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ZIKV infection effects changes in gene
splicing, isoform composition and lncRNA
expression in human neural progenitor
cells
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Abstract

Background: The Zika virus (ZIKV) is a mosquito-borne flavivirus that causes microcephaly and Guillain-Barré syndrome

in infected individuals. To obtain insights into the mechanism of ZIKV infection and pathogenesis, we analyzed

the transcriptome of ZIKV infected human neural progenitor cells (hNPCs) for changes in alternative splicing (AS),

gene isoform (ISO) composition and long noncoding RNAs (lncRNAs) expression.

Methods: We analyzed differentially expressed lncRNAs, AS, ISO from RNA-seq data in ZIKV infected hNPCs.

Results: We obtained 149 differentially expressed lncRNAs, including potential viral targets to modulate cellular

processes such as cell cycle, apoptosis and immune response. The infection induced 262 cases of AS occurring in

229 genes, which were enriched in cell death, RNA processing, transport, and neuron development. Among 691

differentially expressed ISOs, upregulated ISOs were enriched in signaling, regulation of transcription, and amino

acid biosynthesis, while downregulated ISOs were mostly enriched in cell cycle. Importantly, these analyses revealed

specific links between ZIKV induced changes in cellular pathways and the type of changes in the host transcriptome,

suggesting important regulatory mechanisms.

Conclusions: Our analyses revealed candidate lncRNAs, AS events and ISOs which may function in ZIKV infection

induced cell cycle disruption, apoptosis and attenuation of neurogenesis, and shed light on the roles of lncRNAs,

AS and ISOs in virus-host interactions, and would facilitate future studies of ZIKV infection and pathogenesis.
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Background

Zika virus (ZIKV) is a positive-strand RNA virus with

a 10,800 nucleotides genome, belonging to the Flavi-

viridae family and the genus Flavivirus [1]. It includes

African and Asian lineages, and could be transmitted

by Aedes species mosquitoes, sex, blood transfusion,

organ transplantation, and potentially through urine

or saliva [2]. Individuals with compromised immunity

are particularly susceptible to ZIKV infection and

subsequent disease development [3], with symptoms

ranging from fever, lethargy, conjunctivitis, rash, and

arthralgia [4]. The Guillain-Barré syndrome and con-

genital microcephaly are two of the well known conse-

quences of ZIKV infection [5]. The recent epidemic of

ZIKV infection in South America and parts of Asia has

spurred widespread interest in ZIKV infection and patho-

genesis, and it is now known that ZIKV infects cells

through the entry receptor AXL and causes the activation

of Toll-like receptor 3 (TLR3), and consequently, the in-

fection causes attenuated neurogenesis, dysregulated cell

cycle, and increased cell apoptosis in hNPCs [6–8]. How-

ever, the mechanistic details of ZIKV infection and patho-

genesis are mostly unknown.

LncRNAs are defined as transcripts longer than 200

nucleotides, and can be 5′ capped and 3′ polyadenylated,
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but with limited coding potential [9, 10]. LncRNAs

participate in diverse processes, ranging from develop-

ment to diseases [11]. For example, lncRNA MyelOid

Rna Regulator of Bim-Induced Death (Morrbid) re-

presses the expression of its neighboring pro-apoptotic

gene, Bcl2l11, by recruiting EZH2 to the Bcl2l11 pro-

moter to maintain this gene in a poised state [12].

Nuclear Paraspeckle Assembly Transcript 1 (NEAT1)

promotes ATR signaling in response to replication

stress and is involved in a negative feedback loop that

impairs oncogene-dependent activation of p53 [13].

LncRNAs are also implicated in pathogen-host inte-

ractions. For instance, a cellular lncRNA, ncRNA re-

pressor of the nuclear factor of activated T cells

(NRON), degrades the Tat protein, and then contrib-

utes to HIV-1 latency [14].

