
ZIB Structure Prediction Pipeline: Composing a

Complex Biological Workflow Through Web
Services

Patrick May, Hans-Christian Ehrlich, and Thomas Steinke

Zuse Institute Berlin, Takustr.7,14195 Berlin, Germany
{patrick.may, ehrlich, steinke}@zib.de

Abstract. In life sciences, scientists are confronted with an exponen-
tial growth of biological data, especially in the genomics and proteomics
area. The efficient management and use of these data, and its trans-
formation into knowledge are basic requirements for biological research.
Therefore, integration of diverse applications and data from geograph-
ically distributed computing resources will become a major issue. We
will present the status of our efforts for the realization of an automated
protein prediction pipeline as an example for a complex biological work-
flow scenario in a Grid environment based on Web services. This case
study demonstrates the ability of an easy orchestration of complex bio-
logical workflows based on Web services as building blocks and Triana
as workflow engine.

1 Introduction

In the post-genomics era protein structure prediction is still one of the ma-
jor challenges in bioinformatics research, because the full understanding of the
biological function of proteins requires knowledge about its three-dimensional
(3D) structure [1]. Although experimental methods are providing high-resolution
structure information, they are still expensive in costs and duration. On the
other hand, fully automated computational structure prediction tools have made
rapid progress over the last years (Critical Assessment of Structure Prediction,
CASP [2] and CAFASP [3]). Protein structure prediction is a process which typ-
ically involves multiple data processing and decision steps, iterations, as well as
the parallel execution of time-consuming applications. In comparison with se-
quence homology searches with, for example, Blast [4] structure prediction is a
much more complex scenario.

Web services provide a well-defined, standardized access to methods indepen-
dent from its implementation and programming platform. As pointed out in [5],
Web services are an emerging technology paradigm for distributed computing.
Problem solving environments with standardized workflow description languages
(e.g. BPEL4WS [6]) are providing solutions to these problems. Suitable workflow
engines support the orchestration [7] of workflows with Web services as build-
ing blocks. Complex workflows contain compute and/or storage intensive tasks.
Regarding compute intensive tasks, the support of parallel execution models,

W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 1148–1158, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

ZIB Structure Prediction Pipeline 1149

e.g. task farming or MPI parallelized programs, are therefore an imperative pre-
requisite. We selected Triana [8] for the following reasons: it easily integrates
Web services, and provide a graphical user interface allowing an easy work-
flow orchestration. Furthermore, it can represent workflows as non-DAG and
the workflow engine can be interfaced with selected Grid services which is an
important pre-requisite for the next step towards the realization of our workflow
in a Grid environment.

There are many initiatives pushing biological applications towards the use
of workflow, Grid and/or Web service technologies. Gao et. al. [9] describe
a drug discovery data-mining system using Web services. Mattoso et. al. [10]
built MHOLline, an automated workflow for comparative modelling with legacy
applications using Web service technology. They used BPEL4WS for defining
the workflow and IBM BPWS4J 1.0.1 [11] as workflow engine. PROSPECT-
PSPP [12] is a fully automated structure prediction pipeline using SOAP for
remote procedure calls. Hence, the problem of consistency in data integration
projects, which combine common information from different data sources, is
still a major obstacle for obtaining unique information sets and data quality
in secondary biological databases. There are successful data integration (data
warehouse) projects, for example, MSD [13] or Columba [14] with their focus
on structural data. The Helmholtz Open BioInformatics Technology initiative
(HOBIT) [15] is dedicated to build a technology platform for concatenating ap-
plications and resources together with an efficient communication tier for bioin-
formatics resource access based on Web services.

The scope of this paper is to show that fully automated workflows with Web
service components are able to integrate heterogeneous applications and data
into a standalone, demanding biological application scenario. One can expect
that Web services are one starting point for the realization of a collaborative
e-science infrastructure in Grid environments. In this paper we use protein struc-
ture prediction as a paradigm for complex biological problems.

The organization of the article is as follows. In the next section we describe the
ZIB structure prediction pipeline. Section 3 presents the Web services, followed
by workflow definition in Triana. As the most interesting result, we compare the
overhead timings of the traditional monolithic workflow using a PERL imple-
mentation of the workflow engine with the Web service based workflow using the
Triana workflow engine in section 4. Finally, section 5 gives a summary and an
outlook towards future work.

