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Abstract — Flash translation layers play an important role 

in determining the storage performance and lifetime of NAND 

flash-based consumer electronics devices. In this paper, we 

present a flash translation layer called zFTL, which reduces 

the amount of data written to NAND flash memory by 

supporting on-line, transparent data compression based on 

the X-Match algorithm. To minimize compression overhead 

and power consumption, we also propose a novel prediction 

scheme that identifies incompressible data in advance without 

going through full compression. 

Our evaluations with five real-world workloads show that 

zFTL successfully enhances storage performance and lifetime 

by improving the write amplification factor (WAF) by a factor 

of 2.6 (geometric mean) compared to the case without 

compression support. In addition, we find that the proposed 

prediction scheme is effective in reducing power consumption 

by skipping compression for incompressible data1. 

  
Index Terms — NAND flash memory, flash translation layer 

(FTL), data compression, incompressible data prediction. 

I. INTRODUCTION 

Recently, NAND flash memory has become a necessity as a 

storage medium for mobile consumer electronics devices, 

thanks to its non-volatility, superior performance, shock 

resistance, and low-power consumption. With technology 

advancing, the capacity of NAND flash memory is getting 

larger and its price is getting lower.  

However, NAND flash memory has several limitations. 

First, previous data should be erased before a new data can be 

written in the same place. This is usually called erase-before-

write characteristic. Second, normal read and write operations 

are performed on a per-page basis, whereas erase operations 

on a per-block basis. The erase block size is larger than the 

page size by 64-128 times. In MLC (Multi-Level Cell) NAND 

flash memory, the typical page size is 4KB and each block 

consists of 128 pages. Finally, flash memory has limited 

lifetime; MLC NAND flash memory wears out after 1K to 5K 

write/erase cycles.  
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The aforementioned limitations are effectively hidden 

through the use of an intermediate software layer called Flash 

Translation Layer (FTL) [1]. The basic role of the FTL is to 

emulate the traditional block interface on top of NAND flash 

memory so that the existing disk-based file systems can be 

used without any modification. For this reason, many NAND 

flash-based consumer electronics devices, such as MP3 

players, in-car navigators, smartphones, tablets, and digital 

TVs, implement the FTL in the operating system.  

Most FTLs employ an address remapping technique, which 

writes incoming data into one or more pre-erased pages and 

maintains the mapping information between the host’s logical 

sector number and the on-flash physical page number. As the 

new data are written, the previous version is invalidated, and 

those obsolete pages are collected and then eventually 

converted to free pages via the procedure known as garbage 

collection. To cope with the limited write/erase cycles, FTLs 

also perform wear-leveling which distributes erase operations 

evenly across the entire flash memory blocks [2], [3].  

Although garbage collection and wear-leveling improve the 

overall performance and lifetime, they cause additional writes. 

One way to quantify the added cost of an FTL is to measure 

the write amplification factor (WAF) [4]. The WAF is defined 

as the ratio of actual data written into NAND flash memory as 

compared to the actual data written by the host system. A 

lower WAF is a measure of efficient storage and 

housekeeping algorithms inside FTL, improving the overall 

life expectancy of NAND flash memory by lowering the total 

write/erase cycles required to manage the data stored in flash 

memory. Although the WAF of hard disks is 1.0, the WAF 

can be as high as 10 on low-end flash memory cards. 

In this paper, we present the design and implementation of 

a flash translation layer called zFTL, which internally 

compresses or decompresses data. Data compression is an 

effective way to lower the WAF further down to below 1.0, 

thus improving FTL performance and lengthening flash 

lifetime. Specifically, this paper discusses and evaluates 

several design issues arise when we support on-line, 

transparent compression/decompression inside FTL. zFTL is 

based on page-level address remapping [5] and the 

compression unit size is set to 4KB. We focus on the 

management of the compressed data, assuming the actual 

compression/decompression is done by dedicated hardware. 

For this reason, zFTL uses the X-Match [6] algorithm which 

allows for fast hardware implementation. In addition, this 

paper proposes a novel prediction scheme called 

Incompressible Data Predictor (IDP) for the X-Match 
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algorithm, which identifies incompressible data before they 

are fully compressed. The purpose of the IDP is to avoid data 

compression for incompressible data, thereby saving time and 

power consumption.  

zFTL is evaluated with five real-world workloads. Our 

results show that the use of data compression improves the 

WAF by a factor of 1.8 to 4.7. We also find that the proposed 

IDP is effective in reducing power consumption especially 

when many of the input data are incompressible. From these 

results, we believe zFTL is a power-efficient way of 

enhancing the storage performance and lifetime of NAND 

flash-based consumer electronics devices.  

