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Abstract: The Petaflops supercomputer łZhoresž recently

launched in the łCenter for Computational and Data-

Intensive Science and Engineeringž (CDISE) of Skolkovo

Institute of Science and Technology (Skoltech) opens

up new exciting opportunities for scientific discoveries

in the institute especially in the areas of data-driven mod-

eling, machine learning and artificial intelligence. This

supercomputer utilizes the latest generation of Intel and

NVidia processors to provide resources for the most com-

pute intensive tasks of the Skoltech scientists working

in digital pharma, predictive analytics, photonics, mate-

rial science, image processing, plasma physics and many

more. Currently it places 7th in the Russian and CIS TOP-

50 (2019) supercomputer list. In this article we summa-

rize the cluster properties anddiscuss themeasuredperfor-

mance and usage modes of this new scientific instrument

in Skoltech.
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1 Introduction

Modern science, industry and business benefit greatly

from using high-performance computing (HPC). In the re-

cent years there is a clear trend for convergence of tra-

ditional HPC, Machine Learning, Data Science and Artifi-

cial Intelligence [24, 26, 30, 32, 34]. Additionally, exponen-

tially growing amount of both structured andunstructured

data obtained fromvarious sources, including, but not lim-

ited to Internet of Things (IoT) and mathematical model-

ing, led to the appearance of the notion of data-intensive

science being the fourth paradigm of science [10] along

with experiments, theory and computer simulations. In-

deed, one can gain a lot of new knowledge about the uni-

verse by processing the data, which is hardly useful other-

wise. One can also see a trend for a multidisciplinary ap-

proach to the traditionally łcomputationalž problems. For

example, deep learning canoutperformdensity functional

theory (DFT) in quantum chemistry [28], and in solving or-

dinary and partial differential equations [12, 14]. Skoltech

has designed this new supercomputer in view of these

trends andwe report on the architecture and new research

areas enabled by it in this article.

Skoltech CDISE Petaflops supercomputer łZhoresž

named after the Nobel Laureate Zhores Alferov is in-

tended for cutting-edgemultidisciplinary research in data-

driven simulations and modeling, machine learning, Big

Data and artificial intelligence (AI). It enables research

in such important fields as Bio-medicine, Computer Vi-

sion, Remote Sensing and Data Processing, Oil/Gas, In-

ternet of Things (IoT), High Performance Computing [9,

21], Quantum Computing, Agro-informatics, Chemical-

informatics, development of novel X- and gamma-ray

sources [27] (which was the first published work that used

the "Zhores" supercomputer) and many more. Its architec-

ture reflects the modern trend of convergence of łtradi-

tionalž HPC, Big Data and AI. Moreover, heterogeneous
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demands of Skoltech projects on computing possibilities

ranging from throughput computing to capability comput-

ing and the need to applymodern concepts of workflow ac-

celeration and in-situ data analysis impose corresponding

solutions on the architecture. The design of the cluster is

based on the latest generation of CPUs, GPUs, network and

storage technologies, current as of 2017ś2019. This paper

describes the implementation of this machine and gives

details of the initial benchmarks that validate its architec-

tural concepts.

The article is organized as follows. In section 2 the de-

tails of installation are discussed with subsections dedi-

cated to the basic technologies. Section 3 describes several

applications ran on the łZhoresž cluster and their scaling.

The usage of the machine in the łNeurohackatonž held in

November 2018 in Skoltech is described in section 4. Fi-

nally, section 5 provides conclusions.

