
ZHT: A Light-weight Reliable Persistent Dynamic Scalable  
Zero-hop Distributed Hash Table 

 
Tonglin Li1, Xiaobing Zhou1, Kevin Brandstatter1, Dongfang Zhao1,  

Ke Wang1, Anupam Rajendran1, Zhao Zhang2, Ioan Raicu1,3 
tli13@hawk.iit.edu, xzhou40@hawk.iit.edu, kbrandst@iit.edu, dzhao8@hawk.iit.edu,  

kwang22@hawk.iit.edu, arajend5@hawk.iit.edu, zhaozhang@uchicago.edu, iraicu@cs.iit.edu  
1Department of Computer Science, Illinois Institute of Technology, Chicago IL, USA 

2Department of Computer Science, University of Chicago, Chicago IL, USA 
3Mathematics and Computer Science Division, Argonne National Laboratory, Argonne IL, USA 

 
Abstract— This paper presents ZHT, a zero-hop distributed hash 
table, which has been tuned for the requirements of high-end 
computing systems. ZHT aims to be a building block for future 
distributed systems, such as parallel and distributed file systems, 
distributed job management systems, and parallel programming 
systems. The goals of ZHT are delivering high availability, good 
fault tolerance, high throughput, and low latencies, at extreme 
scales of millions of nodes. ZHT has some important properties, 
such as being light-weight, dynamically allowing nodes join and 
leave, fault tolerant through replication, persistent, scalable, and 
supporting unconventional operations such as append (providing 
lock-free concurrent key/value modifications) in addition to 
insert/lookup/remove. We have evaluated ZHT's performance 
under a variety of systems, ranging from a Linux cluster with 
512-cores, to an IBM Blue Gene/P supercomputer with 160K-
cores. Using micro-benchmarks, we scaled ZHT up to 32K-cores 
with latencies of only 1.1ms and 18M operations/sec throughput. 
This work provides three real systems that have integrated with 
ZHT, and evaluate them at modest scales. 1) ZHT was used in the 
FusionFS distributed file system to deliver distributed meta-data 
management at over 60K operations (e.g. file create) per second 
at 2K-core scales. 2) ZHT was used in the IStore, an information 
dispersal algorithm enabled distributed object storage system, to 
manage chunk locations, delivering more than 500 chunks/sec at 
32-nodes scales. 3) ZHT was also used as a building block to 
MATRIX, a distributed job scheduling system, delivering 5000 
jobs/sec throughputs at 2K-core scales. We compared ZHT 
against other distributed hash tables and key/value stores and 
found it offers superior performance for the features and 
portability it supports.  

Keywords- Distributed hash tables, key/value stores, high-end 
computing  

I.  INTRODUCTION  
Exascale computers (e.g. capable of 1018 ops/sec) [1], with 

a processing capability similar to that of the human brain, will 
enable the unraveling of significant scientific mysteries and 
present new challenges and opportunities. Major scientific 
opportunities arise in many fields (such as weather modeling, 
understanding global warming, national security, drug 
discovery, and economics) and may rely on revolutionary 
advances that will enable exascale computing. 

“A supercomputer is a device for turning compute-
bound problems into I/O bound problems”.  

-- Ken Batcher 

The quote [46] from Ken Batcher reveals the essence of 
modern high performance computing and implies an ever 

growing shift in bottlenecks from compute to I/O. For exascale 
computers, the challenges are even more radical, as the only 
viable approaches in next decade to achieve exascale 
computing all involve extremely high parallelism and 
concurrency. Up to 2012, some of the biggest systems already 
have more than 700,000 general purpose cores. Many experts 
predict [1] that exascale computing will be a reality by 2019; 
an exascale system is expected to have millions of nodes, 
billions of threads of execution, hundreds of petabytes of 
memory, and exabytes of persistent storage. 

In the current decades-old architecture of HPC systems, 
storage is completely segregated from the compute resources 
and are connected via a network interconnect (e.g. parallel file 
systems running on network attached storage, such as GPFS 
[2], PVFS [3], and Lustre [4]). This approach is not able to 
scale several orders of magnitude in terms of concurrency and 
throughput, and will thus prevent the move from petascale to 
exascale. If we do not solve the storage problem with new 
storage architectures, it could be a “show-stopper” in building 
exascale systems. The need for building efficient and scalable 
distributed storage for high-end computing (HEC) systems that 
will scale three to four orders of magnitude is on the horizon. 

One of the major bottlenecks in current state-of-the-art 
storage systems is metadata management. Metadata operations 
on parallel file systems can be inefficient at large scale. 
Experiments on the Blue Gene/P system at 16K-core scales 
show the various costs (wall-clock time measured at remote 
processor) for file/directory create on GPFS (see [2]). 

 
Figure 1: Time per operation (touch) on GPFS on various number of 

processors on a IBM Blue Gene/P 
Ideal performance would have been constant, but we can 

see the cost of these basic metadata operations (e.g. create file) 
growing from tens of milliseconds on a single node (four-
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cores), to tens of seconds at 16K-core scales; at full machine 
scale of 160K-cores, we expect a file create to take over two 
minutes for the many directory case, and over 10 minutes for 
the single directory case. Previous work [5, 6] shows these 
times to be even worse, putting the full system scale metadata 
operations in the hour range, but the testbed as well as GPFS 
might have been improved over the last several years. Whether 
the time per metadata operation is minutes or hours on a large 
scale HEC system, the conclusion is that the distributed 
metadata management in GPFS does not have enough degree 
of distribution, and not enough emphasis was placed on 
avoiding lock contention. GPFS’s metadata performance 
degrades rapidly under concurrent operations, reaching 
saturation at only 4 to 32 core scales (on a 160K-core 
machine).  

Other distributed file systems (e.g. Google's GFS [7] and 
Yahoo's HDFS [8]) that have centralized metadata 
management make the problems observed with GPFS even 
worse from the scalability perspective. Future storage systems 
for high-end computing should support distributed metadata 
management, leveraging distributed data-structure tailored for 
this environment. The distributed data-structures share some 
characteristics with structured distributed hash tables [9], 
having resilience in face of failures with high availability; 
however, they should support close to constant time 
inserts/lookups/removes delivering the low latencies typically 
found in centralized metadata management (under light load). 
Metadata should be reliable and highly available, for which 
replication (a widely used mechanism) could be used.  