The rest of the paper is organized as follows. The next 

section discusses the related work. Section III introduces the 

overall architecture and design issues of zFTL. Section IV 

describes the proposed IDP scheme in detail. Section V 

presents the experimental results and section VI concludes the 

paper. 

II. RELATED WORK 

Data compression techniques have been studied in various 

layers in computer systems. JFFS2 [7] is a representative 

flash-aware file system inspired by the log-structured file 

system [8]. JFFS2 provides an option to use Zlib-based data 

compression [9]. CramFS [10] and SquashFS [11] are 

compressed read-only file systems, mainly targeting the root 

file system in small embedded systems. Hyun et al. [12] 

proposed LeCramFS which modifies CramFS for NAND flash 

memory. These flash-aware file systems do not require FTL, 

as they work directly on NAND flash memory.  

Yim et al. [13] studied a flash compression layer for 

SmartMedia card system, proposing an internal packing 

scheme (IPS) to manage internal fragmentation. The IPS best-

fit scheme can reduce the internal fragmentation effectively, 

but it may incur some read overhead as unrelated logical 

sectors are packed together to minimize internal fragmentation. 

Chen et al. [14] proposed another internal packing scheme 

called IPS real-time. In the IPS real-time scheme, the 

compressed data can be stored into consecutive flash pages, 

but it has no consideration for random reads; it needs to access 

two flash pages to read a sector which spans two pages. Both 

approaches focused only on reducing internal fragmentation, 

without considering other issues such as mapping information 

management and garbage collection under the presence of 

compressed data. In addition, they are devised for old 512-

byte flash page size, which has been outdated by new 

generations of NAND flash memory chips.  

Special hardware compressor/decompressor engines have 

been proposed in several literatures. The Memory Expansion 

Technology (MXT) [15] performs compression and 

decompression between the shared cache and the main 

memory, to expand the effective main memory size using 

hardware implementation of the LZ77 algorithm [16], [17]. 

Benini et al. [18] investigated a hardware-assisted data 

compression for memory energy minimization. They describe 

the implementation of hardware compression algorithms 

including LZ-like one in detail and show no penalty in 

performance. Kjelso et al. [6] proposed the X-Match 

compression algorithm for main memory, which is easy to 

implement in hardware. X-Match is another variant of LZ77, 

differing in that phrases matching works in four bytes unit 

[19]. For brevity, we assume data compression and 

decompression is assisted by special hardware that is fast 

enough to hide its overhead.  
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Fig.  1.  The overall system architecture of zFTL. The shaded area 

indicates the added components to support data compression in zFTL. 

III. ZFTL 

A. System Architecture 

Fig. 1 shows the overall architecture of zFTL. File systems 

issue read/write requests to zFTL. The size of each request is a 

multiple of the disk sector size (512B). For write requests, 

zFTL aggregates the requested data in the Write Buffer (WB), 

whose size is equal to the compression unit size. If the WB is 

full, the data in the buffer are compressed and the compressed 

data (called a “chunk”) are appended into the Flash Write 

Buffer (FWB). The size of the FWB is a multiple of the flash 

page size (4KB in MLC NAND). Although the compression 

unit size is fixed, the resulting chunk is highly variable in size. 

Hence, the FWB may hold a number of chunks depending on 

the compression ratio. 

When the FWB has not enough space for the incoming 

chunk, the FWB is flushed into flash memory. Before flushing 

data, the corresponding logical sectors are remapped to new 

physical pages by zFTL. In case the previous data are 

available in any of buffers, they are removed from the buffer, 

ensuring data consistency and preventing the invalidated data 

from being flushed into flash memory. If the number of free 

blocks is below a certain threshold, zFTL initiates garbage 

collection to reclaim erase blocks. We will discuss the garbage 

collection process of zFTL in section III.D. 

For reads, zFTL first searches for the requested data in the 

WB as it may have the most recent version of the data. When 

the search fails, zFTL looks up the data in the FWB. If the 

data are found in the FWB, the corresponding chunk is 

decompressed and then loaded into the Read Buffer (RB). 

When the data are still not found in the FWB, zFTL examines 
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the RB and the Flash Read Buffer (FRB). Note that the two 

write buffers (WB and FWB) should be looked up before the 

two read buffers (RB and FRB), as they may keep the up-to-

date data. While the requested data are stored in any of these 

buffers, the read request can be satisfied without issuing any 

flash read operations. Otherwise, zFTL needs to decompress 

the requested chunk after reading the corresponding page 

from flash memory.  

