6 illustrates the cumulative distribution of

the number of unique characters in the third column for the

data produced while office productivity software is installed.

As we use the compression unit size of 4KB, there are 1,024

tuples per compression unit to be processed by the X-Match

algorithm. Since each byte can have the value between 0 and

255, the count of each column will have the value between 1

and 256. Out of the total 243,897 compression units generated

during this experiment, 137,474 units (56.4%) were

incompressible, i.e., the size of the compressed data plus 6

bytes (the metadata size for each chunk) exceeded the size of

the original data (4KB). Fig. 6 shows that 99.7% of these

incompressible units have the number of unique characters

greater than 239 characters in the third column. On the other

hand, the number of unique characters is distributed over a

much wider range for compressible units.

Fig. 6 suggests that the number of unique characters can be

an effective means to predict whether a certain compression

unit is compressible or not. For example, we may use a

Y. Park and J.-S. Kim: zFTL: Power-Efficient Data Compression Support for NAND Flash-based Consumer Electronics Devices 1153

prediction policy such that a compression unit is

incompressible if it has more than 239 unique characters in the

third column. If we use this policy, only 0.4% of

incompressible units are mispredicted as compressible and

4.5% of compressible units are mispredicted as

incompressible, according to Fig. 6. Although we count the

number of unique characters only for the third column, the

results for the other columns are similar.

This idea can be extended further to minimize overhead.

Instead of looking at all the tuples to count the number of

distinct characters in each column, we found that the

prediction using only a subset of tuples works quite well.

Specifically, the proposed Incompressible Data Predictor

(IDP) only counts the number of distinct characters in the

third column for the first 32 tuples and predicts that a

compression unit is incompressible if the count is greater than

25 characters. When we use this prediction policy, 99.4% of

incompressible units and 86.2% of compressible units are

predicted correctly for the same workload shown in Fig. 6.

Although the misprediction rate is slightly higher, our

prediction policy has the benefit that it can make a decision

whether the compression for the current data should be

continued or stopped after looking at just 32 tuples out of the

total 1,024 tuples.

Fig. 6. The cumulative distribution of the number of unique characters

in the third column for incompressible/compressible units. Each unit is

4KB in size and the data are collected while installing office productivity

software.

C. Hardware Implementation of IDP

Because the prediction for incompressible data should be

performed as fast as the hardware compressor, the IDP also

needs to be implemented in hardware. The IDP hardware is

placed within the compressor and synchronizes its clock cycle

with the compressor to minimize the prediction delay. The

IDP hardware has 256 1-bit registers as shown in Fig. 7. The

prediction hardware takes the third byte of the tuple read by

the X-Match compressor for each cycle, and sets the

corresponding register to the value of ‘1’. The number of

registers which have the value of ‘1’ represents the number of

unique characters. To eliminate the delay for counting the

registers whose values are ‘1’, the original value of each

register is inverted and then added to the counter before the

value is updated in the selected register. After the first 32

cycles, the prediction hardware compares the counter value

with the threshold configured beforehand (25 by default). If

the counter value is greater than the threshold, the prediction

hardware sends the stop signal to the controller of the X-

Match compressor.

Fig. 7. The hardware implementation of the Incompressible Data

Predictor (IDP). The third byte of each tuple is used to set the value of the

corresponding register to ‘1’. When the value is transitioned from ‘0’ to

‘1’, the counter is incremented. If the counter value is greater than the

threshold value after 32 cycles, the current unit is predicted

incompressible and the compressor is stopped.

We have designed and implemented the prediction

hardware using an FPGA. The cost of the IDP hardware is

about 482 LUTs which is approximately 2K in ASIC gates. It

is very small compared with the X-Match

compressor/decompressor which is known to cost 110K gates

[6]. The prediction takes 165 ns for a single 4KB unit

according to the simulation result. Therefore, the performance

degradation due to the prediction is almost negligible.

