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We report numerical evidence showing that periodic oscillations can produce unexpected and wide-ranging zig-

zag parameter networks embedded in chaos in the control space of nonlinear systems. Such networks interconnect

shrimplike windows of stable oscillations and are illustrated here for a tunnel diode, for an erbium-doped fiber-ring

laser, and for the Hénon map, a proxy of certain CO2 lasers. Networks in maps can be studied without the need

for solving differential equations. Tuning parameters along zig-zag networks allows one to continuously modify

wave patterns without changing their chaotic or periodic nature. In addition, we report convenient parameter

ranges where such networks can be detected experimentally.
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I. INTRODUCTION

The complex behavior of simple dissipative systems with

a small number of degrees of freedom has been intensively

studied in a variety of fields. For many decades, the great

interest has been to investigate mainly the structure of the

phase space of flows, with particular emphasis on the possible

transitions from order to chaos and a plethora of instabil-

ities associated with these transitions [1–3]. More recently,

extensive numerical simulations have revealed unexpected

regularities in a complementary setting, namely, in the control

parameter space of systems as diverse as electronic circuits,

laser systems, and modulational interactions in a plasma,

in chemical and biophysical oscillators, and in many other

paradigmatic flows covering a large spectrum of practical ap-

plications [4–21]. Such regularities emerged while attempting

to classify systematically all collective oscillations supported

by the aforementioned applications.

As an example of a wide-ranging regularity in parameter

space we mention the infinite alternation of spirals of chaos

and of periodicity which emanate from certain periodicity

hubs, namely, from exceptional focal points ubiquitous in the

control space of some systems [8]. In this alternation, each

spiral corresponds to a certain periodic phase characterized

individually by an infinite cascade of periodic waveforms

specific to it which evolve and get continuously more complex

when parameters are suitably changed along the spiral towards

its focus. Their period seems to accumulate to a specific value

near the focal point while the number of peaks (local maxima)

in each period seems to grow without bound, diverging as one

approaches the focal point more and more [8,9]. Knowledge of

such infinite networks of periodic phases has a direct practical

application. Since changes between spirals correspond to

changes between distinct families of oscillatory wave patterns,

spiral networks provide a unique possibility for selectively

switching from one family of patterns to another.

The aim of this paper is to report numerical evidence show-

ing that regular oscillations in nonlinear systems can emerge,

forming a novel kind of wide-ranging network, namely, certain

zig-zag networks of periodic phases embedded in chaos. The

nodes composing such networks are “shrimps” [22–26], i.e.,
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FIG. 1. (Color online) Schematic representation of the tunnel

diode circuit where zig-zag networks were detected. This circuit

leads to the dissipative flow of Eqs. (5)–(7). The voltage applied

to the diode is denoted by U . Dashed lines are used to represent the

parasitic capacitance C1.

the complex mosaic formed by periodic and chaotic windows

shown below in Fig. 5(d), while the edges are shrimp legs.

We describe zig-zag networks explicitly for a tunnel diode,

a solid-state device, for an erbium-doped fiber-ring laser, and

for the Hénon map, a system that describes well certain driven

CO2 lasers [10,27,28]. In this latter example, the network

interconnects hitherto unexplored islands characterized by

relatively high periodicities and has the significant advantage

of providing a framework for studying networks without the

need for solving differential equations. For each example, we

specify convenient parameter windows that should be helpful

in locating networks experimentally. We start by describing

networks found in the electronic circuit with a tunnel diode. We

use the known configuration (Fig. 1) considered in pioneering

works by Pikovsky and Rabinovich [29–31].

Before proceeding, recall that so far there are no practical

mathematical tools capable of predicting hubs and spirals, their

location, their structural complexities, their phase boundaries,

and the unfolding of their intricate waveforms and their

bifurcations. Of course, there are several powerful mathemat-

ical techniques, like continuation methods and the study of

global homoclinic bifurcations, that give some insights for

some aspects of these structures in parameter space [4–6].