Some data are inherently incompressible. This happens if 

the data belong to multimedia files (such as *.jpg, *.mp3, 

*.avi, *.mpg, etc.) or compressed archive files (such as *.zip, 

*.rar, *.gz, etc.). zFTL identifies those incompressible data 

based on the resulting size after compression. When the 

compression ratio is not good enough to justify the overhead 

of storing the data in compressed form (currently, 6 bytes for 

each chunk), zFTL stores the original (uncompressed) data 

into flash memory in order to save space. While reading these 

data, zFTL directly copies the contents of the FRB to the RB, 

bypassing the decompressor. This also saves the time and 

energy that might be spent on decompressing such data.  

One problem with this approach is that it is uncertain 

whether the current data are sufficiently compressible or not 

until the entire data are processed by the compressor engine. If 

we could determine whether the incoming data are 

incompressible or not in advance before the actual 

compression, the compression overhead can be avoided for 

incompressible data. In Fig. 1, the Incompressible Data 

Predictor (IDP) is introduced for this reason. The IDP 

examines a small subset of data in the WB and predicts 

whether the current data are incompressible or not. If the data 

are predicted incompressible, the compressor engine is 

bypassed and the original data are forwarded to the FWB. The 

prediction scheme used in the IDP will be described in detail 

in section IV. 

B. Compression Algorithms 

The choice of compression algorithms is one of the 

important design issues, because it determines the speed of 

compression/decompression, the compression ratio, and the 

complexity of hardware implementation. Many hardware 

implementations of LZ77 [16] or variants have been proposed 

in previous studies. Among them, we choose a variant of 

LZ77 called the X-Match [6] algorithm for zFTL. X-Match 

not only shows fairly reasonable compression ratio across the 

workloads, but also allows for efficient hardware 

implementation. Moreover, we show that it is possible to 

develop an effective Incompressible Data Predictor (IDP) for 

the X-Match algorithm in section IV. 

The unit of data compression is another important factor 

affecting the compression ratio and speed. In particular, 

dictionary-based algorithms such as LZ77 and X-Match have 

the characteristic that the bigger compression unit tends to 

yield the better compression ratio. This is because these 

algorithms replace a repeated pattern of strings within the 

compression unit by a much shorter but uniquely identifiable 

string. 

We have considered two options related to the unit of 

compression. One is to compress the variable-sized data as a 

whole as it is delivered by a single write request from the file 

system. The number of sectors written by a write request is 

usually a multiple of the file system block size and can be as 

large as 256 sectors (i.e., 128KB) for sequential writes. Thus, 

this scheme can improve the overall compression ratio and 

reduce the number of mapping entries. However, the use of 

the variable-sized compression unit presents a number of 

issues that need careful handling. For example, when a portion 

of the compressed data is read by a read request, the entire 

compressed data should be fetched from flash memory for 

decompression. An even worse scenario occurs when the 

compressed data are partly updated by a later write operation. 

In this case, the original data should be merged with the new 

data after decompression. Then, it can be either recompressed 

and stored into flash memory as a single compression unit, or 

split into two or three pieces each of which is separately 

compressed and stored. 

Another option is to compress a fixed size of data at a time. 

In fact, any power of two multiple of the sector size, such as 

512B, 1KB, 2KB, 4KB, 8KB, etc., can be used as the 

compression unit size. As discussed before, the use of larger 

compression unit size is favored for better compression ratio. 

However, if the compression unit size becomes too large, the 

system suffers from unnecessary overhead when the 

compressed data are partly read or updated. Moreover, 

enlarging the compression unit size has a diminishing return 

in the compression ratio. Burrows et al. [20] and Yim et al. 

[13] have shown that there is no significant difference in the 

compression ratio for 2KB to 8KB compression unit sizes. 

For the above reasons, zFTL uses a fixed compression unit 

size of 4KB. Since most file systems use at least 4KB as the 

file system block size, they rarely issue I/O operations smaller 

than this size and the read/write request sizes are usually a 

multiple of 4KB. In addition, the compression unit size of 

4KB is large enough to achieve good compression ratio. 

C. Address Mapping 

zFTL employs a page-level mapping technique [5] where a 

per-page mapping entry from the logical page number to the 

physical flash page number is maintained in the Page Mapping 

Table (PMT). Similar to other FTLs with page-level mapping, 

PMT is accessed by the logical page number. To support data 

compression, zFTL extends the structure of PMT slightly. 

Each 32-bit mapping entry includes the incompressible data 

flag (FLAG) and the page index (IDX), as well as the physical 

page number (PPN) where the page is stored. FLAG indicates 

whether the corresponding logical page is compressed or not. 

