
ZHT: A Light-weight Reliable Persistent Dynamic Scalable
Zero-hop Distributed Hash Table

Tonglin Li1, Xiaobing Zhou1, Kevin Brandstatter1, Dongfang Zhao1,

Ke Wang1, Anupam Rajendran1, Zhao Zhang2, Ioan Raicu1,3
tli13@hawk.iit.edu, xzhou40@hawk.iit.edu, kbrandst@iit.edu, dzhao8@hawk.iit.edu,

kwang22@hawk.iit.edu, arajend5@hawk.iit.edu, zhaozhang@uchicago.edu, iraicu@cs.iit.edu
1Department of Computer Science, Illinois Institute of Technology, Chicago IL, USA

2Department of Computer Science, University of Chicago, Chicago IL, USA
3Mathematics and Computer Science Division, Argonne National Laboratory, Argonne IL, USA

Abstract— This paper presents ZHT, a zero-hop distributed hash
table, which has been tuned for the requirements of high-end
computing systems. ZHT aims to be a building block for future
distributed systems, such as parallel and distributed file systems,
distributed job management systems, and parallel programming
systems. The goals of ZHT are delivering high availability, good
fault tolerance, high throughput, and low latencies, at extreme
scales of millions of nodes. ZHT has some important properties,
such as being light-weight, dynamically allowing nodes join and
leave, fault tolerant through replication, persistent, scalable, and
supporting unconventional operations such as append (providing
lock-free concurrent key/value modifications) in addition to
insert/lookup/remove. We have evaluated ZHT's performance
under a variety of systems, ranging from a Linux cluster with
512-cores, to an IBM Blue Gene/P supercomputer with 160K-
cores. Using micro-benchmarks, we scaled ZHT up to 32K-cores
with latencies of only 1.1ms and 18M operations/sec throughput.
This work provides three real systems that have integrated with
ZHT, and evaluate them at modest scales. 1) ZHT was used in the
FusionFS distributed file system to deliver distributed meta-data
management at over 60K operations (e.g. file create) per second
at 2K-core scales. 2) ZHT was used in the IStore, an information
dispersal algorithm enabled distributed object storage system, to
manage chunk locations, delivering more than 500 chunks/sec at
32-nodes scales. 3) ZHT was also used as a building block to
MATRIX, a distributed job scheduling system, delivering 5000
jobs/sec throughputs at 2K-core scales. We compared ZHT
against other distributed hash tables and key/value stores and
found it offers superior performance for the features and
portability it supports.

Keywords- Distributed hash tables, key/value stores, high-end
computing

I. INTRODUCTION
Exascale computers (e.g. capable of 1018 ops/sec) [1], with

a processing capability similar to that of the human brain, will
enable the unraveling of significant scientific mysteries and
present new challenges and opportunities. Major scientific
opportunities arise in many fields (such as weather modeling,
understanding global warming, national security, drug
discovery, and economics) and may rely on revolutionary
advances that will enable exascale computing.

“A supercomputer is a device for turning compute-
bound problems into I/O bound problems”.

-- Ken Batcher

The quote [46] from Ken Batcher reveals the essence of
modern high performance computing and implies an ever

growing shift in bottlenecks from compute to I/O. For exascale
computers, the challenges are even more radical, as the only
viable approaches in next decade to achieve exascale
computing all involve extremely high parallelism and
concurrency. Up to 2012, some of the biggest systems already
have more than 700,000 general purpose cores. Many experts
predict [1] that exascale computing will be a reality by 2019;
an exascale system is expected to have millions of nodes,
billions of threads of execution, hundreds of petabytes of
memory, and exabytes of persistent storage.

In the current decades-old architecture of HPC systems,
storage is completely segregated from the compute resources
and are connected via a network interconnect (e.g. parallel file
systems running on network attached storage, such as GPFS
[2], PVFS [3], and Lustre [4]). This approach is not able to
scale several orders of magnitude in terms of concurrency and
throughput, and will thus prevent the move from petascale to
exascale. If we do not solve the storage problem with new
storage architectures, it could be a “show-stopper” in building
exascale systems. The need for building efficient and scalable
distributed storage for high-end computing (HEC) systems that
will scale three to four orders of magnitude is on the horizon.

One of the major bottlenecks in current state-of-the-art
storage systems is metadata management. Metadata operations
on parallel file systems can be inefficient at large scale.
Experiments on the Blue Gene/P system at 16K-core scales
show the various costs (wall-clock time measured at remote
processor) for file/directory create on GPFS (see [2]).

Figure 1: Time per operation (touch) on GPFS on various number of

processors on a IBM Blue Gene/P
Ideal performance would have been constant, but we can

see the cost of these basic metadata operations (e.g. create file)
growing from tens of milliseconds on a single node (four-

1

10

100

1,000

10,000

100,000

1 4 16 64 256 1024 4096 16384

Ti
m

e
pe

r O
pe

ra
ti

on
 (m

s)

Scale (# of Cores)

File Create (GPFS Many Dir)
File Create (GPFS One Dir)

cores), to tens of seconds at 16K-core scales; at full machine
scale of 160K-cores, we expect a file create to take over two
minutes for the many directory case, and over 10 minutes for
the single directory case. Previous work [5, 6] shows these
times to be even worse, putting the full system scale metadata
operations in the hour range, but the testbed as well as GPFS
might have been improved over the last several years. Whether
the time per metadata operation is minutes or hours on a large
scale HEC system, the conclusion is that the distributed
metadata management in GPFS does not have enough degree
of distribution, and not enough emphasis was placed on
avoiding lock contention. GPFS’s metadata performance
degrades rapidly under concurrent operations, reaching
saturation at only 4 to 32 core scales (on a 160K-core
machine).

Other distributed file systems (e.g. Google's GFS [7] and
Yahoo's HDFS [8]) that have centralized metadata
management make the problems observed with GPFS even
worse from the scalability perspective. Future storage systems
for high-end computing should support distributed metadata
management, leveraging distributed data-structure tailored for
this environment. The distributed data-structures share some
characteristics with structured distributed hash tables [9],
having resilience in face of failures with high availability;
however, they should support close to constant time
inserts/lookups/removes delivering the low latencies typically
found in centralized metadata management (under light load).
Metadata should be reliable and highly available, for which
replication (a widely used mechanism) could be used.

This work presents a zero-hop distributed hash table (ZHT),
which has been tuned for the specific requirements of high-end
computing (e.g. trustworthy/reliable hardware, fast networks,
non-existent “churn”, low latencies, and scientific computing
data-access patterns). ZHT aims to be a building block for
future distributed systems, with the goal of delivering excellent
availability, fault tolerance, high throughput, scalability,
persistence, and low latencies. ZHT has several important
features making it a better candidate than other distributed hash
tables and key-value stores, such as being light-weight,
dynamically allowing nodes join and leave, fault tolerant
through replication and by handling failures gracefully and
efficiently propagating events throughout the system, a
customizable consistent hashing function, supporting
persistence for better recoverability in case of faults, scalable,
and supporting unconventional operations such as append
(providing lock-free concurrent key/value modifications) in
addition to insert/lookup/remove.

We have evaluated ZHT's performance under a variety of
systems, ranging from a Linux cluster with 512-cores, to an
IBM Blue Gene/P supercomputer with 160K-cores. Using
micro-benchmarks, we scaled ZHT up to 32K-cores with
latencies of only 1.1ms and 18M operations/sec throughput.
We compared ZHT against two other systems, Cassandra [38]
and Memcached [20] and found it to offer superior
performance for the features and portability it supports, at large
scales up to 16K-nodes.

This work provides three real systems that have integrated
with ZHT, and evaluates them at modest scales. 1) ZHT was
used in the FusionFS distributed file system to deliver
distributed meta-data management at over 60K operations (e.g.

file create) per second at 2K-core scales. 2) ZHT was used in
the IStore [50, 65], an information dispersal algorithm enabled
distributed object storage system, to manage chunk locations
delivering more than 500 chunks/sec at 32-nodes scales. 3)
ZHT was also used as a building block to MATRIX, a
distributed job scheduling system, delivering 5000 jobs/sec
throughputs at 2K-core scales.

The contributions of this paper are as follows:
• Design and implementation of ZHT, a light-weight, high

performance, fault tolerant, persistent, dynamic, and
highly scalable distributed hash table, optimized for
high-end computing.