2 ZIB Structure Prediction Pipeline

The ZIB structure prediction pipeline has been designed and implemented for
the 6th CASP experiment in 2004 [2,16]. In order to provide a fully automated
protein prediction tool, the pipeline integrates various prediction and analysis
steps. The whole pipeline is designed modular, so that improved methods can
be substituted in, as they become available. Fig. 1 shows the global pipeline
architecture.

1150 P. May, H.-C. Ehrlich, and T. Steinke

Fig. 1. Schematic representation of the ZIB structure prediction pipeline

Fig. 2. Sub-Workflows: (top) Sequence analysis, (bottom) Threading

The first step in the workflow is the identification of suitable template struc-
tures for homology modelling (Fig. 2, top). A sequence analysis sub-workflow
is passed to search for homologous sequences with known structures. Successive
PSI-Blast searches are performed in order to find suitable templates. If no tem-
plate structure has been found in the PDB (Protein Data Bank [17]) database,
a second PSI-Blast search in the Uniprot [18] database is initiated followed by
parallel PSI-Blast searches in the PDB database starting from the Uniprot hits.
If a structural template has been found, an atomic structural model will be gen-
erated with MODELLER [19]. If no suitable structural template is detectable,
the structure will be predicted by our protein threading implementation. The
threading procedure (Fig. 2, bottom) starts with a secondary structure predic-
tion using PsiPred [20]. PsiPred provides a 3-state prediction (helix, strand, loop)
together with a reliability score for every sequence position. THESEUS [21] is an
MPI-parallelized implementation of a protein threading based on a multi-queue
branch-and-bound search algorithm to find the optimal sequence-to-structure
alignment through a library of template structures [22]. From the highest scor-
ing template structures the most probable template is selected and submitted to
the loop modelling procedure where different 3D models are generated in par-
allel. Here, MODELLER is used to model the loop regions and the sidechain

ZIB Structure Prediction Pipeline 1151

atoms of the given template structure. At the end, a full atom structure for the
target sequence is provided.

The most time consuming step in the sequence analysis procedure is the PSI-
Blast search against the Uniprot database (minutes to one hour of CPU time).
The prediction of a 3D protein model by threading typically takes many minutes
to hours, the modelling steps with MODELLER some minutes to few hours. The
types of data to be exchanged and processed are protein sequences, structures
and alignments. Data formats are either application specific, e.g. the PDB format
for protein structures or Blast-XML for PSI-BLAST, or in-house developed XML
schemes for a standardized data exchange.

Fold recognition by threading can be parallized by assigning each of a subset
of template structures to a different process. Our parallel threading core is im-
plemented in C++ and uses either MPI for message passing or POSIX threads.
Two kind of parallel architectures are designed: a Master-Slave (MS) version,
and a Single-Program-Multiple-Data (SPMD) version. In the MS architecture
the central component is the MySQL database. A master process or POSIX
thread distributes each outstanding template structure to a slave process wait-
ing for work. Based on a first-come-first-serve protocol a dynamic load balancing
scheme can be realized. In the SPMD architecture the content of the MySQL
template structure database is dumped into a binary file which is cloned on each
compute node on a Linux cluster. The template structures are distributed in a
static scheme amongst the MPI processes, i.e., each MPI process performs its
own subset. Having all template structures processed, one MPI process gathers
all results from the remaining concurrent MPI processes. The SPMD approach
is significant faster over the MS architecture (shown in Figure 3: the red line

Fig. 3. Performance of the two parallel threading architectures

1152 P. May, H.-C. Ehrlich, and T. Steinke

indicates the MS and the blue line the SPMD architecture). The drawback of
the MS architecture is the time determing database connections: the central
database server can not timely satisfy the requests from all the slave processes.
The SPMD architecture has the extra advantage of parallel I/O. To show the
time efficiency of our implementation, we can process a protein sequence consist-
ing of 573 amino acids against 37556 templates structures representing the whole
SCOP template database in about 36 minutes on 32 cpus on a IA32 Myrinet
Linux cluster .

3 Workflow Implementation with Web Services

3.1 Compute Environment

The implemented pipeline runs on compute resources locally available at our
site. Web service applications can either run on a compute cluster complex con-
sisting of an IA32 Myrinet Linux cluster and a Cray XD1 system, or on desktop
machines. The resources of the compute cluster complex are managed by a job
management system providing a single point of control (job submission and job
control). The Triana workflow engine runs either on local desktop machines or on
the cluster front-end node. More technical details of the hardware and software
configuration can be found elsewhere [23].