Since a single flash page may accommodate compressed 

chunks from several logical pages in zFTL, IDX is used to 

represent the relative position of each logical page within the 

physical page. Fig. 2 illustrates an example of PMT in zFTL. 

Note that PMT entries for the logical page number 100, 101, 

and 102 have the same value for the PPN field, representing 

that the data for those logical pages are compressed and stored 
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in the same physical page number 320 in the order indicated 

by the IDX value. For incompressible data, the corresponding 

FLAG is set to 1 (cf. the PMT entry of the logical page number 

103 in Fig. 2). 

 

 
Fig.  2.  The structure of page mapping table (PMT) and on-flash layout 

in zFTL. The contents of logical page numbers (LPNs) 100-102 are 

compressed and stored in physical page number (PPN) 320. The data in 

LPN 103 are incompressible (FLAG==1), hence they are stored 

uncompressed in PPN 400. 

 

Depending on FLAG, the physical flash page has two 

different structures. For incompressible data (FLAG = 1), the 

entire page is devoted to the (uncompressed) original data. 

When the page size is larger than the compression unit size, 

each data block is identified by IDX. On the other hand, when 

the value of FLAG is 0, the related physical page includes such 

information as the total number of chunks in the page, a set of 

offsets for each chunk, and a set of chunks, as depicted in Fig. 

2. The offset indicates the last byte position of the 

corresponding chunk in the page. 

D. Garbage Collection 

As in other FTLs, zFTL reserves a set of erase blocks (5% 

of the total erase blocks, by default) to absorb the incoming 

write requests. When zFTL runs out of available erase blocks, 

garbage collection is invoked to reclaim the space allocated to 

obsolete pages. zFTL uses the greedy policy to choose a 

victim erase block, i.e., the erase block which has the smallest 

number of valid pages is selected as a victim. During garbage 

collection, the remaining valid pages in the victim erase block 

are copied into another erase block and the victim erase block 

is cleared to be used later.  

Since each physical page normally contains the data from 

more than one logical page in zFTL, it can be partially 

invalidated by subsequent write operations. Therefore, zFTL 

should be able to identify the current status of each chunk 

stored in the same physical page, in order to copy only the 

valid chunk during garbage collection. For this reason, zFTL 

maintains the Page Status Table (PST) in memory. Unlike 

PMT, PST is indexed by the physical page number, and each 

PST entry keeps track of the number of valid chunks and the 

bitmap for each chunk stored in the given physical page 

number. The bitmap indicates whether the corresponding 

chunk is valid or not. 

Fig. 3 shows an example 8-bit PST entry designed for 4KB 

physical pages. Fig. 3 represents that two chunks (the second 

and the third one) are currently valid in the physical page 

number 330. Under this PST structure, up to five logical pages 

can be packed into a 4KB physical page. Our experiments 

show that about three chunks are stored in a single 4KB flash 

page on average for the most of well-compressed workloads. 

Thus, we believe the 8-bit entry is sufficient for 4KB flash 

pages. If the page size is increased, we can add a few more 

bits to each PST entry. 

 

 
Fig.  3.  An example PST (Page Status Table) entry. This example shows 

that there are two valid chunks (the second and the third one) in physical 

page number (PPN) 330.  

 

E. Internal Fragmentation 

The flash page size is fixed whereas the resulting chunk 

size varies after compression. Unless we allow a chunk to be 

stored in more than one page, internal fragmentation is 

unavoidable. The relative amount of internal fragmentation 

will be getting smaller as the page size becomes larger than 

the compression unit size. Considering the recent trend in 

NAND flash memory architecture where the page size grows 

progressively larger, the impact of internal fragmentation can 

be of minor significance, compared to the benefit of 

compression support. 

Currently, zFTL does not implement any special scheme to 

reduce internal fragmentation. zFTL simply packs the 

incoming data in the order they are issued from the upper 

layer. We leave a more comprehensive analysis and possible 

optimization on internal fragmentation for future work. 

F. Memory Requirement 

The memory requirement of zFTL is comparable to other 

FTLs with page-level mapping. The use of block-level 

mapping can decrease the memory requirement by a factor of 

64 to 128, but the increasing number of flash-based storage is 

adopting page-level mapping due to its superior performance 

and higher flexibility.  Since other page-mapping FTLs also 

keep page-level address mapping information in memory (i.e., 

PMT in zFTL), only the memory used by PST is the added 

cost in zFTL, which requires 512KB for 2GB flash memory 

with 4KB page size.  

If PMT and PST are too large to be accommodated in 

memory, zFTL may use the selective caching method used in 

DFTL [5], where the whole mapping table is stored in flash 

memory and only the needed part of the mapping table is 

loaded into memory. 