• Support for unconventional operations, such as append
allowing data to be incrementally added to an existing
value, delivering lock-free concurrent modification on
key/value pairs.

• Micro-benchmarks up to 32K-core scales, achieving
latencies of 1.1ms and throughput of 18M ops/sec.

• Integration and evaluation with three real systems
(FusionFS, IStore, and MATRIX), managing distributed
storage metadata and distributed job scheduling
information.

II. RELATED WORK
There have been many distributed hash table (DHT)

algorithms and implementations proposed over the years. We
discuss DHTs in this section due to their important role in
building support for scalable metadata service across extreme
scale systems. Some of the DHTs from the literature are
Kademlia [15], CAN [16], Chord [17], Pastry [18], Tapestry
[19], Memcached, Dynamo [21], Cycloid [22], Ketama [23],
RIAK [24], Maidsafe-dht [25], Cassandra and C-MPI [26].
Most of these DHTs scale logarithmically with system scales,
but some (e.g. Cycloid) go as far as reducing the number of
operations to O(c) where c is a constant related to the
maximum size of the network (instead of the actual size of the
network), which in practice still results to c ~ log(N) [22].

There has been some uptake recently in using traditional
DHTs in HEC, namely the C-MPI [26] project, in which the
Kademlia DHT has been implemented and shown to run well
on 1K nodes on a Blue Gene/P supercomputer. C-MPI is used
to perform data management operations for the Swift project
[27, 57], but it is rather simplistic (e.g. no support for data
replication, data persistence, or fault tolerance via stateless
protocols). C-MPI adopted the Message Passing Interface
(MPI) for communication, making it a bridle at large scale and
prone to system wide failures due to single node failures.
Although MPI is attractive from a performance perspective on
these HEC systems, it makes it hard to implement a fault
tolerant system. Furthermore, C-MPI is based on new
implementations of the Kademlia (with log(N) routing time)
distributed hash table. Another recent project using DHTs on a
HEC is DataSpaces [28], which deploys a DHT on a Cray XT5
to coordinate in-memory data management for simulation
workflows. DataSpaces has similar drawbacks as C-MPI. In
future work, we will consider supporting MPI, in addition to
protocols such as TCP and UDP, as MPI 3.0 [29] promises to
address many of the current MPI fault tolerance limitations.

Dynamo [21] is a key-value storage system that some of
Amazon’s core services use to provide an “always-on”
experience. Dynamo calls itself as a zero-hop DHT, where each
node maintains enough routing information locally to route a
request to the appropriate node directly. Dynamo is targeted
mainly at applications that need an “always writeable” data
store where no updates are rejected due to failures or
concurrent writes. A significant drawback of Dynamo is the
fact that it is an internal Amazon project, which cannot be used
outside of the Amazon infrastructure.

Cassandra, an implementation inspired by Amazon’s
Dynamo, strives to be an "always writable" system in that the
system is designed to always accept writes even in light of
node failures. It accomplishes this by deferring consistency
until the time when data is read and resolving conflicts at that
time, this means that Cassandra needs to offer different levels
of consistency on reads. Cassandra’s drawbacks include poor
support on many supercomputers due to a lack of Java stack.
Cassandra also uses logarithmic routing strategy which makes
it less scalable.

Memcached is an in-memory implementation of a key/value
store. It was designed as a cache to accelerate distributed
application execution. It is rather simplistic in which there is no
data persistence, no data replication, and no dynamic
membership. There are strict limitations on the size of the keys
and values (250B and 1MB respectively). All these limit the
use of Memcached for the purpose of making it a building
block for large-scale distributed systems, but it offers a good
baseline for comparison.

In section 4 we’ll compare the performance of ZHT,
Cassandra and Memcached. A brief overview of the
differences between Cassandra, Memcached, C-MPI,
Dynamo, and ZHT can be found in Table 1.

Table 1: Comparison between ZHT and other DHT implementations

Name Impl. Routing
Time Persistence Dynamic

membership
Append

Cassandra 38 Java log(N) Yes Yes No
Memcached [20] C 2 No No No

C-MPI [26] C/MPI log(N) No No No

Dynamo [21] Java 0 to
log(N) Yes Yes No

ZHT [14] C++ 0 to 2 Yes Yes Yes

III. ZHT DESIGN AND IMPLEMENTATION
Most HEC environments are batch oriented, which implies

that a system that is configured at run time, generally has
information about the compute and storage resources that will
be available. This means that the amount of resources (e.g.
number of nodes) would not increase or decrease dynamically,
and the only reason to decrease the allocation is either to
handle failed nodes, or to terminate the allocation. By making
dynamic membership optional, the complexity of the system
can be reduced and a low average number of hops per
operation can be achieved.

We do believe that dynamic membership is important for
some environments, especially for cloud computing systems,
and hence have made efforts to support it without affecting
basic operations’ time complexity. Because nodes in HEC are
generally reliable and have predicable uptime (nodes start on
allocation, and shut down on de-allocation), it implies that node
"churn" in HEC is virtually non-existent. This in principle

guided our design of the proposed dynamic membership
support in ZHT.

It is also important to point out that nodes in a HEC system
are generally trust-worthy, and that stringent requirements to
encrypt communication and/or data would simply be adding
overheads. HEC systems are generally locked down from the
outside world, behind login nodes and firewalls, and although
authentication and authorization are still needed, full
communication encryption is wasteful for a large class of
scientific computing applications that run on many HEC
systems. Most storage systems used in HEC communicate
between the client nodes and storage servers without any
encryption.

A. Overview
The primary goal of ZHT is to get all the benefits of DHTs,

namely excellent availability and fault tolerance, but
concurrently achieve the benefits minimal latencies normally
associated with idle centralized indexes. The data-structure is
kept as simple as possible for ease of analysis and efficient
implementation.

The application programming interface (API) of ZHT is
kept simple and follows similar interfaces for hash tables. The
four operations ZHT supports are 1. int insert(key, value); 2.
value lookup(key); 3. int remove(key), and 4. int append(key,
value). Keys are typically a variable length ASCII text string.
Values can be complex objects, with varying size, number of
elements, and types of elements. Integer return values return 0
for a successful operation, or a non-zero return code that
includes information about the error that occurred.

In static membership, every node at bootstrap time has all
information about how to contact every other node in ZHT. In
a dynamic environment, nodes may join (for system
performance enhancement) and leave (node failure or
scheduled maintenance) any time, although in HEC systems
this “churn” occurs much less frequently than in traditional
DHTs.

Figure 2: ZHT architecture design showing namespace, hash function, and

replication

ID Space and Membership Table are shown in Figure 2 as a
ring-shaped key name space. The node ids in ZHT can be
randomly distributed throughout the network, or they can be
closely correlated with the network distance between nodes.
The correlation can generally be computed from information
such as MPI rank or IP address. The random distribution of the

ID space has worked well up to 32K-cores, but we will explore
a network aware topology in future work.

The hash function maps an arbitrarily long string to an
index value, which can then be used to efficiently retrieve the
communication address (e.g. host name, IP address, MPI-rank)
from a membership table (a local in-memory vector).
Depending on the level of information that is stored (e.g. IP - 4
bytes, name - <100 bytes, socket - depends on buffer size),
storing the entire membership table should consume only a
small (less than 1%) portion of available memory of each node.
On 1K-nodes scale, one ZHT instance has a memory footprint
of only 10MB (from an available 2GB memory), achieving our
desired sub 1% memory footprint. The memory footprint
consists of ZHT server binary in memory, entries in hash table,
membership table and ZHT server side socket connection
buffers. Among them, only membership table and socket
buffers will increase with the scale of nodes. Entries in hash
table will be flushed to disk finally. But membership is very
small, it takes 32 bytes per entry (for each node), 1million
nodes only need 32MB memory. By tuning the number of Key-
Value pairs that are allowed stay in memory, users can achieve
the balance between performance and memory consumption.

B. Terminologies:
Physical node: A physical node is an independent physical

machine. Each physical node may have several ZHT instances
which are differentiated with IP address and port. By adjusting
the number of instance, ZHT can fit in heterogeneous systems
with various computing power.