3.2 Web Service Implementations

For the ZIB structure prediction pipeline the following applications, part of them
are legacy codes, were wrapped into Web services:

– A local Blast program package including the standard sequence analysis
tools BLAST and PSI-BLAST as well as FastaCMD for retrieving FASTA
formatted sequences. The analysis tools are implemented with standard op-
tions (e.g. database, E-value). Input is a protein sequence.

– A local PsiPred version which requires as input a protein sequence.
– The in-house developed parallelized threading program THESEUS which

needs a protein sequence, the predicted secondary structure from PsiPred
and a position-specific scoring matrix from PSI-Blast as input.

– A local MODELLER version, which requires the template identifier and a
sequence as input and optional the threading model in the loop modelling
case.

The Web services are designed asynchronous, because of high computational
demands of the applications. They provide methods for submitting the job and
for collecting the results. A generic polling Web service has been implemented
which monitors the job status on the local batch system and informs the workflow
engine process that a job has finished and results are available. Parallelization
over data is achieved by handling lists as data structure in Web services.

Data, either XML or unfiltered file contents, are transferred through the body
of the SOAP message. The Web services were implemented using two different

ZIB Structure Prediction Pipeline 1153

languages: the Blast, PsiPred, and the MODELLER Web services are written
and deployed with Java and Apache Axis [24], the THESEUS and the polling
Web service are written in Python.

3.3 Workflow Definition with Triana

Our structure prediction workflow is defined and executed by Triana [25]. Tri-
ana allows the user to build and execute workflows consisting of Triana units
and Web services. Triana is written in Java and supports the implementation
of self-written Triana units easily. The Triana GUI provides a Unit Wizzard
for generating a skeleton Triana unit code, an editor and an interface for com-
piling the code. Fig. 4 shows as an example the source code snippet of our
makeFastaCMDrequest unit:

– The unit has one input port (line 4).
– The unit has two output ports (lines 19 and 20).
– The input for the unit is a Blast result in a XML document.
– The XML document is parsed for possible Blast hits (line 12:BlastXML.Hit).
– The output ports send a request string to the FastaCMD Web service with a

list of corresponding hit identifiers that are needed by FastaCMD to fetch the
corresponding protein sequences, together with the input XML document,
which is needed in the further workflow.

Web services can directly be imported into Triana canvas from its WSDL
description. By specifying the URI of the WSDL document the Web service is
known to Triana and usable as Triana unit. Input and output object types are
given by the WSDL description.

Triana supports the loop as control element in its workflow description. Every
resource-intensive application has to be submitted to the local batch system.

1 /* provides a list of sequence ids for FastaCMD */
2 public void process() throws Exception {
3 //get the input from the triana module node
4 BlastXML.BlastFtObj BlastXmlObj = (BlastXML.BlastFtObj) getInputAtNode(0);
5
6 StringBuffer IDs = new StringBuffer(); // array of sequence ids
7 Iterator hitIter = BlastXmlObj.HitStorage.keySet().iterator();
8.....
9 while (hitIter.hasNext()){
10 String tmpKey = (String) hitIter.next();
11 //get each hit
12 BlastXML.Hit tmpHit = (BlastXML.Hit) BlastXmlObj.HitStorage.get(tmpKey);
13 //extract the hit accession and generate FastaCMD request string
14 if (requestCount != BlastXmlObj.HitStorage.size()-1)
15 IDs.append(tmpHit.getHit_accession()).append("\n");
16 else
17 IDs.append(tmpHit.getHit_accession());
18 }
19 outputAtNode(0, IDs.toString());
20 outputAtNode(1, BlastXmlObj);
21 }

Fig. 4. Example of a Triana unit: makeFastaCMDrequest

1154 P. May, H.-C. Ehrlich, and T. Steinke

Then, our polling Web service method pollStatus determines the status of a
given job (queued, running, finished). The orchestrated Triana sub-workflow unit
pollStatusLoop(PDB) includes Triana’s LOOP unit that initiates either the next
polling cycle or exits the loop. The decision is made depending on the output
of the pollStatus Web service: if the stop condition is send (meaning job is
finished) the job identifier (being the input of the pollStatus Web service) is
passed to the next step in the workflow, which is usually a getResults Web
service method.