IV. PREDICTING INCOMPRESSIBLE DATA 

A. Overview of the X-Match Algorithm 

The goal of the Incompressible Data Predictor (IDP) shown 

in Fig. 1 is to identify the incompressible data in advance 

without going through full compression. To design an effective 

predictor, it is necessary to investigate the characteristics of the 

underlying X-Match compression algorithm. 

The X-Match algorithm is a dictionary-based lossless data 

compression algorithm. X-Match maintains a dictionary of 
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data previously seen and attempts to match the current data 

with an entry in the dictionary [6]. Its dictionary is composed 

of up to 128 entries and each entry has 4 bytes. X-Match reads 

4 bytes from the input data (referred to as a “tuple”) at a time 

for matching. Fig. 4 illustrates the basic idea of the X-Match 

algorithm with example cases.  

If the incoming tuple fully matches with an entry in the 

dictionary as shown in Fig. 4(a), a single bit of ‘0’ is emitted 

first as an output to indicate a match, followed by the 

information on the match location (<ML>) and the match type 

(<MT>). The match location is encoded with the phased 

binary code and represents the location of the matched 

directory entry. The match type denotes the Huffman code for 

the full match. Note that the matched directory entry is moved 

to the top of the dictionary. 

A partial hit occurs when at least any two characters of the 

incoming tuple match with a dictionary entry, as depicted in 

Fig. 4(b). In this case, the match type encodes (using the 

Huffman code) which characters from the incoming tuple 

matched a dictionary entry. Any unmatched characters from 

the incoming tuple are then sent literally (‘Z’ in Fig. 4(b)). 

Otherwise, a miss occurs and a single bit of ‘1’ is transmitted 

followed by the tuple itself as illustrated in Fig. 4(c). For a 

partial hit or a miss, the incoming tuple is inserted at the top of 

the dictionary. 

 

 
Fig.  4.  Example cases of the X-Match algorithm. <ML> represents the 

match location (i.e., the location of the matching entry in the dictionary) 

encoded with the phased binary code. <MT> indicates the Huffman code 

for the match type. 

 

B. Incompressible Data Predictor (IDP) 

As described in the previous subsection, X-Match 

repeatedly matches a 4-byte tuple against the dictionary 

entries. For a tuple to be compressed, at least two characters 

should be matched with any of the dictionary entries. Our IDP 

is based on the following observations. First, since the 

dictionary is gradually filled with the incoming tuples, X-

Match works better if there are many overlapped characters 

between tuples. Second, only the overlap of characters in the 

same byte position in a tuple matters. For example, although 

two tuples “AACC” and “CCAA” have many characters in 

common, it is not helpful for X-Match as they have different 

characters in each byte position. 

The basic idea behind the proposed IDP is to count the 

number of distinct characters in each byte position for the 

incoming tuples, and then use this count to predict whether the 

data will be compressed or not. Fig. 5 presents the case when 

the number of tuples is eight. Each tuple is arranged vertically, 

and we count the number of unique characters in each column, 

C1, C2, C3, and C4. If this count is small, it means that many 

characters are overlapped in the particular column. The large 

count indicates that there are many unique characters in that 

column, lowering the possibility of full hits or partial hits. 

 

 
Fig.  5.  The basic idea of predicting incompressible data. The number of 

unique characters in each column can be used to predict whether the data 

are incompressible or not. 

 

To confirm this idea, we have conducted an experiment 

with real data. Fig. 6 illustrates the cumulative distribution of 

the number of unique characters in the third column for the 

data produced while office productivity software is installed. 

As we use the compression unit size of 4KB, there are 1,024 

tuples per compression unit to be processed by the X-Match 

algorithm. Since each byte can have the value between 0 and 

255, the count of each column will have the value between 1 

and 256. Out of the total 243,897 compression units generated 

during this experiment, 137,474 units (56.4%) were 

incompressible, i.e., the size of the compressed data plus 6 

bytes (the metadata size for each chunk) exceeded the size of 

the original data (4KB). Fig. 6 shows that 99.7% of these 

incompressible units have the number of unique characters 

greater than 239 characters in the third column. On the other 

hand, the number of unique characters is distributed over a 

much wider range for compressible units.  

Fig. 6 suggests that the number of unique characters can be 

an effective means to predict whether a certain compression 

unit is compressible or not. For example, we may use a 
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prediction policy such that a compression unit is 

incompressible if it has more than 239 unique characters in the 

third column. If we use this policy, only 0.4% of 

incompressible units are mispredicted as compressible and 

4.5% of compressible units are mispredicted as 

incompressible, according to Fig. 6. Although we count the 

number of unique characters only for the third column, the 

results for the other columns are similar. 