Instance: A ZHT instance is a process which handles the
requests from clients. Each instance takes care of some
partitions. By adjusting the number of instance, ZHT can fit in
heterogeneous systems with various storage capacities and
computing power. A ZHT instance can be identified by a
combination of IP address and port, and each ZHT instance
maintains many partitions. We only need to store addresses for
ZHT instances, no need to do so for partitions. Therefore
number of partitions can be much larger than the number of
addresses.

Partition: A partition is a contiguous range of the key
address space.

Manager: A Manager is a service running on each
physical node and takes charge of starting and shuting down
ZHT instances. The manager is also responsible for managing
membership table, starting/stopping instances, and partition
migration.

As traditional consistent hashing does, initially we assign
each of the k physical nodes a manager and one or more ZHT
instances, each with a universal unique id (UUID) in the ring-
shaped space. The entire name space N (a 64-bit integer) is
evenly distributed into n partitions where n is a fixed big
number indicating the maximal number of nodes that can be
used in the system. It is worth noting that while n (the number
of partitions, also the maximal number of physical nodes)
cannot be changed without potentially rehashing all the
key/value pairs stored in ZHT, i (the number of ZHT
instances) as well as k (the number of physical nodes) is
changeable with changes only to the membership table. Each
physical node has one manager, holds n/k partitions, with
each partition storing N/n key-value pairs and i/k ZHT
instances serving requests. Each partition (which can be

persisted to disk) can be moved across different physical
nodes when nodes join, leave, or fail.

Figure 3: ZHT architecture per node

For example, in an initial system of 1000 ZHT instances

(potentially running on 1000 nodes), where each instance
contains 1000 partitions, the overall system could scale up to 1
million instances on 1 million physical nodes. Experiments
validate this approach showing that there is little impact
(0.73ms vs. 0.77ms per request) on the performance of
partitions as we increase the number of partitions per instance
(see Figure 4). This design allows us to avoid a potentially
expensive rehash of many key/value pairs when the need
arises to migrate partitions.

 Figure 4: Concurent performance from 1 to 1K partition per ZHT instance

C. Membership management
ZHT supports both static and dynamic node membership.

In the static case, the bootstrapping phase gets information
from the batch job scheduler about the allocated node
information (or perhaps the information could be extracted
from the nodes at job start time). Once the membership is
established, no new nodes would be allowed to join the
system. Nodes could leave the system due to failures; we
assume failed nodes do not recover.

For the dynamic membership, nodes are allowed to
dynamically join and leave the system. Most DHTs support
dynamic membership, but typically deliver this through
logarithmic routing. DHTs use consistent hashing which
sacrifices performance in order to achieve scalability under
potentially extremely dynamic conditions. We address this
issue with a zero-hop consistent hashing mechanism. With this
novel design, we offer the desired flexibility of dynamic
membership while maintain high performance with constant
time routing.

Node Joins: On a node join operation, it checks out a
copy of membership table from the ZHT Manager on a

0.6

0.65

0.7

0.75

0.8

1 10 100 1000

La
te

nc
y

(m
s)

Number of partitions per instance

Average latency

random physical node. In this table, the new node can find the
physical nodes with the most partitions, then join the ring as
this heavily loaded node’s neighbor and move some of the
partitions from the “busy” node to itself. Migrating a partition
is as easy as moving a file, all without having to rehash the
key/value pairs stored in the partition. Some issues come up
with ZHT requests to a migrating partition, as requests
destined for a specific partition could continue to go to the
original partition location until the partition migration is
completed, and all membership tables have been updated.
During this migration, every request received is acknowledged
with a redirect message informing the recipient of the new
partition location. This “lazy” membership updating
mechanism on client side reduces the number of messages to 1
message per client for each partition. Once the migration is
completed, the manager broadcasts out the incremental
information of membership in an atomic manner, and all
future requests will go to the new partition location.

Node departures: On planed node departures (e.g. an
administrator wants to take down part of the system for
maintenance), the administrator would get a current
membership table from a random physical node, modify it
accordingly, then broadcast the incremental table to other
managers to update their local tables. The managers, which
will be departing, first migrate their partitions to neighboring
nodes, and then continue to depart. For an unplanned
departure (e.g. due to a node failure), it will be detected first
by a client which sends a request and times out waiting for a
response, or due to another ZHT instance initiating a server-to-
server operation (e.g. migration, replication, etc.). Upon a
certain number of failures, it will mark the entire physical
node unavailable on its local membership table and inform a
random manager about this failure. Replication is used to
improve reliability, the client then sends the request to the first
replica of the failed node. At the same time, the manager
updates and broadcasts its local membership table, and
initiates a rebuilding of the replicas, specifically increasing
replication on all partitions stored on the failed physical node
in order to maintain the specified level of replication.

Data Migration: An essential design decision was to
ensure that minimal impact on performance and scalability
would be posed by introducing dynamic membership. With
dynamic membership, comes the need to potentially migrate
data from one physical node to another. In order to achieve
this, ZHT organizes its data in partitions, and migrates entire
partitions with only membership table modifications. This
avoids the need to rehash key-value pairs that make up the
migrated data, as most DHTs do. Moving an entire partition is
significantly more efficient than rehashing many key/value
pairs, and should be able to achieve near disk and network peak
bandwidth performance. When migration is in progress, ZHT
state cannot be modified for the migrated partitions. All
requests are queued, until the migration is completed. In the
meanwhile because the partition state is locked, corresponding
replicas also won’t change. This keeps the entire system state
consistent. If failure occurs during migration, simply don’t
apply the changes (in terms of discarding the queued requests
and reporting error to clients) to corresponding partitions and
replicas, this will eventually force the system roll back to the
consistent state.

Client Side State: In case that client and server are not on
the same nodes, it’s necessary to keep client side membership
table updated. Since the node joining and leaving will change
the number of partitions covered by ZHT instance, clients
might send request to wrong nodes if the local membership
table is not updated. To address this issue, we adopt lazy
updating. Only when the requests are sent mistakenly, the
ZHT instance will send back a copy of latest membership table
to the clients. Our typical deployment scenario has a 1:1 ratio
between clients and servers, which implies that the client
could share the membership table with a corresponding server
on the same physical node, to reduce the number of
membership tables that need to be synchronized on
modification.

D. Server arhitecture
We explored various architectures for ZHT server. Since

typical Key-Value store operations are very short but frequent,
we designed ZHT to be able to respond fast with little resource
consumption. In early prototypes, we explored a multi-
threading design, in which each request had a separate thread,
but the overheads of starting, managing, and stopping threads
was too high in comparison to work each thread was
performing. We eventually converged on a much more
streamlined architecture, an event-driven model server
architecture based on epoll. The current epoll-based ZHT
outperforms the multithread version 3X. We’ll discuss the
performance difference in more detail in the evaluation section
IV.

E. Hashing Functions
There are many good hashing functions in practice [31].

Each hashing function has a set of properties and designed
goals, such as: 1) minimize the number of collisions, 2)
distribute signatures uniformly, 3) have an avalanche effect
ensuring output varies widely from small input change, and 4)
detect permutations on data order. Hash functions such as the
Bob Jenkins’ hash function, FNV hash functions, the SHA
hash family, or the MD hash family all exhibit the above
properties [32, 33]. We have explored the use of Bob Jenkins’
and FNV hash functions, due to their relatively simple
implementation, consistency across different data types
(especially strings), and the promise of efficient performance
[49].

F. Lightweight 1-1 Communication
 We implemented ZHT with both TCP (with server

returned result state) and UDP (acknowledge message based,
which means every time a message is sent, the sender is
waiting for an acknowledge message) protocols. In previous
work [14], we showed that UDP offered some performance
advantage at modest scales of nearly 6K cores. We anticipate
that UDP’s advantages will become more prevalent with even
larger scales as connectionless communication protocols will
be preferred to avoid having expensive connection
establishments among many nodes. In ZHT, we implemented
a LRU cache for TCP connections, which makes TCP works
almost as fast as UDP does. We expect to extend the
communication protocols in future iterations of ZHT, such as
BMI [41], and perhaps even MPI if we are willing to sacrifice
fault tolerance for potentially improved performance and

accessibility to certain HEC systems that do not support the IP
protocol.