However, note that parameter space knowledge about hubs,
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about periodic phases with arbitrarily high periods, and about

chaotic phases needs to be extracted in an independent way, via

numerical simulations of the corresponding flows, particularly

in new scenarios dealing with interesting and unexplored

phenomena that are known not to be at all associated with

homoclinic bifurcations [7].

II. THE FLOW OF THE TUNNEL DIODE CIRCUIT

According to Kirchhoff’s laws, the flow defined by the

self-excited (autonomous) oscillator with the tunnel diode is

V − U = rI + L
dI

dt
, (1)

−I = −gV + C
dV

dt
, (2)

I = F (U ) + C1

dU

dt
, (3)

where I denotes the current through the inductance, U is the

voltage across C1, and V is the voltage across C. With the help

of the voltage W ≡ V − rI between L and r , introducing the

convenient change of variables I = (x + 1)I0, U = (z + 1)U0,

y = (W − U0)/(ωLI0), and τ = ωt , where

ω ≡

√

1 − gr

LC
, (4)

and replacing F (U ) by f (z), one finds the following handy

adimensional equations for the flow generated by the diode:

dx

dτ
= y − δz, (5)

dy

dτ
= −x + 2γy + αz + β, (6)

µ
dz

dτ
= x − f (z), (7)

where the five parameters denote the following combinations

of reactances and conditions:

δ =
U0

ωI0L
, 2γ =

gL − rC

ωLC
, α =

rU0

ω2L2I0

, (8)

β = −1 +
gU0

ω2I0LC
= α − 1 + 2γ δ, µ =

ωC1U0

I0

. (9)

These expressions show that specific values of δ,γ,α,β, and

µ may be conveniently reached in several different ways by

suitably combining the reactances and conditions involved.

This clearly shows that all circuit elements are equally

important for the dynamics, not just the tunnel diode, the

nonlinear element.

Equations (5)–(7) coincide with the equations investigated

by Pikovsky and Rabinovich [29–31]. However, our equations

contain ω2
= (1 − gr)/(LC) instead of the approximate result

ω2
= 1/(LC). Both sets of equations agree in the limit gr ≪ 1.

For simplicity, following Pikovsky and Rabinovich [29–31],

we assume the characteristic function of the tunnel diode in

Eq. (7) to be a cubic function, namely, f (z) ≡ z3
− z.

The flow of the tunnel diode was investigated previously

by Carcasses and Mira [32]. However, these authors used a

Poincaré surface of section to associate a two-dimensional

diffeomorphism T to the differential equations and studied

qualitatively bifurcations not of the flow but of the mapping T

as seen in the µ × β parameter plane. Here, we consider the

bifurcation structure of the flow itself, Eqs. (5)–(7), not of an

approximate Poincaré proxy.

III. ZIG-ZAG NETWORKS IN THE TUNNEL DIODE

Figure 2 shows three high-resolution stability diagrams

classifying the dynamical behaviors present in the diode

circuit. A glance at Fig. 2 is enough to convince one that

periodic and chaotic oscillations are sprinkled in a rather

complex way in the γ × δ control parameter plane. First, one

realizes that the control plane is subdivided macroscopically
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(a) Global view (b) anti-clockwise spiral (c) clockwise spiral

FIG. 2. (Color online) Lyapunov phase diagrams for the tunnel diode circuit, Eqs. (5)–(7). (a) Global view of the control space. The right

corner of the upper box contains several zig-zag networks, shown magnified in Fig. 3. (b) Enlargement of the lower box in (a), illustrating a

large anticlockwise spiraling network emanating from the focal hub indicated by the arrow. (c) Enlargement of the upper box in (a) showing

clockwise spiraling networks, two of them with hubs indicated by arrows. The darker (pink) stripe on the top of (a) and (c) marks divergent

solutions. Here α = −0.013, β = 0, µ = 1.0. Each individual panel displays 2400 × 2400 = 5.76 × 106 Lyapunov exponents.
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into two distinct phases, periodic and chaotic, which have

rather complicated shapes and boundaries. Before describing

the diagrams individually, we first say a few words about how

they were computed.

