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ABSTRACT

For points sampled near a compact set X, the persistence
barcode of the Rips filtration built from the sample con-
tains information about the homology of X as long as X

satisfies some geometric assumptions. The Rips filtration is
prohibitively large, however zigzag persistence can be used
to keep the size linear. We present several species of Rips-
like zigzags and compare them with respect to the signal-
to-noise ratio, a measure of how well the underlying homol-
ogy is represented in the persistence barcode relative to the
noise in the barcode at the relevant scales. Some of these
Rips-like zigzags have been available as part of the Dionysus
library for several years while others are new. Interestingly,
we show that some species of Rips zigzags will exhibit less
noise than the (non-zigzag) Rips filtration itself. Thus, Rips
zigzags can offer improvements in both size complexity and
signal-to-noise ratio.

Along the way, we develop new techniques for manipulat-
ing and comparing persistence barcodes from zigzag mod-
ules. We give methods for reversing arrows and removing
spaces from a zigzag while controlling the changes occurring
in its barcode. We also discuss factoring zigzags and a kind
of interleaving of two zigzags that allows their barcodes to be
compared. These techniques were developed to provide our
theoretical analysis of the signal-to-noise ratio of Rips-like
zigzags, but they are of independent interest as they apply
to zigzag modules generally.

Categories and Subject Descriptors

F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Computa-
tions on discrete structures, Geometrical problems and com-
putations

General Terms

Algorithms, Theory
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1. INTRODUCTION
The goal of homology inference is to extract the homology

of a space from a finite sample. The problem is ill-posed in
general, but under the right geometric assumptions about
the input and the underlying space, one can compute an
object called a persistence barcode which provably contains
information about the underlying homology. Indeed, ho-
mology inference was and continues to be one of the main
motivations for topological persistence theory.

The barcode is computed from a sequence of simplicial
complexes, for which two main challenges arise. The first
challenge is to guarantee that the simplicial complexes re-
main small. Commonly used methods produce complexes
that quickly become too large to fit in memory. The sec-
ond challenge is to decrease noise in the barcode while pre-
serving the signal, i.e. the information about the underly-
ing space. We confront both challenges, analyze several ap-
proaches that give linear size data structures, and provide
guarantees on the signal-to-noise ratio in the barcodes.

Context. Persistent homology applies to nested, parameter-
ized families of simplicial complexes called filtrations. The
persistence algorithm takes a filtration and produces a bar-
code describing all the changes in homology as one goes from
one complex to the next in the filtration [9, 17].

Persistent homology has an important connection with
geometric inference results that describe conditions when
homology inference is possible using a union of balls cen-
tered at the sample points—see the survey by Chazal and
Cohen-Steiner [3]. The (Vietoris-)Rips filtration {Rα}α≥0

is useful when these conditions are met. It is defined to have
a simplex in Rα for every subset of points with diameter at
most α. So, the filtration parameter is the geometric scale
and the theory guarantees the existence of some range of
scales for which the barcode encodes the homology of the
underlying space. The barcode of this filtration thus has an
elegant multi-scale interpretation as “the homology of the
input point cloud across scales.”

The immediate drawback to using the Rips filtration is
its size. The scale at which it exceeds the available memory
varies with the input data, the filtration, and the computer
used. However, it is observed to happen early enough so that
not all the interesting homological information hidden in the
data can be discovered—see Section 6 for a compelling ex-



ample. Recent research looks at how to reduce the size of the
complexes in the filtration to postpone the breaking point.
The most notable example is the witness complex [5], which
was introduced for this purpose. However, such attempts are
limited as the complexes have controlled size only at small
scales and still incur a blowup at large scales.

A different approach was proposed by Chazal and Oudot [4],
who used truncated Rips filtrations on a nested sequence of
subsets of the input points corresponding to samplings at
different scales. Their method computes the barcodes of the
Rips filtration of each subset restricted to a range of scales
near the sampling scale of the subset. This can prevent the
size blowup in the Rips filtrations because every subset looks
like a uniform sample at the relevant scale. The lingering
challenge from this work is to relate the bars in the resulting
barcodes for different scales.

Taking advantage of the recent introduction of zigzag per-
sistence by Carlsson and de Silva [2], Morozov suggested
a simple way to connect the truncated Rips filtrations of
consecutive subsamples together, to obtain a single long se-
quence of simplicial complexes connected by inclusions—
called the Morozov zigzag (M-ZZ) hereafter. Zigzag per-
sistence relaxes the condition that the family of complexes
be a filtration and instead allows consecutive spaces to be
included in either direction, forwards or backwards, so the
sequence is a zigzag diagram rather than a filtration. The
M-ZZ has been integrated into the Dionysus library [8] since
early 2009, and as reported by its author from preliminary
experiments [14], it has given surprisingly good results in
practice. However, to date it comes with no theoretical guar-
antees, so a primary motivation of our paper is to assess the
theoretical quality of the results provided by this zigzag.

Existing methods for building sparse approximations to
the Rips filtration have all focused on the size question, but
have ignored the question of noise. For example, even the
Rips filtration can have noise in the barcode at the scales
where it represents the underlying topology. We show that
some variants of the M-ZZ not only recover the topological
signal but also provably eliminate noise in the relevant range.

Contributions. We provide the following theoretical guar-
antees for the Morozov zigzag:
• When the input point cloud P is sufficiently close (in

the Hausdorff distance) to a compact set X with pos-
itive weak feature size in R

d, there is a sweet range of
geometric scales over which the persistence barcode of
the Morozov zigzag exhibits the homology of X (tech-
nically, the offsets Xλ for an arbitrarily small λ > 0).
That is, the barcode has long intervals spanning the
entire sweet range, and their number is at least the di-
mension of the homology group HXλ (Theorem 4.2).
• If X has positive µ-reach, then there is a smaller

(sweeter) range over which the number of spanning
intervals is exactly dimHXλ and no other intervals
are present.

This motivates the study of more elaborate variants of the
Morozov zigzag that are less likely to carry topological noise
in the sweet range, even when the underlying space X has
zero µ-reach and positive weak feature size. We analyze
three variants in the paper:
• The first one, called the discretized Mozorov zigzag,

consists in considering only subsamples whose corre-
sponding geometric scales are of the form ζi for a fixed

constant ζ and an integer i. This discretization makes
sure that the geometric scale drops significantly (by a
factor of ζ) from one subsample to the next, so there
is enough room in each connection between truncated
filtrations to kill the noise.
• The second one, called the oscillating Rips zigzag,

consists in somewhat relaxing the truncation param-
eter in the Rips filtrations before connecting them to-
gether. The effect is to leave enough room in every
truncated filtration for the noise to be killed.
• The third one, called the image Rips zigzag, consists

in taking a nested pair of Morozov zigzags with differ-
ent filtration parameters, and in connecting them by
canonical inclusions to obtain an image zigzag mod-
ule at the homology level. Taking a pair of zigzags
instead of a single zigzag kills the noise in the same
way as taking a pair of Rips complexes instead of a
single Rips complex did in [4].