This idea can be extended further to minimize overhead. 

Instead of looking at all the tuples to count the number of 

distinct characters in each column, we found that the 

prediction using only a subset of tuples works quite well. 

Specifically, the proposed Incompressible Data Predictor 

(IDP) only counts the number of distinct characters in the 

third column for the first 32 tuples and predicts that a 

compression unit is incompressible if the count is greater than 

25 characters. When we use this prediction policy, 99.4% of 

incompressible units and 86.2% of compressible units are 

predicted correctly for the same workload shown in Fig. 6. 

Although the misprediction rate is slightly higher, our 

prediction policy has the benefit that it can make a decision 

whether the compression for the current data should be 

continued or stopped after looking at just 32 tuples out of the 

total 1,024 tuples. 

 

 
Fig.  6.  The cumulative distribution of the number of unique characters 

in the third column for incompressible/compressible units. Each unit is 

4KB in size and the data are collected while installing office productivity 

software. 

 

C. Hardware Implementation of IDP 

Because the prediction for incompressible data should be 

performed as fast as the hardware compressor, the IDP also 

needs to be implemented in hardware. The IDP hardware is 

placed within the compressor and synchronizes its clock cycle 

with the compressor to minimize the prediction delay. The 

IDP hardware has 256 1-bit registers as shown in Fig. 7. The 

prediction hardware takes the third byte of the tuple read by 

the X-Match compressor for each cycle, and sets the 

corresponding register to the value of ‘1’. The number of 

registers which have the value of ‘1’ represents the number of 

unique characters. To eliminate the delay for counting the 

registers whose values are ‘1’, the original value of each 

register is inverted and then added to the counter before the 

value is updated in the selected register. After the first 32 

cycles, the prediction hardware compares the counter value 

with the threshold configured beforehand (25 by default). If 

the counter value is greater than the threshold, the prediction 

hardware sends the stop signal to the controller of the X-

Match compressor.  

 

 
Fig.  7.  The hardware implementation of the Incompressible Data 

Predictor (IDP). The third byte of each tuple is used to set the value of the 

corresponding register to ‘1’. When the value is transitioned from ‘0’ to 

‘1’, the counter is incremented. If the counter value is greater than the 

threshold value after 32 cycles, the current unit is predicted 

incompressible and the compressor is stopped. 

 

We have designed and implemented the prediction 

hardware using an FPGA. The cost of the IDP hardware is 

about 482 LUTs which is approximately 2K in ASIC gates. It 

is very small compared with the X-Match 

compressor/decompressor which is known to cost 110K gates 

[6]. The prediction takes 165 ns for a single 4KB unit 

according to the simulation result. Therefore, the performance 

degradation due to the prediction is almost negligible. 

V. EVALUATION 

A. Experimental Setup 

zFTL is implemented as one of block device drivers in an 

open-source operating system. The compression support can 

be turned off anytime using a special kernel interface. Instead 

of using bare NAND flash chips, we use the generic kernel 

subsystem which emulates the behavior and timing of various 

memory devices including NAND flash chips. We configured 

the parameters of the subsystem to model a 2GB MLC NAND 

flash memory chip where the page size is 4KB and each erase 

block has 128 pages. The latency of read, write, and erase 

operation is assumed to be 60 μs, 800 μs, and 1.5 ms, 

respectively, according to the data sheet of a representative 

MLC NAND flash memory chip. 

Table 1 shows the basic information of five workloads used 

in this paper. UNTAR and COMPILE are the real workloads 

executed on the evaluation platform, which untar and compile 

the source code of a version of open-source operating system, 
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respectively. TEMP denotes the set of files downloaded from 

the Internet while a web browser visits social network sites, e-

commerce sites, video sharing sites, and Internet portal sites. 

We periodically collect the files in the browser’s temporary 

directory and then copied them onto zFTL.  

SYSTEM and INSTALL workloads are mainly used to 

investigate the compression ratios of the files used in a 

commercial operating system. The SYSTEM workload is 

obtained by copying system files to zFTL which are 

frequently used by the commercial operating system. The 

INSTALL workload represents the storage access requests 

generated while office productivity software is installed in the 

commercial operating system. The installation process has 

been mimicked by extracting file system access traces with a 

profiling tool and replaying them on the evaluation platform. 