G. Complex Structures Support
In order to support complex structures as values in ZHT,

we adopted the Google protocol buffer [37] project, which
serializes complex structures into a stream of bytes. The
indicators for four basic operations (insert, lookup, remove,
and append) are defined in the message prototype and
compiled with Google Protocol Buffers. They are
encapsulated with the key-value pair into a plain string and
transferred through network. When a server receives a request,
it just unpacks the message, read the indicator and execute the
operation request.

H. Fault Tolerance
ZHT gracefully handle failures, by lazily tagging nodes

that do not respond to requests repeatedly as failed (using
exponential back off). ZHT uses replication to ensure data will
persist in face of failures. Newly created data will be pro-
actively replicated asynchronously to nodes in close proximity
(according to the UUID) of the original hashed location. By
communicating only with neighbors in close proximity, this
approach will ensure that replicas consume the least amount of
shared network resources when we succeed in implementing
the network-aware topology (see future work section). Despite
the lack of network-aware topology in the current ZHT, the
asynchronous nature of the replication adds relatively little
overhead with increasing numbers of replicas at modest scales
up to 4K-cores.

ZHT is completely distributed, and the failure of a single
node does not affect ZHT as a whole. The (key, value) pairs
that were stored on the failed node were replicated on other
nodes in response to the failure, and queries asking for data that
were on the failed node will be answered by the replicas.

In the event that ZHT is shut down (e.g. maintenance of
hardware, system reboot, etc.), the entire state of ZHT could be
loaded from local persistent storage (e.g. the SSDs on each
node); note that every change to the in-memory DHT is in fact
persisted to disk (assuming there is one), allowing the entire
state of the DHT to be reconstructed if needed. Given the size
of memory and SSDs of today, as well as I/O performance
improvements in the future, it is expected that a multi-gigabyte
amount of state could be retrieved in just seconds.

We have evaluated these mechanisms to work on modest
scales and include the results in the evaluation section.

Figure 5: ZHT Bootstrap time on Blue Gene/P from 64 to 8K nodes

Once ZHT is bootstrapped, the verification of its nearest
neighbors should not be related to the size of the system. In
the event that a fresh new ZHT instance is to be bootstrapped,
the process is quite efficient in its current static membership
form, as there is no global communication required between
nodes (see Figure 5).

Nevertheless, we expect the time to bootstrap ZHT to be
insignificant in relation to the cost to the batch scheduler’s
overheads on a HEC, which could potentially include node
provisioning, OS booting, starting of network services, and
perhaps the mounting of some parallel file system. At 1K-node
scales, the time to start the batch scheduled job is about 150
seconds [5], after which the ZHT bootstrap takes another 8
seconds and it takes 10 seconds to bootstrap at 8K-node scale.
Figure 5 shows the bootstrap time increase with the scale.

I. Persistence
ZHT is a distributed in-memory data-structure. In order to

withstand failures and restarts, it also supports persistence. We
evaluated several existing systems, such as KyotoCabinet
HashDB [39] and BerkeleyDB, but low performance and
missing features prompted us to implement our own solution.
We designed and implemented a Non-Volatile Hash Table
(NoVoHT) which uses a log-based persistence mechanism with
periodic checkpointing. NoVoHT was designed to address
several limitations of KyotoCabinet, specifically to enable
specifying a size (to control memory footprint), re-size rate
(how often to increase or decrease the size of the table), and
garbage collection (how often to reclaim unused space on
persistent storage).

Since all key-value pairs are kept in memory, it lends itself
to low latency in lookups when compared to other persistent
hash maps such as KyotoCabinet’s HashDB[39], which are
disk-based and any lookup must hit disk.

In addition to the standard get, put, remove functions that
are inherent in a hash map, NoVoHT supports a fourth basic
function, append. The append allows a string to be appended to
a value that is currently in the hash map. This is not a feature
that many hash maps do, and is especially rare in persistent
ones as well. The benefit of the append is that it allows for fast
concurrent modification of a value in the map, utilizing a local
lock. We found the append operation critical in supporting
lock-free concurrent modification in ZHT (eliminating the need
for a distributed system lock); using append, we were able to
implement a highly efficient metadata management for a
distributed file system, where certain metadata (e.g. directory
lists) could be concurrently modified across many clients.
Consider a typical use case in distributed and parallel file
systems: creating 10K files from 10K processes in one
directory; the concurrent metadata modification occur via
distributed locks. As shown in Figure 1, metadata operation on
16K processor scale could be as slow as 63 seconds per
operation. By using append, all metadata servers can store
entries under the same key (associated with the parent
directory), all without distributed locking (simple local locks
are still needed to prevent multiple threads from concurrently
modifying the same memory location).

J. Consistency
ZHT uses replication to enhance reliability. Replicas have

distinct ordering in terms of which ones are accessed by

0

50

100

150

200

250

64 128 256 512 1024 2048 4096 8192

Ti
m

e
(s

ec
)

Number of Nodes

ZHT bootstrap time

ZHT Server start
Generate neighbor list
BGP partition boot

clients. This means that clients will generally be interacting
with a single replica (e.g. primary replica), and consistency is
straightforward to be maintained, at the cost of potential loss
of performance advantages if we allowed multiple replicas to
be concurrently modified. In the event that the primary replica
becomes temporarily inaccessible, a secondary replica will
interact directly with clients (which would cause modifications
to happen concurrently on both the primary and secondary
replicas). The ZHT primary replica and secondary replica are
strongly consistent, other replicas are asynchronously updated
after the secondary replica is complete, causing ZHT to follow
a weak consistency model. Using this approach, ZHT achieves
high throughput and availability while maintains reasonable
consistency level.

K. Implementation
ZHT has been under development for 2 years with 4.5 years

of man-hours. It is implemented in C/C++, and has very few
dependencies. It consists of 6700 lines of code, and is an open
source project accessible at [45]. The dependencies of ZHT are
NoVoHT and Google Protocol Buffers [37]. NoVoHT itself
has no dependencies other than a modern gcc compiler.

IV. PERFORMANCE EVALUATION VIA
MICROBENCHMARKS

In this section, we describe the performance of ZHT,
including hashing functions, persistence, throughput, latencies,
and replication. Firstly we’ll introduce the test beds and micro
benchmark configuration. Secondly a comprehensive
performance evaluation will be presented. We compare ZHT
with Memcached and Cassandra, two popular systems offering
similar functionality or features to ZHT.

A. Testbeds, Metrics, and Workloads
We used several machines to evaluate ZHT’s performance

in this paper.
• Intrepid: an IBM Blue Gene/P supercomputer [40] at

Argonne Leadership Computing Facility [44], Argonne
National Lab: we used 8K-nodes (32K-cores), where
each node has a 4-core PowerPC 450 processor and
2GB of RAM. This testbed was used to compare ZHT
to Memcached. Note that this system does not have
persistent local node disks, and RAM-based disks were
used for persistence.

• HEC-Cluster: a 64-node (512-core) cluster at IIT: each
node has a dual processor quad-core, 8GB RAM. This
testbed was used to compare ZHT with Cassandra and
Memcached.

• DataSys: an 8-core x64 server at IIT: dual Intel Xeon
quad-core w/ HT processors, 48 GB RAM. This
machine was used to compare NoVoHT, BerkeleyDB
and KyotoCabinet.

• Fusion: a 48-core x64 server at IIT: quad AMD
Opteron 12-core processors, 256GB RAM. This
machine was used to compare NoVoHT, BerkeleyDB
and KyotoCabinet.

The basic operations that ZHT supports include insert,
append, lookup, and remove. On each node, one or more ZHT
client-server pairs are deployed, namely ZHT instances. Each
instance is configured with one or more partitions known as

NoVoHT. Each client creates a long list of key-value pairs;
here we set the length of the key to 15 bytes and length of
value to 132 bytes. Clients sequentially send all of the key-
value pairs through a ZHT Client API for insert, then lookup,
and then remove. Append is evaluated separately due to its
different nature of the operation. Since the keys are randomly
generated, the communication pattern is All-to-All, with same
number of servers and clients.

The metrics measured and reported are:
• Latency: The time taken for a request to be submitted

from a client and a response to be received by the
client, measured in milliseconds. Since the latencies of
various operations (insert/lookup/remove) are fairly
close, we use average of the three operations to
simplify results presentation. Note that the latency
includes the round trip network communication and
storage access time. Since Blue Gene/P doesn’t have
persistent storage for each work node, ramdisks are
used in the experiment, while regular spinning hard
drives are used in experiments on cluster.