2 Installation

łZhoresž is constructed from the DELL PowerEdge C6400

and C4140 servers with Intel® Xeon® CPUs and Nvidia

Volta GPUs connected by Mellanox EDR Infiniband (IB)

SB7800/7890 switches.We decided to allocate 20 TB of the

fastest storage system (based onNVMe over IB technology)

for small users’ files and software (home directories), and

0.6 PB GPFS file system for bulk data storage. The princi-

pal scheme with the majority of components is illustrated

in Figure 1. The exact composition with the characteristics

of the components is found in Table 1. The names of the

nodes are given according to their intended role:

ś cn Ð compute nodes to handle CPU workload

ś gn Ð compute nodes to handle GPU workload

ś hdÐhadoop nodeswith set of disks for the classical

Hadoop workload

ś anÐ access nodes for cluster login, submit jobs and

transfer users’ data

ś anlab Ð special nodes for user experiments

ś vn Ð visualization nodes

ś mnÐmain nodes for cluster management andmon-

itoring

All users land on one of the access nodes (an) af-

ter login and can use them for interactive work, data

transfer and for job submission (dispatching tasks to com-

pute nodes). Security requirements place the access nodes

in the demilitarized zone. The queue structure is imple-

mented using the SLURM workload manager and dis-

cussed in section 2.5. Both, shell scripts and Docker [4]

Figure 1: Principle connection scheme. The an and mn nodes are

marked explicitly; the cn, gn and other nodes are lumped together.

images are accepted as valid work item by the queuing

system. We have made a principal decision to use the lat-

est CentOS version 7.5 which was officially available at

the time of installation. The user environment is provided

with the Environment Modules software system [5]. Sev-

eral compilers (Intel and GNU) are available as well as dif-

ferent versions of pre-compiled utilities and applications.

The cluster is managed with the fault tolerant instal-

lation of the Luna management tool [8]. The two man-

agement nodes are mirrors of each other and provide the

means of provisioning and administration of the cluster,

provide the NFS export of user/home directories and all

cluster configuration data. This is described in section 2.4.

2.1 Servers’ Processor Characteristics

The servers have the latest generation of the Intel Xeonpro-

cessors andNvidia Volta GPUs. The basic characteristics of

each type of the servers are captured in Table 1. We have

measured the salient features of these devices.

Intel Xeon 6136 and 6140 łGoldž CPUs of Skylake gen-

eration differ by the total number of cores in the package

and the working clock frequency (F). Each core features

two floating point AVX512 units. This has been tested with

a special benchmark to verify that the performance varies

with the frequency as expected.

The CPUperformance andmemory bandwidth of a sin-

gle core is shown in Figure 2. The benchmark program

to test the floating point calculation performance is pub-

lished elsewhere [3]. It is an unrolled vector loop with

vector width 8, precisely tuned for the AVX512 instruction

set. In this loop exactly 8 double precision numbers will

be computed in parallel in two execution units of each

core. With two execution units and the fused multiply-

add instruction (FMA) the theoretical Double Precision
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Table 1: Details of named łZhoresž cluster nodes

Name CPU sockets × cores F [GHz] Memory [GB] Storage [TB] [TF/s] # [TF/s]

cn 6136 2 x 12 3.0 192 0.48 2.3 44 101.4

gn
6140 2 x 18 2.3 384 0.48 2.6

26
68.9

V100 4 x 5120 1.52 4 x 16 31.2 811.2

hd 6136 2 x 12 3.0 192 9.0 2.3 4 9.2

an 6136 2 x 12 3.0 256 4.8 2.3 2 4.6

vn 6134 2 x 8 3.2 384 1.6 2 3.2

anlab 6134 2 x 8 3.2 192 3.3 4 13.1

mn 6134 2 x 8 3.2 64 3.3 2 6.6

Totals 2296 21248 82 1018.2

Table 2:Memory properties from Xeon 6136/6140 processor visible from single core

cache level set line [Bytes] Latency [ns] Bandwidh [GB/s] size [KiB] Core OWN

L1 Data 8-way 64 1.1 58 32 private

L1 Instr. 8-way 64 32 private

L2 Unif. 16-way 64 3.8 37 1024 private

L3 Unif. 11-way 64 26 25344 shared

TLB 4-way 64 entries private

Memory Xeon 6136 parts 27.4 13.1 192 GB shared

Memory Xeon 6140 parts 27.4 13.1 384 GB shared

Figure 2: Floating point performance (FMA instructions) on 6136

CPU core and memory bandwidth (STREAM Triad) as a function of

clock frequency. Left ordinate shows the FMA performance, the right

ordinate represents the memory bandwidth.