Our stability diagrams were obtained by solving numer-

ically Eqs. (5)–(7) with a standard fixed-step fourth-order

Runge-Kutta integrator and using the solutions obtained to

compute all three Lyapunov exponents of the system according

to the method of Wolf et al., as described in Ref. [23], and

plotting the largest nonzero exponent, following a standard

procedure described in detail elsewhere [9]. For each param-

eter point on a 2400 × 2400 grid of points we scanned the

phase space, recording all stable asymptotic oscillations. Such

classification is a rather demanding computational task that

was performed with the help of a SGI Altix cluster made of

1536 AMD Opteron processors running at 2.3 GHz together

with software that we developed in house specifically for

this purpose. As is well known [1], Lyapunov exponents are

useful indicators capable of discriminating the nature of the

asymptotic oscillations, i.e., discriminating between periodic

oscillations (characterized by negative exponents) and chaos

(positive exponents). As usual for nonlinear flows, the diode

displays multistability, i.e., for a given set of parameters it is

possible to find several distinct stable periodic and/or chaotic

oscillations, depending on the initial conditions [1]. In such

cases, we selected the color to be plotted so as to maximize

the phase of periodic oscillations and the phenomena of main

interest to us, as discussed below.

Figure 2(a) shows a large portion of the diode control space.

It contains two boxes which are enlarged in Figs. 2(b) and

2(c). These enlargements serve to show where the zig-zag

networks are located and to illustrate a nice by-product of the

diode circuit: its control space displays several large groups of

nested spiral networks and hubs of the type mentioned in the

Introduction, not just single spirals as known so far [8,9]. The

discovery of a circuit with several large spirals is important

because such a circuit can help bypass the major obstruction

in the experimental and theoretical study of spirals: the fact

that known spirals are strongly distorted and compressed due

to the scales used. With hindsight, after spirals are duly located,

it is, of course, possible to search for a rescaling of the flow in

order to produce nice looking spirals. But this is a second stage

in the study. First, one needs to find the spirals, something

that can be quite difficult (not to say impossible) without

the help of extensive numerical calculations. Of course,

distortions are associated with the fact that, so far, all known

differential equations displaying spirals represent physical

phenomena; i.e., they represent real-life physical flows rather

than mathematical “normal forms” suitably constructed in an

ad hoc manner for pure mathematical investigations. Clearly,

it would be very useful to find means of divining flows with

large groups of wide spirals and hubs, particularly if based

on real-life easily accessible physical coordinates, to facilitate

both experimental and theoretical or numerical studies.

The parameter region shown in Fig. 3(a) contains a plethora

of zig-zag networks interconnecting families of periodic

oscillations. The largest such network connects the wide

shrimp clusters labeled P,Q,R, and S. Another zig-zag

network exists inside the white box, shown magnified in

Fig. 3(b), where its first few alternations are labeled A,B, and

C. The basic signature of zig-zag patterns is the alternation of

three shrimps, exemplified by the sequences PQR and QRS in

Fig. 3(a) and ABC in Fig. 3(b). For brevity, we call such triplets

“V connections” or “V bridges.” These connections are present

in Fig. 2 of a recent paper by Manchein et al. [33], who used

the discrete map of Carlo et al. [34] to study the distribution

of unbiased current in the ratchet transport of particles [35].

