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Abstract

The ongoing Zika virus epidemic in the Americas and the observed association with both

fetal abnormalities (primary microcephaly) and adult autoimmune pathology (Guillain–Barré

syndrome) has brought attention to this neglected pathogen. While initial case studies gen-

erated significant interest in the Zika virus outbreak, larger prospective epidemiology and

basic virology studies examining the mechanisms of Zika viral infection and associated

pathophysiology are only now starting to be published. In this review, we analyze Zika fetal

neuropathogenesis from a comparative pathology perspective, using the historic metaphor

of “TORCH” viral pathogenesis to provide context. By drawing parallels to other viral infec-

tions of the fetus, we identify common themes and mechanisms that may illuminate the

observed pathology. The existing data on the susceptibility of various cells to both Zika and

other flavivirus infections are summarized. Finally, we highlight relevant aspects of the

known molecular mechanisms of flavivirus replication.

Zika virus (ZIKV), a mosquito-vectored flavivirus, was first isolated in 1947 from a sentinel

research monkey caged in the Zika forest canopy within Uganda [1,2]. Soon after discovery,

ZIKV was observed to infect humans [3]. Travel, shipping, and the worldwide distribution of

human hosts and mosquito vectors (traditionally Aedes aegypti but likely other Aedes species

and possibly Culex species [4–6]) has facilitated a global radiation of Zika viral infection [7].

More recently, introduction of ZIKV into naïve human populations has yielded rapidly spread-

ing outbreaks in various Pacific island clusters (Cook Island, Easter Island, French Polynesia,

and Micronesia), has resulted in the ongoing epidemic in the Americas (which may have origi-

nated in Haiti [8]), and has subsequently spread throughout Brazil, the Caribbean, and world-

wide via travelers visiting affected regions [9,10]. In ZIKV-endemic regions such as continental

Africa and Asia, there is epidemiologic support for the hypothesis that people are exposed to
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ZIKV during childhood and thereby develop immunity prior to puberty in both males and

females. Introduction of ZIKV into dense, immunologically naïve populations has facilitated

rapid viral evolution, including conserved modifications consistent with possible adaptation to

a human host [11,12]. Most pertinent to the current concern about ZIKV is the infection of

pregnant women who are immunologically naïve to ZIKV, intrauterine infection of their

babies, and associated increased risk of congenital malformations consistent with other fetal

pathogens such as those historically referred to by the TORCH acronym (Toxoplasmosis,

Other [HIV, syphilis, varicella zoster virus (VZV), etc.], Rubella, Cytomegalovirus [CMV], and

Herpes simplex virus-2 [HSV]).

ZIKV fetal syndrome resembles other intrauterine viral infections associated with congeni-

tal malformations but causes more severe abnormalities. Typical presentation of interpartum

zika infection includes multiple defects: microcephaly, facial disproportionality, cutis gyrata,

hypertonia and/or spasticity, hyperreflexia, and irritability. Abnormal neurologic image find-

ings include coarse and anarchic calcifications mainly involving the subcortical cortical transi-

tion and the basal ganglia, ventriculomegaly secondary to the lack of brain tissue, and

lissencephaly [10,13–16]. Genitourinary, cardiac, and digestive systems may also be affected

[17]. This alarming and consistent clinical presentation provoked a rapid regional mobilization

of public health experts in Pernambuco (in the Northeast Region of Brazil). Investigation soon

revealed a correlation between ZIKV infection and the unusually high rate of infant micro-

cephaly observed at the heart of the outbreak in Recife, Pernambuco. The striking features of

ZIKV fetal syndrome may have gone unrecognized during prior outbreaks in the Pacific islands

or may involve regional confounding variables or risk cofactors present in Brazil, such as prior

exposure to dengue virus (DENV) [18,19], genomic changes in regionally circulating ZIKV

[20–23], immunologic naivety and vaccination status of local populations [24,25], and expo-

sure to pyriproxifen-containing insecticides [26] or thalidomide [27–30]. The current pathol-

ogy may also be consequent to recent viral mutations, such as observed changes in the prM

protein of the Brazilian ZIKV strains [11,31,32]. It has been demonstrated that ZIKV can infect

human induced pluripotent stem cell–derived neural progenitor cells as well as human neuro-

spheres and brain organoids in vitro, resulting in dysregulation of cell cycle–related pathways

and increased cell death [33–36]. While the etiology remains unconfirmed, there appears to be

a shift in the spectrum and incidence of birth defects between the latter stage of the French

Polynesian outbreak [37] and what is now being observed in Recife, Rio, and throughout

northern Brazil and surrounding regions [38,39]. In general, the combination of epidemiologic

association and experimental research results strongly support a causal relationship between

intrauterine ZIKV infection and fetal primary microcephaly.

Historically, human infection with ZIKV has presented in adults and young children as a

mild, self-limiting, non-life threatening infection, with clinical symptoms appearing in 20% of

infected patients and up to 80% being clinically asymptomatic during initial infection. Symp-

toms of acute ZIKV infection in otherwise immune-competent adults in the tropical Americas

have clinical presentations similar to acutely infected patients in Southeast Asia who have been

confirmed as Zika viral load–positive. When present, these symptoms typically persist an aver-

age of 4 to 5 days to approximately 1 week from initial onset of headache and fever. Key major

symptoms following retro-orbital and frontal headache and fever include less consistent pre-

sentations of malaise, arthalgias, conjunctivitis, and pruritic maculopapular rash. More severe

cases include escalation of the symptoms above as well as nausea, vomiting, and gastrointesti-

nal distress [7]. The most recent assessment of clinical signs and symptoms of acute Zika virus

infection observed in Puerto Rico includes rash (74%), myalgia (68%), headache (63%), fever

(63%), arthralgia (63%), eye pain (51%), chills (50%), sore throat (34%), petechiae (31%), con-

junctivitis (20%), nausea and/or vomiting (18%), and diarrhea (17%) [40]. Based on blood
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bank screens, viremia can begin up to 10 days before onset of symptoms [41], and the modest

plasma viral titers observed often clear within 2 days of presentation with clinical symptoms,

similar to what is observed with dengue [42]. At present, definitive diagnosis requires a poly-

merase chain reaction (PCR)-based test, and development of a rapid serologic diagnostic test is

complicated by antibody cross-reactivity with other cocirculating arboviruses [43,44]. Historic

serologic surveillance studies have been compromised by acute Zika infection induction of

high titers of anti-dengue and even anti-chikungunya (CHIKV) convalescent immunoglobulin

G (IgG) levels, routinely at titers above 1:1,280 [45,46]. Recently, the Centers for Disease Con-

trol and Prevention (CDC) has published guidelines for the testing of convalescent sera to rule

out cross-reactivity by completing a time-intensive series of steps [47].

Current best estimates for the basic reproductive ratio (R0) for ZIKV varies between 1.2 and

6.6 [48–50], with a seroconversion rate approaching approximately 70% upon achieving maxi-

mal herd immunity. This limitation on further infection within a naïve population is typically

achieved within 4 to 18 months of initial introduction [51,52]. Zika virus infection–associated

acute motor axonal neuropathy-type Guillain–Barré syndrome (GBS) has been calculated to

have occurred at a rate of approximately 1 in 5,000 cases of ZIKV during the outbreak in

French Polynesia [19]; initial data for the rate of GBS and all combined neurologic disease in

United States territories may be as high as 1% [40]. However, additional confirmation of these

reports may show these numbers to be excessive. A clear temporal relationship between the

peak of Zika virus infection in a susceptible population and a peak of GBS incidence 5 to 9

weeks later has been demonstrated, consistent with an autoimmune-mediated (rather than

direct viral infectious neuropathy) pathologic mechanism [53]. Interim analysis of an ongoing

prospective case study of ZIKV-infected pregnancies indicates a birth defect rate of circa 29%

[38]. The lifetime cost for US care of an infant born with microcephaly has been estimated at

10 million in current (2016) US dollars [54]. In Texas between 2001 and 2010, 431,296 hospital

stays were reported for children with birth defects, with total charges of US$24,800,000,000

[55]. For the sake of illustration, the potential impact of these epidemiologic estimates on the

anticipated 2017–2018 Puerto Rico birth cohort is summarized in Fig 1.