This work presents a zero-hop distributed hash table (ZHT), 
which has been tuned for the specific requirements of high-end 
computing (e.g. trustworthy/reliable hardware, fast networks, 
non-existent “churn”, low latencies, and scientific computing 
data-access patterns). ZHT aims to be a building block for 
future distributed systems, with the goal of delivering excellent 
availability, fault tolerance, high throughput, scalability, 
persistence, and low latencies. ZHT has several important 
features making it a better candidate than other distributed hash 
tables and key-value stores, such as being light-weight, 
dynamically allowing nodes join and leave, fault tolerant 
through replication and by handling failures gracefully and 
efficiently propagating events throughout the system, a 
customizable consistent hashing function, supporting 
persistence for better recoverability in case of faults, scalable, 
and supporting unconventional operations such as append 
(providing lock-free concurrent key/value modifications) in 
addition to insert/lookup/remove.  

We have evaluated ZHT's performance under a variety of 
systems, ranging from a Linux cluster with 512-cores, to an 
IBM Blue Gene/P supercomputer with 160K-cores. Using 
micro-benchmarks, we scaled ZHT up to 32K-cores with 
latencies of only 1.1ms and 18M operations/sec throughput. 
We compared ZHT against two other systems, Cassandra [38] 
and Memcached [20] and found it to offer superior 
performance for the features and portability it supports, at large 
scales up to 16K-nodes. 

This work provides three real systems that have integrated 
with ZHT, and evaluates them at modest scales. 1) ZHT was 
used in the FusionFS distributed file system to deliver 
distributed meta-data management at over 60K operations (e.g. 

file create) per second at 2K-core scales. 2) ZHT was used in 
the IStore [50, 65], an information dispersal algorithm enabled 
distributed object storage system, to manage chunk locations 
delivering more than 500 chunks/sec at 32-nodes scales. 3) 
ZHT was also used as a building block to MATRIX, a 
distributed job scheduling system, delivering 5000 jobs/sec 
throughputs at 2K-core scales.  

The contributions of this paper are as follows: 
• Design and implementation of ZHT, a light-weight, high 

performance, fault tolerant, persistent, dynamic, and 
highly scalable distributed hash table, optimized for 
high-end computing. 

• Support for unconventional operations, such as append 
allowing data to be incrementally added to an existing 
value, delivering lock-free concurrent modification on 
key/value pairs. 

• Micro-benchmarks up to 32K-core scales, achieving 
latencies of 1.1ms and throughput of 18M ops/sec.   

• Integration and evaluation with three real systems 
(FusionFS, IStore, and MATRIX), managing distributed 
storage metadata and distributed job scheduling 
information.  

II. RELATED WORK 
There have been many distributed hash table (DHT) 

algorithms and implementations proposed over the years. We 
discuss DHTs in this section due to their important role in 
building support for scalable metadata service across extreme 
scale systems. Some of the DHTs from the literature are 
Kademlia [15], CAN [16], Chord [17], Pastry [18], Tapestry 
[19], Memcached, Dynamo [21], Cycloid [22], Ketama [23], 
RIAK [24], Maidsafe-dht [25], Cassandra and C-MPI [26]. 
Most of these DHTs scale logarithmically with system scales, 
but some (e.g. Cycloid) go as far as reducing the number of 
operations to O(c) where c is a constant related to the 
maximum size of the network (instead of the actual size of the 
network), which in practice still results to c ~ log(N) [22].  

There has been some uptake recently in using traditional 
DHTs in HEC, namely the C-MPI [26] project, in which the 
Kademlia DHT has been implemented and shown to run well 
on 1K nodes on a Blue Gene/P supercomputer. C-MPI is used 
to perform data management operations for the Swift project 
[27, 57], but it is rather simplistic (e.g. no support for data 
replication, data persistence, or fault tolerance via stateless 
protocols). C-MPI adopted the Message Passing Interface 
(MPI) for communication, making it a bridle at large scale and 
prone to system wide failures due to single node failures. 
Although MPI is attractive from a performance perspective on 
these HEC systems, it makes it hard to implement a fault 
tolerant system. Furthermore, C-MPI is based on new 
implementations of the Kademlia (with log(N) routing time) 
distributed hash table. Another recent project using DHTs on a 
HEC is DataSpaces [28], which deploys a DHT on a Cray XT5 
to coordinate in-memory data management for simulation 
workflows. DataSpaces has similar drawbacks as C-MPI. In 
future work, we will consider supporting MPI, in addition to 
protocols such as TCP and UDP, as MPI 3.0 [29] promises to 
address many of the current MPI fault tolerance limitations.  



Dynamo [21] is a key-value storage system that some of 
Amazon’s core services use to provide an “always-on” 
experience. Dynamo calls itself as a zero-hop DHT, where each 
node maintains enough routing information locally to route a 
request to the appropriate node directly. Dynamo is targeted 
mainly at applications that need an “always writeable” data 
store where no updates are rejected due to failures or 
concurrent writes. A significant drawback of Dynamo is the 
fact that it is an internal Amazon project, which cannot be used 
outside of the Amazon infrastructure.  

Cassandra, an implementation inspired by Amazon’s 
Dynamo, strives to be an "always writable" system in that the 
system is designed to always accept writes even in light of 
node failures. It accomplishes this by deferring consistency 
until the time when data is read and resolving conflicts at that 
time, this means that Cassandra needs to offer different levels 
of consistency on reads. Cassandra’s drawbacks include poor 
support on many supercomputers due to a lack of Java stack. 
Cassandra also uses logarithmic routing strategy which makes 
it less scalable. 

Memcached is an in-memory implementation of a key/value 
store. It was designed as a cache to accelerate distributed 
application execution. It is rather simplistic in which there is no 
data persistence, no data replication, and no dynamic 
membership. There are strict limitations on the size of the keys 
and values (250B and 1MB respectively). All these limit the 
use of Memcached for the purpose of making it a building 
block for large-scale distributed systems, but it offers a good 
baseline for comparison.  

In section 4 we’ll compare the performance of ZHT, 
Cassandra and Memcached. A brief overview of the 
differences between Cassandra, Memcached, C-MPI, 
Dynamo, and ZHT can be found in Table 1.  