Alternative splicing or AS is one of the most import-

ant processes in RNA co-transcriptional and post-

transcriptional processing. AS events include skipped

exon (SE), retained intron (RI), alternative to 5′ splicing

site (AS5), alternative to 3′ splicing site (AS3), mutually

exclusive exon (MXE), alternative start (altstart), al-

ternative end (altend) and skip multiple exons (SME)

[15, 16]. Approximately 94% of human genes are alter-

natively spliced, producing a much larger number of

functional ISOs from a fixed number of genes [15]. AS

also participates in a wide range of biological processes

including virus-host interactions [17, 18]. Often consid-

ered as the consequence of AS, ISOs are mRNAs prod-

ucts that are generated from the same gene loci but are

different in their transcription start sites (TSSs), protein

coding DNA sequences (CDSs), or untranslated regions

(UTRs) [15].

To gain deeper insights into the ZIKV-infected

transcriptome, we analyzed RNA-seq data of ZIKV-

infected hNPCs [6] to determine the expression of

lncRNAs, AS and ISO composition changes, and to

predict how these changes are related to the mechan-

ism ZIKV infection and pathogenesis. We identified

149 differentially expressed (DE) lncRNAs in ZIKV-

infected samples, and some of these are likely viral

targets to modulate cellular processes including cell

cycle, apoptosis and immune response. ZIKV infection

induced alternatively spliced genes are enriched in cell

death, transport, RNA processing, and neuron devel-

opment, while most of DE ISOs belong to cell cycle,

amino acid biosynthesis, transcription, and apoptosis.

Our analyses also revealed specific links between

ZIKV infection induced changes in cellular pathways

and type of changes in the host transcriptome. These

results indicated that ZIKV infection induced signifi-

cant changes in AS, ISOs and lncRNAs expression,

which could play key roles in ZIKV infection, virus-

host interactions, and pathogenesis.

Methods
Prediction of novel lncRNAs

We used FastQC (http://www.bioinformatics.babraha-

m.ac.uk/projects/fastqc/) and FASTX-Toolkit (http://

hannonlab.cshl.edu/fastx_toolkit/) to check and filter

low quality reads with default parameter. Based on Hu

et al. [19], clean reads were mapped to the Human

reference genome (Homo_sapiens.GRCh38) using

Tophat2 with default parameter [20]. Cufflinks [21]

were used to assemble and compare transcripts with

reference. Then we extracted candidate novel lncRNAs

transcripts with following criteria: the length of tran-

script ≥ 200 nucleotides, the expression level (fragments

per kilobase of exon per million fragments mapped,

FPKM) of transcript ≥ 1, the number of exons of trasn-

cript ≥ 2, and class code “i”, “j”, “o”, “u” and “x”. We

used CNCI (score < 0) [22] and CPAT (coding probabil-

ity < 0.364) [23] software to predict the coding potential

of discovered lncRNAs.

LncRNAs and Isoforms differential expression analysis

We used Cuffdiff [24] to analyze expression level of

lncRNAs and ISOs, and used the following criteria to

select DE lncRNAs and ISOs: FDR ≤ 0.05 and fold-

change ≥ 2.

Functional prediction of lncRNAs

We used unsupervised machine learning algorithm, k-

means, to cluster DE lncRNAs with PCGs.

Alternative splicing analysis

The bam files generated by Tophat2 [20] were as input

files to analyze changes in AS using ASD (v1.2) [25]

with the annotation file Homo_sapiens.GRCh38.83.gtf.

We selected significant AS cases with an adjusted p

value ≤ 0.05.

Gene ontology enrichment and pathway analysis

We uploaded genes with significant ZIKV infection in-

duced PCGs, AS and ISO changes into the Database for

Annotation, Visualization and Integrated Discovery

(DAVID) v6.7 [26] to perform Gene Ontology func-

tional enrichment analyses (biological processes) and

Kyoto Encyclopedia of Genes and Genomes pathway

analyses (KEGG). We selected significant GO terms

and pathways with a p value ≤ 0.05.