Zika virus has historically been considered to be vectored by Aedes aegyptimosquitoes. In

contrast, A. albopictus is perceived to be the dominant vector of DENV, CHIKV and now

ZIKV in temperate climes of Southern Brazil and Northern Argentina. Mosquito traps show

no A. aegypti in these regions, but the regional ZIKV incidence of approximately 1:1,000 sug-

gests that the cold-tolerant A. albopictusmay be a major insect vector for ZIKV transmission

above 2,000 meter elevations and in cooler climes. Zika virus sequences have been difficult to

detect in trapped mosquitoes from outbreak areas but have recently been recovered from A.

albopictusmosquitoes by the laboratory of the Institute of Epidemiological Diagnosis and Ref-

erence (InDRE), which functions as part of Mexico’s National Epidemiological Surveillance

System (SINAVE) [56]. Identifying the virus in wild-caught mosquitoes is not a simple task.

However, reports are starting to circulate describing the isolation of ZIKV from or the growth

of the virus in Culexmosquitoes [5]. The expanded geographic range and behavior of this new

potential vector must be considered when considering ZIKV prevention.

The current outbreak has highlighted other routes of transmission, including person to per-

son spread. Infective ZIKV has been isolated from urine and saliva of patients in Brazil [57].

ZIKV is more stable than DENV [31], and so it cannot be assumed that sexual transmission is

the only means of direct human-to-human infection. In the current outbreak in the Americas,

there is strong evidence for frequent sexual transmission of the virus, including from otherwise

asymptomatic individuals [58–62]. As only one in five ZIKV-infected individuals develop clini-

cal symptoms, sexual transmission from an otherwise asymptomatic infected male to his part-

ner [62] suggests the possibility of large numbers of occult-infected males in endemic regions
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who are unknowingly transmitting ZIKV to their partners. Furthermore, the risk of sustained

viral loads in males returning from ZIKV-endemic regions to foreign nations with temperate

climates and endemic Aedes and Culexmosquitoes poses a theoretical risk that male travelers

may expand the range of sylvatic transmission in regions with capable Aedes (and perhaps

Culex) vectors. While ZIKV RNA can be detected in breast milk, urine, semen, and sputum

from infected individuals [63], replication-competent virions have been most readily cultured

from semen samples. Semen ZIKV RNA levels may be up to 100,000 times higher than corre-

sponding plasma levels [64]. Preferential ZIKV replication in testes has been hypothesized.

ZIKV is shed in semen for an extended period, and the average duration of shedding has yet to

be determined [64]. The stability of ZIKV in aqueous suspension, on surfaces, or as fomites is

unknown, but other flaviviruses can persist under various ambient conditions for extended

periods [65–69]. The presence of infectious ZIKV particles in semen, urine, and saliva of

patients during the acute phase may play a critical role in the spread of ZIKV within infected

regions. The relative contribution of alternative nonvectorial (direct human-to-human) ZIKV

transmission routes needs further investigation, particularly in light of the increased stability of

ZIKV relative to other flaviviruses [57].

Sequence comparisons of ZIKV isolates indicate significant genetic differences between his-

toric samples obtained from mosquito species and more modern isolates from human sources,

including human samples obtained during the current outbreak in the Americas [11,12]. Any

Fig 1. Projected teratogenic impact of maternal ZIKV infection on 2017–2018 birth cohort, Puerto Rico. For illustration purposes, the potential
impact of unencumbered ZIKV spread through Puerto Rico on the cumulative one-year incidence of ZIKV-associated birth defects has been estimated
and graphically summarized. Birth defect rate is based on preliminary data involving defects visible by in utero ultrasound examination from Brazilian (Rio)
prospective pregnancy cohort study [38]. Final seroconversion rate of 70% is based on seroconversion observed with prior island outbreaks in Yap and
French Polynesia [51,52]. Annual birth cohort for Puerto Rico is approximated as 36,000 infants, a number which presumes that the incidence of
pregnancy is not impacted by anticipated risk of ZIKV infection or public health policy recommendations. Total birth defect rate associated with
intrauterine ZIKV infection in Northern and Central Brazil is currently not determined and may exceed 30% of all Zika-infected pregnancies. WHO
estimates of the US costs of caring for a single child with microcephaly are as high as $10 million [54]. 75 billion US dollars = US$75,000,000,000.

doi:10.1371/journal.pntd.0004877.g001
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clinical significance associated with these viral genetic changes has yet to be elucidated,

although studies in murine models and with human neurospheres supports the hypothesis that

the ZIKV strain circulating in the Americas is neuropathic and more teratogenic than an Afri-

can isolate [70].

The apparent teratogenic effects of ZIKV infection have turned what was once considered a

relatively benign pathogen into a subject of great social and scientific concern. Detection of

ZIKV RNA and particles in amniotic fluid and fetal brain obtained from the products of con-

ception strongly suggest that the virus is capable of directly infecting fetal tissue [15,16]. When

considering the vast array of human pathogens, the probability of a mother passing an infec-

tion to her developing fetus is relatively rare. However, examples of pathogens consistently

capable of vertical intrauterine transmission do exist and can be associated with teratogenic

effects. These viral diseases involving intrauterine infection may illuminate and inform

research into the possible mechanisms by which ZIKV may induce fetal neuropathology, as

well as other birth defects, and may facilitate development of public health risk mitigation strat-

egies and potential treatments.

TORCH Viral Pathogens

Teratogenic infectious agents that are vertically transmitted from mother to infant during preg-

nancy, childbirth, or breastfeeding have traditionally been classified as TORCH pathogens. For

the purpose of this review, we will focus on the classical viral TORCH pathogens: rubella, cyto-

megalovirus, herpes simplex virus, and varicella zoster virus. These viruses can cross the pla-

centa and cause congenital defects including, but not limited to, microcephaly, growth and

mental retardation, heart disease, hearing loss, and blindness [71–73]. Years of scientific

research concerning TORCH pathogen infection and teratogenicity have yet to identify thera-

peutic interventions that reduce occurrence of serious medical sequela and miscarriages for

most of these viruses. Current preventative measures are limited to vaccination and avoiding

viral exposure or the use of acyclovir for HSV infections [74]. These approaches have limita-

tions and are not globally available. The most extensive fetal damage associated with viral

TORCH infections typically takes place when the mother is infected during first eight weeks of

the pregnancy, during which time the central nervous system (CNS) of the developing fetus is

actively forming. With most viral TORCH pathogens, birth defect risk and severity is signifi-

cantly reduced when infection occurs after seventeen weeks of gestation [75]. Often, first tri-

mester infections result in miscarriages. Not all fetal congenital abnormalities manifest

clinically at birth and may present later in a child’s development. As summarized in Table 1,

presence of congenital defects at birth is typically linked to TORCH infection at earlier stages

of gestation.