Table 1:  Comparison between ZHT and other DHT implementations 

Name Impl. Routing 
Time Persistence Dynamic 

membership 
Append

Cassandra 38 Java log(N) Yes Yes No
Memcached [20] C 2 No No No

C-MPI [26] C/MPI log(N) No No No

Dynamo [21] Java 0 to 
log(N) Yes Yes No

ZHT [14] C++ 0 to 2 Yes Yes Yes

III. ZHT DESIGN AND IMPLEMENTATION 
Most HEC environments are batch oriented, which implies 

that a system that is configured at run time, generally has 
information about the compute and storage resources that will 
be available. This means that the amount of resources (e.g. 
number of nodes) would not increase or decrease dynamically, 
and the only reason to decrease the allocation is either to 
handle failed nodes, or to terminate the allocation. By making 
dynamic membership optional, the complexity of the system 
can be reduced and a low average number of hops per 
operation can be achieved.  

We do believe that dynamic membership is important for 
some environments, especially for cloud computing systems, 
and hence have made efforts to support it without affecting 
basic operations’ time complexity. Because nodes in HEC are 
generally reliable and have predicable uptime (nodes start on 
allocation, and shut down on de-allocation), it implies that node 
"churn" in HEC is virtually non-existent. This in principle 

guided our design of the proposed dynamic membership 
support in ZHT.   

It is also important to point out that nodes in a HEC system 
are generally trust-worthy, and that stringent requirements to 
encrypt communication and/or data would simply be adding 
overheads. HEC systems are generally locked down from the 
outside world, behind login nodes and firewalls, and although 
authentication and authorization are still needed, full 
communication encryption is wasteful for a large class of 
scientific computing applications that run on many HEC 
systems. Most storage systems used in HEC communicate 
between the client nodes and storage servers without any 
encryption. 

A. Overview  
The primary goal of ZHT is to get all the benefits of DHTs, 

namely excellent availability and fault tolerance, but 
concurrently achieve the benefits minimal latencies normally 
associated with idle centralized indexes. The data-structure is 
kept as simple as possible for ease of analysis and efficient 
implementation.  

The application programming interface (API) of ZHT is 
kept simple and follows similar interfaces for hash tables. The 
four operations ZHT supports are 1. int insert(key, value); 2. 
value lookup(key); 3. int remove(key), and 4. int append(key, 
value). Keys are typically a variable length ASCII text string. 
Values can be complex objects, with varying size, number of 
elements, and types of elements. Integer return values return 0 
for a successful operation, or a non-zero return code that 
includes information about the error that occurred. 

In static membership, every node at bootstrap time has all 
information about how to contact every other node in ZHT. In 
a dynamic environment, nodes may join (for system 
performance enhancement) and leave (node failure or 
scheduled maintenance) any time, although in HEC systems 
this “churn” occurs much less frequently than in traditional 
DHTs.  

 
Figure 2: ZHT architecture design showing namespace, hash function, and 

replication 

ID Space and Membership Table are shown in Figure 2 as a 
ring-shaped key name space. The node ids in ZHT can be 
randomly distributed throughout the network, or they can be 
closely correlated with the network distance between nodes. 
The correlation can generally be computed from information 
such as MPI rank or IP address. The random distribution of the 



ID space has worked well up to 32K-cores, but we will explore 
a network aware topology in future work.   

The hash function maps an arbitrarily long string to an 
index value, which can then be used to efficiently retrieve the 
communication address (e.g. host name, IP address, MPI-rank) 
from a membership table (a local in-memory vector). 
Depending on the level of information that is stored (e.g. IP - 4 
bytes, name - <100 bytes, socket - depends on buffer size), 
storing the entire membership table should consume only a 
small (less than 1%) portion of available memory of each node. 
On 1K-nodes scale, one ZHT instance has a memory footprint 
of only 10MB (from an available 2GB memory), achieving our 
desired sub 1% memory footprint. The memory footprint 
consists of ZHT server binary in memory, entries in hash table, 
membership table and ZHT server side socket connection 
buffers. Among them, only membership table and socket 
buffers will increase with the scale of nodes. Entries in hash 
table will be flushed to disk finally. But membership is very 
small, it takes 32 bytes per entry (for each node), 1million 
nodes only need 32MB memory. By tuning the number of Key-
Value pairs that are allowed stay in memory, users can achieve 
the balance between performance and memory consumption.  

B. Terminologies:  
Physical node: A physical node is an independent physical 

machine. Each physical node may have several ZHT instances 
which are differentiated with IP address and port. By adjusting 
the number of instance, ZHT can fit in heterogeneous systems 
with various computing power.   

Instance: A ZHT instance is a process which handles the 
requests from clients. Each instance takes care of some 
partitions. By adjusting the number of instance, ZHT can fit in 
heterogeneous systems with various storage capacities and 
computing power. A ZHT instance can be identified by a 
combination of IP address and port, and each ZHT instance 
maintains many partitions. We only need to store addresses for 
ZHT instances, no need to do so for partitions. Therefore 
number of partitions can be much larger than the number of 
addresses.  

Partition: A partition is a contiguous range of the key 
address space. 

Manager: A Manager is a service running on each 
physical node and takes charge of starting and shuting down 
ZHT instances. The manager is also responsible for managing 
membership table, starting/stopping instances, and partition 
migration.  

As traditional consistent hashing does, initially we assign 
each of the k physical nodes a manager and one or more ZHT 
instances, each with a universal unique id (UUID) in the ring-
shaped space. The entire name space N (a 64-bit integer) is 
evenly distributed into n partitions where n is a fixed big 
number indicating the maximal number of nodes that can be 
used in the system. It is worth noting that while n (the number 
of partitions, also the maximal number of physical nodes) 
cannot be changed without potentially rehashing all the 
key/value pairs stored in ZHT, i (the number of ZHT 
instances) as well as k (the number of physical nodes) is 
changeable with changes only to the membership table. Each 
physical node has one manager, holds n/k partitions, with 
each partition storing N/n key-value pairs and i/k ZHT 
instances serving requests. Each partition (which can be 

persisted to disk) can be moved across different physical 
nodes when nodes join, leave, or fail.   