• Throughput: The number of operations
(insert/lookup/remove) the system can handle over
some period of time, measured in Kilo Ops per
second/s.

• Ideal throughput: Measured throughput between two
nodes times the number of nodes.

• Efficiency: Ratio between measured throughput and
ideal throughput.

B. NoVoHT Persistencec
We compared NoVoHT with persistence to KyotoCabinet

with identical workloads for 1M, 10M, and 100M inserts, gets,
and removes, operating on fixed length key value pairs. The
results (see Figure 6) show NoVoHT scales nearly perfect in
terms of time per operation; experiments not shown in this
figure also show that memory overheads follow the same near
perfect trends. It is interesting to note that persistency of
writing key/value pairs to disk only adds about 3us of latency
on top of the in-memory implementation.

Figure 6: Performance evaluation of NoVoHT, KyotoCabinet and BerkeleyDB

plotting latency vs. scale (1M to 100 million key/value pairs) on Fusion

When comparing NoVoHT with KyotoCabinet or
BerkeleyDB, we see much better scalability properties for
NoVoHT. Although BerkeleyDB has some advantages such as
memory usage (not shown in the figure), it does this at the cost
of performance.

0

5

10

15

20

1 million 10 million 100 million

La
te

nc
y

(m
ic

ro
se

co
nd

s)

Scale(number of key/value pairs)

NoVoHT
NoVoHT (No persistence)
KyotoCabinet
BerkeleyDB
unordered_map

C. Latencies
We evaluated the latency metric on both the Blue Gene/P

and HEC-Cluster testbeds. We evaluated several
communication variations, such as UDP/IP, TCP/IP without
connection caching, TCP/IP with connection caching, and
compare them with Memcached and Cassandra.

Figure 7: Performance evaluation of ZHT and Memcached plotting latency vs.
scale (1 to 8K nodes on the Blue Gene/P)

At 8K-node scale, ZHT shows great scalability. As shown
in the , on one node, the latency of both TCP with connection
caching and UDP is extremely low (<0.5ms). When scaling
up, ZHT shows low latency, up to 1.1ms at 8K-node scales.
We see that TCP with connection caching can deliver
essentially the same performance as UDP, for all the scales
measured. Memcached also scaled well, with latencies ranging
from 1.1ms to 1.4ms from 1 node to 8K nodes (note that this
represents a 25% to 139% slower latency, depending on the
scale). Note the IBM Blue Gene/P network for communication
is a 3D Torus network, which does multi-hop routing to send
messages among compute nodes. That means the number of
hops will increase when communicate across racks. This
explains the performance slow down on large scale, since one
rack of Blue Gene/P has 1024 nodes, any larger scale than
1024 will involve more than one rack. We found the network
to scale very well up to 32K-cores, but there is not much we
can do about the multi-hop overheads across racks.

Figure 8: Performance evaluation of ZHT and Memcached plotting

latency vs. scale (1 to 64 nodes on the HEC-Cluster)

Because of Cassandra’s implementation in Java, and the
lack of support for Java on the Blue Gene/P, we evaluated
Cassandra, Memcached, and ZHT on the HEC-Cluster (a
traditional Linux cluster). Not surprisingly, as shown in Figure
8, ZHT has much lower latency than Cassandra. ZHT also
shows superior scalability over Cassandra. This is mainly
because Cassandra has to take care of a logarithmic-routing-

time dynamic member list and ZHT use constant routing.
Surprisingly, Memcached only shows slightly better
performance than ZHT up to 64-node scales. We attributed the
slight loss in performance to the fact that ZHT must write to
disk, while Memcached’s data stayed completely in-memory.

D. Throughput
We conducted several experiments to measure the

throughput (see Figure 9). The throughputs of ZHT (TCP with
connection caching) as well as that of Memcached increases
near-linearly with scale, reaching nearly 7.4M ops/sec at 8K-
node scale in both cases.

Figure 9: Performance evaluation of ZHT and Memcached plotting throughput

vs. scale (1 to 8K nodes on the BLUE GENE/P)

Figure 10: Performance evaluation of ZHT, Memcached and Casandra

plotting throughput vs. scale (1 to 64 nodes on the HEC-Cluster)

 On the HEC-Cluster, as expected, ZHT has higher
throughput than Cassandra. We expect the performance gap
between Cassandra and ZHT to grow as system scales grows.
Figure 10 shows the nearly 7x throughput difference between
ZHT and Cassandra. Memcached performed as expected better
as well, with a similar 27% higher overall throughput.

E. Scalability and efficiency
Although the throughputs achieved by ZHT are impressive

at many millions of ops/sec, it is important to investigate the
efficiency of the system when compared to the performance at
2-node scale (the smallest test bed involving the network) of
the best performance system. Efficiency is simply the measured
throughput divided by the ideal throughput. In Figure 11, we
show that ZHT and Memcached achieve different levels of
efficiency (51%~100% for ZHT and 42%~53% for
Memcached) up to 8K-node scales. Memcached’s worse
efficiency is attributed to having lower performance (higher
latency) overall. Efficiency was computed by comparing ZHT
and Memcached performance against the ideal
latency/throughput (which was taken to be the better performer

0

0.5

1

1.5

2

2.5

La
te

nc
y

(m
s)

Number of Nodes

TCP without Connection Caching
TCP connection cachig
UDP
Memcached

0

0.5

1

1.5

2

2.5

3

1 2 4 8 16 32 64

La
te

nc
y

(m
s)

Scale (# of nodes)

ZHT
Cassandra
Memcached

100

1,000

10,000

100,000

1,000,000

10,000,000

Th
ro

ug
hp

ut
 (o

ps
/s

)

Number of Nodes

Throughput

ZHT:TCP no connection caching

ZHT: TCP with connection caching

UDP non-blocking

Memcached

100

1,000

10,000

100,000

1,000,000

1 2 4 8 16 32 64

Th
ro

ug
hp

ut
 (o

ps
/s

)

Scale (# of Nodes)

ZHT
Cassandra
Memcached

at 2-node scale – ZHT).. The reason why the p
1K-nodes degrades more sharply is because
system, 1K-nodes form a rack, and communi
rack is more expensive (at least this i
TCP/UDP/IP); we will investigate if MPI
performance characteristic.

Figure 11: Performance evaluation of ZHT plotting meas
simulated efficiency vs. scale (1 to 8K nodes on the Blue

nodes on PeerSim)
Although we were not able to run expe

than 8K-node scales due to time allocation on
system, we decided to investigate the perform
simulations, at larger scales. We have simu
PeerSim-based [54] simulator [51]. It was int
simulator results were able to closely match
8K-node scales (where we achieved 8M ops
average only 3% of difference. The simu
efficiency dropping to 8% at exascale levels (
sounds as if ZHT would not scale well to an
but a careful look at what 8% really mean
100% efficiency implies a latency of ab
operation (this is the performance of ZHT at
51% efficiency implies about 1.1ms laten
performance of ZHT at 8K-node scales).
implies about 7ms latency, at 1M node scal
extremely low. At 1M node scales and laten
would achieve nearly 150M ops/sec throughpu

F. Replication
Because of the importance of fault toler

replication mechanism. It will certainly
overhead. As shown in Figure 12, replication
operation latency, but it is not a significan
replica adds around 20% and 2 replicas a
overhead compared with the latency of no re
noting that the choice of replicating async
helped keeping the overheads low. If replica
been synchronous, the cost of each replica w
been 100% increment for 1 replica, and 200%

0%1%4% 1%2% 1%1% 2%2%
4%

14%15%
10

0%

20%

40%

60%

80%

100%

Ef
fic

ie
nc

y

Scale (No. of Node)

Ef
Ef

D
Ef

performance over
on Blue Gene/P
cation across the
s the case for
I has the same

sured efficiency and
e Gene/P and 1 to 1M

eriments at more
the Blue Gene/P

mance of ZHT in
ulated ZHT on a
teresting that the
the results up to
s/sec), giving on
ulations showed
(1M nodes). This
exascale system,

ns is worthwhile.
bout 0.6ms per
t 2 node scales).

ncy (this is the
. 8% efficiency
les which is still
ncies of 7ms, we
uts.

rance, ZHT uses
introduce some
does increase the
nt increase. One
add around 30%
eplica. It is worth
hronously likely

ation would have
would have likely

 for 2 replicas.