Rubella (German Measles)

Prior epidemic outbreaks of rubella and consequent associated birth defects may provide the

best illustration of the neonatal health risks of the current ZIKV outbreak in the Americas [76],

although the incidence of congenital rubella syndrome (CRS) associated with initial outbreaks

in rubella-naïve populations [77] appears to have been significantly less than what is being doc-

umented with ZIKV in Brazil [38]. Rubella virus (RuV) is a member of the Rubivirus genus

and Togaviridae family. The rubella genome is encoded on a positive single-stranded RNA

(ssRNA), which is assembled on a protein scaffold and surrounded by a lipid envelope. Host

cell infection with RuV is driven by two glycoproteins, E1 and E2. Encoded in by the RuV

genome, these glycoproteins assemble as heterodimers on the surface of the viral envelope and

function similarly to the fusion proteins of flaviviruses [78,79]. E1 protein trimer directly
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inserts into the host cell plasma membrane lipid bilayer and, using a hairpin motion, brings the

RuV closer to the cell surface to facilitate endocytosis [80,81]. The release of the viral genome

into the host cell occurs via low pH and with the Ca2+-dependent E1 trimer conformational

changes associated with maturing endocytic vesicles [82]. Recent work has identified myelin

oligodendrocyte glycoprotein as a receptor with affinity for RuV E1 protein [83]. This discov-

ery may provide a causal link between rubella virus and brain damage in fetuses with CRS, as

use of this receptor by the virus may enable infection of oligodendrocytes in the developing

brain. RuV infection of pregnant women has a pronounced teratogenic effect, especially during

the first gestational trimester [80]. Pathological and immunohistochemical analyses of aborted

fetuses with CRS demonstrated widespread necrosis to organs—including the eye, heart, brain,

and ear—and are associated with the presence of rubella virus in all tissues [84]. In vitro studies

suggest that RuV infection inhibits normal growth and differentiation of human embryonic

mesenchymal cells [85]. RuV-encoded replicase P90 protein has been shown to disrupt actin

cytoskeleton formation by directly binding and inhibiting Cytron-K kinase, a cytokinesis regu-

latory protein [86]. Inhibition of Cytron-K leads to cell cycle arrest and apoptosis in developing

neuronal populations and retina of in vitro cultured mouse embryos [87]. Additionally, rubella

virus infection of placenta and embryonic cells induces interferon expression, especially in the

placenta [88]. This ability to infect and alter the placenta likely allows the virus access to the

rest of the fetus. The most commonly observed outcomes of CRS are congenital cataracts

(97.4%), inner ear abnormalities (73.9%), microcephaly (68.4%), and congenital heart defects

(57.9%) [73,84,89,90]. If the infection occurs during the first trimester, the rate of CRS is 80%–

90%. Odds of intrauterine development of extensive CRS dramatically decreases after 12 weeks

of gestation [71].

Cytomegalovirus (CMV)

CMV is a member of the Herpesviridae family, Betaherpesvirinae subfamily, and is also known

as human herpesvirus 5 (HHV-5). Intrauterine CMV infection is linked to development of

severe neurological handicaps, microcephaly (36%), intracranial calcifications, microgyria, eye

defects, and sensorineural hearing loss [89,91–93]. Congenital CMV infections are associated

Table 1. Selected viral TORCH pathogens and associated morbidity. After [75].

Viral TORCH
Pathogen

Symptoms First or Second
Trimester
Teratogen

Third
Trimester
Teratogen

Primary
microcephaly

Spontaneous
abortion or fetal

death

Rubella virus
(Germanmeasles)

Defects in multiple organ systems, including the
ophthalmic (cataracts and microphthalmia), cardiac,
and neurological (deafness, mental retardation), and
increased risk of type 1 diabetes in childhood

+ - + +

Cytomegalovirus Mental retardation, sensorineural hearing loss,
jaundice, hepatosplenomegaly, petechiae, preterm
birth, preeclampsia, and fetal growth restriction

+ - + +

Herpes simplex virus Encephalitis, sepsis, cataracts, pneumonitis,
myocarditis, hepatosplenomegaly, chorioretinitis,
and mental retardation

+ + + +

Varicella zoster virus
(chickenpox)

Skin lesions, neurological and eye defects, limb
hypoplasia, fetal growth restriction, and defects of
multiple organ systems

+ - +/- +

Zika virus Microcephaly, facial disproportionality, cutis gyrata,
hypertonia and/or spasticity, hyperreflexia, and
irritability; abnormal neuroimages include
calcifications, ventriculomegaly, and lissencephaly

+ + + +

doi:10.1371/journal.pntd.0004877.t001
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with radiographic findings that vary with gestational age at time of infection. Lissencephaly,

including thin cerebral cortices, extremely diminished volume of white matter, delayed myeli-

nation, small cerebella, and very enlarged lateral ventricles have been correlated with CMV

infection prior to 18 weeks of gestational age, whereas those cases of congenital CMV infection,

which present with more normal gyral patterns (normal cerebral cortices, slightly diminished

volume of white matter, delayed myelination, normal cerebella, and slightly enlarged lateral

ventricles), are associated with third trimester infection [94,95]. These findings are similar to

those observed with heritable disorders, including cystic leukoencephalopathy without mega-

lencephaly, Aicardi–Goutières syndrome, type 1 interferonopathies, and RNASET2-related

leukodystrophy [96,97].

CMV is a double-stranded DNA virus (dsDNA) with a complex envelope structure of 12

glycoproteins. Because of this complexity, CMV can bind to a broad spectrum of cell surface

receptors and quickly becomes ubiquitous in the human host after initial infection [98]. CMV

glycoprotein gB and heterodimer gM/gN have affinity to heparan sulfate proteoglycans

(HSPGs), which are abundantly present on the surface of most cell types [99,100]. Addition-

ally, CMV has been shown to bind epidermal growth factor receptor (EGFR) and β1 integrin

co-receptors, thereby facilitating proximity to the host cell membrane [101,102].

CMV crosses host cell barriers via membrane fusion mediated by the gH/gL/gO and gB

viral envelope glycoproteins [101,103]. CMV infection is mostly asymptomatic in immune-

competent adults, and forms a lifelong latent infection. Primary CMV infection during preg-

nancy yields the highest risk of vertical transmission (32%) relative to virus reactivation in

chronically infected mothers (1.4%) [104]. CMV infection of the cytotrophoblast progenitor

cells associated with floating villi in the placenta appears to elicit a shift in the Th1-type cyto-

kine and Th2-type cytokine (Th1/Th2) ratio balance of amniotic fluid and placental tissues

towards a Th1 profile by upregulation of proinflammatory cytokines like monocyte chemoat-

tractant protein-1 (MCP-1) and tumor necrosis factor (TNF) [105,106]. This shift has been

hypothesized to directly induce defects in placental formation and congenital abnormalities.

There is significant evidence supporting the hypothesis that CMV virions transit placental bar-

riers to fetal infection by co-opting the neonatal Fc receptor–mediated transport pathway for

IgG (transcytosis) [107]. However, replication of CMV in uterine endothelial cells may be

required for subsequent infection of cytotrophoblasts [108,109].

HSV (HSV-1 and HSV-2)

HSV is a dsDNA enveloped virus belonging to the Herpesviridae family. Similar to CMV, HSV

has a large number of glycoproteins present on the surface of its viral envelope and can bind to

multiple host cell receptors [110]. HSV infection leads to formation of oral (HSV-1) and genital

(HSV-2) lesions in adults. HSV host cell entry requires a viral glycoprotein, primarily glycopro-

tein D (gD) binding to heparan sulfate and HveA (Herpes Virus Entry Mediator [HVEM]

receptor), HveB (nectin-2), or HveC (nectin-1) receptors on the host cell plasma membrane

surface. HSV enters the host cell via membrane fusion or endocytosis [110]. HSV can enter the

CNS of adults and in rare cases has been associated with clinical encephalitis [111]. HSV infects

neuronal cells through the nectine-1 receptor and can form a latent and immunologically privi-

leged reservoir of infection in the brain [112].

In contrast to CMV, cross-placental transition of HSV from mother to fetus is uncommon

[113]. Cells of the outer layer of the placenta do not express HveA, HveB, or HveC and cannot

be infected by HSV [114]. Congenital HSV infection is very rare and usually occurs when a

serologically negative mother is exposed to the virus during the first trimester of pregnancy.

Congenital HSV pathology includes multiorgan failure, liver necrosis, encephalitis,
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microcephaly (32%), hydrocephalus, chorioretinitis, and skin lesions [115,116]. HSV infection

of placenta-associated cells induces inflammation and necrosis of placental tissue [115]. Neo-

natal HSV-2 infection during childbirth or HSV-1 infection during the first year of life is more

common and is associated with up to 40% mortality. Aggressive anti-HSV treatment of neo-

nates with acyclovir often controls the virus at the cost of long-lasting health risks to the child

[117]. There is a higher risk for HSV infection of the infant during childbirth in mothers that

acquired genital HSV during the last trimester (~50%), while peripartum HSV-2 reactivation is

associated with less than 1% of neonatal infections [117]. This result suggests the role of mater-

nal antibodies in protection of the child from HSV infection during birth. Congenital HSV

infection is differentiated from perinatal infection by early onset (within 24h of birth) and

increased severity of the symptoms [71]. The relatively rare event of HSV microcephaly is

exclusively associated with congenital infections [116].