V. EVALUATION

A. Experimental Setup

zFTL is implemented as one of block device drivers in an

open-source operating system. The compression support can

be turned off anytime using a special kernel interface. Instead

of using bare NAND flash chips, we use the generic kernel

subsystem which emulates the behavior and timing of various

memory devices including NAND flash chips. We configured

the parameters of the subsystem to model a 2GB MLC NAND

flash memory chip where the page size is 4KB and each erase

block has 128 pages. The latency of read, write, and erase

operation is assumed to be 60 μs, 800 μs, and 1.5 ms,

respectively, according to the data sheet of a representative

MLC NAND flash memory chip.

Table 1 shows the basic information of five workloads used

in this paper. UNTAR and COMPILE are the real workloads

executed on the evaluation platform, which untar and compile

the source code of a version of open-source operating system,

1154 IEEE Transactions on Consumer Electronics, Vol. 57, No. 3, August 2011

respectively. TEMP denotes the set of files downloaded from

the Internet while a web browser visits social network sites, e-

commerce sites, video sharing sites, and Internet portal sites.

We periodically collect the files in the browser’s temporary

directory and then copied them onto zFTL.

SYSTEM and INSTALL workloads are mainly used to

investigate the compression ratios of the files used in a

commercial operating system. The SYSTEM workload is

obtained by copying system files to zFTL which are

frequently used by the commercial operating system. The

INSTALL workload represents the storage access requests

generated while office productivity software is installed in the

commercial operating system. The installation process has

been mimicked by extracting file system access traces with a

profiling tool and replaying them on the evaluation platform.

TABLE I

WORKLOADS USED IN THIS PAPER

Workload
Write

Requests

Read

Requests

Sectors

Written

Sectors

Read

UNTAR 35,720 16,184 967,232 129,472

COMPILE 63,976 33,216 937,232 265,728
TEMP 63,064 8 1,864,112 64

SYSTEM 77,384 9 2,319,160 72

INSTALL 65,704 8,281 1,948,008 66,248

To model an aged file system, we initialize zFTL by

running Postmark 1.51 [21] before each experiment. Postmark

is configured with 25K files, 50K transactions, and file sizes

ranging from 30KB to 80KB. The total amount of data written

by Postmark is about 3GB. During this preconditioning phase,

we turn off the compression support in zFTL.

The performance of X-Match with the proposed

Incompressible Data Predictor is compared to those of Zlib [9],

LZ77 [16], and the original X-Match [6]. Zlib and LZ77 are

very well-known compression algorithms for their

performance and reliability. Zlib is a representative software

library used for data compression. Although it is expensive to

implement the Zlib algorithm in hardware, we incorporate it

into our evaluation as it shows the best compression ratios for

the workloads shown in Table I. Overall, LZ77 exhibits

slightly worse compression ratio than Zlib, but efficient

hardware implementations of LZ77 or variants have been

proposed in several previous studies. In fact, the X-Match

algorithm is also a variant of LZ77.

B. Average Compression Ratio

Fig. 8 shows the average compression ratios for each

workload with Zlib, LZ77, X-Match, and X-Match with IDP.

The compression ratio is defined as the ratio of the

compressed chunk size to the original (uncompressed) data

size (4KB). Hence, the lower the compression ratio, the better.

The average compression ratio varies from workload to

workload, but Zlib always results in the best compression ratio.

In particular, workloads which manipulate text-based files

such as UNTAR and COMPILE exhibit fairly good compression

ratios as low as 27% with Zlib. Because X-Match compresses

the data in four bytes unit, the compression ratios of X-Match

is not as good as those of Zlib or LZ77 in these text-based

workloads.

On the other hand, TEMP shows much worse compression

ratio since most files are image files and movie clips which

have been already compressed. We find that system files

touched in the SYSTEM workload also reveal good

compression ratios. The compression ratio of INSTALL is

higher than that of SYSTEM by 21% (Zlib) or by 24% (LZ77).

This is because INSTALL handles many files in a special file

format that stores a library of compressed files. X-Match with

IDP presents almost the same compression ratio as the original

X-Match. The difference between X-Match and X-Match with

IDP comes from a small number of mispredictions in X-Match

with IDP, but the difference is hardly noticeable in many cases.