The data driven parallelization of sub-workflows (high-throughput compu-
tations) like the invocation of a series of PSI-Blast searches against the PDB
database in the sequence analysis sub-workflow (see Fig. 2) is implemented
through lists. The Blast Web service works on lists of protein sequences as input
data, i.e. the Web service method runBlast submits all input sequences to the
batch system and returns a list of job identifiers that can be handled by the
polling Web service.

4 Web services vs. “Scripting”

In this section we compare the performance of two different implementation sce-
narios of our protein structure prediction pipeline focussing on the associated
overhead costs. The “traditional” approach uses a specifically written workflow
engine implemented in PERL (scripting approach). The second implementation
is based on the Triana workflow engine with Web services as described in the
previous sections. In both implementations the time-consuming bioinformatics
applications ran as jobs scheduled via the local batch system, i.e. in both cases
the steps (1) job submission to compute nodes of the cluster, (2) monitoring the
job status (polling), and (3) delivery of results after job termination were identi-
cal. Data analysis steps either implemented into Web services or as Triana units
have their counterparts in the PERL implementation as well. The Triana work-
flow engine process was either started on the cluster front-end (TRIANA/Linux,
in Table 2) or on a desktop machine connected through a switched 100 Mb/s Eth-
ernet network to the cluster front-end (TRIANA/Windows). The PERL script
ran on the front-end only (PERL/Linux).

Additionally, we have implemented a pipeline version ZIB-jws including the
BLAST Web service from DNA Data Bank Japan (DDBJ)1 for searches against
the PDB instead of our local PSI-BLAST installation (see Fig. 2). The DDBJ
provides their Web services also synchronous as well as asynchronous. Therefore,
the DDBJ BLAST Web service could be directly plugged into our request and
response with polling architecture. For the PERL implementation we used the
SOAP::Lite library.

Three experiments were performed to estimate the overhead costs:

1. PDB sequence analysis + homology modelling (Homology(PDB)),
2. PDB sequence analysis + UNIPROT sequence analysis + parallel PDB se-

quence analysis + homology modelling (Homology(UNIPROT)),
1 http://xml.nig.ac.jp/wsdl/index.jsp

ZIB Structure Prediction Pipeline 1155

3. PDB sequence analysis + UNIPROT sequence analysis + PsiPred prediction
+ Threading + loop modelling (Threading).

To maintain the desired partial workflow, for every experiment a specific protein
target sequences was used:

1. a sequence that had a significant identity (> 40%) to a sequence in the PDB,
2. a sequence that showed no significant identity to a PDB sequence but where

sequences with sufficient similarity were detectable in the PDB through it-
erative search against the Uniprot database sequences with, and

3. a sequence with no similarity detectable in PDB and Uniprot.

All experiments were repeated 10 times for the normal ZIB prediction pipeline
(ZIB) as well as for the ZIB-jws version to have a minimal representative set of
results. Timing information is based on the gettimeofday system call.

In all experiments, the total workflow execution times (wall-clock time) as
well as the time spent in the execution of non-application steps, i.e. the workflow
overhead execution time, were recorded. In the later case, the wall-clock is fetched
before and after the invocation of an asynchronous Web service. The mean values
for the total workflow times (Table 1), and the mean values of the overhead times
(Table 2) over all approaches are summarized. Note that the total workflow
execution time depends heavily on the resource usage of the compute complex,
since it includes the job waiting time in a batch queue. Fortunately, for that study
these numbers are more of a formal interest since our main focus is to estimate
the overhead costs of our workflow design with Web services compared to the
scripting approach. The 3D structures obtained by the different approaches were
validated to manually obtained reference data in order to ensure the correctness
of any workflow implementation.