VZV (Chickenpox)

Varicella zoster virus is a dsDNA enveloped virus. It belongs to Herpesviridae family and

Alphaherpesvirinae subfamily. VZV and HSV belong to the same subfamily and share many

characteristics [118]. Similar to HSV, VZV can cause encephalitis and can also form latent

viral reservoirs in the brain [111,119]. The VSV viral envelope glycoprotein gE is essential for

infection. This protein binds the insulin-degrading enzyme (IDE) receptor and employs

heparan sulfate to facilitate host cell infection [120]. Congenital VZV is associated with a high

neonatal mortality rate (30%). Primary VZV infection during the first 6 months of pregnancy

is associated with a 25% risk of in utero infection [72]. Twelve percent of intrauterine infections

will result in a range of birth defects, including limb hypoplasia, microcephaly, hydrocephaly,

mental retardation, and cataracts [72], in many ways similar to the disease spectrum currently

observed with Zika congenital syndrome.

Zika Virus: A New Viral TORCH Pathogen

The list of TORCH viral pathogens is constantly expanding, and sufficient clinical data support

adding ZIKV to the list. The exposure of a naïve population to a new virus which has histori-

cally been mosquito-vectored, is sexually transmissible, and may be capable of direct human-

to-human transmission by other means presents a greater challenge. With the emerging global

threat of ZIKV infection to pregnant women, it is critical that we improve our understanding

of the mechanism(s) of intrauterine infection and of the medical management of subsequent

neurologic disease.

Examination of the classic TORCH pathogens reveals some common themes that can

inform research concerning ZIKV fetal neuropathogenesis: these agents either infect the pla-

centa or infect specific tissues in the fetus linked to pathology. For example, rubella can infect

the placenta and CNS tissue; CMV infects and damages the placenta; HSV infects cells proxi-

mal to the placenta, leading to necrosis; and HSV as well as VZV are capable of infecting neu-

rons. In some cases, specific molecular mechanisms that exacerbate the resulting pathology

have been identified. Further exploration of cell surface receptors and placental permeability

may assist with development of interventional prophylactics and therapeutics for pregnant

women.

Zika Virus Infection of the Placenta and Fetal Brain

In order to successfully establish an infection in a target tissue, all viruses must go through the

same basic steps: the virus must overcome local host defenses at the site of infection (both bar-

rier and immunologic response), infect a cell that is both susceptible and permissive to
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producing infectious virions, and the infected cell must release sufficient numbers of infectious

particles that are able to travel to the target tissue and again infect a susceptible cell. Analyzing

what we know about ZIKV infection in terms of this model can shed light on the possible

mechanisms by which ZIKV might cause fetal abnormalities after initial maternal infection.

There are many plausible alternative hypotheses for Zika virus-induced fetal neuropatho-

genesis [121]. These alternatives generally fall into two categories: infection of fetal tissue by

ZIKV or transcytosis of other factors that are causative of Zika congenital syndrome. Infection

of fetal tissue may involve transcytosis of ZIKV from mother across the placenta or infection of

the placenta itself. Either option may lead to dissemination of the virus in the fetus and subse-

quent infection of the developing brain. Infection of the placenta and resulting inflammatory

response may indirectly alter neural development. Transcytosis of (yet to be defined) antigen-

specific immunoglobulins or other maternal molecules related to the development of ZIKV

GBS may directly harm the fetal brain without requiring viral replication in nervous tissue

[19,122,123]. ZIKV transfer and infection of the developing fetal brain may occur directly as

free virions, as virion non-neutralizing antibody complexes [124], or via infected Hofbauer or

other migratory cells [125,126]. Activation of TLR (Toll-like receptor)-3 by ZIKV binding to

nervous tissue cells may directly induce damage without requiring viral replication [36]. Pla-

cental infection by ZIKV—triggering induction and release of inflammatory response–associ-

ated molecules—may be sufficient to indirectly damage the fetal CNS [127–129]. These

possible mechanisms are not mutually exclusive and may operate at different stages of fetal

development.

The placenta represents a major barrier to fetal infection. This organ has evolved pathways

for regulating the transport of materials, metabolites, oxygen, and electrolytes as well as both

innate and adaptive immunologic effectors (particularly maternal immunoglobulin) between

the mother and fetus. Soluble factors, oxygen, and cells can all be selectively exchanged. Despite

the relatively common event of infection of a pregnant woman by different viruses, transpla-

cental passage of virus and intrauterine fetal infections are rare. This high degree of selectivity

is largely due to a specialized outer placental layer: the syncytiotrophoblast, a large, multinu-

clear body formed by the fusion of multiple cells into a syncytium during the second trimester

of fetal development [130]. This fusion into a single giant cell avoids the problems of maintain-

ing intercellular junctions, which are sufficiently tight to prevent the unregulated movement of

large molecules (and pathogens). In order for a virus to reach the fetus after this event, ZIKV

must either have a mechanism to bypass the syncytiotrophoblast barrier or must directly infect

the placenta itself, as has been observed with various viral TORCH pathogens. One possible

method for the passage of ZIKV across the placenta to the fetus is through the mechanism that

facilitates unidirectional transmission of maternal antibodies to the amniotic fluid and devel-

oping embryo [131,132]. The neonatal Fc receptor (FcRn or FCGRT) is proposed to be

involved in the recognition of maternal IgG and in uptake of these antibodies by the cells of the

infant gut. In addition, neonatal Fc gamma receptor IIb2 molecules expressed in human villous

endothelium (within the FCGR2B2 compartment) actively participate in endothelial transcyto-

sis of maternal IgG [133,134]. RAB3D, a member of the RAS-related protein Rab family,

appears to play a key role in regulating the activity of the FCGR2B2 organelle and therefore

may influence transport of either autoimmune-associated antibodies or antibody-coated

ZIKV. Antibody mediated enhancement of infection has been reported for dengue virus, a

related flavivirus, as well as for ZIKV [18,124]. For dengue virus, antibodies raised against pre-

vious infection with a different serotype of virus may enhance subsequent infection in a den-

dritic cell–mediated fashion [135,136]. For ZIKV, in vitro studies have demonstrated

enhancement of infectivity with serum from patients with serologic responses to dengue virus

[18,124]. The high degree of cross-reactivity between antibodies elicited by co-circulating
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arboviruses present in Brazil and throughout the Caribbean may contribute to intrauterine

ZIKV disease by facilitating infected dendritic cell transport or by direct transcytosis of non-

neutralizing, antibody-coated ZIKV virions [18].

Delivery of ZIKV by transcytosis of antibody-bound virions does not appear to be compati-

ble with the window of greatest vulnerability for Zika teratogenicity: the first trimester of preg-

nancy. The transport of maternal IgG across the placenta begins at week 16 [137,138]; the levels

of IgG in fetal circulation at gestational weeks 17–22 are relatively low (5%–10% of maternal lev-

els) and rise continually, with levels reaching 50% at weeks 28–32, followed by an exponential

increase in the final 4 weeks before delivery [139]. A study of RNA levels of Fc receptors in the

placenta confirms that transcytosis is likely to begin primarily in the second trimester [140].