 

  
Figure 3: ZHT architecture per node 

 
For example, in an initial system of 1000 ZHT instances 

(potentially running on 1000 nodes), where each instance 
contains 1000 partitions, the overall system could scale up to 1 
million instances on 1 million physical nodes. Experiments 
validate this approach showing that there is little impact 
(0.73ms vs. 0.77ms per request) on the performance of 
partitions as we increase the number of partitions per instance 
(see Figure 4). This design allows us to avoid a potentially 
expensive rehash of many key/value pairs when the need 
arises to migrate partitions.  

 
 Figure 4: Concurent  performance from 1 to 1K partition per ZHT instance 

C. Membership management 
ZHT supports both static and dynamic node membership. 

In the static case, the bootstrapping phase gets information 
from the batch job scheduler about the allocated node 
information (or perhaps the information could be extracted 
from the nodes at job start time). Once the membership is 
established, no new nodes would be allowed to join the 
system. Nodes could leave the system due to failures; we 
assume failed nodes do not recover.  

For the dynamic membership, nodes are allowed to 
dynamically join and leave the system. Most DHTs support 
dynamic membership, but typically deliver this through 
logarithmic routing. DHTs use consistent hashing which 
sacrifices performance in order to achieve scalability under 
potentially extremely dynamic conditions. We address this 
issue with a zero-hop consistent hashing mechanism. With this 
novel design, we offer the desired flexibility of dynamic 
membership while maintain high performance with constant 
time routing. 

Node Joins: On a node join operation, it checks out a 
copy of membership table from the ZHT Manager on a 
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random physical node. In this table, the new node can find the 
physical nodes with the most partitions, then join the ring as 
this heavily loaded node’s neighbor and move some of the 
partitions from the “busy” node to itself. Migrating a partition 
is as easy as moving a file, all without having to rehash the 
key/value pairs stored in the partition. Some issues come up 
with ZHT requests to a migrating partition, as requests 
destined for a specific partition could continue to go to the 
original partition location until the partition migration is 
completed, and all membership tables have been updated. 
During this migration, every request received is acknowledged 
with a redirect message informing the recipient of the new 
partition location. This “lazy” membership updating 
mechanism on client side reduces the number of messages to 1 
message per client for each partition. Once the migration is 
completed, the manager broadcasts out the incremental 
information of membership in an atomic manner, and all 
future requests will go to the new partition location.  

Node departures: On planed node departures (e.g. an 
administrator wants to take down part of the system for 
maintenance), the administrator would get a current 
membership table from a random physical node, modify it 
accordingly, then broadcast the incremental table to other 
managers to update their local tables. The managers, which 
will be departing, first migrate their partitions to neighboring 
nodes, and then continue to depart. For an unplanned 
departure (e.g. due to a node failure), it will be detected first 
by a client which sends a request and times out waiting for a 
response, or due to another ZHT instance initiating a server-to-
server operation (e.g. migration, replication, etc.). Upon a 
certain number of failures, it will mark the entire physical 
node unavailable on its local membership table and inform a 
random manager about this failure. Replication is used to 
improve reliability, the client then sends the request to the first 
replica of the failed node. At the same time, the manager 
updates and broadcasts its local membership table, and 
initiates a rebuilding of the replicas, specifically increasing 
replication on all partitions stored on the failed physical node 
in order to maintain the specified level of replication.  

Data Migration: An essential design decision was to 
ensure that minimal impact on performance and scalability 
would be posed by introducing dynamic membership. With 
dynamic membership, comes the need to potentially migrate 
data from one physical node to another. In order to achieve 
this, ZHT organizes its data in partitions, and migrates entire 
partitions with only membership table modifications. This 
avoids the need to rehash key-value pairs that make up the 
migrated data, as most DHTs do. Moving an entire partition is 
significantly more efficient than rehashing many key/value 
pairs, and should be able to achieve near disk and network peak 
bandwidth performance. When migration is in progress, ZHT 
state cannot be modified for the migrated partitions. All 
requests are queued, until the migration is completed. In the 
meanwhile because the partition state is locked, corresponding 
replicas also won’t change. This keeps the entire system state 
consistent. If failure occurs during migration, simply don’t 
apply the changes (in terms of discarding the queued requests 
and reporting error to clients) to corresponding partitions and 
replicas, this will eventually force the system roll back to the 
consistent state. 

Client Side State: In case that client and server are not on 
the same nodes, it’s necessary to keep client side membership 
table updated. Since the node joining and leaving will change 
the number of partitions covered by ZHT instance, clients 
might send request to wrong nodes if the local membership 
table is not updated. To address this issue, we adopt lazy 
updating. Only when the requests are sent mistakenly, the 
ZHT instance will send back a copy of latest membership table 
to the clients. Our typical deployment scenario has a 1:1 ratio 
between clients and servers, which implies that the client 
could share the membership table with a corresponding server 
on the same physical node, to reduce the number of 
membership tables that need to be synchronized on 
modification. 

D. Server arhitecture 
We explored various architectures for ZHT server. Since 

typical Key-Value store operations are very short but frequent, 
we designed ZHT to be able to respond fast with little resource 
consumption. In early prototypes, we explored a multi-
threading design, in which each request had a separate thread, 
but the overheads of starting, managing, and stopping threads 
was too high in comparison to work each thread was 
performing. We eventually converged on a much more 
streamlined architecture, an event-driven model server 
architecture based on epoll. The current epoll-based ZHT 
outperforms the multithread version 3X. We’ll discuss the 
performance difference in more detail in the evaluation section 
IV. 

E. Hashing Functions 
There are many good hashing functions in practice [31]. 

Each hashing function has a set of properties and designed 
goals, such as: 1) minimize the number of collisions, 2) 
distribute signatures uniformly, 3) have an avalanche effect 
ensuring output varies widely from small input change, and 4) 
detect permutations on data order. Hash functions such as the 
Bob Jenkins’ hash function, FNV hash functions, the SHA 
hash family, or the MD hash family all exhibit the above 
properties [32, 33]. We have explored the use of Bob Jenkins’ 
and FNV hash functions, due to their relatively simple 
implementation, consistency across different data types 
(especially strings), and the promise of efficient performance 
[49]. 