Fig. 8. Average compression ratio. The compression ratio depends on the

contents of the data and the compression algorithms. X-Match with IDP

shows slightly worse compression ratio than the original X-Match due to

mispredictions, but the difference is hardly noticeable.

C. Write Amplification Factor (WAF)

Fig. 9 compares the Write Amplification Factor (WAF)

before and after the compression support is enabled. The

WAF breaks down according to the source of writes; it is

either for the actual data writes or for the writes issued during

garbage collection. The upper bar indicates the amount of

additional writes caused by garbage collection, which is as

high as 4.19 (in COMPILE) when the compression is not

enabled.

UNTAR and COMPILE show very low WAFs under zFTL

due to their low compression ratios. Since the amount of data

written into NAND flash memory is reduced effectively,

garbage collection hardly occurs. As a result, their WAFs are

improved by a factor of 11.3 (UNTAR) and 15.0 (COMPILE)

with the Zlib algorithm. The WAFs for TEMP, SYSTEM, and

INSTALL are also improved by a factor of 3.5, 5.5, and 2.6,

respectively, with Zlib. LZ77 and X-Match perform slightly

worse than Zlib, resulting in improvements in WAFs by a

factor of 2.1 (INSTALL) to 10.8 (COMPILE) with LZ77, and by

Y. Park and J.-S. Kim: zFTL: Power-Efficient Data Compression Support for NAND Flash-based Consumer Electronics Devices 1155

a factor of 1.9 (INSTALL) to 5.0 (COMPILE) with X-Match. X-

Match with IDP reduces the WAFs for UNTAR, COMPILE,

TEMP, SYSTEM, and INSTALL workloads by a factor of 2.1, 4.7,

2.0, 3.1, and 1.8, respectively, with the geometric mean of 2.6.

Compared to X-Match, X-Match with IDP increases WAFs by

5.0% on average due to mispredicted data.

Fig. 9. Write amplification factor (WAF). The leftmost bar in each

workload shows the WAF without compression support. X-Match with

IDP improves WAFs by a factor of 2.6 (geometric mean).

D. Garbage Collection Overhead

Fig. 10 illustrates the total time spent on garbage collection.

It is estimated by multiplying the number of flash read, write,

and erase operations during garbage collection by the

respective operational latencies of MLC NAND flash memory.

The final results are normalized to the values obtained when

the compression support is disabled.

Fig. 10. Normalized garbage collection overhead. The final results are

normalized to the values obtained when the compression support is

disabled. We can see that the use of compression effectively reduces the

time spent on garbage collection.

In UNTAR and COMPILE workloads, the garbage collection

overhead is almost negligible for Zlib and LZ77 because of

good compression ratios. X-Match with IDP shows the largest

overhead, but it is still much better than the case without any

compression. We observe that the overall trend of Fig. 10 is

highly correlated to that of Fig. 8.

E. Power Consumption

Fig. 11 shows how much power is saved by using the

proposed Incompressible Data Predictor (IDP) with the X-

Match algorithm with respect to the original X-Match

algorithm. In the original X-Match algorithm, all tuples in

each 4KB compression unit should go through the compressor

engine for 1,024 cycles. Thus, the power consumption, Porg,

required to process the total N compression units by the

original X-Match algorithm can be given by

1024 comporg PNP (1)

where Pcomp represents the unit power consumed by the

compressor hardware per cycle. Under the X-Match algorithm

with the proposed IDP, the data predicted incompressible stop

using the compressor engine after 32 cycles. Therefore, the

power consumption of the proposed approach can be

approximated as follows:

32)102432(predpcpicompIDP PNNNPP . (2)

In (2), Npi and Npc denote the number of compression units

that are predicted incompressible and compressible,

respectively, where N = Npi + Npc. Ppred indicates the unit

power spent by the prediction hardware per cycle. We

estimated that Ppred is one-fiftieth of Pcomp, assuming that the

power consumption is roughly proportional to the number of

logic gates required to implement the hardware (cf. section

IV.C).