Figure 12: Performance evaluation of ZHT w
plotting overheads vs. scale (2 to 1K

G. Aggregated performance
Like most of the modern super

core processors, each Blue Gene/P
used an event driven architecture f
components in ZHT are single thre
that we might be able to achieve h
by running multiple ZHT instances
ZHT instances on each node and
throughput. We found that assignin
yields the best resource utiliza
expected, in a setting with up to
aggregated throughput is excellen
extremely low (2.08ms on 8K
instances). Comparing with the late
with 8K-instances, the aggregated
(16.1M ops/sec as opposed to 7.3M

Figure 13: Performance evaluation of ZH
instances per node plotting latency vs. sca

GENEBLUE GE

Not surprisingly, more instan
(shown in Figure 13), but the aggr
that it’s useful to continue to increa
to even more than one instance per
we were able to run ZHT with 32
with good performance, leading us
scale even better to 32K physical n
The full BLUE GENE/P machin
within reach for the ZHT system,
prevented us from running larger s
to do full scale BLUE GENE/P exp

0%

fficiency (ZHT)
fficiency (Simulation)

ifference
fficiency (Memcached)

0

10

20

30

40

O
ve

rh
ea

d
(%

)

Scale (# of N

0

0.5

1

1.5

2

2.5

3

3.5

La
te

nc
y

(m
s)

Scale (# of

1 instances/node

4 instances/node

with different levels of replication
nodes on the Blue Gene/P)

computers that have multi-
node has 4 cores. Since we
for the ZHT system, many
eaded. Our hypothesis was
igher aggregate throughput
s per node. We start 1 to 8
d measure the latency and
ng one instance to each core
ation and efficiency. As

4 instances per node, the
nt and the latency is still

K-nodes scale with 32K-
ency of 1.1ms on 8K-nodes
d throughput is compelling
 ops/sec, a 2.2X increase).

HT with different numbers of

ale (1 to 8K nodes on the BLUE
ENE/P)

nces will increase latency
regated throughput implies

ase the concurrent instances
r core. Due to the fact that
2K instances on 32K-cores
s to believe that ZHT will

nodes (with 32K instances).
ne is 40K-nodes, certainly

but lack of time allocation
scale experiments. We plan
eriments in future work.

Nodes)

1 replica
2 replicas

Nodes)

2 instances/node

8 instances/node

Figure 14: Performance evaluation of ZHT with different numbers of

instances per node plotting throughput vs. scale (1 to 8K nodes on the BLUE
GENE/P)

H. Overhead of Dynamic Membership
We performed experiments to evaluate the functionality

and overhead of dynamical membership, and the cost of nodes
joining dynamically to the system, on up to 32 nodes. We
set up a benchmark that first starts 32 clients (spread over 32
nodes), and one ZHT server on a single node. While clients are
active in performing operations to the ZHT server, we double
the number of servers and measure the time to complete the
resource increase operation.

Figure 15 shows the time spent on doubling number of
servers. Up to 32 nodes, the trends seem relatively constant
(with costs around 2 seconds) implying good scalability. We
will conduct larger scale dynamic membership experiments in
future work.

Figure 15: Migration time

V. A BUILDING BLOCK FOR DISTRIBUTED
SYSTEMS

This section presents some real systems that have adopted
ZHT as a building block to build a large-scale distributed
system.

A. FusionFS: Distributed Metadata Management
We have an ongoing project to develop a new highly

scalable distributed file system, called FusionFS [13].
FusionFS is optimized for a subset of HPC and many-task
computing (MTC) [12, 59, 62, 63] workloads, and it is
designed for extreme scales [61]. These workloads are often
extremely data-intensive [56, 58, 60], and optimizing data
locality [55] becomes critical to achieving good scalability and
performance. In FusionFS, every compute node serves all three
roles: client, metadata server, and storage server. The metadata
servers use ZHT, which allows the metadata information to be

dispersed throughout the system, and allows metadata lookups
to occur in constant time at extremely high concurrency.
Directories are considered as special files containing only
metadata about the files in the directory. FusionFS leverages
the FUSE kernel module to deliver a POSIX compatible
interface as a user space filesystem.

In order to measure the metadata performance of FusionFS
(which in turn is based on ZHT), we built a benchmark that
creates 10K files per node, across N directories, where N was
equal to the number of nodes, ranging from 64 to 512. In the
case of FusionFS, it could use the simple insert/lookup API of
ZHT, as every node/client could modify metadata information
of different directories. We compared the performance of
metadata management of FusionFS with that of GPFS which is
commonly deployed in production large-scale HEC systems.

As shown in Figure 16 on Blue Gene/P, at 512-node scale
(1 process per node), FusionFS has nearly two orders of
magnitude higher performance over GPFS (8ms vs. 393ms for
GPFS). The gap between GPFS and FusionFS metadata access
cost will continue to grow as 8 nodes were enough to saturate
the metadata servers of GPFS, but ZHT achieved excellent
scalability up to 8K-nodes (as we discussed in Section IV).
FusionFS shows excellent scalability (increasing 2X from
4.5ms to 8ms, from 1 node to 512 nodes) while GPFS latency
grows 78X from 5ms to 393ms.

Figure 1: Time per operation (touch) on GPFS on various number of
processors on a IBM Blue Gene/P shows the performance of
concurrently creating many files in the same directory (on
GPFS) performs even worse, with 2449ms at 512-node scales.
FusionFS adopted the append operation in order to allow
concurrent metadata modification without needing locks. In
micro-benchmarks, the append operation is at least as fast as
inserts, if not faster, even under concurrent appends to the same
key/value pair. We expect the performance of FusionFS to be
similar for the concurrent file creates in a single directory to
those results of creating files across many directories.

Figure 16: FusionFS vs GPFS (time per operation)

B. IStore
Large-scale storage systems require fault-tolerance

mechanisms to handle failures, which are a norm rather than
an exception. To deal with this, a new trend other than
replication, includes the information dispersal algorithms [47,
48]. By implementing erasure coding, these algorithms encode
the data into multiple blocks among which only a portion is
necessary to recover the original data. IStore is a simple yet
high-performance Information Dispersed Storage System that
makes use of erasure coding and distributed metadata

0

3

6

9

12

15

18

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

Th
ro

ug
hp

ut
 (m

ill
io

n
op

s/
s)

Scale (# of Nodes)

1 instances/node

2 instances/node

4 instances/node

8 instances/node

0

500

1000

1500

2000

2500

2 to 4 4 to 8 8 to 16 16 to 32

Ti
m

e
(m

s)

Time

1

10

100

1000

1 2 4 8 16 32 64 128 256 512

Ti
m

e
Pe

r O
pe

ra
ti

on
 (m

s)

Number of Nodes

Fusionfs
GPFS

management with ZHT [50]. Figure 17 shows IStores’
metadata performance throughput on 8 to 32 nodes in the
HEC-Cluster.

The workload consisted of 1024 files of different sizes
ranging from 10KB to 1GB. The workload performed read and
write operations on these files through the IStore. The IStore
uses ZHT to manage metadata about file chunks. At each scale
of N nodes, the IDA algorithm was configured to chunk up
files into N chunks, and storing this information in ZHT for
later retrieval and the N chunks would be sent to or read from
N different nodes. The smaller the files, the more metadata
intensive IStore became, requiring as many as 500 metadata
operations per second at 32 node scales.

Figure 17: IStore metadata performance on HEC-Cluster

C. MATRIX
MATRIX is a distributed many-task computing [12]

execution framework, which utilizes the adaptive work stealing
algorithm to achieve distributed load balancing [51], and ZHT
to submit tasks and monitor the task execution progress by the
clients. We have a functioning prototype implemented in C,
and have scaled this prototype on a BLUE GENE/P
supercomputer up to 512 nodes (2K-cores) with good results.
By using ZHT, the client could submit tasks to arbitrary node,
or to all the nodes in a balanced distribution. The task status is
distributed across all the compute nodes, and the client can
look up the status information by relying on ZHT.