(DP) performance of a single physical core is 8 × 2 × 2 ×

F [GHz] and for the maximum of F = 3.5 GHz may

reach 112 GFlop/s/core. The performance scales with the

frequency to the maximum determined by processor ther-

mal and electrical limits. The total FMA performance on a

node when running AVX512 code on all processors in par-

allel is about 2.0 TFlop/s for C6140 machines (cn nodes,

24 cores) and 2.4 TFlop/s for the C4140 (gnnodes, 36 cores).

Summing up all the cn and gn nodes gives the measured

maximum CPU performance on the łZhoresž cluster of

150 TFlop/s.

The latencies of the processor memory subsystem

have been measured with the LMBench program [23] and

summarized in Table 2.

The main memory performance is measured with the

STREAMS program [22] and shown for the single core as

a function of clock frequency in Figure 2. The theoretical

performance of the memory bandwidth may be estimated

with the Little Law [15] to 14 GB/s per each channel taking

into account thememory latency of 27.4 ns given in Table 2.

The total memory bandwidth (STREAM Triad) for all cores

reached 178.6 GB/s in our measurement using all 6 chan-

nels of 2666 MHz DIMMs.

The strong dependency of the FMA performance on

the processor clock frequency and the weak dependency

of the memory bandwidth on the clock frequency is noted

to propose a scheme for the optimization of the power us-

age for applications with mixed instruction profiles.

2.2 Nvidia V100 GPU

Significant nodes (26) in the łZhoresž cluster are equipped

with four Nvidia V100 GPUs each. The GPUs are connected

pairwise with NVLink and individually with PCIe gen3 x16

to the CPU host. The principal scheme of the connections

is shown in Figure 3. The basic measurements to label the
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Figure 3: Principal connections between host and graphics subsys-

tem on graphics nodes.

Figure 4: Nvidia V100 GPU floating point performance as a function

of graphics clock rate. Electrical power draw corresponding to the

set frequency is indicated on the upper axis.

links in the plot have been obtained with Nvidia p2p band-

width program from the łSamplesž directory loaded with

GPU drivers. This setup is optimized for parallel compu-

tation scaling within the node, while the connections to

the cluster network pass from the single PCIe link. The

maximum estimated performance of a single V100 GPU is

shown in Figure 4. The graphics clock rate was set with

the command łnvidia-smiž; same commandwith different

parameters lists the power draw of the device. The com-

putational efficiency measured in Performance per Watt is

not evenly distributed as function of frequency, the peak

is 67.4 GFlop/s/W (single precision) at 1 GHz and drops to

47.7 GFlop/s/W at 1.5 GHz.

2.3 Mellanox IB EDR network

The high performance cluster network has the Fat Tree

topology and is build from six Mellanox SB7890 (unman-

aged) and two SB7800 (managed) switches that provide

100 Gbit/s (IB EDR) connections between the nodes. The

performance of the interconnect has been measured with

the łmpilinkž program that times the ping-pong exchange

between each node [1]. To make the measurements we

have installed Mellanox HPC package drivers and used

openMPI version 3.1.2. The results are shown in Figure 5

for serial mode runs and in Figure 6 for parallel mode runs.

The serial mode sends packages to each node when

previous communication has finished, while in parallel

mode all sends and receives are issued at the same time.

The parallel mode probes the package contention, while

serial mode allows to establish the absolute speed and dis-

cover any failing links. The communication in serial mode

is centered around the speed of 10.2±0.5GB/s. The paral-

lel mode reveals certain over-subscription of the Fat Tree

network Ð while the computational nodes are balanced

the additional traffic from the file services causes delays in

the transmission. This problemwill be addressed in future

upgrades.