Fig. 11. Estimated power consumption of X-Match with the proposed

IDP. The values are normalized to the estimated power consumption in

the original X-Match algorithm. In UNTAR, COMPILE, and SYSTEM, there

are no significant benefit as most of the data are compressible in these

workloads. However, INSTALL and TEMP show power savings by 60% and

by 69%, respectively.

As can be seen in (2), the power saving due to the proposed

IDP greatly depends on Npi, the number of compression units

that are predicted incompressible. One extreme workload is

UNTAR, where only 0.02% of the input data are predicted

incompressible. In this case, virtually no power saving has

been achieved as shown in Fig. 11. In COMPILE and SYSTEM,

3.2% and 5.6% of the data are predicted incompressible,

respectively, resulting in 3.9% (COMPILE) and 10.8%

(SYSTEM) of power savings. When there are modest number

of incompressible data as in TEMP and INSTALL, the use of

1156 IEEE Transactions on Consumer Electronics, Vol. 57, No. 3, August 2011

IDP achieves 68.6% and 60.0% of power savings, respectively.

In TEMP and INSTALL, 63.0% and 56.1% of the data are

predicted incompressible. With our evaluation with another

extreme workload which is composed of 99% of

incompressible data, we observe that the proposed approach

saves power consumption by 97%.

V. CONCLUSION

Due to inherent characteristics of NAND flash memory

which does not allow in-place update and wears out after

repeated write/erase cycles, flash translation layers have been

using a variety of techniques to enhance the overall

performance and lifetime of NAND flash-based consumer

electronics devices. Many previous researches on flash

translation layers have focused on efficient address mapping

and garbage collection schemes. However, another orthogonal

issue that can reduce the amount of data written into NAND

flash memory is to support data compression inside the flash

translation layer.

In this paper, we present zFTL, a flash translation layer

which supports on-line, transparent data compression based

on the X-Match algorithm. We have examined several design

issues to support data compression in the flash translation

layer, including some required extensions in address mapping

and garbage collection. To reduce the compression overhead

and power consumption associated with incompressible data,

we have also proposed a novel scheme called Incompressible

Data Predictor (IDP) that can predict whether the input data

are incompressible or not by examining only a subset of data.

Through the use of five real-world workloads, we confirm

that zFTL improves the WAF by a factor of 2.6 (geometric

mean) compared to the case without compression support. The

proposed IDP is effective in reducing power consumption

especially when there are many incompressible units among

input data. When 63.0% of the data are predicted

incompressible, zFTL reduces power consumption by 68.4%

compared to the original X-Match algorithm without any

prediction scheme.

REFERENCES

[1] Intel Corporation, “Understanding the flash translation layer (FTL)

specification,” Application Note AP-684, Dec. 1998.

[2] A. Kawaguchi, S. Nishioka, and H. Motoda, “A flash-memory based file

system,” In Proc. of the USENIX Winter Technical Conference, pp. 155–

164, 1995.

[3] J. Kim, J. M. Kim, S. Noh, S. L. Min, and Y. Cho, “A space-efficient

flash translation layer for CompactFlash systems,” IEEE Transactions

on Consumer Electronics, vol. 48, no. 2, pp.366-375, 2002.

[4] X.-Y. Hu, E. Eleftheriou, R. Haas, I Iliadis, and R. Pletka, “Write

amplification analysis in flash-based solid state drives,” In Proc. Of the

Israeli Experimental Systems Conference (SYSTOR), 2009.

[5] A. Gupta, Y. Kim, and B. Urgaonkar, “DFTL: a flash translation layer

employing demand-based selective caching of page-level address

mappings,” In Proc. of the Architectural Support for Programming

Languages and Operating Systems (ASPLOS), pp. 229–240, 2009.
[6] M. Kjelso, M. Gooch, and S. Jones, “Design and performance of a main

memory hardware data compressor,” In Proc. of the 22nd EUROMICRO

Conference, pp.2-5, Sep. 1996.

[7] D. Woodhouse, “JFFS: the journaling flash file system,” In Proc. of the

Ottawa Linux Symposium (OLS), 2001.