Table 1. Typical total workflow execution times (wall-clock, in seconds) for the two
workflow versions

experiment ZIB ZIB-jws

Homology(PDB) 134.1 133.5
Homology(UNIPROT) 358.1 358.0
Threading 503.2 503.1

As expected, the overhead times in the Triana/Web service implementation
is by an order of magnitude larger compared to the monolithic PERL approach
(Table 2). Overall, the total execution times for the ZIB-jws pipeline are slightly
better than those for the in-house version. This is because the DDBJ Web service
can only execute simple Blast runs, whereas our in-house implementation uses
the more time consuming PSI-BLAST. This implies that any workflow engine
invokes the Blast result polling services less frequently than in the in-house
scenario. Furthermore, the overhead execution time did not include the time for
data transfers between the workflow engine process and a Web service. Compared

1156 P. May, H.-C. Ehrlich, and T. Steinke

Table 2. Mean workflow overhead execution times (in seconds) for the two workflow
versions

Implementation/Platform Homology Threading
PDB UNIPROT

ZIB ZIB-jws ZIB ZIB-jws ZIB ZIB-jws

TRIANA/Linux 0.120 0.120 0.300 0.300 0.301 0.300
TRIANA/Windows 0.123 0.120 0.305 0.302 0.305 0.303
Perl/Linux 0.012 0.009 0.080 0.078 0.075 0.071

to the total workflow execution (wall-clock) times, the overhead times in both
workflow versions of the Web services based workflow implementation are about
four orders of magnitude lower and therefore practically negligible (less than
0.1%).

5 Summary and Outlook

We have presented the implementation of a protein structure prediction pipeline
as Web service-based workflow using Triana. We have demonstrated that Web
services are a versatile technology to integrate various, heterogeneous methods
into one stand-alone, fully automated and biological demanding application sce-
nario.

The design of such complex workflows with Web services as buildings blocks
are well supported by the Triana problem-solving environment. Additionally,
Triana supports the workflow design and the development of self-written Tri-
ana units. Within the Triana framework, the processing of workflows with Web
services is characterized by an additional, but expected performance overhead.
Fortunately, these additional “costs” are usually negligible for workflow sce-
narios where the time-dominating factors are compute-intensive tasks. Such a
coarse-grain segmentation of workflows is the appropriate approach for taking
the advantages of Web service technology in real-world scenarios. Moreover, we
see today the overall benefit of using the Web service approach in the modular
design of the workflow, the improved maintainability, and the more intuitive
plug-in of new modules accessible as Web services. Those modules may run lo-
cally or are provided by external service providers. The “only” concern of the
end user is the functional interface and the corresponding input and output data.

Having a Web service based workflow in place fulfills an important precondi-
tion for moving the application scenario into a Grid environment. As long as all
services are statically defined in the workflow any flexibility for improving the
throughput performance is missing. The next step is to apply brokering services
at runtime to select appropriate compute and storage resources for compute
and/or storage intensive workflow steps. This approach will allow the transpar-
ent use of geographically distributed resources for the workflow processing. It
enables the implementation of high-throughput pipelines for solving complex
biological questions.

ZIB Structure Prediction Pipeline 1157

This work constitutes the base for further developments towards a workflow
system for protein structure prediction based on Grid services in a Grid envi-
ronment. Several additional pre- and post-processing steps to further improve
the quality of the predicted models will enhance the ZIB structure prediction
pipeline. This development is also part of the German MediGRID [26] project.

Acknowledgement

This work is partly funded by BMBF (Germany), grant no. 031U209A (Berlin
Center for Genome Based Bioinformatics, BCB) and BMBF (Germany), grant
no. 01AK803F (D-Grid/MediGRID-Ressourcenfusion für Forschung in Medizin
und Lebenswissenschaften). We would like to thank Falko Krause and Jonas
Maaskola for their implementation of local Web services, and the Triana group
at Cardiff University for their support.

References

1. Baker, D., Sali, A.: Protein structure prediction and structural genomics. Science
294 (2001) 93–96

2. Moult, J.: A decade of CASP: progress, bottlenecks and prognosis in protein
structure prediction. Curr. Opin. Struct. Biol. 15 (2005) 285–289

3. Fischer, D., Barret, C., Bryson, K., Elofsson, A., Godzik, A., Jones, D., Karplus, K.,
Kelley, L., MacCallum, R., Pawowski, K., Rost, B., Rychlewski, L., Sternberg, M.:
CAFASP-1: critical assessment of fully automated structure prediction methods.
Proteins 3 (1999) 209–217

4. Altschul, S.F., Madden, T.L., Schaffler, A.A., Zhang, J., Zhang, Z., Miller, W.,
Lipman, D.J.: Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs. Nuc. Acids Res. 25 (1997) 3389–3402

5. Majithia, S., Shields, M., Taylor, I., Wang, I.: Triana: A graphical web service
composition and execution toolkit. In: IEEE International Conference on Web
Services (ICWS’2004). (2004)

6. Curbera, F., Andrews, T., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu,
K., Roller, D., Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: (Business
Process Execution Language for Web services, V.1.0) Available via http://www-
106.ibm.com/developerworks/webservices/library/ws-bpel.