Functionally active placental FcRn expression has been detected at 20 weeks [141]. By analogy,

maternal autoimmune antibodies, which may be elicited by ZIKV epitope mimics (ergo, GBS-

associated antibodies) [142] are also unlikely to cross the placenta prior to the 16th gestational

week. Many mothers of microcephalic children were infected with ZIKV before the 10th gesta-

tional week and were likely to have cleared the virus well before 16 weeks [44]. Relevant to this

observation, fetal cerebrospinal fluid (CSF) levels of IgG are higher than what is seen in new-

borns and adults [143]. This suggests that an incompletely formed fetal blood–brain barrier

may allow concentration of IgG in the developing CNS. This observation may explain some of

the observed specificity for ZIKV infection of fetal brain in contrast to other tissues. Antibody-

mediated enhancement may still have a role to play in the infection of the developing brain, sec-

ondary to the virus overcoming the placental barrier. This theory fits well with observations that

the fetal blood–brain barrier actively excludes IgG in the third trimester, a period when maternal

infection has been associated with less fatal neuropathogenesis.

The timing of ZIKV infection relative to neonatal outcome may illuminate the mechanism

of fetal infection. A recent preliminary report describes neuropathological aspects of fetal

development in a cohort of Zika-infected women [38]. Most strikingly, fetal ultrasonography

revealed abnormalities in 12 of the 42 women who experienced ZIKV infection during preg-

nancy, as compared to none of the 16 cohort-matched fetuses in Zika-negative women.

Although the size of the cohort studied in this reported in this study was still low, they span a

period of initial ZIKV exposure running from 8 weeks to 35 weeks of gestation. The observa-

tions of microcephaly and severe cerebral pathology appear most commonly when the mother

was infected with ZIKV at 12 weeks or earlier. Infection of the mother during the second or

third trimester was reported to result in intrauterine growth restriction or, in two cases, fetal

death. This pattern of timing supports the hypothesis that first trimester infection results in

direct transmission of the virus to the fetal brain with subsequent viral replication, whereas

later infection may involve activation of placental inflammatory responses. ZIKV infection of

human cerebral organoids acts (at least in part) via TLR-3 to elicit a direct neural cell depletion,

which is partially abrogated by TLR-3 inhibition. TLR-3 activation by ZIKV resulted in alter-

ations in expression of multiple genes associated with neuronal development, implying a mech-

anistic connection to disrupted neurogenesis [36].

The overall retardation of growth observed after second and third trimester exposure to

ZIKV suggests that the virus may be exerting an indirect teratogenic effect by infecting the pla-

centa rather than other fetal tissues during this period. A separate case study has identified infec-

tious virus in the placenta of a fetus and detected resulting ongoing maternal ZIKV viremia

[15], and this may include placental Hofbauer cell infection and/or activation [125,126,129].

This is in agreement with previously published work showing that the placenta can induce viral

resistance in nearby cells [144]. In contrast, a well-designed basic virology study has shown that

placental cells from a full-term pregnancy are resistant to ZIKV [145]. However, no data cur-

rently exist concerning the susceptibility of early placental cells to ZIKV infection.
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Another possible mode of fetal infection would be transmission of ZIKV-infected maternal

cells across the placenta at any stage of pregnancy. If a motile cell (such as a dendritic or Hof-

bauer cell) was infected and then crossed the placenta or was able to transit maternal-placental

blood vessels, it could carry virus to the fetus [125,126]. A similar situation has been modeled

in mice, in which dendritic cells can carry intracellular pathogens across the placenta [146].

There is some limited evidence for the presence of maternal cells in the lymph nodes of second

trimester fetuses, but the mechanism by which this migration occurs is not well understood

[147]. Infected migratory maternal cells might also contribute to fetal neuropathology via

proinflammatory cytokine release. Placental Hofbauer cells have been shown to be activated by

TLR-3 and TLR-4–mediated pathways, and ZIKV has been shown to activate TLR-3–mediated

responses in neuronal cells [36].

Teratogenicity and neuropathology associated with TORCH pathogen infection of the pla-

centa is well documented [75], and ZIKV may also interfere with fetal development by this

route [127]. The pronounced elevation of a variety of inflammatory cytokines may trigger

microglial activation—with attendant damage to surrounding cells, including neurophils—but

is usually associated with damage to a wide range of fetal organs and tissue [148]. The disease

spectrum associated with chorioamnionitis overlaps with many of the features of Zika congeni-

tal syndrome and includes periventricular leukomalacia, intraventricular hemorrhage, cerebral

palsy, and retinopathy of prematurity [149–153]. While ZIKV may also elicit similar pathology

by direct placental infection, the striking selectivity and consistency of central nervous system

damage observed, combined with the unusually severe damage to developing brain and the

presence of ZIKV sequences in amniotic fluid and brain tissue, suggests some contribution of

direct ZIKV infection of fetal CNS in the majority of cases.

The development of several mouse models for the study of ZIKV infection has shed light on

some of the questions regarding the involvement of the placenta in fetal infection. Three dis-

tinct mouse models have recently been developed for the study of ZIKV. In the first model, iso-

lated ZIKV is injected directly into the cerebroventricular space and/or lateral ventricle of

embryonic day 13.5 fetal mice of the ICR strain [154]. The second involves the infection of

mice that lack competent interferon signaling interferon-α/β receptor (Ifnar -/-, A129, or

AG129 strains) [155]. This model leads to high viral loads in the brain, spinal cord, and testes

and recapitulates some of the more severe neuropathogenesis seen in humans. Infection of

Ifnar-/- mice has also been applied to the study of fetal pathogenesis [156,157]. The third

model involves the infection of immunocompetent SJL mice with ZIKV during pregnancy

[70]. Because of the ability to infect the mother and observe transmission to the fetus, the sec-

ond and third models are useful in evaluating the involvement of placenta in Zika congenital

syndrome. Miner et al. make use of Ifnar-/- mice to study the effect of ZIKV infection of the

mother on the placenta [156]. In this particular model, no isolated microcephaly is observed.

However, the ZIKV can be detected in the fetal CNS, and the fetuses do show signs of intrauter-

ine growth restriction. Examination of the placenta reveals robust infection of various tropho-

blast cells. This was associated with damage to the placental blood vessels and an overall

smaller placental size. Treatment of wild-type mice with anti-interferon antibodies allowed

similar infection of the placenta and fetal CNS to occur. This highlights a role for interferon in

protecting the placenta from ZIKV infection and fits well with the description of term placental

cells being protected from infection because of interferon response [158]. Dengue virus was

unable to infect the placenta or fetus in this model. These findings confirm that ZIKV is rela-

tively unique amongst the flaviviruses in being a TORCH pathogen, although infrequently

observed clinical human congenital infection by the closely related West Nile virus (WNV)

indicates that virus is also associated with a variety of birth defects including aortic coarctation,

cleft palate, Down syndrome, lissencephaly, microcephaly, polydactyly, and abnormal growth
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[159]. The study by Cugola et al. primarily employs the SJL strain of mice but does examine

C57BL/6 mouse infections and finds no fetal pathogenesis in this strain. This strongly suggests

that genetic differences may control the ability of the Zika virus to cross the placenta. Identify-

ing why some strains allow placental infection while others do not will be crucial in determin-

ing how this mechanism functions in humans.

Expression of ZIKV Receptors in Placental and Central Nervous System
Tissues

Early in embryonic development, direct infection of the placenta by ZIKV could provide a

route of entry to fetal tissue. Productive infection of the trophoblast by the virus would allow

newly produced virions to be passed inward to the fetus. A critical step to the productive infec-

tion of any target cell is the expression of the correct viral receptors on the cell surface.

Flaviviruses, such as dengue virus, Japanese encephalitis virus (JEV), and West Nile virus

(WNV), are known to use cellular C-type lectin proteins as receptors [160]. Expression of sev-

eral members of this receptor family is high on cells of the myeloid lineage, such as monocytes,

macrophages, and dendritic cells [161]. Multiple studies provide evidence for the role of one

specific lectin, dendritic cell–specific ICAM-3–grabbing nonintegrin (DC-SIGN), in the infec-

tion of flaviviruses [162–166]. DC-SIGN is an essential host protein that is involved in patho-

gen capture and antigen presentation in dendritic cells. As a lectin, DC-SIGN recognizes

carbohydrate structures on proteins. Any ZIKV transmitted to a human host after replication

in the salivary gland of a mosquito vector will carry the glycosylation pattern produced in the

cells of the insect host. When the virus replicates in insect salivary glands, the glycosylation of

the viral proteins involved in receptor binding will follow the pattern observed in insects (high-

mannose glycans) and not the more complex pattern seen in mammalian glycoproteins

[163,167]. Dendritic cells are capable of recognizing this difference and reacting to these non-

host glycosylation patterns. This specificity and the presence of dendritic cells in the epidermis

(and therefore in close proximity to the site of the mosquito bite) means that mosquito-vec-

tored flaviviruses are likely to preferentially infect the dendritic cell as an initial target cell type.