F. Lightweight 1-1 Communication 
 We implemented ZHT with both TCP (with server 

returned result state) and UDP (acknowledge message based, 
which means every time a message is sent, the sender is 
waiting for an acknowledge message) protocols. In previous 
work [14], we showed that UDP offered some performance 
advantage at modest scales of nearly 6K cores. We anticipate 
that UDP’s advantages will become more prevalent with even 
larger scales as connectionless communication protocols will 
be preferred to avoid having expensive connection 
establishments among many nodes. In ZHT, we implemented 
a LRU cache for TCP connections, which makes TCP works 
almost as fast as UDP does. We expect to extend the 
communication protocols in future iterations of ZHT, such as 
BMI [41], and perhaps even MPI if we are willing to sacrifice 
fault tolerance for potentially improved performance and 



accessibility to certain HEC systems that do not support the IP 
protocol.  

G. Complex Structures Support 
In order to support complex structures as values in ZHT, 

we adopted the Google protocol buffer [37] project, which 
serializes complex structures into a stream of bytes. The 
indicators for four basic operations (insert, lookup, remove, 
and append) are defined in the message prototype and 
compiled with Google Protocol Buffers. They are 
encapsulated with the key-value pair into a plain string and 
transferred through network. When a server receives a request, 
it just unpacks the message, read the indicator and execute the 
operation request.  

H. Fault Tolerance  
ZHT gracefully handle failures, by lazily tagging nodes 

that do not respond to requests repeatedly as failed (using 
exponential back off). ZHT uses replication to ensure data will 
persist in face of failures. Newly created data will be pro-
actively replicated asynchronously to nodes in close proximity 
(according to the UUID) of the original hashed location. By 
communicating only with neighbors in close proximity, this 
approach will ensure that replicas consume the least amount of 
shared network resources when we succeed in implementing 
the network-aware topology (see future work section). Despite 
the lack of network-aware topology in the current ZHT, the 
asynchronous nature of the replication adds relatively little 
overhead with increasing numbers of replicas at modest scales 
up to 4K-cores.  

ZHT is completely distributed, and the failure of a single 
node does not affect ZHT as a whole. The (key, value) pairs 
that were stored on the failed node were replicated on other 
nodes in response to the failure, and queries asking for data that 
were on the failed node will be answered by the replicas.  

In the event that ZHT is shut down (e.g. maintenance of 
hardware, system reboot, etc.), the entire state of ZHT could be 
loaded from local persistent storage (e.g. the SSDs on each 
node); note that every change to the in-memory DHT is in fact 
persisted to disk (assuming there is one), allowing the entire 
state of the DHT to be reconstructed if needed. Given the size 
of memory and SSDs of today, as well as I/O performance 
improvements in the future, it is expected that a multi-gigabyte 
amount of state could be retrieved in just seconds.  

We have evaluated these mechanisms to work on modest 
scales and include the results in the evaluation section. 

 
Figure 5: ZHT Bootstrap time on Blue Gene/P from 64 to 8K nodes 

Once ZHT is bootstrapped, the verification of its nearest 
neighbors should not be related to the size of the system. In 
the event that a fresh new ZHT instance is to be bootstrapped, 
the process is quite efficient in its current static membership 
form, as there is no global communication required between 
nodes (see Figure 5). 

Nevertheless, we expect the time to bootstrap ZHT to be 
insignificant in relation to the cost to the batch scheduler’s 
overheads on a HEC, which could potentially include node 
provisioning, OS booting, starting of network services, and 
perhaps the mounting of some parallel file system. At 1K-node 
scales, the time to start the batch scheduled job is about 150 
seconds [5], after which the ZHT bootstrap takes another 8 
seconds and it takes 10 seconds to bootstrap at 8K-node scale. 
Figure 5 shows the bootstrap time increase with the scale. 

I. Persistence 
ZHT is a distributed in-memory data-structure. In order to 

withstand failures and restarts, it also supports persistence. We 
evaluated several existing systems, such as KyotoCabinet 
HashDB [39] and BerkeleyDB, but low performance and 
missing features prompted us to implement our own solution. 
We designed and implemented a Non-Volatile Hash Table 
(NoVoHT) which uses a log-based persistence mechanism with 
periodic checkpointing. NoVoHT was designed to address 
several limitations of KyotoCabinet, specifically to enable 
specifying a size (to control memory footprint), re-size rate 
(how often to increase or decrease the size of the table), and 
garbage collection (how often to reclaim unused space on 
persistent storage).  

Since all key-value pairs are kept in memory, it lends itself 
to low latency in lookups when compared to other persistent 
hash maps such as KyotoCabinet’s HashDB[39], which are 
disk-based and any lookup must hit disk.  

In addition to the standard get, put, remove functions that 
are inherent in a hash map, NoVoHT supports a fourth basic 
function, append. The append allows a string to be appended to 
a value that is currently in the hash map. This is not a feature 
that many hash maps do, and is especially rare in persistent 
ones as well. The benefit of the append is that it allows for fast 
concurrent modification of a value in the map, utilizing a local 
lock. We found the append operation critical in supporting 
lock-free concurrent modification in ZHT (eliminating the need 
for a distributed system lock); using append, we were able to 
implement a highly efficient metadata management for a 
distributed file system, where certain metadata (e.g. directory 
lists) could be concurrently modified across many clients. 
Consider a typical use case in distributed and parallel file 
systems: creating 10K files from 10K processes in one 
directory; the concurrent metadata modification occur via 
distributed locks. As shown in Figure 1, metadata operation on 
16K processor scale could be as slow as 63 seconds per 
operation. By using append, all metadata servers can store 
entries under the same key (associated with the parent 
directory), all without distributed locking (simple local locks 
are still needed to prevent multiple threads from concurrently 
modifying the same memory location).  

J. Consistency 
ZHT uses replication to enhance reliability. Replicas have 

distinct ordering in terms of which ones are accessed by 
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clients. This means that clients will generally be interacting 
with a single replica (e.g. primary replica), and consistency is 
straightforward to be maintained, at the cost of potential loss 
of performance advantages if we allowed multiple replicas to 
be concurrently modified. In the event that the primary replica 
becomes temporarily inaccessible, a secondary replica will 
interact directly with clients (which would cause modifications 
to happen concurrently on both the primary and secondary 
replicas). The ZHT primary replica and secondary replica are 
strongly consistent, other replicas are asynchronously updated 
after the secondary replica is complete, causing ZHT to follow 
a weak consistency model. Using this approach, ZHT achieves 
high throughput and availability while maintains reasonable 
consistency level. 