[8] M. Rosenblum, and J. K. Ousterhout, “The design and implementation

of a log-structured file system,” ACM Transactions on Computer

Systems, vol. 10, no. 1, pp. 26–52, Feb. 1992.

[9] J.-L. Gailly and M. Adler, Zlib general purpose compression library

(version 1.2.5), Apr. 2010.

[10] N. Goyal and R. Mahapatra, “Energy characterization of CRAMFS for

embedded systems,” In Proc. of the International Workshop on Software

Support for Portable Storage (IWSSPS), 2005.

[11] A. I. Pavlov and M. Cecchetti, SquashFS HOWTO (revision 1.9), Jul.

2008.

[12] S. Hyun, H. Bahn, and K. Koh, “LeCramFS: an efficient compressed file

system for flash-based portable consumer devices,” IEEE Transactions

on Consumer Electronics, vol. 53, no. 2, pp. 481–488, May 2007.

[13] K. S. Yim, H. Bahn, and K. Koh, “A flash compression layer for

SmartMedia card systems,” IEEE Transactions on Consumer

Electronics, vol. 50, no.1, pp. 192–197, Feb. 2004.

[14] C. H. Chen, C. T. Chen, and W. T. Huang, “The real-time compression

layer for flash memory in mobile multimedia devices,” In Proc. of the

International Conference on Multimedia and Ubiquitous Engineering,

pp. 171–176, Apr. 2007.

[15] R. B. Tremaine, P. A. Franaszek, J. T. Robinson, C. O. Schulz, T. B.

Smith, M. E. Wazlowski, and P. M. Bland, “IBM memory expansion

technology (MXT),” IBM Journal of Research and Development, vol. 45,

no. 2, pp.271–285, Mar. 2001.

[16] J. Ziv and A. Lempel, “A universal algorithm for sequential data

Compression,” IEEE Transactions on Information Theory, vol. 23, no. 3,

pp. 337–343, May 1977.

[17] P. A. Franaszek, J. Robinson, and J. Thomas, “Parallel compression with

cooperative dictionary construction,” In Proc. of the Data Compression

Conference, pp. 200–209, 1996.

[18] L. Benini, D. Bruni, A. Macii, and E. Macii, “Hardware-assisted data

compression for energy minimization in systems with embedded

processors,” In Proc. of Design, Automation and Test in Europe (DATE),

pp. 449–453, 2002.

[19] C. D. Benveniste, P. A. Franaszek, and J. T. Robinson, “Cache-memory

interfaces in compressed memory systems,” IEEE Transactions on

computers, vol. 50, no. 11, pp. 1106–1116, Nov. 2001

[20] M. Burrows, C. Jerian, B. Lampson, and T. Mann, “On-line data

compression in a log-structured file system,” In Proc. of the

Architectural Support for Programming Languages and Operating

System (ASPLOS), pp. 2–9, 1992.

[21] J. Katcher, “PostMark: a new filesystem benchmark,” Technical Report

TR3022, Network Appliance, 1997.

BIOGRAPHIES

Youngjo Park received his BS degree in computer

engineering from Kookmin University, Korea, in 2009, and

the MS degree in embedded software from Sungkyunkwan

University (SKKU), Korea, in 2011. He is currently an

assistant engineer in Samsung Electronics Co. His research

interests include NAND flash memory, storage systems,

and embedded systems.

Jin-Soo Kim (M’89) received the BS, MS, and PhD

degrees in computer engineering from Seoul National

University, Korea, in 1991, 1993, and 1999, respectively.

He is currently an associate professor in Sungkyunkwan

University (SKKU). Before joining SKKU, he was an

associate professor at Korea Advanced Institute of Science

and Technology (KAIST) from 2002 to 2008. He was also

with the Electronics and Telecommunications Research Institute (ETRI) from

1999 to 2002 as a senior member of research staff, and with the IBM T. J.

Watson Research Center as an academic visitor from 1998 to 1999. His

research interests include embedded systems, storage systems, and operating

systems. He is a member of the IEEE and the IEEE Computer Society.