The probability of uptake and initial infection of host dendritic cells may be enhanced by the

presence of preexisting non-neutralizing antibody that binds ZIKV [18].

Although the initial stages of human ZIKV infection are not as extensively studied as infec-

tion with viruses such as dengue, a study by Hamel et al. has identified multiple receptors

involved in ZIKV entry to the target cell [168]. This seminal work examined the involvement

of known dengue virus receptors in ZIKV infection. The results confirmed a role for DC-SIGN

in mediating ZIKV entry and also identified roles for two TAM receptor proteins called Tyro3

and AXL and a minor role for a protein called T-cell immunoglobulin and mucin domain 1

TIM-1. Tyro3 and AXL are tyrosine kinase receptors whose natural ligand are the vitamin K–

dependent proteins growth arrest–specific gene 6 (Gas6) and protein S. Armed with this list of

receptors, it is possible to predict what specific cells in the placenta and CNS might be suscepti-

ble to ZIKV infection.

An analysis from the US Centers for Disease Control and Prevention (CDC) reported ZIKV

RNA and proteins in tissues from newborns and from two miscarriages [169]. Examination of

the corresponding placentas showed pathology associated with viral infection. Direct ZIKV

infection of the placenta is plausible, as the trophoblast layer has been shown to express the

needed receptors, and a recent report has recovered infectious virus from the placenta [15].

AXL expression has been detected in the trophoblast, and perturbations in Gas6 signaling

through AXL have been shown to be associated with preeclampsia, suggesting a possible mech-

anism of pathology [170]. Histology available through the Human Protein Atlas also confirms
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expression of AXL and Tyro3 throughout the trophoblast layer [171]. Although the trophoblast

does not appear to express DC-SIGN, tissue-resident cells of the myeloid lineage will express

this lectin. This provides a pathway by which the infected trophoblast might produce a virus

that will infect patrolling myeloid cells. Infected myeloid cells may allow production of greater

quantities of the virus (leading to viremia) or serve as a vector to traffic the virus to other tis-

sues. Proof of this second possibility requires the identification of ZIKV-positive perivascular

macrophages or microglia in brain tissue from abortus specimens.

In order to selectively induce microcephaly and other observed changes in the brain, ZIKV

must either alter pathways that affect CNS development or directly infect cells of the CNS.

Comparisons to other viral TORCH pathogens strongly support the second possibility. It is

worth noting that the early preparation of ZIKV in the laboratory setting was performed by

intracerebral passage of the virus in neonatal mice. One study from 1971 presents an excellent

microscopic examination of the brains of these mice [172]. The authors catalog disruption of

the pyriform cell layer of the Ammon’s horn and an increased number of astrocytes without

the presentation of infiltrating leukocytes. Examination of the tissue by electron microscopy

reveals infected astroglia and neurons but not microglia. The first indication that this was hap-

pening in humans involved histologic and molecular examination of products of conception,

including fetal brain tissue, which revealed the presence of viral particles in the brain of a fetus

at 32 weeks of gestation [16]. These findings have been supported and confirmed by a second

paper examining another infected fetus [15]. These case reports not only support the conclu-

sion that the virus can replicate in cells of the CNS but that the CNS serves as a site of viral per-

sistence long after the mother was exposed. Again, the propensity for first trimester exposures

to ZIKV provides clues about the possible mechanisms of neuropathogenesis. During the first

trimester, the fetal blood–brain barrier is “leaky” and does not serve as a complete barrier

against pathogens. Infection of the placenta in the first trimester and induction of fetal viremia

may sufficiently disseminate virus, thereby enabling ZIKV access to the brain. Fetal develop-

ment of a well-formed blood–brain barrier later in pregnancy may also reduce the risk of CNS

infection. A second possibility is that the frequency of target cells in the brain changes over

time. A seminal report by Tang et al. reveals that ZIKV can infect neural progenitors [34], and

this has been more recently confirmed in a study of ZIKV infection of human cerebral orga-

noids in culture [33,36]. Infection of the brain in the first trimester might lead to infection of

these precursor cells and associated pathology because of the ability of ZIKV to slow cellular

replication and induce cell death. Supporting this hypothesis, direct examination of tissue from

at least one ZIKV-positive fetus indicates that mature neurons are relatively unperturbed, sug-

gesting that the progenitors may be preferentially infected [15]. However, the reports by Bell

et al. discussed above as well as recent studies involving a more natural route of infection [173]

demonstrate that infection of more mature brain cells is possible [172]. Examination of the lit-

erature reveals the presence of Tyro3, AXL, DC-SIGN, and TIM-1 on multiple cells in the

CNS, leading to the hypothesis that multiple cell types might be infected (Table 2).

Murine models of ZIKV infection have been used to clarify which cells are infected in vivo.

Pups born to infected mothers of the SJL strain showed pathology of the CNS similar to that

observed in humans, and cortical malformations were observed in the brains of infected pups

following birth [70]. This included reduced cell number and thickness of the cortical layer. At

the cellular level, neurons in several regions of the brain showed enlarged nuclei because of

infection. Gene expression studies using qPCR indicated altered regulation of genes involved

in autophagy and apoptosis. A study using direct injection of ZIKV into the brain of embryonic

day 13.5 mice showed similar outcomes [158]. In this model, examination of fetal brain tissue 3

to 5 days postinfection revealed infection in the intermediate zone and cortical plate. Thinning

of the cortical layer was also observed. Immunostaining of slices from the fetal brain revealed

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004877 August 25, 2016 13 / 32



that neural precursor cells were the primary target of the ZIKV. The authors also observed

alterations in apoptosis as described by Cugola et al. In addition, a selection of genes previously

shown to be involved in microcephaly were determined to be down-regulated in ZIKV infected

neural precursors. The results from these 2 mouse models are in agreement with the predic-

tions made from cell culture work. ZIKV preferentially infects neural precursor cells and leads

to alterations of the developing brain associated with microcephaly.

Permissiveness to Viral Infection and Alteration in Cellular Pathways

Not all cells expressing the receptor for a given virus are capable of being productively infected.

The presence or absence of specific factors in the cell influence whether the virus can success-

fully establish an infection and produce more of the virus. At this time, little is known about

the intracellular factors that may influence ZIKV replication. It may be that not all cells that

display the appropriate receptors are capable of supporting viral replication. Genome-wide

RNAi screens have identified hundreds of cellular factors involved in flavivirus replication

[184]. Many of these factors are involved in critical host cell pathways, such as the following:

nucleic acid production, protein production and transport, lipid metabolism, and energy pro-

duction [184–186]. Various interferon-responsive genes have been shown to block flavivirus

replication, as highlighted by the numerous mechanisms employed by the virus to counter

these effects. However, in the absence of interferon, it is unclear if any cells are truly nonper-

missive to ZIKV infection.

What is clear is that flaviviruses have evolved multiple strategies for altering normal host

cellular pathways to favor viral replication. Stress granules and P-bodies are accumulations of

RNA found in the cytoplasm of cells that are involved in stress response, heat shock, and

response to infection by viruses [187,188]. Flaviviruses alter both of these granule types to

increase viral replication. Interaction of viral noncoding regions with stress granule proteins

has been implicated in increased viral RNA synthesis and processing of viral RNA by enzymes

in the P-body, which leads to the accumulation of a noncoding viral RNA that may be involved

in protecting the viral RNA against RNA interference [189,190].