Each of these variants comes with the desired guarantee that
the sweet and sweeter ranges are equal, meaning that there
is guaranteed to be only ephemeral noise in the sweet range
even when the underlying space X merely has positive weak
feature size. Thus, Rips zigzags offer improvements in both
size complexity and signal-to-noise ratio compared to the
Rips filtration. The price to pay compared to the basic Mo-
rozov zigzag is a somewhat increased time or space complex-
ity (Theorems 5.1 and 5.2). The overhead depends on the
variant considered but it always remains bounded, so the
variants are tractable alternatives to the Morozov zigzag.

To prove the aforementioned results, we develop new tech-
niques for manipulating zigzag modules and comparing their
persistence barcodes:
• We show how arrows in a zigzag module can be re-

versed while preserving the persistence barcode (The-
orem 3.1).
• We give a method for removing spaces from a zigzag

module while tracking the intervals in its barcode (The-
orem 3.2).

These low-level manipulations make it possible to transform
one module into another while controlling the changes in its
barcode, a strategy at the core of the proofs of our main
theorems.

Related work. A different approach to the problem of build-
ing sparse filtrations for offsets of point clouds in Euclidean
space was presented by Hudson et al. [13]. They used ideas
from Delaunay refinement mesh generation to build linear
size filtrations that provide provably good approximations
to the persistence diagram of the offsets. However, that ap-
proach requires building a complex that covers the ambient
space and includes simplices up to its dimension. Moreover,
the construction requires the use of high degree predicates.
In contrast, the new methods described here only depend on
an intrinsic dimension of data and can be built using only
distances comparisons.

Recently, Sheehy [16] proposed a method for building a
sparse zigzag filtration whose barcode is provably close to
that of the Rips filtration as well as a non-zigzagging vari-
ant achieving similar guarantees. Also, Dey et al. gave an
alternative persistence algorithm for simplicial maps rather
than inclusions, which is closely related to zigzag persis-
tence [7]. Their approach, when applied to Rips filtrations,
similarly gives barcodes that are provably close to that of the



Rips filtration. We obtain comparable space/time bounds
to these results but get stronger guarantees regarding noise.
Methods that approximate the Rips filtration directly can,
in principle, have noise that is as large as the noise in the
Rips filtration itself (or worse).

2. BACKGROUND
We use singular homology with coefficients in a field—

omitted in our notations. The homology functor is denoted
by H. See [12] for an introduction to homology theory.

2.1 Distance Functions
The geometric part of our analysis takes place in Eu-

clidean space R
d, where ‖ · ‖ denotes the Euclidean norm.

The distance from a point y to a set X ⊂ R
d is d(y,X) =

infx∈X ‖x−y‖. When X is compact, the infimum becomes a
minimum and we let dX denote the function distance to X.
The λ-offset of X, noted Xλ, is the sublevel set d−1

X ([0, λ]).

Given another compact set Y ⊂ R
d, the Hausdorff distance

dH(X,Y ) is the smallest λ such that Y ⊆ Xλ and X ⊆ Y λ.
Although dX may not be differentiable everywhere in R

d,
its gradient ∇X can be extended to be well-defined over all
R

d [3]. A critical point of dX is a point p ∈ R
d \X such that

∇X(p) = 0. A critical value of dX is a value r ≥ 0 such that
r = dX(p) for some critical point p. The weak feature size of
X, noted wfs(X), is the smallest positive critical value of dX .

Given a finite set P ⊂ R
d and a parameter α ≥ 0, the Čech

complex Cα(P ) is the nerve of the collection of Euclidean
balls of same radius α centered at the points of P . Given
another parameter β ≥ α, the canonical inclusion Cα(P ) ⊆
Cβ(P ) induces a homomorphism HCα(P ) → HCβ(P ) at the
homology level. Its image is denoted by HCβα(P ) hereafter.
The following theorem follows directly from the sampling
theory for compact sets in R

d [3], so its proof is omitted.

Theorem 2.1. (see [15] for the proof)
Let P ⊆ Q be finite sets in R

d, such that dH(P,X) < ε and
dH(Q,X) < ε for some compact set X ⊂ R

d.
• If ε < 1

4
wfs(X), then for any α, β ∈ [ε,wfs(X)− ε] such

that β−α ≥ 2ε, for any λ ∈ (0,wfs(X)), the spaces HCβα(P )
and HXλ are isomorphic.
• If ε < 1

6
wfs(X), then for all α, α′, β, β′ ∈ [3ε,wfs(X)− ε]

such that β − α ≥ 2ε, β′ − α′ ≥ 2ε, α′ ≥ α and β′ ≥
β, the homomorphism HCβα(P ) → HCβ

′

α′ (Q) induced by the
following commutative diagram (where the maps are induced
by inclusions) is an isomorphism.

HCβ(P ) → HCβ′(Q)
↑ ↑

HCα(P ) → HCα′(Q)

2.2 Zigzag persistence
The algebraic part of our analysis relies on zigzag persis-

tence theory. We use the terminology introduced by Carls-
son and de Silva [2]. A zigzag module V is a finite diagram
of finite-dimensional vector spaces over a fixed field k:

V = V1
v1←→ V2

v2←→ · · · vn−1←→ Vn,

where the notation Vi
vi←→ Vi+1 indicates that the linear

map vi can be oriented either forwards (vi : Vi → Vi+1)
or backwards (vi : Vi ← Vi+1). An equivalent notation is
vi : Vi ↔ Vi+1. The sequence of map orientations defines

the type of the module V. A persistence module, as defined
in the standard (non-zigzag) persistence literature [17], is a
zigzag module in which all the maps are oriented forwards.
Thus, all persistence modules of the same length have the
same type.

A homomorphism Φ between two zigzag modules V and
W of the same type, noted Φ : V → W, is a collection of
linear maps φi : Vi → Wi such that the following diagram
commutes for all i = 1, · · · , n− 1:

Vi

φi

��

oo vi // Vi+1

φi+1

��
Wi

oo wi // Wi+1

(1)

Φ is called an isomorphism if every map φi : Vi → Wi is an
isomorphism.

A submodule W of a zigzag module V is defined by sub-
spaces Wi ⊆ Vi such that for all i we have vi(Wi) ⊆Wi+1 if
vi : Vi ↔ Vi+1 is a forward map and vi(Wi+1) ⊆ Wi if vi is
a backward map. The maps in W are the restrictions of the
maps in V to the Wis, so V and W have the same type. W

is called a summand of V if there exists another submodule
X of V such that Vi = Wi⊕Xi for all i. In that case, we say
that V is the direct sum of W and X, written V = W ⊕ X.
As pointed out in [2], all summands are submodules but not
all submodules are summands.

A zigzag module V is called indecomposable if it admits no
other summand than the zero module and itself. It has been
known since Gabriel [10] that the indecomposable zigzag
modules are the so-called interval modules. Given a module
type τ and an integer interval [b, d], the interval τ -module
with birth time b and death time d is written Iτ [b, d] and
defined with spaces Ii such that Ii = k if i ∈ [b, d] and
Ii = 0 otherwise, and with identity maps between adjacent
copies of the base field k and zero maps elsewhere (the maps
are oriented according to τ). A consequence of Gabriel’s
result is that every τ -module is isomorphic to a direct sum
of finitely many τ -intervals. Moreover, the Krull-Schmidt
principle guarantees that this decomposition is unique up to
a reordering of the terms—see Proposition 2.2 in [2].