 
TABLE I  

WORKLOADS USED IN THIS PAPER 

Workload 
Write 

Requests 

Read 

Requests 

Sectors 

Written 

Sectors 

Read 

UNTAR  35,720 16,184 967,232 129,472

COMPILE  63,976 33,216 937,232 265,728
TEMP  63,064 8 1,864,112 64

SYSTEM  77,384 9 2,319,160 72

INSTALL  65,704 8,281 1,948,008 66,248

 

To model an aged file system, we initialize zFTL by 

running Postmark 1.51 [21] before each experiment. Postmark 

is configured with 25K files, 50K transactions, and file sizes 

ranging from 30KB to 80KB. The total amount of data written 

by Postmark is about 3GB. During this preconditioning phase, 

we turn off the compression support in zFTL.  

The performance of X-Match with the proposed 

Incompressible Data Predictor is compared to those of Zlib [9], 

LZ77 [16], and the original X-Match [6]. Zlib and LZ77 are 

very well-known compression algorithms for their 

performance and reliability. Zlib is a representative software 

library used for data compression. Although it is expensive to 

implement the Zlib algorithm in hardware, we incorporate it 

into our evaluation as it shows the best compression ratios for 

the workloads shown in Table I. Overall, LZ77 exhibits 

slightly worse compression ratio than Zlib, but efficient 

hardware implementations of LZ77 or variants have been 

proposed in several previous studies. In fact, the X-Match 

algorithm is also a variant of LZ77.  

B. Average Compression Ratio 

Fig. 8 shows the average compression ratios for each 

workload with Zlib, LZ77, X-Match, and X-Match with IDP. 

The compression ratio is defined as the ratio of the 

compressed chunk size to the original (uncompressed) data 

size (4KB). Hence, the lower the compression ratio, the better. 

The average compression ratio varies from workload to 

workload, but Zlib always results in the best compression ratio. 

In particular, workloads which manipulate text-based files 

such as UNTAR and COMPILE exhibit fairly good compression 

ratios as low as 27% with Zlib. Because X-Match compresses 

the data in four bytes unit, the compression ratios of X-Match 

is not as good as those of Zlib or LZ77 in these text-based 

workloads. 

On the other hand, TEMP shows much worse compression 

ratio since most files are image files and movie clips which 

have been already compressed. We find that system files 

touched in the SYSTEM workload also reveal good 

compression ratios. The compression ratio of INSTALL is 

higher than that of SYSTEM by 21% (Zlib) or by 24% (LZ77). 

This is because INSTALL handles many files in a special file 

format that stores a library of compressed files. X-Match with 

IDP presents almost the same compression ratio as the original 

X-Match. The difference between X-Match and X-Match with 

IDP comes from a small number of mispredictions in X-Match 

with IDP, but the difference is hardly noticeable in many cases. 

 

 
Fig.  8.  Average compression ratio. The compression ratio depends on the 

contents of the data and the compression algorithms. X-Match with IDP 

shows slightly worse compression ratio than the original X-Match due to 

mispredictions, but the difference is hardly noticeable. 

 

C. Write Amplification Factor (WAF) 

Fig. 9 compares the Write Amplification Factor (WAF) 

before and after the compression support is enabled. The 

WAF breaks down according to the source of writes; it is 

either for the actual data writes or for the writes issued during 

garbage collection. The upper bar indicates the amount of 

additional writes caused by garbage collection, which is as 

high as 4.19 (in COMPILE) when the compression is not 

enabled.  

UNTAR and COMPILE show very low WAFs under zFTL 

due to their low compression ratios. Since the amount of data 

written into NAND flash memory is reduced effectively, 

garbage collection hardly occurs. As a result, their WAFs are 

improved by a factor of 11.3 (UNTAR) and 15.0 (COMPILE) 

with the Zlib algorithm. The WAFs for TEMP, SYSTEM, and 

INSTALL are also improved by a factor of 3.5, 5.5, and 2.6, 

respectively, with Zlib. LZ77 and X-Match perform slightly 

worse than Zlib, resulting in improvements in WAFs by a 

factor of 2.1 (INSTALL) to 10.8 (COMPILE) with LZ77, and by 
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a factor of 1.9 (INSTALL) to 5.0 (COMPILE) with X-Match. X-

Match with IDP reduces the WAFs for UNTAR, COMPILE, 

TEMP, SYSTEM, and INSTALL workloads by a factor of 2.1, 4.7, 

2.0, 3.1, and 1.8, respectively, with the geometric mean of 2.6. 

Compared to X-Match, X-Match with IDP increases WAFs by 

5.0% on average due to mispredicted data. 

 

 
Fig. 9.  Write amplification factor (WAF). The leftmost bar in each 

workload shows the WAF without compression support. X-Match with 

IDP improves WAFs by a factor of 2.6 (geometric mean). 

 

D. Garbage Collection Overhead 

Fig. 10 illustrates the total time spent on garbage collection. 