K. Implementation 
ZHT has been under development for 2 years with 4.5 years 

of man-hours. It is implemented in C/C++, and has very few 
dependencies. It consists of 6700 lines of code, and is an open 
source project accessible at [45]. The dependencies of ZHT are 
NoVoHT and Google Protocol Buffers [37]. NoVoHT itself 
has no dependencies other than a modern gcc compiler. 

IV. PERFORMANCE EVALUATION VIA 
MICROBENCHMARKS 

In this section, we describe the performance of ZHT, 
including hashing functions, persistence, throughput, latencies, 
and replication. Firstly we’ll introduce the test beds and micro 
benchmark configuration. Secondly a comprehensive 
performance evaluation will be presented. We compare ZHT 
with Memcached and Cassandra, two popular systems offering 
similar functionality or features to ZHT.  

A. Testbeds, Metrics, and Workloads 
We used several machines to evaluate ZHT’s performance 

in this paper.  
• Intrepid: an IBM Blue Gene/P supercomputer [40] at 

Argonne Leadership Computing Facility [44], Argonne 
National Lab: we used 8K-nodes (32K-cores), where 
each node has a 4-core PowerPC 450 processor and 
2GB of RAM. This testbed was used to compare ZHT 
to Memcached. Note that this system does not have 
persistent local node disks, and RAM-based disks were 
used for persistence.  

• HEC-Cluster: a 64-node (512-core) cluster at IIT: each 
node has a dual processor quad-core, 8GB RAM. This 
testbed was used to compare ZHT with Cassandra and 
Memcached. 

• DataSys: an 8-core x64 server at IIT: dual Intel Xeon 
quad-core w/ HT processors, 48 GB RAM. This 
machine was used to compare NoVoHT, BerkeleyDB 
and KyotoCabinet. 

• Fusion: a 48-core x64 server at IIT: quad AMD 
Opteron 12-core processors, 256GB RAM. This 
machine was used to compare NoVoHT, BerkeleyDB 
and KyotoCabinet. 

The basic operations that ZHT supports include insert, 
append, lookup, and remove. On each node, one or more ZHT 
client-server pairs are deployed, namely ZHT instances. Each 
instance is configured with one or more partitions known as 

NoVoHT. Each client creates a long list of key-value pairs; 
here we set the length of the key to 15 bytes and length of 
value to 132 bytes. Clients sequentially send all of the key-
value pairs through a ZHT Client API for insert, then lookup, 
and then remove. Append is evaluated separately due to its 
different nature of the operation. Since the keys are randomly 
generated, the communication pattern is All-to-All, with same 
number of servers and clients. 

The metrics measured and reported are: 
• Latency: The time taken for a request to be submitted 

from a client and a response to be received by the 
client, measured in milliseconds. Since the latencies of 
various operations (insert/lookup/remove) are fairly 
close, we use average of the three operations to 
simplify results presentation. Note that the latency 
includes the round trip network communication and 
storage access time. Since Blue Gene/P doesn’t have 
persistent storage for each work node, ramdisks are 
used in the experiment, while regular spinning hard 
drives are used in experiments on cluster. 

• Throughput: The number of operations 
(insert/lookup/remove) the system can handle over 
some period of time, measured in Kilo Ops per 
second/s. 

• Ideal throughput: Measured throughput between two 
nodes times the number of nodes.  

• Efficiency: Ratio between measured throughput and 
ideal throughput.  

B. NoVoHT Persistencec 
We compared NoVoHT with persistence to KyotoCabinet 

with identical workloads for 1M, 10M, and 100M inserts, gets, 
and removes, operating on fixed length key value pairs. The 
results (see Figure 6) show NoVoHT scales nearly perfect in 
terms of time per operation; experiments not shown in this 
figure also show that memory overheads follow the same near 
perfect trends. It is interesting to note that persistency of 
writing key/value pairs to disk only adds about 3us of latency 
on top of the in-memory implementation. 

 
Figure 6: Performance evaluation of NoVoHT, KyotoCabinet and BerkeleyDB 

plotting latency vs. scale (1M to 100 million key/value pairs) on Fusion 

When comparing NoVoHT with KyotoCabinet or 
BerkeleyDB, we see much better scalability properties for 
NoVoHT. Although BerkeleyDB has some advantages such as 
memory usage (not shown in the figure), it does this at the cost 
of performance.  
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C. Latencies 
We evaluated the latency metric on both the Blue Gene/P 

and HEC-Cluster testbeds. We evaluated several 
communication variations, such as UDP/IP, TCP/IP without 
connection caching, TCP/IP with connection caching, and 
compare them with Memcached and Cassandra.  

 
 

Figure 7: Performance evaluation of ZHT and Memcached plotting latency vs. 
scale (1 to 8K nodes on the Blue Gene/P) 

At 8K-node scale, ZHT shows great scalability. As shown 
in the , on one node, the latency of both TCP with connection 
caching and UDP is extremely low (<0.5ms). When scaling 
up, ZHT shows low latency, up to 1.1ms at 8K-node scales. 
We see that TCP with connection caching can deliver 
essentially the same performance as UDP, for all the scales 
measured. Memcached also scaled well, with latencies ranging 
from 1.1ms to 1.4ms from 1 node to 8K nodes (note that this 
represents a 25% to 139% slower latency, depending on the 
scale). Note the IBM Blue Gene/P network for communication 
is a 3D Torus network, which does multi-hop routing to send 
messages among compute nodes. That means the number of 
hops will increase when communicate across racks. This 
explains the performance slow down on large scale, since one 
rack of Blue Gene/P has 1024 nodes, any larger scale than 
1024 will involve more than one rack. We found the network 
to scale very well up to 32K-cores, but there is not much we 
can do about the multi-hop overheads across racks. 