2.4 Operating System and cluster

management

The łZhoresž cluster is managed by łLunaž [8] provision-

ing tool which can be installed in a fault tolerant active-

passive cluster setup with TrinityX platform. The Luna

management system was developed by ClusterVision BV.

The system automates the creation of all the services and

cluster configuration that make a bunch of servers a uni-

fied computational machine.

The clustermanagement software supports the follow-

ing essential features:

ś All cluster configuration is kept in the Lunadatabase

and all cluster nodes boot from this information

which is held in one place. This database ismirrored

between the management nodes with the DRBD

filesystem and the active management node pro-

vides access to data for every node in the clusterwith

the NFS share, see Figure 7.

ś Node provisioning from OS images is based on the

BitTorrent protocol [2] for efficient simultaneous

(disk-less or standard) boot; the imagemanagement

allows to grab an OS image from a running node to

a file, clone images for testing or backup purposes;

a group of nodes can use the same image for provi-

sioning that fosters unification of cluster configura-

tion. Nodes use PXE protocol to load a service image

that implements the booting procedure.

ś All the nodes (or groups of nodes) in the cluster can

be switched on/off and reset with the IPMI proto-
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Figure 5: Histogram of the ping-pong times/speeds between all nodes using 1 MB packets in serial mode

Figure 6: Histogram of the ping-pong times/speeds between all nodes using 1 MB packets in parallel mode

Figure 7: Organization of the łZhoresž cluster management with

Luna system.

col from the management nodes with a single com-

mand.

ś The cluster services setup on the management node

in a fault tolerant way include the following: DHCP,

DNS, OpenLDAP, Slurm, Zabbix, Docker-repository,

etc.

The management nodes are based on CentOS 7.5 and

force sameOS on the compute nodes; additional packages,

specific drivers and different kernel versions can be in-

cluded in the images for the cluster nodes. The installation

requires each node to have at least two ethernet network

interfaces, one dedicated to the management traffic and

the other used for administrative access. A single cluster

node can be booted within 2.5 minutes (over 1 GbE), and

the whole łZhoresž cluster cold start takes 5 minutes to

fully operational state.

2.5 The queueing system

Work queues have been organized with the Slurm work-

load manager to reflect the different application profiles

of users of the cluster. Several nodes have been given to

dedicated projects (gn26, anlab) and one CPU-only node

is setup for debugging work (cn44). The remaining nodes

have been combined in queues for the GPU-nodes (gn01ś

gn25) and for the CPU-nodes (cn01ścn43).

2.6 Linpack run

The Linpack benchmark was performed as a part of the

cluster evaluation procedure and to rate the supercom-

puter for the performance comparison. The results of the

run are shown in Table 3 separately for the GPU and all

nodes using only CPU computation.

The łZhoresž supercomputer is significant for the Rus-

sian computational science community, and currently, it

places 7th in the Russian and CIS TOP-50 list [6].
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Table 3: Linpack performance of the łZhoresž cluster run separately on the GPU nodes and with all CPU resources. The power draw for CPU

Linpack run is estimated (*).

Part
N

NB T Rmax Rpeak eff. P

nodes/core P Q [s] [TFlop/s] [TFlop/s] [%] [kW]

gn01-26 452352 192 124.4 496(±2%) 811.2 61.1 48.9

26/930 13 8

gn;cn;hn 1125888 384 7913.5 120.2(±2%) 158.7 75.6 35*

72/2028 12 12

Table 4: Computational times for 16 time-integration steps for the

parallel implementation of algorithm for the aggregation and frag-

mentation equations with N = 222 strongly-coupled nonlinear ODEs.

In this benchmark we utilized the nodes from the CPU segment of

the cluster.

Number of CPU cores Time, sec

1 585.90

2 291.69

4 152.60

8 75.60

16 41.51

32 20.34

64 12.02

128 6.84

Table 5: Parallel advection-coagulation solver on CPUs, Ballistic

kernel, domain size N × M = 12288, 16 time-integration steps. This

benchmark utilized up to 32 nodes from the CPU segment of the

cluster.