Theorem 2.2 (Interval Decomposition).
For every τ -module V there exists a unique finite multiset of
interval modules {Iτ [bi, di]} and an isomorphism

Φ : V→
⊕

i

Iτ [bi, di].

Thus, as in standard (non-zigzag) persistence theory, the
structure of V is fully and uniquely described by the multiset
of integer intervals1 {[bi, di]}, called the persistence barcode
of V and denoted Pers(V).

Carlsson and de Silva gave a constructive proof of The-
orem 2.2—see [2, Thm. 4.1], which led to an algorithm for
computing the decomposition of a zigzag module. Among
the concepts and results presented in their paper, the fol-
lowing one plays an important part here.

Given a zigzag module V = V1
v1←→ · · · vn−1←→ Vn and two

integers p ≤ q ∈ [1, n], let V[p, q] denote the restriction of V

1Note that we follow [2] and depart from the traditional
persistence barcode representation by using closed intervals
instead of half-open intervals.



to the index set [p, q]. That is, V[p, q] = Vp

vp←→ · · · vq−1←→ Vq.

Let Pers(V)|[p,q] denote the restriction of Pers(V) to [p, q]:

Pers(V)|[p,q] = {[b, d] ∩ [p, q] | [b, d] ∈ Pers(V)}.

The Restriction Principle [2, Prop. 2.12] connects the two
types of restrictions together:

Theorem 2.3 (Restriction).

Pers(V[p, q]) = Pers(V)|[p,q].

3. MANIPULATING ZIGZAG MODULES

3.1 Arrow reversal
Suppose we have a zigzag module V = V1 ↔ · · · ↔ Vn

and we want to reverse the map Vk ↔ Vk+1 for some arbi-
trary index k in the range [1, n − 1], while preserving the
persistence barcode of V. The following theorem states that
this is always possible, moreover with a reverse map that is
closely related to the original map.

Theorem 3.1 (Arrow Reversal).

Let V = V1 ↔ · · · ↔ Vk
f←→ Vk+1 ↔ · · · ↔ Vn be a zigzag

module. Then, there is a map g : Vk ↔ Vk+1 oriented oppo-
site to f , such that f ◦ g|im f = 1im f and g ◦ f |im g = 1im g,
and the zigzag module V

∗ obtained from V by replacing the

submodule Vk
f←→ Vk+1 by Vk

g←→ Vk+1 has the same per-
sistence barcode as V.

When f is injective, g is surjective and g ◦ f is the identity
over the domain of f . Conversely, when f is surjective, g
is injective and f ◦ g is the identity over the codomain of
f . These properties are useful when V is part of a commu-
tative diagram, as they sometimes imply commutativity is
preserved after the arrow reversal—as in the proof of Theo-
rem 4.1.

Proof. Let Φ : V→
⊕

i Iτ [bi, di] be the decomposition of
V given by the Interval Decomposition Theorem 2.2. Denote
the spaces of Iτ [bi, di] by Ii1 . . . , I

i
n, and let Φ = (φ1, . . . , φn)

where each φj : Vj →
⊕

i I
i
j is an isomorphism.

We assume without loss of generality that f is oriented
forwards; the case when f is oriented backwards is symmet-
ric. The map f ′ =

⊕

i(I
i
k → Iik+1) makes the following

diagram commute.

Vk

φk
��

f // Vk+1

φk+1

��
⊕

i

I
i
k

f ′

//
⊕

i

I
i
k+1

(2)

To reverse f , we first reverse each map Iik → Iik+1 sepa-
rately. Recall that this map is either the identity or zero.
The reversal of an identity map is an identity map and the

reversal of a zero map is a zero map, so we take Iik
1← Iik+1

if Iik
1→ Iik+1 and Iik

0← Iik+1 if Iik
0→ Iik+1. We thus get a

new interval module Iτ∗ [bi, di], where τ∗ is the zigzag type
of V∗. Let now g′ =

⊕

i(I
i
k ← Iik+1) be the reverse of f ′,

and let g = φ−1
k ◦ g′ ◦ φk+1 be the reverse of f , which gives

the following commutative diagram.

Vk

φk
��

Vk+1
goo

φk+1

��
⊕

i

I
i
k

⊕

i

I
i
k+1

g′oo

(3)

The commutativity of this diagram and the definition of Φ
imply that the the same isomorphisms φj induce an isomor-
phism Φ∗ : V∗ →

⊕

i Iτ
∗ [bi, di]. So, Φ∗ yields an explicit

interval decomposition of V∗ with the same intervals as that
of V, and thus Pers(V∗) = Pers(V).
It only remains to prove that f ◦ g|im f = 1im f and g ◦

f |im g = 1im g. By symmetry, it suffices to prove just one of
these, say f ◦ g|im f = 1im f . Using the isomorphism Φ, it
suffices to prove the equivalent statement for f ′ and g′. The
statement now follows from the observation that

f
′ ◦ g′ =

⊕

i

((Iik → I
i
k+1) ◦ (Iik ← I

i
k+1)) = 1im f ′ ⊕ 0ker g′ ,

where the final step separates the identity maps and the zero
maps into two groups.

3.2 Space Removal
Suppose we want to remove the space Vk from a zigzag

module V = V1 ↔ · · · ↔ Vn while preserving most of the
persistence barcode. The following theorem shows that this
is always possible, and that every interval [b, d] in Pers(V)
becomes [b, d] \ {k} in the new index set {1, · · · , k − 1, k +
1, · · · , n}. Note that this is still a single interval, denoted
by [b, d]k̂ for clarity.

Theorem 3.2 (Space Removal).

Let V be a zigzag module containing Vk−1
f←→ Vk

g←→ Vk+1.
There exists a map h : Vk−1 ↔ Vk+1 such that the zigzag
module V

∗ formed by removing Vk, f , and g from V and
replacing them with h has barcode

Pers(V∗) = {[b, d]k̂ | [b, d] ∈ Pers(V)} .
Furthermore, if any map Vk−1 ↔ Vk+1 commutes with f

and g, then so does h.

The first step towards the proof of this theorem is the follow-
ing special case for removing a space between maps oriented
in the same direction.

Lemma 3.3 (Composition).

Given V = V1 ↔ · · · ↔ Vk−1
f−→ Vk

g−→ Vk+1 ↔ · · · ↔ Vn,

let V
∗ = V1 ↔ · · · ↔ Vk−1

g◦f−→ Vk+1 ↔ · · · ↔ Vn. Then,
Pers(V∗) = {[b, d]k̂ | [b, d] ∈ Pers(V)}.

Proof. Let Φ : V →
⊕

i Iτ [bi, di] be the decomposition
of V given by the Interval Decomposition Theorem 2.2. De-
noting the spaces of Iτ [bi, di] by Ii1 . . . , I

i
n, and letting f ′ =

⊕

i(I
i
k−1 → Iik), g

′ =
⊕

i(I
i
k → Iik+1), and Φ = (φ1, . . . , φn)

where each φj : Vj →
⊕

i I
i
j is an isomorphism, we have the

following commutative diagram.