The existence of flavivirus-encoded noncoding RNA (ncRNA) is of potential relevance to

development of fetal neuropathology. The genome of ZIKV and other flaviviruses is relatively

small. As such, there is evolutionary pressure to make efficient use of all available sequence to

support viral replication and evasion of adaptive and innate host defenses. That the virus sup-

ports and maintains RNA and RNA structural motifs that are not directly used in the coding of

proteins suggests that this noncoding RNA serves an important role in the viral life cycle [191].

Table 2. Expression of ZIKV receptors in human brain and placental tissue. NA = data not available.

DC-SIGN AXL Tyro3 TIM-1 Evidence of Infection References

CNS

Vascular Endothelial - + - NA Productive infection in tissue culture [174–177]

Perivascular macrophages NA + + NA [178]

Astroglia - + + NA EM in mice [174–177,179,180]

Microglia - + + NA [174–177,181]

Neurons - + + NA EM in mice [174–176,180]

Neuronal Precursors NA NA NA NA Productive infection in tissue culture [34]

Placenta

Trophoblast - + + NA Pathology [170,174]

Dendritic Cells + + + NA [178,182,183]

doi:10.1371/journal.pntd.0004877.t002
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The production of ncRNA in flaviviruses is due to the incomplete digestion of viral RNA by 5'-

3' Exoribonuclease 1 (XRN1), an exonuclease found in the P-body [190]. A secondary structure

in a stem loop within the untranslated region (UTR) prevents digestion of this area and leads

to accumulation of viral ncRNA. Interestingly, this ncRNA seems to be essential for cytopathi-

city and viral pathogenesis. Viruses with mutations in the 30UTR have no deficit in their ability

to make viral RNA but show attenuated cytopathic effects in infected cells. Two possible expla-

nations have been given for this observation. The first is that the ncRNA modulates the host

innate sensing proteins (Toll-like receptors including TLR3, RIG-I, and MDA5). Other studies

show evidence that this ncRNA can function to inhibit the RNA interference pathway and alter

the expression of host genes [192]. When primary human fibroblasts are infected with Dengue

virus, innate immune response signaling pathways are activated through both TLR3 and RIG-

1 but not Mda5, triggering up-regulation of human interferon-β

Interferon beta (IFNβ), TNFα, defensin 5 (HB5), and β defensin 2 (HβD2) [193]. Heritable

mutations in RIG-I and MDA5 coding sequences have been identified as causative for Type 1

interferonopathies (inherited autoimmune disorders associated with an inborn elevated inter-

feron response), including Aicardi–Goutières syndrome and systemic lupus erythematosus

(SLE) in certain individuals as well as classic and atypical Singleton–Merten syndrome [194].

As reviewed above, the radiographic characteristics of these syndromes overlap considerably

with findings associated with both intrauterine CMV infection and Zika congenital syndrome.

Prior assessment of therapeutic strategies for Aicardi–Goutières syndrome may help inform

treatment options for Zika congenital syndrome [195]. Hydroxychloroquine, used to treat SLE

cerebritis and considered safe in pregnancy, is a potent inhibitor of Type I IFNs, and this thera-

peutic strategy may figure into the selection of drug-like entities being contemplated for treat-

ing pregnant women suffering from acute ZIKV [196–198].

Interactions of cellular proteins with the untranslated regions of the full-length ZIKV RNA

may also be critical for function. Examination of the West Nile virus has shown that two cellu-

lar RNA-binding proteins, TIA-1 and TIAR, interact with the 3’UTR of that virus [189,199].

These proteins are essential host factors involved in formation of stress granules and are

sequestered at the site of viral RNA synthesis, an event that inhibits stress granule formation

[199,200]. Viruses deficient in TIA-1 and TIAR binding replicate at a diminished rate in fibro-

blasts. A similar mechanism has been described for dengue virus [199]. Because of the similari-

ties to the secondary structure of the 3’UTR of these flaviviruses, ZIKV is likely to have similar

effects. Whether ZIKV genomic or subgenomic RNA has binding sites for other host factors

remains to be seen. Engagement of RNA-binding proteins specific to the brain or placenta by

ZIKV might explain the pathology seen in the current epidemic.

The ability of ZIKV noncoding RNA to recruit cellular proteins might provide some insight

into possible mechanisms of neuropathogenesis. The unique sequence of ZIKV may provide

new targets for interaction with cellular proteins that are not seen in related viruses such as

dengue. Of particular interest will be whether factors specific to either the CNS or placenta

bind to and regulate ZIKV RNA translation or replication. For example, the RNA-binding pro-

tein Musashi-1 is expressed at high levels in neural precursor cells, and can be found in both

decidual and trophoblast cells in the placenta [171,201].

Musashi-1 is required for differentiation and division of neural precursors and is often used

as a marker in identification of these cells [202,203]. Studies have revealed a role for Musashi as

a regulator of mRNA translation and that the protein is capable of both inhibiting and activat-

ing translation [204]. Specifically, Musashi proteins play a role in regulating progenitor (stem)

cell growth and differentiation through posttranscriptional control of gene expression [205].

Musashi is also expressed in—and has been shown to influence mRNA translation in—a vari-

ety of epithelial stem cell types associated with glandular epithelium [205–208],
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spermatogenesis [209], and brain and retinal tissue development [210,211]. Utilizing sequence

alignment methods and available genomes of both historic and current ZIKV isolates, we have

discovered a putative Musashi binding element (MBE) in the SL2 stem-loop of the 3’UTR

(Fig 2) [212–215]. Examination of ZIKV epidemic strains has revealed conserved changes in

the NS2B open reading frame and 3’UTR relative to ancestral strains found in Africa [215].

Our alignment confirms this and highlights that two of these changes lie immediately upstream

from the putative MBE. Both insects and mammals have Musashi homologs, and it has been

reported that they bind MBE with slightly different sequence requirements [216]. Application

of the binding energy predictions of this work suggests that the evolutionary nucleotide poly-

morphism alterations observed in the region immediately upstream to the ZIKV core MBE

Fig 2. Alignment of first 130 nucleotides of 3’UTR of ZIKV, illustrating Musashi binding element (MBE) location and
associatedmutations over time and geographic spread. Sequences shown are the only ones that are unique for
country and/or sequence; duplicates of the same country were discarded. Alignment was performed using the MAFFT
multiple sequence alignment program for unix-like operating systems. Visualization was performed using Geneious. There
is presence of stem-loop I (SL I) and stem-loop II (SL II) on those sequences, with SL II being partially shown. There is also
presence of MBE on SL II, with two SNPs on African sequences, which could potentially change the RNA structure and
availability of the element. SL I and SL II were annotated from Zhu Z. et al. MBE was annotated using the UTRscan tool of
UTRSite (http://utrsite.ba.itb.cnr.it/).

doi:10.1371/journal.pntd.0004877.g002
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may alter binding in mammals but not the mosquito host. Given the expression of Musashi in

neuronal precursors and the placenta, it will be critical to determine whether this element is

involved in ZIKV pathogenesis and, if so, what ZIKV nucleotide polymorphisms may be asso-

ciated with alterations in ZIKV MBE activity. The demonstration of qualitative reduction of

proliferative cell migration fromMushashi-positive cells after ZIKV infection of human neuro-

spheres is consistent with the hypothesis that the MBE present in the 3’UTR of ZIKV may play

a functional role in controlling ZIKV replication in these cell types [70].

Flavivirus proteins insert themselves into the membrane of the endoplasmic reticulum (ER),

forming invaginations that contain all of the proteins and RNA needed to produce additional

viral RNA [217]. These invaginations are connected to the cytoplasm by a small pore, through

which the RNA is presumably passed to engage nearby ribosomes [218]. Viral capsids are then

assembled and enveloped by budding into the membranes of the Golgi. This dependence on

membranes and the need to produce enough phospholipids to coat all of the progeny virions

has lead flaviviruses to evolve mechanisms to alter membrane synthesis, lipid metabolism, and

ER processing [219–224].