Statistical analysis

We used R relative packages, such as pheatmap (pheat-

map: Pretty Heatmaps, Raivo Kolde, 2015) and Venn-

Diagram (VennDiagram: Generate High-Resolution

Venn and Euler Plots, Hanbo Chen, 2015), and func-

tions, such as Welch Two Sample t-test to analyze data

and draw figures.
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Results
Differentially expressed lncRNAs in ZIKV infected hNPCs

To generate a compendium of all annotated and novel

lncRNAs that exhibited differential expression in ZIKV

infected hNPCs, we analyzed RNA-seq data generated

by using a low multiplicity of infection (MOI < 0.1) of

MR766 strain of the ZIKV (African lineage) to infect

hNPCs for 56 h [6]. First, we aligned clean RNA-seq

data onto human reference genome (Table 1), followed

by transcripts assembly and comparison. Using the

modified method by Hu et al. [19], we extracted the se-

quences of candidate novel lncRNAs, and distinguished

noncoding RNAs from coding RNAs. As a result, CPAT

[23] and CNCI [22] predicted 2269 and 2846 novel

lncRNA transcripts, respectively. We discarded 642

lncRNA transcripts predicted by CPAT [23] and 1219 by

CNCI [22] with default parameters, respectively, then

used 1627 transcripts common to both methods for fur-

ther analysis (Fig. 1a). Finally, by comparing to the En-

semble database, we obtained 15,275 annotated and

1137 novel lncRNAs, respectively. The novel lncRNAs

consist of 1627 transcripts (Fig. 1a).

LncRNAs are shorter in length, have fewer exons,

and are expressed at much lower levels than protein

coding genes (PCGs) [27–31]. To determine if the

novel lncRNAs we observed have similar characteristics

to the previous studies, we compared these parameters

of novel lncRNAs with PCGs, and found that the aver-

age exon number in the detected novel lncRNAs was

also smaller than that of PCGs (p value < 0.05, Welch

Two Sample t-test, Fig. 1b). The expression levels of

these novel lncRNAs in both control and infected cells

were also much lower than that of PCGs (p value <

0.05, Welch Two Sample t-test, Fig. 1c and Additional

file 1: Figure S1), and the length of novel lncRNAs was

much shorter than that of PCGs (p value < 0.05, Welch

Two Sample t-test) (Fig. 1d and Additional file 1: Figure S1).

Thus these novel lncRNAs have the characteristics of

annotated lncRNAs.

In differentially expressed (DE) lncRNA analysis, we

found 92 annotated DE lncRNAs (16 upregulated and 76

downregulated lncRNAs) (Fig. 2a and Additional file 1:

Table S1 and Additional file 2) and 57 novel DE

lncRNAs (12 upregulated and 45 downregulated

lncRNAs) (Fig. 2b and Additional file 1: Table S2 and

Additional file 2) in ZIKV infected samples compared to

mock samples. These DE lncRNAs represented a diverse

group in terms of their biotypes and genomic location.

Biotypes included antisense RNA, lincRNA, processed

transcript, sense intronic transcript and sense overlapping

transcript (Additional file 1: Table S1–2). Two examples

of the DE novel lncRNAs, located in Chr10:60,778,330–

60,794,852 and Chr14:23,047,061–23,057,538, were down-

regulated in infected samples (Fig. 2c–g). Likewise, two

examples of annotated DE lncRNAs, H19 and SNHG15,

are shown in Fig. 2e-f, with the former being downregu-

lated and the latter upregulated by the infection (Fig. 2g).

K-means showed that DE lncRNAs and PCGs might

be aggregated into 3 clusters, consisted of 106, 361and

429 genes (lncRNAs and PCGs), respectively (Additional

file 1: Table S3 and Figure S2). GO ananlyes showed that

downregulated genes from cluster 1 and 2 were mainly

enriched in DNA replication and cell cycle. We assumed

that downregulated lncRNAs in cluster 1 and 2 might be

involved in DNA replication and cell cycle. Upregulated

genes from cluster 1 might be involved in amino acid

transport and response to stimulation.

From the DE lncRNAs, several stood out as poten-

tially important regulatory factors during ZIKV infec-

tion induced immune response and pathogenesis. For

example, THRIL (TNFα and hnRNPL related immuno-

regulatory lincRNA) is known to activate the expression

of many immune-response genes, its depletion leads to

dysregulation of immune-response genes during innate

activation of THP1 macrophages [32]. In the ZIKV in-

fected cells, THRIL, in cluster 2, was downregulated

2.6-fold (Fig. 2h), making it a potential target for ZIKV

to modulate host innate immunity.