Number of CPU cores Time, sec

1 1706.50

2 856.057

4 354.85

8 224.44

12 142.66

16 105.83

24 79.38

48 38.58

96 19.31

192 9.75

384 5.45

768 4.50

3 Applications

3.1 Algorithms for aggregation and

fragmentation equations

In our benchmarks we used parallel implementation of ef-

ficient numerical methods for the aggregation and frag-

mentation equations [13, 18] and also parallel implemen-

tation of the solver for advection-driven coagulation pro-

cess [16]. Its sequential version has already been utilized

in a number of applications [17, 19] and can be consid-

ered as one of the most efficient algorithms for a class

of Smoluchowski-type aggregation kinetic equations. It is

worth to stress that parallel algorithm for pure aggregation-

fragmentation equations is based mostly on the perfor-

mance of ClusterFFT operation which is a dominating op-

eration in terms of algorithmic complexity, thus its scala-

bility is extremely limited. Nevertheless for 128 cores we

obtain speedup of calculations by more than 85 times, see

Table 4.

In the case of the parallel solver, for advection-driven

coagulation [21] we obtain almost ideal acceleration with

utilization of the algorithm for almost full CPU-based seg-

ment. In this case, the algorithm is based on the one-

dimensional domain decomposition along the spatial co-

ordinate and has a very good scalability, see Table 5 and

Figure 8. The experiments have been performed using In-

tel® compilers and the Intel® MKL library.

Alongside with the consideration of the well-known

two-particle problem of aggregation, we have mea-

sured the performance for a parallel implementation

of a more general three-particle (ternary) Smoluchowski-

type kinetic aggregation equations [29]. In this case the al-

gorithm is somewhat similar to the one for standard binary

aggregation. However the number of the floating point cal-

culations and the size of the allocated memory increases

as compared to the binary case, because the dimension of

the low rank Tensor Train (TT) decomposition [25] is natu-

rally bigger in ternary case. The most computationally ex-

pensive operation in the parallel implementation of the al-
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Figure 8: Parallel advection-driven aggregation solver on CPUs,

Ballistic kernel, domain size N = 12288.

Table 6: Computational times for 10 time-integration steps for par-

allel implementation of the algorithm for ternary aggregation equa-

tions with N = 219 nonlinear ODEs.

Number of CPU cores Time, sec

1 624.19

2 351.21

4 186.83

8 100.33

16 52.02

32 33.74

64 27.74

128 24.80

gorithm is also the ClusterFFT. The speedup of the parallel

ternary aggregation algorithm applied to the empirically

derived ballistic-like kinetic coefficients [20] is shown in

Table 6. In full accordancewith the structure of ClusterFFT

and the problem complexity one needs to increase the pa-

rameter N of the used differential equations in order to ob-

tain scalability. Speedups for both implementations of

binary and ternary aggregation are shown on Figure 9.

The experiments have been performed using Intel compil-

ers and Intel MKL library.

3.2 Gromacs

Classical molecular dynamics is an effective method with

highpredictive ability in awide rangeof scientific fields [11,

31]. Using Gromacs 2018.3 software [7, 33] we have per-

formed molecular dynamics simulations in order to test

the łZhoresž cluster performance. As a model system we

chose 125 million Lennard-Jones spheres with the Van

derWaals cut-off radius of 1.2 nm andwith the Berendsen
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1 2 4 8 16 32 64 128

s
p
e
e
d
u
p

number of CPU cores

Aggregation, based on ClusterFFT

Ternary aggregation, N=219, R=19
Binary aggregation, N=222, R=17

Figure 9: Parallel binary and ternary aggregation solvers on CPU,

Ballistic-like kernels, 16 and 10 time-integration steps for N = 222

and N = 219 nonlinear ODEs, respectively. Parameter R denotes

the rank of used matrix and tensor decompositions.