Vk−1
f //

φk−1

��

Vk

g //

φk
��

Vk+1

φk+1

��
⊕

i

I
i
k−1

f ′

//
⊕

i

I
i
k

g′ //
⊕

i

I
i
k+1

(4)



By removing the kth space from each interval module Iτ [bi, di],
we get a new interval decomposition

⊕

i Iτ
∗ [bi, di]k̂, where

τ∗ is the type of V∗. Observe that the commutativity of (4)
implies that the following diagram commutes as well.

Vk−1
g◦f //

φk−1

��

Vk+1

φk+1

��
⊕

i

I
i
k−1

g′◦f ′

//
⊕

i

I
i
k+1

(5)

Thus, Φ∗ = (φ1, . . . , φk−1, φk+1, . . . , φn) is an isomorphism
from V

∗ to
⊕

i Iτ
∗ [bi, di]k̂. It follows that

Pers(V∗) = Pers(
⊕

i

Iτ∗ [bi, di]k̂) = {[b, d]k̂ | [b, d] ∈ Pers(V)}

as claimed in the lemma.

We now combine this special case with the Arrow Reversal
Theorem 3.1 to prove the general Space Removal Theorem.

Proof of Theorem 3.2. There are four cases to con-
sider depending on the orientations of the maps f and g.

Cases (
f→,

g→) and (
f←,

g←) are covered by the Composi-

tion Lemma 3.3. The remaining cases (
f→,

g←) and (
f←,

g→)
are handled by reversing one of the maps using the Arrow
Reversal Theorem 3.1 and then applying the Composition
Lemma 3.3. The arrow reversal preserves the persistence
diagram and the composition removes the kth index from
each interval as desired. It only remains to show that the
commutativity property holds.

When there exists a map h′ : Vk−1 ↔ Vk+1 that commutes
with f and g, then either

f = g ◦ h′ or f = h
′ ◦ g or g = f ◦ h′ or g = h

′ ◦ f.

The proofs of these four cases are similar, so we only give the
proof of the first case here, leaving the others as an exercise.

Assuming that f = g ◦ h′, we have im f ⊆ im g. So,
applying the Arrow Reversal Theorem 3.1 on the map g

results in a map g′ such that g ◦ g′|im f = 1im f . Then, the
Composition Lemma 3.3 lets h = g′ ◦ f , so we obtain

g ◦ h = g ◦ g′ ◦ f = g ◦ g′|im f ◦ f = 1im f ◦ f = f

as claimed.

4. RIPS ZIGZAGS
Let P be a finite point cloud in some metric space, and

suppose that the matrix of pairwise distances between the
points of P is known. Given any ordering (p1, · · · , pn) on
the points of P , let Pi := {p1, . . . , pi} denote the ith prefix,
and define the ith geometric scale as εi = dH(Pi, P ). Since
Pi grows as i increases, we have ε1 ≥ ε2 ≥ · · · ≥ εn = 0.

Given a choice of multipliers η ≤ ρ, Chazal and Oudot [4]
proposed to do homological inference from P using the se-
quence of short filtrationsRηεi(Pi) →֒ Rρεi(Pi). Zigzag per-
sistence makes it possible to replace this sequence of short
filtrations by a single zigzag filtration, a representative por-

tion of which is depicted below.

Rρεi−1(Pi) Rρεi(Pi+1)

Rηεi−1(Pi−1)

AA�������
Rηεi(Pi)

]]<<<<<<<

AA�������
Rηεi+1(Pi+1)

]]<<<<<<<
(6)

The zigzag module induced at the homology level by this
diagram is referred to as the oscillating Rips zigzag (oR-ZZ
for short) hereafter.

4.1 Analysis of the oscillating Rips zigzag
The following result gives conditions on η and ρ for the

persistence barcode of the oR-ZZ to exhibit the homology
of the shape underlying an input point cloud P ⊂ R

d. The
proof relies on the fact that Čech and Rips complexes are in-

terleaved as follows2 in R
d, where ϑd =

√

d
2(d+1)

∈ [ 1
2
, 1√

2
].

∀α ≥ 0, Cα
2
(P ) ⊆ Rα(P ) ⊆ Cϑdα(P ). (7)

Theorem 4.1. Let ρ and η be multipliers such that ρ >

10 and 3
ϑd

< η < ρ−4
2ϑd

. Let X ⊂ R
d be a compact set and let

P ⊂ R
d be such that dH(P,X) < ε with

ε < min

{

ϑdη−3
6ϑdη

,
η−3/ϑd
3ρ+η

,
ρ−2ϑdη−4
6(ρ−2ϑdη)

,
ρ−2ϑdη−4

(4ϑd+1)ρ−2ϑdη

}

wfs(X).

Then, for any l > k such that

εl ≥ max

{

3ε

ϑdη − 3
,

4ε

ρ− 2ϑdη − 4

}

, and

εk < min

{

1

6
wfs(X)− ε,

1

ϑdρ+ 1
(wfs(X)− ε)

}

,

the oR-ZZ restricted to HRρεk (Pk+1) ← · · · ← HRηεl(Pl)
has a persistence barcode made only of full-length intervals
and ephemeral (length zero) intervals, the number of full-
length intervals being equal to the dimension of HXλ for
any λ ∈ (0,wfs(X)).

Proof. Let ρ̄ = ρ

2
and η̄ = ϑdη. Our hypotheses imply

ρ

2
≥ ϑdη, so using (7) we can factor the inclusion maps in (6)

through Čech complexes with multipliers η̄ and ρ̄ as follows.

Rρεi(Pi+1)

Cρ̄εi−1(Pi) Cρ̄εi(Pi)oo

==||||||||
// Cρ̄εi(Pi+1)

aaBBBBBBBB

Cη̄εi−1(Pi)

OO

Cη̄εi(Pi)

OO

oo // Cη̄εi(Pi+1)

OO

Rηεi(Pi)

aaBBBBBBBB

==||||||||

This commutative diagram induces the following interleav-
ing between the oscillating Rips zigzag and the so-called
image Čech zigzag, whose spaces are the images—denoted

2See e.g. [6] for a proof. Our definition of the Rips complex
differs from the one in [6] by a factor of 2 in the parame-
ter value. This explains the slight discrepancy between our
chain of inclusions and the one in [6].



HCρ̄εrη̄εr
(Ps)—of the homomorphisms induced at the homol-

ogy level by the vertical arrows in the above diagram.