 

 
Figure 8: Performance evaluation of ZHT and Memcached plotting 

latency vs. scale (1 to 64 nodes on the HEC-Cluster) 

Because of Cassandra’s implementation in Java, and the 
lack of support for Java on the Blue Gene/P, we evaluated 
Cassandra, Memcached, and ZHT on the HEC-Cluster (a 
traditional Linux cluster). Not surprisingly, as shown in Figure 
8, ZHT has much lower latency than Cassandra. ZHT also 
shows superior scalability over Cassandra. This is mainly 
because Cassandra has to take care of a logarithmic-routing-

time dynamic member list and ZHT use constant routing. 
Surprisingly, Memcached only shows slightly better 
performance than ZHT up to 64-node scales. We attributed the 
slight loss in performance to the fact that ZHT must write to 
disk, while Memcached’s data stayed completely in-memory. 

D. Throughput 
We conducted several experiments to measure the 

throughput (see Figure 9). The throughputs of ZHT (TCP with 
connection caching) as well as that of Memcached increases 
near-linearly with scale, reaching nearly 7.4M ops/sec at 8K-
node scale in both cases.  

 
Figure 9: Performance evaluation of ZHT and Memcached plotting throughput 

vs. scale (1 to 8K nodes on the BLUE GENE/P) 

 
Figure 10: Performance evaluation of ZHT, Memcached and Casandra 

plotting throughput vs. scale (1 to 64 nodes on the HEC-Cluster) 

 On the HEC-Cluster, as expected, ZHT has higher 
throughput than Cassandra. We expect the performance gap 
between Cassandra and ZHT to grow as system scales grows. 
Figure 10 shows the nearly 7x throughput difference between 
ZHT and Cassandra. Memcached performed as expected better 
as well, with a similar 27% higher overall throughput.  

E. Scalability and efficiency 
Although the throughputs achieved by ZHT are impressive 

at many millions of ops/sec, it is important to investigate the 
efficiency of the system when compared to the performance at 
2-node scale (the smallest test bed involving the network) of 
the best performance system. Efficiency is simply the measured 
throughput divided by the ideal throughput. In Figure 11, we 
show that ZHT and Memcached achieve different levels of 
efficiency (51%~100% for ZHT and 42%~53% for 
Memcached) up to 8K-node scales. Memcached’s worse 
efficiency is attributed to having lower performance (higher 
latency) overall. Efficiency was computed by comparing ZHT 
and Memcached performance against the ideal 
latency/throughput (which was taken to be the better performer 
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at 2-node scale – ZHT).. The reason why the p
1K-nodes degrades more sharply is because 
system, 1K-nodes form a rack, and communi
rack is more expensive (at least this i
TCP/UDP/IP); we will investigate if MPI
performance characteristic.  
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Figure 14: Performance evaluation of ZHT with different numbers of 

instances per node plotting throughput vs. scale (1 to 8K nodes on the BLUE 
GENE/P) 

H. Overhead of Dynamic Membership  
We performed experiments to evaluate the functionality 

and overhead of dynamical membership, and the cost of nodes 
joining dynamically to the system, on up to 32 nodes. We 
set up a benchmark that first starts 32 clients (spread over 32 
nodes), and one ZHT server on a single node. While clients are 
active in performing operations to the ZHT server, we double 
the number of servers and measure the time to complete the 
resource increase operation. 

Figure 15 shows the time spent on doubling number of 
servers. Up to 32 nodes, the trends seem relatively constant 
(with costs around 2 seconds) implying good scalability. We 
will conduct larger scale dynamic membership experiments in 
future work. 

 
Figure 15: Migration time 

V. A BUILDING BLOCK FOR DISTRIBUTED 
SYSTEMS 

This section presents some real systems that have adopted 
ZHT as a building block to build a large-scale distributed 
system.  

A. FusionFS: Distributed Metadata Management  
We have an ongoing project to develop a new highly 

scalable distributed file system, called FusionFS [13]. 
FusionFS is optimized for a subset of HPC and many-task 
computing (MTC) [12, 59, 62, 63] workloads, and it is 
designed for extreme scales [61]. These workloads are often 
extremely data-intensive [56, 58, 60], and optimizing data 
locality [55] becomes critical to achieving good scalability and 
performance. In FusionFS, every compute node serves all three 
roles: client, metadata server, and storage server. The metadata 
servers use ZHT, which allows the metadata information to be 

dispersed throughout the system, and allows metadata lookups 
to occur in constant time at extremely high concurrency. 
Directories are considered as special files containing only 
metadata about the files in the directory. FusionFS leverages 
the FUSE kernel module to deliver a POSIX compatible 
interface as a user space filesystem.  

In order to measure the metadata performance of FusionFS 
(which in turn is based on ZHT), we built a benchmark that 
creates 10K files per node, across N directories, where N was 
equal to the number of nodes, ranging from 64 to 512. In the 
case of FusionFS, it could use the simple insert/lookup API of 
ZHT, as every node/client could modify metadata information 
of different directories. We compared the performance of 
metadata management of FusionFS with that of GPFS which is 
commonly deployed in production large-scale HEC systems.  

As shown in Figure 16 on Blue Gene/P, at 512-node scale 
(1 process per node), FusionFS has nearly two orders of 
magnitude higher performance over GPFS (8ms vs. 393ms for 
GPFS). The gap between GPFS and FusionFS metadata access 
cost will continue to grow as 8 nodes were enough to saturate 
the metadata servers of GPFS, but ZHT achieved excellent 
scalability up to 8K-nodes (as we discussed in Section IV). 
FusionFS shows excellent scalability (increasing 2X from 
4.5ms to 8ms, from 1 node to 512 nodes) while GPFS latency 
grows 78X from 5ms to 393ms.  

Figure 1: Time per operation (touch) on GPFS on various number of 
processors on a IBM Blue Gene/P shows the performance of 
concurrently creating many files in the same directory (on 
GPFS) performs even worse, with 2449ms at 512-node scales. 
FusionFS adopted the append operation in order to allow 
concurrent metadata modification without needing locks. In 
micro-benchmarks, the append operation is at least as fast as 
inserts, if not faster, even under concurrent appends to the same 
key/value pair. We expect the performance of FusionFS to be 
similar for the concurrent file creates in a single directory to 
those results of creating files across many directories.  