The shrimp-shaped windows of the V bridges are the

same ones that twist continuously either clockwise or counter-

clockwise, as shown in Fig. 2, to form the spiral networks

discussed in the Introduction. Originally [22–24,26], such

shrimps were found to form infinite sequences of essentially
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FIG. 3. (Color online) Examples of V connections in the control space of the tunnel diode. (a) A zig-zag pattern PQRS formed by “gluing”

the V connections together. The zig-zag continues beyond S, but the additional alternations are too small to be seen in this scale. The upper

dark (pink) background denotes unbounded solutions (divergence) and is riddled with shrimps, e.g., Q and S. (b) Magnification of the V

connection ABC in the white box in (a). One of the legs of R allows passing between R and B via continuous parameter changes. Here

α = −0.33,β = 0,µ = 1.0.
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parallel structures, apparently completely disconnected from

each other. Subsequently, 15 years later, these windows were

discovered to emerge interconnected, forming continuous

spiral networks [8]. In Fig. 3(b), however, shrimps A and

C are clearly interconnected with B, forming a structure that

resembles an upside-down V. From additional magnifications

of specific regions of Fig. 3 (not shown) it is possible to

recognize the unfolding and interconnection of several V

bridges that form a long chain, a zig-zag network. In such

networks, however, each successive V bridge gets strongly

compressed, making it difficult to assert whether the zig-zag

network is infinite or not.

IV. BRIDGES IN A LASER AND IN THE HÉNON MAP

The purpose of this section is to show that the same

connections described above exist also in the flow governing

an erbium-doped dual-ring fiber laser and in a celebrated

textbook example of the discrete-time model, the Hénon map.

We start by computing stability diagrams for an erbium-doped

dual-ring fiber laser with the lasing fields in the two rings

frequency locked through a coupler c0 with a phase change of

π/2 from one ring to the other. In this configuration, the laser

equations for the fundamental system are [3,36–38]

dEa

dt
= −(Ea + c0Eb)ka + gaEaDa, (10)

dEb

dt
= −(Eb − c0Ea)kb + gbEbDb, (11)

dDa

dt
= −

(

1 + Ipa + E2
a

)

Da + Ipa − 1, (12)

dDb

dt
= −

(

1 + Ipb + E2
b

)

Db + Ipb − 1, (13)

where Ea and Eb are the lasing fields and Da and Db are

the population inversions in rings a and b, respectively. The

parameters ka,kb,ga , and gb represent the decay rate and

the gain coefficient of lasing fields a and b, as indicated.

Ipa and Ipb represent pump intensity in the respective fiber

rings. Note that this laser model contains cubic nonlinearities,

similar to the nonlinearity present in the tunnel diode flow.

As for parameter values, in an interesting paper, Zhang and

Shen [38] detected hyperchaotic dynamics for the following set

of parameters: ka = kb = 1000,c0 = 0.2,ga = 10 500,gb =

4700, parameters that for simplicity we adopt here. For them

we computed stability diagrams as a function of the pump

intensities Ipa and Ipb.

Figure 4 illustrates a typical Lyapunov stability diagram

obtained for the laser where, as before, periodic and chaotic

laser oscillatory phases are discriminated by the colors of

their exponents. Inside box A in this figure it is possible

to recognize the characteristic V bridge discussed above.

Several other interconnections like this one exist in the system.

We also computed several additional diagrams (not shown) for

a number of parameter combinations “centered” around the

above ones. Such simulations showed that the laser phases

are robust against parameter fluctuations and that Fig. 4

is representative of the distribution of periodic and chaotic

oscillations in the laser. The main effect of changing the above

parameters is to produce small shifts of the structures seen
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FIG. 4. (Color online) Lyapunov stability diagram showing V

connections for an erbium-doped fiber-ring laser (inside box A). After

shrimps, the cuspidal and rounded periodicity regions seen in box B

are the most frequently observed shapes of periodicity windows.

Box C is rich in complicated structures that are difficult to classify

systematically. This diagram displays 2400 × 2400 = 5.76 × 106

parameter points.

in the stability diagram as well as changes of their relative

areas [3].

As a curious byproduct, note the region delimited by

box B in Fig. 4. In its lower right corner one finds a laser

phase with the shape of a sharp cusp and, to its left, a large

rounded phase. This pair of structures appears profusely in

the stability diagram. In fact, after the ubiquitous shrimps,

these rounded and cuspidal phases are the structures most

frequently observed in flows and maps. Their detailed structure

has not been studied completely so far, although some

results are available [39]. Box C contains a huge number of

interesting periodicity phases with rather complex structures.