HRρεi(Pi+1)

HCρ̄εi−1
η̄εi−1

(Pi) HCρ̄εiη̄εi
(Pi)oo

>>}}}}}}}}
// HCρ̄εiη̄εi

(Pi+1)

``AAAAAAAA

HRηεi(Pi)

``AAAAAAAA

>>}}}}}}}}

Let U be the restriction of the oR-ZZ to HRρεk (Pk+1) ←
· · · ← HRηεl(Pl), let W be the restriction of the image Čech
zigzag to HCρ̄εkη̄εk

(Pk) → · · · ← HCρ̄εlη̄εl
(Pl), and let V be the

mixed zigzag HC
ρ̄εk
η̄εk

(Pk) → HRρεk (Pk+1) ← HC
ρ̄εk
η̄εk

(Pk+1) ←

HRηεk+1 (Pk+1) → HC
ρ̄εk+1
η̄εk+1

(Pk+1) → · · · → HC
ρ̄εl−1
η̄εl−1

(Pl−1) →

HRρεl−1 (Pl) ← HC
ρ̄εl−1
η̄εl−1

(Pl) ← HRηεl (Pl) → HC
ρ̄εl
η̄εl

(Pl). Our

goal is to relate Pers(V) to both Pers(U) and Pers(W), which
we will do by turning V successively into U and W via arrow
reversals and space removals while tracking the changes in its
persistence barcode. We will admit the following easy con-
sequences of Theorem 2.1 under our geometric hypotheses—
see [15] for a proof:

(i) all spaces in W are isomorphic to HXλ, and all maps
in W are isomorphisms,

(ii) the map HRρεi(Pi+1) ← HCρ̄εiη̄εi
(Pi+1) is injective for

any i ∈ [k, l − 1],
(iii) the map HRηεi(Pi)→ HCρ̄εiη̄εi

(Pi) is surjective for any
i ∈ [k, l].

To turn V into W, we first apply Theorem 3.1 on every injec-
tive map HRρεi(Pi+1) ← HCρ̄εiη̄εi

(Pi+1) and on every surjec-

tive map HRηεi(Pi)→ HCρ̄εiη̄εi
(Pi), to get a new zigzag V

∗ =

HC
ρ̄εk
η̄εk

(Pk)→ HRρεk (Pk+1)→ HC
ρ̄εk
η̄εk

(Pk+1)← HRηεk+1 (Pk+1)

← HC
ρ̄εk+1
η̄εk+1

(Pk+1) → · · · ← HC
ρ̄εl−1
η̄εl−1

(Pl−1) → HRρεl−1 (Pl) →

HC
ρ̄εl−1
η̄εl−1

(Pl)← HRηεl (Pl)← HC
ρ̄εl
η̄εl

(Pl) that has the same per-

sistence barcode as V. Moreover, the reverse maps provided
by Theorem 3.1 make the triangles commute in the resulting
diagram interleaving V

∗ and W.

HRρεi(Pi+1)

  A
AA

AA
AA

A

HCρ̄εi−1
η̄εi−1

(Pi) HCρ̄εiη̄εi
(Pi)

~~}}
}}

}}
}}

oo

>>}}}}}}}}
// HCρ̄εiη̄εi

(Pi+1)

HRηεi(Pi)

``AAAAAAAA

Now, we remove the Rips complexes from V
∗ by composing

all the adjacent maps with same orientation. Since compo-
sition preserves commutativity of the subdiagrams, the fol-
lowing diagram involving W (straight path) and the newly
obtained zigzag W

∗ (curved path) commutes:

HCρ̄εi−1
η̄εi−1

(Pi) HCρ̄εiη̄εi
(Pi)oo

__
//

��
HCρ̄εiη̄εi

(Pi+1)

Hence, the zigzagsW andW
∗ are identical. It suffices now to

compare Pers(V∗) to Pers(W∗). Recall that W
∗ is obtained

from V
∗ by removing the Rips complexes. In the process,

every interval of Pers(V∗) either vanishes or turns into some
interval of Pers(W∗). By the Space Removal Theorem 3.2,
only the ephemeral intervals of Pers(V∗) may vanish because
there are no consecutive Rips complexes in V

∗. Moreover,
the full-length intervals of Pers(V∗) are mapped bijectively
to those of Pers(W∗) because V

∗ and W
∗ have the same

endpoints. It follows then from (i) that Pers(V∗)—and thus
Pers(V)—contains only full-length intervals of multiplicity
dimHXλ and possibly some ephemeral intervals.
We turn V into U by removing the Čech complexes. First,

we restrict V to HRρεk (Pk+1) ← HCρ̄εkη̄εk
(Pk+1) ← · · · ←

HCρ̄εl−1
η̄εl−1

(Pl) ← HRηεl(Pl), thus removing the Čech com-
plexes at either ends of the zigzag. Since k < l, the Re-
striction Theorem 2.3 tells us that the full-length intervals
in the barcode of the shortened zigzag V

∗ are in bijection
with the ones in the barcode of V, while the other inter-
vals in Pers(V∗) come from length-zero intervals in Pers(V)
and cannot be longer. We then compose the incoming and
outgoing maps at Čech complexes in the sequence to obtain
U. By the Space Removal Theorem 3.2, only the intervals
starting or ending at a Čech complex can be affected by this
operation, and these can only be shortened. Therefore, the
number of full-length intervals remains the same as in the
barcode of V∗, and the other intervals remain ephemeral.

4.2 Morozov zigzag
The following limit case of the oscillating Rips zigzag

where parameters η, ρ are equal has been integrated into
the Dionysus library [8] since early 2009.

· · · ← Rρεi(Pi)→ Rρεi(Pi+1)← Rρεi+1(Pi+1)→ · · · (8)

We call Morozov zigzag (M-ZZ for short) the zigzag module
induced at the homology level by this diagram. The mo-
tivation for letting η = ρ is obvious from a computational
point of view: the closer η to ρ, the fewer simplex additions
and deletions during the zigzag calculation. Moreover, as
reported by its author [14], the M-ZZ has given surprisingly
good results in preliminary experiments, despite the fact
that η = ρ clearly violates the hypotheses of Theorem 4.1.
We are able to provide the following weaker guarantee.

Theorem 4.2. Let ρ > 10 be a multiplier. Let X ⊂ R
d

be a compact set and let P ⊂ R
d be such that dH(P,X) < ε

with ε < ρ−10
(3+10ϑd)ρ

wfs(X). Then, for any l > k such that

εl ≥
10ε

ρ− 10
, and

εk < min

{

1

6
wfs(X)− ε,

5

(1 + 5ϑd)ρ+ 5
(wfs(X)− ε)

}

,

the M-ZZ restricted to HRρεk (Pk+1) ← · · · ← HRρεl(Pl)
has a number of full-length intervals that is at least the di-
mension of HXλ for any λ ∈ (0,wfs(X)).

Proof. Let V denote the restriction of the M-ZZ to

HRρεk (Pk+1)← · · · ← HRρεl(Pl).

Consider the image Čech zigzags (as introduced in the proof
of Theorem 4.1) of parameters (η1, ρ1) and (η2, ρ2) respec-
tively, where η1 = ρ

2
− 2(1 + ε

εl
), ρ1 = ρ

2
, η2 = ϑdρ,

ρ2 = ϑdρ + 2(1 + ε
εl
), and call U and W respectively their

restrictions to the same index set as V.



Since η1 ≤ ρ1 = ρ

2
≤ ϑdρ = η2 ≤ ρ2, the canonical

inclusions between Čech complexes induce homomorphisms
between the spaces of U and W of same index. This fam-
ily of homomorphisms forms a homomorphism U → W.
By (7), every inclusion Cρ1εi(Q) →֒ Cη2εi(Q) factors through

Rρεi(Q), so U → W itself factors through V. Let U
Φ−→

V
Ψ−→W be the factorization.