The classic sign of flavivirus infection is the visualization by electron microscopy of small

“viral factories” where viral RNA and protein is made and then assembled into complete viri-

ons for release through the cellular transport system. It has been noted that these assemblages

look very much like the autophagosomes formed during the process of autophagy. Autophagy

is a normal cellular process wherein the cell digests large protein complexes or intracellular

pathogens and has been shown to play an important role in the maintenance of stem cells

[225]. This process can provide a way for a cell to recycle materials under conditions of starva-

tion or as a way to respond to intracellular infection [226]. Studies of cells infected by ZIKV

and other flaviviruses have shown an increase in the levels of autophagy [168,227–229]. Micro-

scopic examination of intracellular compartments has revealed the presence of viral envelope

protein (E protein) in the same vesicles as the autophagy marker LC3 [168]. This suggests that

the vesicles into which the virus buds may be autophagosomes. Some viruses block the late

stages of autophagy, leading to the accumulation of autophagosomes that do not fuse with the

lysosome. However, it seems that ZIKV does not block this step, and LC3 and E protein can be

detected in mature autolysosomes. As the proper maturation of the viral envelope prior to

release is pH dependent, it is possible that the virus has coopted this pathway to maintain the

correct pH and access proteases needed for maturation of the viral E protein. The trophoblast

layer of the placenta produces microRNA (miRNA) that are pro-autophagic in nature and are

delivered to bystander cells by exosomes [144]. It is thought that this is a mechanism to make

the trophoblast (and the cells in contact with it) more resistant to viral infection. However, in

the case of ZIKV, this mechanism may help replication and spread by the virus once initial

infection has been established and could increase the susceptibility of nearby myeloid cells.

Multiple lines of research suggest a role for autophagy in neurodegenerative diseases, which

indicates that these ZIKV-mediated changes in autophagy may also be involved in the observed

neuropathic effects [226,230,231]. Pharmacologic inhibition of autophagy is associated with

inhibition of ZIKV replication in a variety of cell types, including human astrocytes [7,168].

Although relatively little work has been done to describe the mechanisms behind micro-

cephaly caused by infectious agents, inherited microcephaly has been fairly well studied. Next-

generation sequencing studies have identified a number of genes involved in primary autoso-

mal recessive microcephaly [232]. These studies have revealed common targets relating to cell

cycle progression and specifically to mitotic spindle formation [233]. Although it has been sug-

gested that studies should examine these genes in ZIKV and other TORCH pathogens [234],

no data demonstrating that ZIKV specifically alters the function of mitotic spindle proteins in

infected CNS cells are currently reported.
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Unanswered Questions

In order to more completely understand the link between ZIKV infection and fetal abnormali-

ties, more work must be done. The characteristic presentation of Zika congenital syndrome

ranges from viral centric (microcephaly, blindness, ventricular calcifications, and fetal presence

of ZIKV by rt-PCR) to another extreme (long bone dysgenesis, negative for ZIKV) possibly

associated with placental insufficiency. Epidemiological assessment of potential confounding

risk factors for Zika congenital syndrome—including preceding immunologically cross-reac-

tive arboviral infection [7,18,19]—and potential thalidomide sharing by patients being treated

for leprosy [27–30] remains to be completed. To underscore the point, leprosy is now endemic

throughout much of Brazil, including Pernambuco [235], and postexposure prophylaxis of

exposed individuals has been advocated [236,237]. The possibility of intrauterine exposure to

pyriproxifen-containing insecticides (in northeastern Brazil) with subsequent teratogenesis

because of activation of retinoid X receptors has been repeatedly raised [26], and resolution of

this controversy may require an appropriately powered epidemiological exposure study.

The gaps in understanding of ZIKV neuropathology highlighted in this review suggest that

efforts should first be focused on obtaining clear, statistically significant data addressing a few

specific questions. Prospective case control study reports on ZIKV infection of pregnant

women and fetal outcomes are a step in the right direction. As such studies continue, a more

definitive correlation between ZIKV infection and various congenital outcomes will become

possible. Additionally, fundamental research will be required to answer questions regarding

the ability of ZIKV to cross the placenta and infect the developing brain. Based on the pub-

lished report of receptors utilized by ZIKV, a more complete survey of expression levels of

these proteins in cells of the placenta should be prioritized. There is a desperate need for high

quality histology and EM analysis of brain and placental tissue from different times after expo-

sure. Although the Mlakar et al. report showed convincing evidence for the presence of viral

particles in the brain of a 32-week fetus, the method of fixation unfortunately makes it impossi-

ble to tell what specific cells may have been infected [16]. A more recent analysis provides bet-

ter clarity, but more studies will be needed [15]. Some conclusions may be inferred from the

work of Bell et al., but the injection of virus directly into the brain of neonatal mice may not be

physiologically relevant [172]. Recent progress involving the development and characterization

of ZIKV infection using the AG129 mouse model are consistent with the findings of Bell et al.

and may eventually enable a more complete understanding of the neural and glial tropism

underlying ZIKV neuropathology [173]. Although current literature provides some characteri-

zation of placental abnormalities, no definitive evidence has been shown supporting infection

of specific cells of the placenta. A well-characterized animal model likely will be required to

obtain this data, preferably one with a more intact interferon response [154–156]. Finally,

although PCR and histology are potentially powerful techniques, definitive proof of infection

of a given tissue or the relevance of a virus reported in a biological sample can only be obtained

when replication-competent viruses can be retrieved from these samples.

To begin to understand the mechanism of ZIKV neuropathogenesis, other experiments

might be considered. A survey of serum from ZIKV-infected individuals could shed light on

the development of self-reactive antibodies and possible links to GBS. Prior research and study

designs that have illuminated the roles of viral proteins and regions or motifs of viral RNA in

the pathogenesis of other flavivirus infections need to be applied to clarify the molecular virol-

ogy of ZIKV. To what extent does ZIKV activation of TLR-3 contribute to fetal neuropathol-

ogy? Are migratory placental cells such as Hofbauer cells actually infected by ZIKV during fetal

development? Do specific proteins from the placenta and brain bind to the noncoding regions

of ZIKV and play a role in the observed neural tissue disease? Recent studies have cataloged
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changes in the ZIKV genome as it has spread across the Pacific to the new world. Specific stud-

ies will be necessary to determine if these changes have in any way altered the transmissibility

or virulence of the virus. Finally, the studied TORCH pathogens do not consistently cause

pathology. It has been hypothesized that ZIKV infection may achieve access to the placenta

and CNS secondary to some other event. Larger datasets will be needed to determine if ZIKV

enters the fetus following some other perturbation or whether other cofactors or confounding

variables are associated with the severe congenital and adult neuropathology, which is now

being observed with the current ZIKV outbreak in the Americas. But what is most clear is that

ZIKV fetal neuropathology represents a new disease which does not completely overlap with

the epidemiology or pathophysiology of other TORCH pathogens and which will demand

effort, resources, unparalleled collaboration, and, above all, open-mindedness in formulating

public health responses as well as obstetrical and pediatric management strategies.

Key Learning Points

• Viral TORCH pathogens reveal common patterns of fetal pathophysiology and vertical

transmission, which have histopathologic correlates in Zika virus fetal

neuropathogenesis.

• The teratogenic effects of Zika virus infection during the first trimester may involve

infection of the trophoblast, viral translocation across the placenta, migration of

infected cells resulting in embryonic infection, or indirect effects associated with high

levels of inflammatory cytokines produced by infected placental tissues.

• Zika virus activation of Toll Like Receptor 3 (TLR-3) pathways in central nervous sys-

tem cells may trigger apoptosis and attenuate neurogenesis, directly contributing to

fetal neuropathology.

• Recognition of viral sequences by regulatory RNA-binding proteins such as Musashi

may have a role in Zika pathogenesis and host tissue tropism.

• Evidence from other TORCH viral pathogen studies indicate multiple plausible

hypotheses for transplacental infection by Zika virus during the second or third trimes-

ter, including transcytosis of non-neutralizing antibody-coated Zika virus complexes;

preexisting maternal non-neutralizing antibody to Zika or other flaviviruses may

enhance the probability of infection or more severe disease in the fetus.
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