7. Leymann, F.: (Web Service Flow Language (WSFL), version 1.0)

8. (Triana) Available via http://www.trianacode.org.

9. Gao, H.T., Hayes, J.H., Cai, H.: Integrating biological research through web ser-
vices. Computer (2005) 26–31

10. Cavalcanti, M.C., Targino, R., Baião, F.A., Rössle, S.C., Bisch, P.M., Pires, P.F.,
Campos, M.L.M., Mattoso, M.: Managing structural genomic workflows using web
services. Data Knowl. Eng. 53(1) (2005) 45–74

11. (IBM BPWS4J) Available via http://www.alphaworks.ibm.com/tech/bpws4j.

12. Guo, J., Ellrott, K., Chung, W.J., Xu, D., Passovets, S., Xu, Y.: PROSPECT-
PSPP: an automated computational pipeline for protein structure prediction. Nu-
cleic Acid Res. 32(Web Server Issue) (2004) W522–W525

1158 P. May, H.-C. Ehrlich, and T. Steinke

13. Velankar, S., McNeil, P., Mittard-Runte, V., Suarez, A., Barrell, D., Apweiler, R.,
Henrick, K.: E-MSD: an integrated data resource for bioinformatics. Nucleic Acids
Res. 33(Database issue) (2005) D262–265

14. Trissl, S., Rother, K., Muller, H., Steinke, T., Koch, I., Preissner, R., Froemmel,
C., Leser, U.: Columba: an integrated database of proteins, structures, and anno-
tations. BMC Bioinformatics 6(1) (2005) 81–92

15. (HOBIT (Helmholtz Open Bioinformatics Technology) project) Available via
http://hobit.sourceforge.net.

16. Michalsky, E., Goede, A., Preissner, R., May, P., Steinke, T.: A distributed pipeline
for structure prediction. In: CASP6 Methods Abstracts, 6th Meeting on the Critical
Assessment of Techniques for Protein Structure Prediction, Gaeta, Italy (2004)
112–114

17. Berman, H., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T., Weissig, H., Shyn-
dyalov, I., Bourne, P.: The protein data bank. Nucl. Acids Res 28 (2000) 235–242

18. Bairoch, A., Apweiler, R., Wu, C., Barker, W., Boeckmann, B., Ferro, S., Gasteiger,
E., Huang, H., Lopez, R., Magrane, M., Martin, M., Natale, D., O’Donovan, C.,
Redaschi, N., Yeh, L.: The universal protein resource (uniprot). Nucleic Acids Res.
1(33) (2005) 154–159

19. Marti-Renom, M., Stuart, A., Fiser, A., Sanchez, R., Melo, F., Sali, A.: Comparitive
protein structure modeling of genes and genomes. Annu. Rev. Biophys. Biomol.
Struct. 29 (2000) 291–325

20. McGuffin, L., Bryson, K., Jones, D.: The PSIPRED protein structure prediction
server. Bioinformatics 16 (2000) 404–405

21. May, P., Steinke, T.: THESEUS - protein structure prediction at ZIB. ZIB Report
06-24 (2006)

22. Lathrop, R.H., Sazhin, A., Sun, Y., Steffen, N., Irani, S.S.: A multi-queue branch-
and-bound algorithm for anytime optimal search with biological applications.
Genome Informatics 12 (2001) 73–82

23. (BCB-Cluster) Available via http://elfie.bcbio.de.
24. (Apache Axis) Available via http://ws.apache.org/axis.
25. Taylor, I., Wang, I., Shields, M., Majithia, S.: Distributed computing with triana

on the grid. Concurrency and Computation:Practice and Experience 17 (2005)
1–18

26. (MediGRID) Available via http://www.medigrid.de/.

	Introduction
	ZIB Structure Prediction Pipeline
	Workflow Implementation with Web Services
	Compute Environment
	Web Service Implementations
	Workflow Definition with Triana

	Web services vs. ``Scripting''
	Summary and Outlook