We performed several synthetic benchmark experiments to
evaluate the performance of MATRIX, and how it compares to
the state-of-the-art Falkon [53] light-weight task execution
framework (see Figure 18). The workload consisted of 100K
tasks of various lengths, ranging from 0 seconds (NO-OP) to 1,
2, 4, and 8 seconds. It might be difficult to compare MATRIX
with Falkon running on the SiCortex or the Linux Cluster, as
MATRIX was run on the BLUE GENE/P. However, when
comparing MATRIX with Falkon on the BLUE GENE/P for
peak throughput, we see Falkon saturate at 1700 tasks/sec at
256-core scales (similarly as all the other test beds also
saturate eventually). Falkon has a centralized architecture, and
hence had limited scalability. MATRIX shows excellent
growth in throughput, starting with 1100 tasks/sec at 256-core
scales, up to almost 4900 tasks/sec at 2048-core scales. What
is even more important is that there was no obvious sign of
saturation, and the growth tracked well the increase in ZHT
performance.

Figure 18: Comparison of MATRIX with Falkon [5, 53]

Figure 19 shows the results from a study of how efficient
we can utilize up to 2K-cores with varying size tasks using
both MATRIX and the distributed version of Falkon (which
used a naïve hierarchical distribution of tasks) [5]. We see
MATRIX outperform Falkon across the board with across all
size tasks, achieving efficiencies starting at 92% up to 97%,
while Falkon only achieved 18% to 82%.

Figure 19: Comparison of MATRIX and Falkon average efficiency (between

256 and 2048 cores) of 100K sleep tasks of different granularity (1 to 8
seconds)

VI. FUTURE WORK
We have many ideas on how to improve ZHT. There are

also many possible use cases where ZHT could make a
significant contribution in performance or scalability.

Network-aware topology: Given the popularity of multi-
dimensional Torus networks on HEC systems, we believe that
making ZHT network topology aware is critical to making
ZHT scalable by ensuring that communication is kept localized
when performing 1-to-1 communication.

Broadcast primitive: We believe that a broadcast primitive
(in addition to insert/lookup/remove/append) would be
beneficial to transmit the key/value pairs efficiently to all nodes
(potentially via a spanning tree).

Data Indexing: We will explore the possibility of using
ZHT to index data (not just metadata) based on its content. For
this indexing to be successful, some domain specific
knowledge regarding the data to be indexed will be necessary.

MosaStore: MosaStore [30] is an experimental storage
system under development at the University of British
Columbia. MosaStore has a centralized manager to handle

0

100

200

300

400

500

600

8 16 32

Th
ro

ug
hp

ut
 (c

hu
nk

s/
se

c)

Scale (# of Nodes)

1GB
100MB
10MB
1MB
100KB
10KB

0

1000

2000

3000

4000

5000

6000

1 10 100 1000 10000

Th
ro

ug
hp

ut
 (t

as
ks

/s
ec

)

Number of Processors

Falkon (Linux Cluster - C)
Falkon (SiCortex)
Falkon (BG/P)
Falkon (Linux Cluster - Java)
MATRIX (BG/P)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 4 8

A
ve

ra
ge

 e
ff

ic
ie

nc
y

(%
)

Task duration (seconds)

Matrix

Falkon

metadata, just like most other filesystems available. ZHT will
be used to implement a distributed metadata manager for
MosaStore.

Swift: Swift [27, 57] is a system for the rapid and reliable
specification, execution, and management of large-scale
science and engineering workflows on clusters, grids,
supercomputers, and clouds [64]. It supports applications that
execute many tasks coupled by disk-resident datasets. We will
work with the Swift team to integrate ZHT into Swift in order
to achieve scalable data management.

VII. CONCLUSION
ZHT is optimized for high-end computing systems and is

designed and implemented to serve as a foundation to the
development of fault-tolerant, high-performance, and scalable
storage systems. We have used mature technologies such as
TCP, UDP, and an epoll-based event-driven model, which
makes it easier to deploy. It offers persistency with NoVoHT, a
persistent high performance hash table. ZHT can survive
various failures while keeping overheads minimal. It’s also
flexible, supporting dynamic nodes join and departure.

We have shown ZHT’s performance and scalability are
excellent up to 8K-node and 32K instances. On the 32K-core
scale we achieved more than 18M operations/sec of throughput
and 1.1ms of latency at 8K-node scale. The experiments were
conducted on various machines, from a single node server, to a
64-node cluster, and an IBM Blue Gene/P supercomputer. On
all these platforms ZHT exhibits great potential to be an
excellent distributed key-value store, as well as a critical
building block of large scale distributed systems, such as job
schedulers and file systems. In future work, we expect to
extend the performance evaluation to significantly larger
scales, as well as involve more applications.

We believe that ZHT could transform the architecture of
future storage systems in HEC, and open the door to a much
broader class of applications that would have not normally
been tractable. Furthermore, the concepts, data-structures,
algorithms, and implementations that underpin these ideas in
resource management at the largest scales, can be applied to
emerging paradigms, such as Cloud Computing, Many-Task
Computing, and High-Performance Computing.

ACKNOWLEDGMENT
This work was supported in part by the National Science

Foundation grant NSF-1054974. This research used resources
of the Argonne Leadership Computing Facility at Argonne
National Laboratory, which is supported by the Office of
Science of the U.S. Department of Energy under contract DE-
AC02-06CH11357.

REFERENCES
[1] V. Sarkar, et al. "ExaScale Software Study: Software Challenges in

Extreme Scale Systems", ExaScale Computing Study, DARPA IPTO,
2009

[2] F. Schmuck, R. Haskin, “GPFS: A Shared-Disk File System for Large
Computing Clusters,” FAST 2002

[3] P. H. Carns, W. B. Ligon III, R. B. Ross, R. Thakur. "PVFS: A
parallel file system for linux clusters", Proceedings of the 4th Annual
Linux Showcase and Conference, 2000

[4] P. Schwan. "Lustre: Building a file system for 1000-node clusters,"
Proc. of the 2003 Linux Symposium, 2003

[5] I. Raicu, Z. Zhang, M. Wilde, I. Foster, P. Beckman, K. Iskra, B.
Clifford. “Toward Loosely Coupled Programming on Petascale
Systems,” IEEE SC 2008

[6] Z. Zhang, A. Espinosa, K. Iskra, I. Raicu, I. Foster, M. Wilde.
“Design and Evaluation of a Collective I/O Model for Loosely-
coupled Petascale Programming”, IEEE MTAGS08, 2008

[7] S. Ghemawat, H. Gobioff, S.T. Leung. “The Google file system,”
19th ACM SOSP, 2003

[8] A. Bialecki, M. Cafarella, D. Cutting, O. O’Malley. “Hadoop: A
Framework for Running Applications on Large Clusters Built of
Commodity Hardware”, 2005

[9] H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris, I. Stoica.
"Looking up data in P2P systems", Communications of the ACM,
46(2):43–48, 2003

[10] "Filesystem in Userspace", http://fuse.sourceforge.net/, 2011
[11] W. Vogels, “Eventually consistent,” ACM Queue, 2008.
[12] I. Raicu, I. Foster, Y. Zhao. “Many-Task Computing for Grids and

Supercomputers”, IEEE MTAGS08, 2008
[13] D. Zhao, C. Shou, X. Zhou, T. Li, Z. Zhang, I. Raicu, “FusionFS: a

distributed filesystem for extreme scaledata-intensive computing”,
Under MSST13 review, 2013.

[14] T. Li, R. Verma, X. Duan, H. Jin, I. Raicu, “ZHT: Zero-Hop
Distributed Hash Table for High-End Computing”, ACM
Performance Evaluation Review (PER), 2012

[15] P. Maymounkov, D. Mazieres. “Kademlia: A Peer-to-peer
Information System Based on the XOR Metric”, In Proceedings of
IPTPS, 2002

[16] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Schenker, “A
scalable content-addressable network,” in Proceedings of SIGCOMM,
pp. 161–172, 2001

[17] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, H. Balakrishnan,
"Chord: A Scalable Peer-to-peer Lookup Service for Internet
Applications", ACM SIGCOMM, pp. 149-160, 2001

[18] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems,” in
Proceedings of Middleware, pp. 329–350, 2001

[19] B.Y. Zhao, L. Huang, J. Stribling, S.C. Rhea, A.D. Joseph, and J.D.
Kubiatowicz. "Tapestry: A Resilient Global-Scale Overlay for
Service Deployment", IEEE Journal on Selected Areas in
Communication, VOL. 22, NO. 1, 2004

[20] B. Fitzpatrick. “Distributed caching with Memcached.” Linux
Journal, 2004(124):5, 2004

[21] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, W. Vogels. “Dynamo:
Amazon’s Highly Available Key-Value Store.” SIGOPS Operating
Systems Review, 2007

[22] H. Shen, C. Xu, and G. Chen. Cycloid: A Scalable Constant-Degree
P2P Overlay Network. Performance Evaluation, 63(3):195-216, 2006

[23] Ketama, http://www.audioscrobbler.net/development/ketama/, 2011
[24] Riak, https://wiki.basho.com/display/RIAK/Riak, 2011
[25] Maidsafe-DHT, http://code.google.com/p/maidsafe-dht/, 2011
[26] J.M. Wozniak, B. Jacobs, R. Latham, S. Lang, S.W. Son, and R. Ross.