Apoptosis is an important consequence of ZIKV in-

fection and is believed to be the cause of microceph-

aly in infected fetus [6]. LINC00963 (long intergenic

non coding RNA 963) normally promotes cell survival

and plays a role in tumorigenesis [32], its knockdown

attenuates C4–2 cell proliferation and induces cell

apoptosis [33]. In ZIKV infected hNPC, LINC00963,

in cluster 2, was lowered 3-fold (Fig. 2h), making it

an important candidate lncRNA mediating ZIKV in-

duced apoptosis.

Table 1 The number of reads from RNA-seq data

mock-1 mock-2 ZIKV-1 ZIKV-2

Number of reads Left Right Left Right Left Right Left Right

Total reads 7,927,777 7,927,777 7,391,076 7,391,076 7,361,527 7,361,527 7,621,347 7,621,347

Mapped reads 7,606,613 7,476,318 7,069,569 6,803,489 7,019,141 6,899,086 7,231,763 7,121,414

Unique reads 7,339,241 7,215,072 6,816,384 6,562,659 6,771,681 6,657,458 6,980,585 6,875,554

“total redas” was the clean reads of RNA-seq data. “mapped reads” was the number of reads aligned to human reference genome. “unique reads” was the number

of reads aligned to one site. “Left and Right” was the forward and reverse reads of RNA-seq data, respectively. “mock-1 and mock-2” were control RNA-seq data.

“ZIKV-1 and ZIKV-2” were ZIKV infected RNA-seq data
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Cell cycle is dysregulated in ZIKV infected hNPCs [6].

We identified an annotated lincRNA PVT1, Pvt1 onco-

gene, which was upregulated about 2-fold by the infec-

tion and in cluster 1(Fig. 2h). PVT1 knockdown

significantly inhibits cell proliferation both in vitro and

in vivo, and plays a key role in G1 arrest [34]. Thus, the

upregulation of PVT1 could play a role in the disrupted

cell cycle due to ZIKV infection. Long intergenic non

coding RNA 342, LINC00342 knockdown suppresses

proliferation in a lung cancer cell line A549 cells [35].

The downregulation of LINC00342, in cluster 1, in ZIKV

infected cells (Fig. 2h) is consistent with its role in ZIKV

induced cell cycle effects. Taken together, these analyses

suggest that ZIKV infection affected the expression of

lncRNAs, and several may serve as targets whereby

ZIKV modifies cellular pathways.

Although cluster 3 contained 140 genes, GO analysis

showed that these genes were not enriched in any GO

terms.

Changes in alternative splicing after ZIKV infection

Changes in AS have been reported in infected cells by sev-

eral viruses including HPV, HSV-1 and EBV [16, 36–39].

To determine how host AS was affected by ZIKV

infection, we analyzed transcriptome wide AS changes in

ZIKV infected hNPCs. AS events (SE, RI, AS5, AS3, MXE,

altstart, altend and SME) are graphically illustrated in

Fig. 3a [15, 16]. We obtained 262 AS cases occurred in

229 genes (Fig. 3a). While most AS events (200) happened

once per gene, they occurred twice in 25 genes, three

times in 4 genes, including HMGN1, HNRNPD, MAP2,

and PTPRS. The occurrence of different types of AS is

summarized in Fig. 3a, among these, the SE type of AS

(115 cases) comprised the largest share, of over 43% of all

AS events, followed by RI at 12%.

Gene Ontology (GO) functional enrichment analyses

of genes undergone AS revealed top 20 GO terms

ranked by p value, which could be grouped into four

broad categories, cell death (4 GO terms), transport (3

GO terms), neuron development (3 GO terms), and

RNA processing (3 GO terms) (Fig. 3b and Additional

file 1: Table S5-S8). One interesting example, Fanconi

anemia complementation group A (FANCA), a DNA

repair protein [40], exhibited progressive apoptosis (pro-

gressive aplastic anemia) in knockout mice [41]. The

29th exon of FANCA was skipped after ZIKV infection

(Fig. 3c), while one of FANCA’s isoforms (id:

TCONS_00119591) was downregulated about 2-fold
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after ZIKV infection (Additional file 1: Figure S4). The

function of this exon and this splicing has not been re-

ported and it would be interesting to determine the

function of exon 29, and the role of skipping this exon

in ZIKV infection.