Under our geometric hypotheses, it follows from Theo-
rem 2.1 that Ψ ◦ Φ is an isomorphism. Hence, we have
V = imΦ⊕ kerΨ, where imΦ is the submodule of V formed
by the images of the homomorphisms comprising Φ, and
kerΨ is the submodule of V formed by the kernels of the ho-
momorphisms comprising Ψ. Hence, by the Interval Decom-
position Theorem 2.2 (more precisely the uniqueness part
of it), we have Pers(imΦ) ⊆ Pers(V). Moreover, since the
homomorphisms comprising Φ are injective, Φ is an isomor-
phism onto its image, so Pers(imΦ) = Pers(U). The conclu-
sion of the theorem follows because the spaces in U are all
isomorphic to HXλ and the maps in U are all isomorphisms,
as guaranteed by Theorem 2.1.

Thus, the topological signal of X persists in the M-ZZ
throughout a sweet range of the form [O(ε), Ω(wfs(X))].
The question of the resilience of the topological noise within
this range remains open, and there currently is no theoretical
evidence that the noise should not persist, even under the
assumption that X has positive weak feature size.

We now further assume that X has positive µ-reach, de-
noted rchµ(X) > 0, for some sufficiently large µ. Recall that
rchµ(X) is the infimum of distances from X to points out-
side of X where the gradient of the distance to X is less than
µ [3]. Attali et al. showed that if dH(P,X) < ε with ε suffi-
ciently small compared to rchµ(X) and µ sufficiently large,
then for some values of α, the Rips complex Rα(P ) is ho-
motopy equivalent to Xλ for λ ∈ (0, rchµ(X))—see [1, The-
orem 14]. The immediate consequence of their result is that
for a multiplier ρ and an index i, Rρεi(Pi) and Rρεi(Pi+1)
are both homotopy equivalent to Xλ for λ ∈ (0, rchµ(X))
whenever

µ(2− µ)(2ρεi − 2ϑdεi − 2(εi + ε))

1 + µ(1− µ)−
√

1− µ(2− µ)
(

(2ϑdρ+1)εi+ε

rchµ(X)

)2
> rchµ(X).

This condition depends on rchµ(X), its parameter µ, the
multiplier ρ, the Hausdorff distance of the sample ε, and εi.
Attali et al. showed that there do exist values for which the
condition is satisfied. We do not derive the space of valid as-
signment of constants here, but merely note that this result
implies that there is a multiplier ρ and a range of scales of
the form [O(ε), Ω(rchµ(X))] for which the M-ZZ exhibits no
noise at all. This holds because Theorem 4.2 implies that the
signal is present in the sweet range and the Attali et al. re-
sult shows that every space in the strictly smaller range has
the same homology as Xλ. We call this the sweeter range.
Note that the quantities hidden in the big-O and big-Ω nota-
tions depend on µ, so the sweeter range requires a sufficiently
large µ to be non-empty. Moreover, since the upper bound
depends on rchµ(X) rather than wfs(X), the sweeter range
can be arbitrarily smaller than the sweet range.

4.3 Discretized Morozov Zigzag
We now describe a discretization scheme for the Morozov

zigzag that ensures that the noise gets killed within the sweet

range. Given a map ζ : R>0 → R>0, referred to as the scale
drop function hereafter, we select a subset of the indices
1, · · · , n in the ordered point cloud P = {p1, · · · , pn} by the
following iterative procedure: let n1 = 1, and

∀i ≥ 1, let ni+1 = min {j > ni | εj ≤ ζ(εni) · εni} .
Note that nr = n for some index r since εn = 0 < εn−1.
We then build the following discretized version of the zigzag
diagram of (8):

· · · ← Rρεni
(Pni)→ Rρεni

(Pni+1)← Rρεni+1
(Pni+1)→ · · ·

where Pn1 = P1 = {p1} and Pnr = Pn = P . The zigzag in-
duced at the homology level is called the discretized Morozov
zigzag (dM-ZZ) hereafter.

Theorem 4.3. Given a choice of multiplier ρ > 10, sup-
pose P ⊂ R

d and there is some compact set X ⊂ R
d such

that dH(P,X) < ε with ε < ρ−10
(3+10ϑd)ρ

wfs(X). Then, for any

choice of scale drop function ζ that satisfies

∀i ∈ [1, r − 1], ζ(εni) ≤
ρ

2ϑdρ+ 4
− 2

ϑdρ+ 2

ε

εni

, (9)

for any nl > nk such that

εnl ≥
10ε

ρ− 10
, and

εnk < min

{

1

6
wfs(X)− ε,

5

(1 + 5ϑd)ρ+ 5
(wfs(X)− ε)

}

,

the dM-ZZ restricted to HRρεnk
(Pnk+1)← · · · ← HRρεnl

(Pnl)
has a barcode with only three classes of intervals:
• full-length intervals, whose number is equal to the di-

mension of HXλ for any λ ∈ (0,wfs(X)),
• ephemeral (length zero) intervals,
• intervals of the form [HRρεni

(Pni), HRρεni
(Pni+1)],

which are ephemeral on the scale of the geometric scales.

Proof. The proof of Theorem 4.2 applies verbatim to the
dM-ZZ, with indices 1, 2, · · · , n replaced by n1, n2, · · · , nr.
Thus, the restriction V of the dM-ZZ to HRρεnk

(Pnk+1)←
· · · ← HRρεnl

(Pnl) has a persistence barcode with at least

dim(HXλ) full-length intervals.
Now, hypothesis (9) implies that for all i we have

εni ≥ (2ϑd +
4

ρ
)εni+1 +

4

ρ
ε,

therefore the inclusion Rρεni+1
(Pni+1)→ Rρεni

(Pni+1) fac-

tors through Cϑdρεni+1
(Pni+1) → C ρ

2
εni

(Pni+1). Further-

more, under our geometric hypotheses, it follows from The-
orem 2.1 that

rankHCϑdρεni+1
(Pni+1)→ HC ρ

2
εni

(Pni+1) = dim(HXλ),

therefore by composition we have

rankHRρεni
(Pni+1)← HRρεni+1

(Pni+1) ≤ dim(HXλ).

Intuitively, this means that only the signal can go through
the link HRρεni

(Pni+1) ← HRρεni+1
(Pni+1), and that the

noise gets killed. More formally, by the Restriction The-
orem 2.3 the total multiplicity of the intervals spanning
[HRρεni

(Pni+1), HRρεni+1
(Pni+1)] in Pers(V) is at most

dim(HXλ). It follows that among these intervals only the
full-length one has non-zero multiplicity. Thus, Pers(V) con-
tains three types of intervals: full-length ones, ephemeral



ones, and ones of the form [HRρεni
(Pni), HRρεni

(Pni+1)].
These are not ephemeral, however they become so once rep-
resented on the scale of the geometric scales.