  
Figure 16: FusionFS vs GPFS (time per operation) 

B. IStore  
Large-scale storage systems require fault-tolerance 

mechanisms to handle failures, which are a norm rather than 
an exception. To deal with this, a new trend other than 
replication, includes the information dispersal algorithms [47, 
48]. By implementing erasure coding, these algorithms encode 
the data into multiple blocks among which only a portion is 
necessary to recover the original data. IStore is a simple yet 
high-performance Information Dispersed Storage System that 
makes use of erasure coding and distributed metadata 
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management with ZHT [50]. Figure 17 shows IStores’ 
metadata performance throughput on 8 to 32 nodes in the 
HEC-Cluster.  

The workload consisted of 1024 files of different sizes 
ranging from 10KB to 1GB. The workload performed read and 
write operations on these files through the IStore. The IStore 
uses ZHT to manage metadata about file chunks. At each scale 
of N nodes, the IDA algorithm was configured to chunk up 
files into N chunks, and storing this information in ZHT for 
later retrieval and the N chunks would be sent to or read from 
N different nodes. The smaller the files, the more metadata 
intensive IStore became, requiring as many as 500 metadata 
operations per second at 32 node scales.  

 

 
Figure 17: IStore metadata performance on HEC-Cluster 

C. MATRIX 
MATRIX is a distributed many-task computing [12] 

execution framework, which utilizes the adaptive work stealing 
algorithm to achieve distributed load balancing [51], and ZHT 
to submit tasks and monitor the task execution progress by the 
clients. We have a functioning prototype implemented in C, 
and have scaled this prototype on a BLUE GENE/P 
supercomputer up to 512 nodes (2K-cores) with good results. 
By using ZHT, the client could submit tasks to arbitrary node, 
or to all the nodes in a balanced distribution. The task status is 
distributed across all the compute nodes, and the client can 
look up the status information by relying on ZHT.  

We performed several synthetic benchmark experiments to 
evaluate the performance of MATRIX, and how it compares to 
the state-of-the-art Falkon [53] light-weight task execution 
framework (see Figure 18). The workload consisted of 100K 
tasks of various lengths, ranging from 0 seconds (NO-OP) to 1, 
2, 4, and 8 seconds. It might be difficult to compare MATRIX 
with Falkon running on the SiCortex or the Linux Cluster, as 
MATRIX was run on the BLUE GENE/P. However, when 
comparing MATRIX with Falkon on the BLUE GENE/P for 
peak throughput, we see Falkon saturate at 1700 tasks/sec at 
256-core scales (similarly as all the other test beds also 
saturate eventually). Falkon has a centralized architecture, and 
hence had limited scalability. MATRIX shows excellent 
growth in throughput, starting with 1100 tasks/sec at 256-core 
scales, up to almost 4900 tasks/sec at 2048-core scales. What 
is even more important is that there was no obvious sign of 
saturation, and the growth tracked well the increase in ZHT 
performance. 

 
Figure 18: Comparison of MATRIX with Falkon [5, 53] 

Figure 19 shows the results from a study of how efficient 
we can utilize up to 2K-cores with varying size tasks using 
both MATRIX and the distributed version of Falkon (which 
used a naïve hierarchical distribution of tasks) [5]. We see 
MATRIX outperform Falkon across the board with across all 
size tasks, achieving efficiencies starting at 92% up to 97%, 
while Falkon only achieved 18% to 82%. 

 
Figure 19: Comparison of MATRIX and Falkon average efficiency (between 

256 and 2048 cores) of 100K sleep tasks of different granularity (1 to 8 
seconds) 

VI. FUTURE WORK 
We have many ideas on how to improve ZHT. There are 

also many possible use cases where ZHT could make a 
significant contribution in performance or scalability.  

Network-aware topology: Given the popularity of multi-
dimensional Torus networks on HEC systems, we believe that 
making ZHT network topology aware is critical to making 
ZHT scalable by ensuring that communication is kept localized 
when performing 1-to-1 communication. 

Broadcast primitive: We believe that a broadcast primitive 
(in addition to insert/lookup/remove/append) would be 
beneficial to transmit the key/value pairs efficiently to all nodes 
(potentially via a spanning tree).  

Data Indexing: We will explore the possibility of using 
ZHT to index data (not just metadata) based on its content. For 
this indexing to be successful, some domain specific 
knowledge regarding the data to be indexed will be necessary.  

MosaStore: MosaStore [30] is an experimental storage 
system under development at the University of British 
Columbia. MosaStore has a centralized manager to handle 
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metadata, just like most other filesystems available. ZHT will 
be used to implement a distributed metadata manager for 
MosaStore. 

Swift: Swift [27, 57] is a system for the rapid and reliable 
specification, execution, and management of large-scale 
science and engineering workflows on clusters, grids, 
supercomputers, and clouds [64]. It supports applications that 
execute many tasks coupled by disk-resident datasets. We will 
work with the Swift team to integrate ZHT into Swift in order 
to achieve scalable data management.   

VII. CONCLUSION 
ZHT is optimized for high-end computing systems and is 

designed and implemented to serve as a foundation to the 
development of fault-tolerant, high-performance, and scalable 
storage systems. We have used mature technologies such as 
TCP, UDP, and an epoll-based event-driven model, which 
makes it easier to deploy. It offers persistency with NoVoHT, a 
persistent high performance hash table. ZHT can survive 
various failures while keeping overheads minimal. It’s also 
flexible, supporting dynamic nodes join and departure.  

We have shown ZHT’s performance and scalability are 
excellent up to 8K-node and 32K instances. On the 32K-core 
scale we achieved more than 18M operations/sec of throughput 
and 1.1ms of latency at 8K-node scale. The experiments were 
conducted on various machines, from a single node server, to a 
64-node cluster, and an IBM Blue Gene/P supercomputer. On 
all these platforms ZHT exhibits great potential to be an 
excellent distributed key-value store, as well as a critical 
building block of large scale distributed systems, such as job 
schedulers and file systems. In future work, we expect to 
extend the performance evaluation to significantly larger 
scales, as well as involve more applications. 

We believe that ZHT could transform the architecture of 
future storage systems in HEC, and open the door to a much 
broader class of applications that would have not normally 
been tractable. Furthermore, the concepts, data-structures, 
algorithms, and implementations that underpin these ideas in 
resource management at the largest scales, can be applied to 
emerging paradigms, such as Cloud Computing, Many-Task 
Computing, and High-Performance Computing.  
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