In the list of RNA processing and transport GO terms,

we found Heterogeneous Nuclear Ribonucleoprotein

A2/B1 (HNRNPA2B1), involved in pre-mRNA pro-

cessing [42], underwent AS after ZIKV infection, where

the second exon of HNRNPA2B1 was skipped (Fig. 3d).

Interestingly, one of HNRNPA2B1’s isoforms (id:

TCONS_00285720) was downregulated 2-fold (Additional

file 1: Figure S1), while at whole gene level, HNRNPA2B1

was also downregulated about 1.6-fold (p value = 0.00035).

Thus, the complex changes in HNRNPA2B1 expression,

i.e. AS, ISO and DE, suggest its important roles in pre-

mRNA processing and transport in infected cells.

H-Ras, a member of the Ras oncogene family [43], was

also subject to AS, as its fourth exon was retained after

ZIKV infection (Fig. 3e). One of its isoforms (id:

TCONS_00049078) was also upregulated about 2.5-fold

in infected samples (Additional file 1: Figure S1). As GO
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analysis suggested that H-Ras might be involved in both

cell death and transport, the upregulation of H-Ras

could reflect increased apoptosis and nuclear transport

as results of the infection.

Interestingly, several genes underwent exclusively AS

were enriched in neuron development. For example,

Microtubule Associated Protein 2 (MAP2), participating

in determining and stabilizing dendritic shape during

neuron development [44], was undergone altend type of

AS after ZIKV infection (Additional file 1: Table S6 and

Figure S4). On the other hand, DCC Netrin 1 Receptor

(DCC), which mediates axon attraction of neuronal

growth cones in the developing nervous system upon

ligand binding [45], was subject to alt3 type of AS

following the infection (Additional file 1: Table S6 and

Figure S4). The functional consequences of the splicing

changes to these genes are unknown, but it would be in-

teresting to determine whether these changes are related

to attenuated neurogenesis.

The 3′ UTRs contain multiple miRNA targets [46]

and other cis elements [47], allowing fine-tuned regu-

lation of genes. Paraspeckle Component 1 (PSPC1)

controls gene expression via an RNA nuclear reten-

tion mechanism [48]. We found that there were less

mapped reads in the 3′ UTR of PSPC1 in ZIKV in-

fected samples than control samples (Fig. 3f ), suggest-

ing PSPC1 would be more stable in infected samples

than in mock samples. This might partly explain the
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extensive alternations in RNA metabolism in infected

samples.

ZIKV infection affected gene isoform composition in the

host transcriptome

To characterize the changes in ISO composition in ZIKV

infected samples, we identified 355 cases of increase and

336 cases of decrease in ISOs expression (Fig. 4a and

Additional file 1: Table S4). These changes occurred in

652 genes, with 616 genes containing changes in one ISO,

33 genes showing changes in two ISOs, and 3 genes with

three ISO changes. When genes with changes in AS and

ISO compositon were compared, we found only 36 genes

with AS changes also had changes in ISO compositions

(Fig. 4b). This is far fewer than expected, as AS is believed

to be the main cause of ISO changes, and is likly due to

the sequencing depth, as similar results have been ob-

served previously [16, 49, 50].

Interestingly, the top 10 GO terms showed downreg-

ulated ISOs were mainly enriched in cell cycle (Fig. 4c),

consistent with downregulated DE genes in ZIKV in-

fected samples [6], while pathway analysis found down-

regulated ISOs were involved in cell cycle, p53

signaling pathway, pathways in cancer, pyrimidine me-

tabolism, and progesterone-mediated oocyte maturation

(Fig. 4d). This analysis suggests that the dysregulation of

cell cycle process could be a direct result of reduced both

cell cycle genes and ISOs expression. Notable examples

are E2F Transcription Factor 1 (E2F1) and E2F Transcrip-

tion Factor 2 (E2F2) from the E2F family of transcription

factors, which play crucial roles in the control of cell cycle

[51, 52]. E2F1 and E2F2 were downregulated about 3-fold

both at gene and ISO levels in infected samples (Fig. 4g).