Note that ε usually remains unknown in practice, so the
user cannot merely set ζ(εni) to be the quantity ρ

2ϑdρ+4
−

2
ϑdρ+2

ε
εni

. The bounds given in Theorem 4.3 suggest to let

ζ be the constant map

ζ =
3ρ+ 20

10(ϑdρ+ 2)
, (10)

so that ζ(εni) satisfies hypothesis (9) as long as εni ≥ 10ε
ρ−10

.
Thus, the conclusion of the theorem continues to hold within
the same sweet range. In fact, any smaller value could be
chosen for ζ(εni) without affecting the sweet range. Nev-
ertheless, the larger ζ(εni) the better in general, since the
smaller the gaps on the geometric scale the more chances
there are that the set of discretization values εni intersects
the sweet range, and furthermore the smaller the gaps the
smaller the complexes involved in the construction of the
discretized Morozov zigzag.

4.4 Image Rips zigzag
We end this section with another Rips zigzag construc-

tion, consisting of a nested pair of Morozov zigzags with
multipliers ρ ≥ η ≥ 0. Canonical inclusions between Rips
complexes give the following commutative diagram at the
homology level.

· · · ← HRρεi(Pi)→ HRρεi(Pi+1)← HRρεi+1(Pi+1)→ · · ·
↑ ↑ ↑

· · · ← HRηεi(Pi)→ HRηεi(Pi+1)← HRηεi+1(Pi+1)→ · · ·
The vertical arrows in this diagram form a homomorphism
from the M-ZZ with multiplier η to the M-ZZ with multi-
plier ρ. The image Rips zigzag (iR-ZZ) is defined as the
image of this homomorphism. More precisely, it is written
as follows, where each HRρεr

ηεr (Ps) denotes the image of the
map HRηεr (Ps)→ HRρεr (Ps).

· · · ← Rρεi
ηεi

(Pi)→ Rρεi
ηεi

(Pi+1)← Rρεi+1
ηεi+1(Pi+1)→ · · ·

Image Rips zigzags have been available in the Dionysus li-
brary [8] since early 2009, with no theoretical guarantee on
their behavior. Here we provide a guarantee on the output
that is similar to (and even slightly better than) the one
obtained in Theorem 4.1 for the oscillating Rips zigzag.

Theorem 4.4. Given a choice of multipliers ρ, η such that
ρ > 10 and 3

ϑd
< η < ρ−4

2ϑd
, suppose P ⊂ R

d and there is

some compact set X ⊂ R
d such that dH(P,X) < ε with

ε < min

{

ϑdη−3
6ϑdη

,
η−3/ϑd
3ρ+η

,
ρ−2ϑdη−4
6(ρ−2ϑdη)

,
ρ−2ϑdη−4

(4ϑd+1)ρ−2ϑdη

}

wfs(X).

Then, for any l > k such that

εl ≥ max

{

3ε

ϑdη − 3
,

4ε

ρ− 2ϑdη − 4

}

, and

εk < min

{

1

6
wfs(X)− ε,

1

ϑdρ+ 1
(wfs(X)− ε)

}

,

the iR-ZZ restricted to HRρεk
ηεk (Pk+1) ← · · · ← HRρεl

ηεl(Pl)
contains only isomorphisms, and its spaces are isomorphic
to HXλ for any λ ∈ (0,wfs(X)). Therefore, its persistence
barcode is made only of full-length intervals, whose number
equals the dimension of HXλ.

Proof. Our hypotheses imply ρ

2
≥ ϑdη, so we can use (7)

to obtain the following diagram where all arrows are canon-
ical inclusions.

· · · ← Cϑdρεi(Pi) → Cϑdρεi(Pi+1)← Cϑdρεi+1(Pi+1) → · · ·
↑ ↑ ↑

· · · ← Rρεi(Pi) → Rρεi(Pi+1) ← Rρεi+1(Pi+1) → · · ·
↑ ↑ ↑

· · · ← C ρ
2
εi
(Pi) → C ρ

2
εi
(Pi+1) ← C ρ

2
εi+1

(Pi+1) → · · ·
↑ ↑ ↑

· · · ← Cϑdηεi(Pi) → Cϑdηεi(Pi+1)← Cϑdηεi+1(Pi+1) → · · ·
↑ ↑ ↑

· · · ← Rηεi(Pi) → Rηεi(Pi+1) ← Rηεi+1(Pi+1) → · · ·
↑ ↑ ↑

· · · ← C η
2
εi
(Pi) → C η

2
εi
(Pi+1) ← C η

2
εi+1

(Pi+1) → · · ·

This diagram induces a homomorphism Φ from the image
Rips zigzag U of parameters η, ρ to the image Čech zigzag
V of parameters ϑdη, ϑdρ. Call U

∗ (resp. V∗) the restriction
of U (resp. V) to the scale range [(εk, Pk+1), (εl, Pl)]. It
turns out that the restriction of Φ to U

∗ is an isomorphism
onto V

∗. To see this, pick an arbitrary index i in the range
[k + 1, l] and consider the following sequence of inclusions
between Čech complexes:

C η
2
εi
(Pi)

a−→ Cϑdηεi(Pi)
b−→ C ρ

2
εi
(Pi)

c−→ Cϑdρεi(Pi+1).

Under our geometric hypotheses, it follows from Theorem 2.1
that the maps c◦ b◦a and b induce homomorphisms of same
rank at the homology level. Since a and c factor through
Rips complexes as shown above, rank inequalities induced by
composition imply that the map HRρεi

ηεi
(Pi) → HCϑdρεi

ϑdηεi
(Pi)

is an isomorphism. The same argument holds for the map
HRρεi

ηεi
(Pi+1) → HCϑdρεi

ϑdηεi
(Pi+1), with i ∈ [k, l − 1]. Thus,

the restriction of Φ to U
∗ is indeed an isomorphism onto V

∗.
The conclusion of the theorem follows then from the fact
that the spaces in V

∗ are isomorphic to HXλ and the maps
in V

∗ are isomorphisms, as guaranteed by Theorem 2.1.

5. COMPLEXITY BOUNDS
In this section we assume that the ordering of the points

of P is by furthest point sampling3. Then, every prefix Pi

is an εi-sparse εi-sample of P , and so standard ball packing
arguments like the one used in [11, Lemma 4.1] can be ap-
plied to bound the memory usage and running times of the
various Rips zigzags.

Memory usage. The most relevant parameter is the mul-
tiplier ρ, which determines the size of the biggest complex
in a Rips zigzag.

Theorem 5.1. Suppose P is a finite metric space of dou-
bling dimension d. Then, for any k ≥ 0, the number of
k-simplices in the current complex at any time of the con-
struction of the M-ZZ of parameter ρ is at most 2O(kd log ρ)n,
where n is the cardinality of P . The same bound applies to
the oR-ZZ and iR-ZZ of parameter ρ, regardless of the value
of η ≤ ρ. Finally, given a scale drop function ζ bounded
from below by some quantity ζ0 > 0, the size bound for the

dM-ZZ is 2
O(kd log ρ

ζ0
)
n.

3Arbitrary orderings may lead to local oversampling and
thus to an uncontrolled local growth of the complexes.



We use the doubling dimension here because it may be smaller
than the Euclidean dimension and gives a sharper bound.