They obviously deserve to be better investigated.

Is it possible to find V bridges in simple discrete-time

systems, i.e., in mappings? This possibility is useful because it

would allow the investigation of parameter networks without

the need for solving differential equations, thereby avoiding

the familiar errors associated with numerical integrations. As

already mentioned, the ratchet map of Carlo et al. contains

V bridges [33,34]. With no difficulty, we found several V

connections in the very first map where we looked for them,

namely, in the Hénon map, the paradigmatic multidimensional

dissipative system [22–26],

(x,y) �→ (a − x2
+ by,x) ≡ Ha,b(x,y). (14)

As in Ref. [22], Fig. 5(a) shows a stability diagram of the

most relevant portion of its control parameter space. For each

individual k-periodic orbit we also determined the trace τ of

the Jacobian of H k
a,b, the kth composition of the map. Then,

instead of using a solid color to paint the whole periodic phase,

we partitioned it into two sectors. When τ > 0, we represented

the period using the colors in the color bar, using black to paint

the periodic portion where τ < 0. This artifact increased the

042907-4



ZIG-ZAG NETWORKS OF SELF-EXCITED PERIODIC . . . PHYSICAL REVIEW E 87, 042907 (2013)

0.8 2.0a
-0.1

0.6

b

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

(a) −∞

1.573 1.735a
0.16

0.196

b

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

A

B

C

(b) −∞

1.69 1.71a

0.1882

0.1902

b

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

(d)

B

−∞

1.618 1.626a

0.1635

0.16585

b

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

(e)

C

1.599 1.607a

0.1795

0.183

b

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

(c)

A

FIG. 5. (Color online) Illustration of V connections in the Hénon map. (a) Global view showing shrimps and complex structures

embedded in the chaotic white background. The darker (pink) background denotes divergence. The periods are as indicated in the color bar.

(b) Magnification of the box in (a) showing a V connection formed by three period-11 shrimps labeled A,B,C. The box contains additional

period-22 V connections which are too small to be visible at this scale. Their “heads” [22,23] are given in Table I. The three panels in the

bottom row display magnifications of shrimps (c) A, (d) B, and (e) C with their heads marked by magenta dots, defined in Table I. (d) shows a

shrimp in its pure state, i.e., in a state where it is trivial to see where its chaotic phase ends, something not recognizable in (c) or (e) (see text).

Each panel displays the analysis of 2400 × 2400 = 5.76 × 106 parameter points.

information content of the diagrams by displaying the inner

structure of each periodicity cell, analogous to plotting the

“multiplier” of two-parameter one-dimensional maps [23]. As

seen from Figs. 5(c)–5(e), the “center” of each periodicity

window then becomes visible (compare with Fig. 3 of Ref. [22]

or Fig. 2(b) of Ref. [26] where centers cannot be seen).

A few V bridges of the Hénon map occur inside the black

box in Fig. 5(a), magnified in Fig. 5(b). In this figure, the

most easily visible bridge is formed by shrimps A,B, and C,

shown in detail in Fig. 5(c)–5(e). Noteworthy in Fig. 5(b) is the

boundary between the white background, representing chaos,

and the darker (pink) background, representing unbounded

oscillations (divergence). This background of divergence can

be conveniently used to display shrimps in their “pure” state:

in Fig. 5(d) it is trivial to see where the chaotic phase of

shrimp B ends. while in Figs. 5(c) and 5(e) this transition

cannot be identified because of the continuous transition to the

regular chaotic phase present in the background. Moving out

from shrimp B has catastrophic consequences, with the system

losing stability and moving to the attractor located at infinity

(divergence), instead of starting to oscillate in a new chaotic

trajectory, which happens when moving out from either shrimp

A or C.