In contrast, upregulated ISOs were enriched in amino

acid biosynthesis and transcription (Fig. 4e), which were

also consistent with upregulated DE genes [6]. Upre-

gulated ISOs were also enriched in mTOR signaling

pathway, p53 signaling pathway, Insulin signaling path-

way, aminoacyl-tRNA biosynthesis, glycine, serine and

threonine metabolism, terpenoid backbone, and phos-

phatidylinositol signaling systembiosynthesis (Fig. 4f ). As

examples of transcriptional regulation, CBX4, a member

of Polycomb group (PcG) multiprotein PRC1-like com-

plex and inhibiting expression of many genes [53–55],

and HEY1, a transcriptional repressor binding preferen-

tially to the canonical E box sequence 5-CACGTG-3

[56], were also upregulated both at gene and ISO expres-

sion levels for about 2.5 folds after ZIKV infection (Fig.

4h). Two pro-apoptotic factors, TNFRSF10D [57] and

BBC3 [58], were also upregulated about 2-fold at both

gene and gene ISO levels by ZIKV infection (Fig. 4h).

Taken together, ISO analysis suggests that many genes

underwent changes at both expression level and ISO

compisition, thus gene regulation at the level of ISO

composition is as important as gene expression in ZIKV

infected cells.

Discussion

ZIKV infection and pathogenesis are subjects of intense

interest, but the mechanisms are still largely unknown.

Analysis of host transcriptomic alternations caused by

ZIKV infection could identify genes and pathways that

function during ZIKV infection and pathogenesis. To

obtain a global view of changes in gene splicing, ISO

composition and lncRNAs expression in ZIKV infected

hNPCs, we analyzed RNA-seq data and identified 15,275

annotated lncRNAs. However, due to low expression

levels and potential for fragmentary gene models, we

cannot exclude the possibility that novel lncRNAs encode

small peptides in our downstream analyses. From these,

we obtained 92 significant DE annotated lncRNAs, and 55

significant DE novel lncRNAs in ZIKV infected samples.

Additionally, ZIKV infection induced 262 AS events, and

355 upregulated and 336 downregulated ISOs in the ZIKV

infected samples.

Most virus infections elicit strong immune response,

which is often modulated by the incoming virus to facili-

tate infection. For example, the nonstructural protein

NS5 of ZIKV may attenuate Type I Interferon Signaling

by binding and inhibiting STAT2 [9]. Interestingly,

THRIL, which normally activates many immune response

genes [32], was downregulated in ZIKV infected samples,

and could be another viral target to modulated host im-

munity. As a result, only a few DE PCGs involved in im-

mune response, such as TNFSF13B and RIPK2, were

upregulated by ZIKV infection. Consistently, GO analysis

of DE PCGs did not obtain any significant immune re-

sponse GO terms [6].

Apoptosis is highly induced in ZIKV infected cells and

may hold the key for diseases including microcephaly.

One recent study reported that several apoptotic regula-

tors, including ZMAT3, PMAIP1, TNFRSF10D, BBC3,

were upregulated, and cell cycle genes, such as E2F1 and

E2F2, were downregulated after ZIKV infection [6]. Im-

portantly, these genes were also similarly regulated at

the ISO level, further confirming the importance of

these processes in ZIKV infection induced pathogenesis

(Additional file 1: Table S4). 17 alternatively spliced

genes were also enriched in apoptosis, but they did not

show any differential expression at gene and ISO levels

(see Additional file 1: Table S5). Interestingly, lncRNAs

may also play important roles in apoptosis and cell cycle

dysregulation. For example, LINC00963 and LINC00342,

anti-apoptotic factors [33, 35], are downregulated by

ZIKV infection. Moreover, PVT1, inhibitor of cell prolif-

eration [34], is upregulated by ZIKV infection, and
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therefore could participate in virus-induced cell cycle

dysregulation.