Since the theoretical lower bounds on ρ derived in Sec-
tion 4 are constant (ρ > 10), one is allowed to set ρ to some
constant value in practice and benefit from our guarantees
on the quality of the output. Meanwhile, Theorem 5.1 en-
sures that the number of k-simplices in the current complex
remains at most 2O(kd)n throughout the construction of the
M-ZZ, oR-ZZ or iR-ZZ. When using the dM-ZZ, one can also
set ζ to be a constant map equal to some constant value as
in (10), thus benefiting from the theoretical guarantees on
the quality of the output while maintaining the number of k-
simplices in the current complex below 2O(kd)n throughout
the construction of the zigzag. Note however that the exact
complex size is bigger than the one achieved with the other
types of Rips zigzags when ζ < 1. These asymptotic bounds
are as good in order of magnitude as the ones achieved with
previous lightweight structures [7, 16].

Running Time. In experiments, we observed a significant
slowdown in the running time of the oR-ZZ compared to
the M-ZZ, iR-ZZ and dM-ZZ. This is a result of the oR-
ZZ inserting and removing the same simplices many times.
Thus, the total number of insertions is a relevant indicator
of running time.

Theorem 5.2. Suppose P is sitting in some metric space
of doubling dimension d. Then, for any k ≥ 0, the total
number of k-simplices inserted in the construction of the M-
ZZ of parameter ρ is at most 2O(kd log ρ)n, where n is the
cardinality of P . The same bound applies to the iR-ZZ of pa-
rameter ρ, regardless of the value of η ≤ ρ. For the oR-ZZ of
parameters η ≤ ρ, the bound becomes 2O(kd log ρ)n2. Finally,
given a scale drop function ζ bounded from below by some

quantity ζ0 > 0, the bound for the dM-ZZ is 2
O(kd log ρ

ζ0
)
n.

6. EXPERIMENTS
The Rips package of the C++ library Dionysus [8] pro-

vides efficient implementations of the M-ZZ and iR-ZZ. Our
implementations of the dM-ZZ and oR-ZZ are built around
this package and will be integrated into it in the near future.

As a proof of concept, we ran our code on the so-called
Clifford data set from [13], which was obtained by evenly
spacing 2, 000 points along the line l : y = 20x mod 2π
in the 2-d flat torus (R mod 2π)2, then mapping the points
onto the Clifford torus in R

4 via the embedding f : (u, v) 7→
(cosu, sinu, cos v, sin v). This data set admits three non-
trivial candidate underlying spaces: at small scales, the im-
age of l through f , which is a closed helicoidal curve on the
torus; at larger scales, the torus itself; at even larger scales,
the 3-sphere of radius

√
2 on which the torus is sitting.

zigzag parameters complex size # insertions
M-ZZ ρ = 3 107927 398107
dM-ZZ ρ = 3, ζ = 0.9 162919 604084
iR-ZZ η = 3, ρ = 3.2 174436 1003215
oR-ZZ η = 3, ρ = 3.2 174436 7252772

Table 1: Maximum complex size (in number of sim-
plices) and total number of simplex insertions.

We ran the M-ZZ, dM-ZZ, iR-ZZ and oR-ZZ using the pa-
rameter values given in Table 1. Although these values lie

Figure 1: Barcode of the M-ZZ.

Figure 2: Barcode of the dM-ZZ.

outside the intervals prescribed by the theory, they were suf-
ficient to obtain good results in practice. The corresponding
results for the M-ZZ and dM-ZZ are reported in Figures 1
and 2 respectively. The barcodes are represented on a log-
arithmic geometric scale (i.e. the horizontal axis shows the
value of log2 εi), with ephemeral (length zero) intervals re-
moved for clarity. The results obtained with the iR-ZZ and
oR-ZZ are similar to Figure 2 and therefore omitted.

The three spaces underlying the input data (curve, torus,
3-sphere) appear in all these barcodes, meanwhile the topo-
logical noise remains small (M-ZZ) or even ephemeral (dM-
ZZ, iR-ZZ, oR-ZZ). Of particular interest is the 3-sphere,
whose corresponding 3-homology cycle appears only at large
scales and for a short while due to the fact that the 3-
sphere is not densely sampled by the point cloud. This
delicate 3-cycle certainly exists in the barcode of the stan-
dard Rips filtration, however it cannot be observed in prac-
tice. As mentioned in [13] the union of balls of same ra-
dius α around the data points covers the entire sphere only

for α ≥
√

4− 2
√
2, so in view of (7) the corresponding 3-

homology cycle can appear in the Rips filtration only at a

parameter value α ≥
√

4−2
√
2

ϑd
>
√
2. Now, a simulation

reveals that the 4-skeleton of the Rips complex at such pa-
rameter values contains more than 31 billion simplices, a
size that lies at least 2 orders of magnitude beyond the sizes
currently handled by existing implementations. On a 24-
GB machine we were able to store the 4-skeleton of the Rips
filtration and compute its persistent homology within the
main memory up to α ≈ 0.625 using Dionysus. The corre-
sponding truncated barcode is represented on a log2 scale
in Figure 3. As expected, it shows only the curve and the
torus, not the 3-sphere.

Figure 3: Barcode of the standard Rips filtration.

For comparison we recall in Figure 4 the barcode obtained



Figure 4: Barcode of the mesh-based filtration.

by Hudson et al. using their mesh-based filtration [13]. Al-
though the scale has been adapted to be the same as in
the previous figures, any direct comparison of the barcodes
should be made with the caveat that the intervals are half-
open as in [13], rather than closed as in the present paper.
Nevertheless, the general trend here is that although the
three spaces underlying the input data do appear in the
barcode, the amount of noise is significant and its structure
is quite irregular, despite the regularity of the data. Most
notably, the amplitude of the noise in 1- or 2-homology is
larger than the amplitude of the signal in 3-homology, which
tends to obscure the information carried within the barcode
from the user’s point of view. The superiority of Rips zigzags
over mesh-based filtrations is also in terms of efficiency: as
reported in [13] the mesh-based filtration contains 12 million
simplices, whereas our Rips zigzags contain less than 200,000
simplices at any given time—see Table 1. The oR-ZZ did
perform over 7 million simplex insertions and deletions in
total, however the other zigzags performed much fewer such
operations as predicted by Theorem 5.2. In practice, com-
puting any of our Rips zigzags together with its barcode took
only a few minutes on a single Intel Xeon CPU core running
at 2.40 GHz, whereas computing the mesh-based filtration
and its barcode took hours on a similar machine.

7. CONCLUSION
In this paper, we explored several Rips-like zigzags that

achieve both small size and bounded topological noise for
homology inference. While our size bounds are comparable
to the ones obtained in previous work, our bounds on the
noise are clearly better since they claim the noise is either
totally absent or just ephemeral.

Our proofs rely on general new techniques for manipulat-
ing and comparing zigzag modules. We hope that these tech-
niques will find further use and stimulate new research and
applications of zigzag persistence. We refer the interested
reader to [15, Section 6] for an in-depth discussion of the
potential and limitations of our results. For now we wish to
emphasize that the Arrow Reversal Theorem 3.1 may open
the door to a new approach to the open question of defining
interleavings between zigzag modules and deriving stabil-
ity results for their persistence barcodes. This approach is
based on a reduction to non-zigzag persistence via repeated
arrow reversals, and it provides both a notion of interleaving
and a corresponding stability result. It remains unclear how
canonical this approach is, and we intend to investigate this
question further in the near future.
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