In addition to the V bridges described, the Hénon map

contains a large number of other connections with rather

complex forms that are difficult to classify and that are

still awaiting a systematic study. The paper of Lorenz [26]

may be regarded as a step in this direction. In the Hénon

map, the number of complex interconnections is so great

that one has the impression that, in the end, all periodicity

clusters might in fact compose just a huge single network of

interconnected domains. This means that by suitably selecting

parameters one could navigate around the whole network,

moving from one periodic oscillation to another, without ever

needing to cross the large sea of chaos densely surrounding

the network everywhere. This is a remarkable and potentially
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TABLE I. Coordinates (a,b) and one orbital point (x,y) near

the “head” of the period-11 shrimps, indicated by magenta dots in

Figs. 5(c)–5(e), forming the V bridges labeled A,B, and C. The four

additional points are from V connections inside the box in Fig. 5(b).

Period a b x y

11 1.6005 0.181 45 1.395 209 3 0.002 985 5

11 1.7005 0.189 375 1.480 007 9 0.005 699 4

11 1.620 75 0.164 91 1.430 728 2 0.004 034 9

22 1.580 38 0.186 696 8 1.371 390 7 0.001 859 5

22 1.595 016 7 0.187 479 8 1.384 181 7 0.002 417 5

22 1.581 413 0.186 118 5 1.372 909 9 0.001 916 4

22 1.586 349 5 0.186 811 7 1.376 812 4 0.002 103 8

very useful property of parameter networks of any possible

shape.

One may wonder how complex connections and wide

parameter networks could have remained unnoticed despite

the ever-flowing deluge of papers devoted to multidimensional

maps. A plausible explanation lies in the relatively high periods

of the orbits associated with V bridges, a regime that still

remains largely unexplored. A detailed investigation of V

bridges in the Hénon map together with their metric properties

and scalings is presented elsewhere [19]. While it seems likely

that global bifurcations lurk behind the V bridges since they

appear in systems having rather distinct properties, it seems

too premature to try to explain their origin before performing

a thorough investigation of these systems.

V. CONCLUSIONS AND OUTLOOK

We found that tunnel diodes produce unexpected and rich

dynamical behaviors such as V bridges and zig-zag networks.

The circuit with a tunnel diode is particularly well adapted for

experimental investigations not only of the zig-zag networks

but also of the more familiar spiral networks because it

contains surprisingly large and relatively undistorted spirals

(Fig. 2). Zig-zag networks seem to be rather ubiquitous since

they can be found with no special effort in other systems

like the erbium-doped dual-ring fiber laser and the Hénon

map. Figure 2 provides an example of an unexpected system

displaying spirals that twist continuously both clockwise and

counterclockwise in control space.

Knowledge of parameter networks allows one to effectively

control the dynamics in a predictable and stable (permanent)

way. Recall that popular control techniques rely on the

application of series of infinitesimal parameter changes which

are unable to target preassigned and stable behaviors [1]. Such

procedures lead to random final destinations and require the

permanent application of “perturbations” to the system in order

to maintain operation of the unstable random destination. In

sharp contrast, parameter networks can be used (i) as guides

to implement parameter changes of any arbitrary size, (ii) to

move to any preassigned state, and (iii) to perform changes

only among stable oscillations, either with a single parameter

jump or, if needed or desired, using sequences of controlled

parameter changes.

We hope this work will trigger research about parameter

networks both experimentally and theoretically. Possible

theoretical directions involve developing tools to anticipate

where networks might be located in stability diagrams and,

more importantly, which type of nonlinearities might produce

them. Also of interest is to investigate what happens with the

symbolic coding of orbits belonging to V connections (which

contain several cusps) when following closed paths around

them. It is known that in some regions of control space, cir-

culations around closed parameter paths involve unavoidable

ambiguities in the symbolic coding [25]. At present, we are

still waiting for the development of a mathematical framework

capable of addressing these types of problems. The origin

and structural properties of parameter networks in dynamical

systems are far from being understood except for a growing

number of explicit examples. Zig-zag networks made of V

bridges provide a new and potentially fruitful addition to

the arsenal of networks allowing one to prospect the global

organization of stable oscillations so vital for applications.
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