Figure 10: Performance of the molecular dynamic simulations of 125

million Lennard-Jones spheres using Gromacs 2018.3 as a function

of nodes number. Note, that there are only 26 GPU nodes in the

cluster.

thermostat. All tests were conducted with a single preci-

sion version of Gromacs.

The results are presented in Figure 10. We measured

the performance as a function of the number of nodes; we

have used up to 40 CPU nodes and up to 24 GPU nodes.

We have used 4 OpenMP threads per MPI process. Each

task was performed 5 times with following averaging in or-

der to obtain final performance. Grey and red solid lines

show linear acceleration of the program on CPU and GPU

nodes, respectively. In case of the CPU-nodes, one can see

almost ideal speedup. With a large number of CPU-nodes,

the speedup deviates from linear and grows slower.

To test performance on the GPU-nodes, we have per-

formed simulationswith 1, 2 and4graphics cards per node.

The use of all 4 graphics cards demonstrates good scalabil-

ity, while 2 GPUs per node shows slightly lower speedup.

Runs with 1 GPU per node demonstrates worse perfor-

mance, especially with high number of nodes. To compare
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Figure 11: Performances for different configurations of 24 GPU-

nodes: 0, 1, 2, and 4 GPUs per node

the efficiency for different number of GPUs per node, we

show the performance for the four configurations (0, 1, 2

and 4GPUs) using 24 GPU-nodes in Figure 11 as a bar chart.

The 4 GPUs per node configuration gives about 2.5 times

higher performance than running the program only on the

CPU cores. And even 1 GPU per node gives significant per-

formance increase compared to the CPU only run.

4 Neurohackathon at Skoltech

The łZhoresž cluster was used as the main computing

power during the łNeurohackathonž in the field of neuro-

medicine, held in Skoltech from 16-th to 18-th of November

2018 under the umbrella of the National Technology Initia-

tive. It consisted of two tracks: scientific and open. The sci-

entific track included the solution of the tasks of predictive

analytics related to the analysis of MRI images of the brain

of patients containing changes characteristic of multiple

sclerosis (MS). This activity handled private data. There-

fore special attentionwas paid to the IT security. Itwas nec-

essary to divide the cluster resources such that Skoltech

continued its scientific activities while the hackathon par-

ticipants competed transparently on this facility at the

same time.

To address this problem, a two-stage authentication

system was chosen using several levels of virtualization.

Access to the cluster wasmade through the VPN tunnel us-

ing Cisco ASA and Cisco AnyConnect; then the SSH (RFC

4251) protocol was used to access the consoles of the oper-

ating system (OS) of the participants.

The virtualization was provided at the level of a data

network through the IEEE 802.1Q (VLAN) protocol and OS

level Docker [4] containerization with the ability to con-

nect to GPU accelerators. The container worked in its ad-

dress space and in a separate VLAN, so we achieved an ad-

ditional isolation level from the host machine. Also at the

Linux kernel level, the namespace feature was turned on

and the user and group IDs were remapped to obfuscate

the superuser rights on the host machine.

As a result, each participant of the Neurohackathon

had a docker container with access via the SSH protocol to

the console and used the https protocol to Jupiter applica-

tion on his VM. The four Nvidia Tesla V100 accelerators on

the GPU nodes were used for the computing.

The number of teams participating in the competition

had rapidly increased from 6 to 11 one hour before the start

of the event. The usage of virtualization technology and

the flexible architecture of the cluster allowed us to pro-

vide all teams with the necessary resources and start the

hackathon on time.

5 Conclusions

In conclusion, we have presented the Petaflops supercom-

puter łZhoresž installed in Skoltech CDISE that will be ac-

tively used for multidisciplinary research in data-driven

simulations, machine learning, Big Data and artificial in-

telligence. Linpack benchmark places this cluster at posi-

tion 7 of the Russian and CIS TOP-50 Supercomputer list.

Initial tests show a good scalability of the modeling appli-

cations and prove that the new computing instrument can

be used to support advanced research at Skoltech and for

all its research and industrial partners.
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