Genes subject to AS are enriched in RNA processing,

transport and neuron development, however, several

alternatively spliced genes enriched in neuron develop-

ment did not show any differential expression at gene

and ISO levels (Additional file 1: Table S5–7). For in-

stance, MAP2 underwent altend, while DCC was sub-

ject to alt3 after ZIKV infection (Additional file 1: Table

S6 and Figure S4), even though the expression levels of

these two genes remained the same. The mechanism of

attenuated neurogenesis in infected individuals is cur-

rently unknown. It is possible a direct consequence of

cell cycle dysregulation and apoptosis, but splicing

changes in neurogenic gene may also play a role and be

worthy of further investigation.

In DE ISO analysis, we observed many of the upre-

gulated ISOs were enriched in transcription regulation,

amino acid biosynthesis and apoptosis. In contrast,

downregulated ISO are mostly concentrated in cell

cycle. Interestingly, many genes in this category under-

went both DE and ISO and they are mostly regulated

similarly by ZIKA infection. For instance, HEY1 and

CBX4 were upregulated at both gene epxression and gene

ISO levels.

Both lineages (African and Asian strains) efficiently

target neural stem cells (NSCs). Neurovirulence and

neuropathologies might be related to ZIKV African

strain which infects and replicates more efficiently in

NSCs and hNPCs than ZIKV Asian strain, and triggers a

stronger modulation of cellular homeostasis, including

cell cycle progression and anti-viral response [59, 60].

Asian ZIKV strains likely cause chronic infections within

the central nervous system (CNS). In addition, there are

a lot of differences of the nucleotide and amino acid

sequence composition in the genome of African and

Asian strains [60], which might indicate MR766 strain

specifically alters a limited number of genes expression

or AS. Owing to these differences between African and

Asian reference strains, we will further compare the

changes differences of host transcriptome, such as DE

and AS, in African and Asian strains infected samples.

In addition to lncRNA differential expression, changes

in AS and ISO composition, we also attempted to

analyze changes in alternative polyadenylation (APA), as

APA is also an important regulatory mechanism of gene

expression [61], however, we did not obtain any signifi-

cant APA events in ZIKV infected hNPCs. One possibil-

ity is that ZIKV infection induces very few, or very low

levels of APA. It could also due to the RNA sample

preparation method used, where total RNA from in-

fected cells was sequenced, resulting in under represen-

tation of 3′ end reads.

Conclusion

Importantly, our analyses suggested that ZIKV infection

activated cellular responses or pathways are linked to

specific types of changes to the host transcriptome
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Fig. 5 ZIKV induced host responses and alterations of host transcriptome. Several DE lncRNAs, ISOs and PCGs were enriched in cell cycle,

apoptosis, immune response, transcription regulation, amino acid biosynthesis, mTOR signaling pathway and p53 signaling pathway. Meanwhile,

many of genes undergone AS involved in neuron development, RNA processing and transport. Red and green arrows denote downregulation

and upregulation, respectively. The rectangle and oval stand for GO terms and pathways, respectively
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(Fig. 5). For instance, genes enriched in cell cycle, tran-

scription regulation, amino acid biosynthesis, mTOR sig-

naling pathway, and p53 signaling pathway are regulated

at the level of differential expression and isoform com-

position alternations, while neuron development, RNA

processing, and transport associated with genes are ex-

clusively regulated at the level of AS after infection

(Additional file 1: Table S6-S8). In contrast, genes in-

volved in apoptosis displayed all four types of changes

after the infection. These patterns suggest distinct mech-

anisms of pathway induced transcriptomic changes.

This, together with identified lncRNAs and AS events,

offers important opportunities to investigate the mech-

anism of ZIKV infection and pathogenesis.

Additional files

Additional file 1: Supplemental figures and tables. (DOCX 1754 kb)

Additional file 2: Differential gene expression between Zike Virus

infection and control. (XLSX 5758 kb)
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