“C-MPI: A DHT implementation for grid and HPC environments”,
Preprint ANL/MCS-P1746-0410, 2010

[27] M. Wilde, I. Raicu, A. Espinosa, Z. Zhang, B. Clifford, M. Hategan,
K. Iskra, P. Beckman, I. Foster. “Extreme-scale scripting:
Opportunities for large task-parallel applications on petascale
computers”, SciDAC09, 2009

[28] C. Docan, M. Parashar, S. Klasky. "DataSpaces: An Interaction and
Coordination Framework for Coupled Simulation Workflows", ACM
HPDC 2010

[29] MPI Forum, “Mpi 3.0 standardization effort,” http://meetings.mpi-
forum.org/MPI_3.0_main_page.php, 2012

[30] S. Al-Kiswany, A. Gharaibeh, M. Ripeanu. "The Case for a Versatile
Storage System", Workshop on Hot Topics in Storage and File
Systems (HotStorage’09), 2009

[31] A. Petitet. "Block Cyclic Data Distribution".
http://www.netlib.org/utk/papers/scalapack/node8.html, 2009

[32] B. Mulvey. "Hash Functions".
http://bretm.home.comcast.net/~bretm/hash/, 2009

[33] S. Bakhtiari, R. Safavi-Naini, J. Pieprzyk, "Cryptographic Hash
Functions: A Survey". 1995

[34] J. Eisner. "State-of-the-art algorithms for minimum spanning trees: A
tutorial discussion", University of Pennsylvania, 1997

[35] D. Karger, P.N. Klein, R.E. Tarjan. "A randomized linear-time
algorithm to find minimum spanning trees", J. ACM, vol. 42, pp.
321–328, 1995

[36] M. Fredman, D. E.Willard. "Trans-dichotomous algorithms for
minimum spanning trees and shortest paths". Proc. 31st IEEE Symp.
Foundations of Comp. Sci., pp. 719–725, 1990

[37] Google Protocol Buffers:
http://code.google.com/apis/protocolbuffers/, 2012

[38] Cassandra http://cassandra.apache.org/, 2012
[39] Kyotocabinet http://fallabs.com/kyotocabinet/, 2012
[40] Blue Gene supercomputer
 http://en.wikipedia.org/wiki/Blue_Gene, 2012
[41] P. H. Carns, W. B. Ligon III, R. Ross, P. Wyckoff. "BMI: a network

abstraction layer for parallel I/O". In Proceedings of IPDPS’05, CAC
workshop, 2005

[42] MATRIX http://datasys.cs.iit.edu/projects/MATRIX/index.html, 2012
[43] S. Alam, R. Barrett, M. Bast. Early evaluation of IBM Blue Gene/P,
 SC '08 Proceedings of the 2008 ACM/IEEE conference on

Supercomputing.
[44] ALCF, Argonne Leadership Computing Facility,

https://www.alcf.anl.gov
[45] ZHT source code. https://github.com/mierl/ZHT
[46] K. Batcher, http://en.wikipedia.org/wiki/Ken_Batcher, 2012
[47] A. J. McAuley, "Reliable broadband Communication using a burst

erasure correcting code", in SIGCOMM '90 Proceedings of the ACM
symposium on Communications architectures & protocols, 1990

[48] L. Rizzo, "Effective Erasure Codes for Reliable Computer
Communication Protocols", in ACM SIGCOMM Computer
Communication Review, Volume 27 Issue 2, Apr. 1997.

[49] K. Brandstatter, T. Li, X. Zhou, I. Raicu. “NoVoHT: a Lightweight
Dynamic Persistent NoSQL Key/Value Store”, Under MSST13
review, 2013

[50] C. Debains, P.M.A. Togores, I. Raicu. “Evaluating Information
Dispersal Algorithms”, 1st Greater Chicago Area System Research
Workshop, 2012

[51] K. Wang, A. Rajendran, I. Raicu. “Extreme Scale Distributed Load-
Balancing with Adaptive Work Stealing”, under review at HPDC
2013

[52] K. Wang, A. Kulkarni, M. Lang, I. Raicu. “Exploring Design
Tradeoffs for Exascale System Services through Simulation”, under
review at HPDC 2013

[53] I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, M. Wilde. “Falkon: a Fast
and Light-weight tasK executiON framework”, IEEE/ACM
SuperComputing/SC, 2007

[54] A. Montresor, M. Jelasity. “PeerSim: A scalable P2P simulator”. In
Proc. of the 9th Int. Conference on Peer-to-Peer (P2P’09), 2009.

[55] A. Szalay, J. Bunn, J. Gray, I. Foster, I. Raicu. “The Importance of
Data Locality in Distributed Computing Applications”, NSF
Workflow Workshop 2006

[56] I. Raicu, I. Foster, Y. Zhao, P. Little, C. Moretti, A. Chaudhary, D.
Thain. “The Quest for Scalable Support of Data Intensive Workloads
in Distributed Systems”, ACM International Symposium on High
Performance Distributed Computing (HPDC09), 2009

[57] Y. Zhao, I. Raicu, I. Foster, M. Hategan, V. Nefedova, M. Wilde.
“Realizing Fast, Scalable and Reliable Scientific Computations in
Grid Environments”, book chapter in Grid Computing Research
Progress, ISBN: 978-1-60456-404-4, Nova Publisher 2008

[58] I. Raicu, I. Foster, A. Szalay, G. Turcu. “AstroPortal: A Science
Gateway for Large-scale Astronomy Data Analysis”, TeraGrid
Conference 2006, June 2006

[59] I. Raicu, I. Foster, M. Wilde, Z. Zhang, A. Szalay, K. Iskra, P.
Beckman, Y. Zhao, A. Choudhary, P. Little, C. Moretti, A.
Chaudhary, D. Thain. "Middleware Support for Many-Task
Computing", Cluster Computing, The Journal of Networks, Software
Tools and Applications, 2010

[60] I. Raicu, I. Foster, A. Szalay. “Harnessing Grid Resources to Enable
the Dynamic Analysis of Large Astronomy Datasets”, IEEE/ACM
International Conference for High Performance Computing,
Networking, Storage and Analysis (SC06), 2006

[61] I. Raicu, P. Beckman, I. Foster. “Making a Case for Distributed File
Systems at Exascale”, Invited Paper, ACM Workshop on Large-scale
System and Application Performance (LSAP), 2011

[62] I. Raicu, I. Foster, Y. Zhao, A. Szalay, P. Little, C.M. Moretti, A.
Chaudhary, D. Thain. “Towards Data Intensive Many-Task
Computing”, book chapter in Data Intensive Distributed Computing:
Challenges and Solutions for Large-Scale Information Management,
IGI Global Publishers, 2011

[63] I. Raicu. "Many-Task Computing: Bridging the Gap between High
Throughput Computing and High Performance Computing",
Computer Science Dept., University of Chicago, Doctorate
Dissertation, March 2009

[64] Y. Zhao, I. Raicu, S. Lu, X. Fei. "Opportunities and Challenges in
Running Scientific Workflows on the Cloud", IEEE International
Conference on Network-based Distributed Computing and
Knowledge Discovery (CyberC) 2011

[65] C. Debains, P. Alvarez-Tabio, D. Zhao, Ioan Raicu. “IStore: Towards
High Efficiency, Performance, and Reliability in Distributed Data
Storage with Information Dispersal Algorithms”, under review at
IEEE MSST 2013