It is estimated by multiplying the number of flash read, write, 

and erase operations during garbage collection by the 

respective operational latencies of MLC NAND flash memory. 

The final results are normalized to the values obtained when 

the compression support is disabled.  

 

 
Fig.  10.  Normalized garbage collection overhead. The final results are 

normalized to the values obtained when the compression support is 

disabled. We can see that the use of compression effectively reduces the 

time spent on garbage collection. 

 

In UNTAR and COMPILE workloads, the garbage collection 

overhead is almost negligible for Zlib and LZ77 because of 

good compression ratios. X-Match with IDP shows the largest 

overhead, but it is still much better than the case without any 

compression. We observe that the overall trend of Fig. 10 is 

highly correlated to that of Fig. 8. 

E. Power Consumption 

Fig. 11 shows how much power is saved by using the 

proposed Incompressible Data Predictor (IDP) with the X-

Match algorithm with respect to the original X-Match 

algorithm. In the original X-Match algorithm, all tuples in 

each 4KB compression unit should go through the compressor 

engine for 1,024 cycles. Thus, the power consumption, Porg, 

required to process the total N compression units by the 

original X-Match algorithm can be given by  

1024 comporg PNP  (1) 

where Pcomp represents the unit power consumed by the 

compressor hardware per cycle. Under the X-Match algorithm 

with the proposed IDP, the data predicted incompressible stop 

using the compressor engine after 32 cycles. Therefore, the 

power consumption of the proposed approach can be 

approximated as follows: 

32)102432(  predpcpicompIDP PNNNPP . (2) 

In (2), Npi and Npc denote the number of compression units 

that are predicted incompressible and compressible, 

respectively, where N = Npi + Npc. Ppred indicates the unit 

power spent by the prediction hardware per cycle. We 

estimated that Ppred is one-fiftieth of Pcomp, assuming that the 

power consumption is roughly proportional to the number of 

logic gates required to implement the hardware (cf. section 

IV.C). 

 

 
Fig.  11.  Estimated power consumption of X-Match with the proposed 

IDP. The values are normalized to the estimated power consumption in 

the original X-Match algorithm. In UNTAR, COMPILE, and SYSTEM, there 

are no significant benefit as most of the data are compressible in these 

workloads. However, INSTALL and TEMP show power savings by 60% and 

by 69%, respectively. 

  

As can be seen in (2), the power saving due to the proposed 

IDP greatly depends on Npi, the number of compression units 

that are predicted incompressible. One extreme workload is 

UNTAR, where only 0.02% of the input data are predicted 

incompressible. In this case, virtually no power saving has 

been achieved as shown in Fig. 11. In COMPILE and SYSTEM, 

3.2% and 5.6% of the data are predicted incompressible, 

respectively, resulting in 3.9% (COMPILE) and 10.8% 

(SYSTEM) of power savings. When there are modest number 

of incompressible data as in TEMP and INSTALL, the use of 
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IDP achieves 68.6% and 60.0% of power savings, respectively. 

In TEMP and INSTALL, 63.0% and 56.1% of the data are 

predicted incompressible. With our evaluation with another 

extreme workload which is composed of 99% of 

incompressible data, we observe that the proposed approach 

saves power consumption by 97%. 

V.  CONCLUSION 

Due to inherent characteristics of NAND flash memory 

which does not allow in-place update and wears out after 

repeated write/erase cycles, flash translation layers have been 

using a variety of techniques to enhance the overall 

performance and lifetime of NAND flash-based consumer 

electronics devices. Many previous researches on flash 

translation layers have focused on efficient address mapping 

and garbage collection schemes. However, another orthogonal 

issue that can reduce the amount of data written into NAND 

flash memory is to support data compression inside the flash 

translation layer.  

In this paper, we present zFTL, a flash translation layer 

which supports on-line, transparent data compression based 

on the X-Match algorithm. We have examined several design 

issues to support data compression in the flash translation 

layer, including some required extensions in address mapping 

and garbage collection. To reduce the compression overhead 

and power consumption associated with incompressible data, 

we have also proposed a novel scheme called Incompressible 

Data Predictor (IDP) that can predict whether the input data 

are incompressible or not by examining only a subset of data. 

Through the use of five real-world workloads, we confirm 

that zFTL improves the WAF by a factor of 2.6 (geometric 

mean) compared to the case without compression support. The 

proposed IDP is effective in reducing power consumption 

especially when there are many incompressible units among 

input data. When 63.0% of the data are predicted 

incompressible, zFTL reduces power consumption by 68.4% 

compared to the original X-Match algorithm without any 

prediction scheme. 
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