Supporting Information

ZINC - A Free Database of Commercially Available Compounds for Virtual Screening.

John J. Irwin and Brian K. Shoichet
Department of Pharmaceutical Chemistry
University of California San Francisco

Genentech Hall, $60016^{\text {th }}$ St, San Francisco CA 94143

Table S1. Current size of the MySQL tables used to hold the ZINC database.

Table	Purpose/example	\# rows	Bytes	Total MB
substance	Unique chemical	877,941	400	330
protomer	Tautomer/protonation	986,965	400	380
fragmer	Rigid fragment choice	$1,976,479$	80	180
catalog	Source (e.g. Specs)	19	300	<1
catalog_item	Single buyable item	$1,028,497$	100	100
ph_model	e.g. pteridine, thiolate	7	200	<1

Figure S1. Schema of the ZINC database.

There are ten tables as follows.

1. Substance - Corresponds to a unique chemical species, i.e. a unique isomeric smiles string. Thus stereoisomers and configurational (E/Z) isomers have unique ZINC codes, even if they correspond to a single catalog entry (e.g. a racemic mixture). Molecules files that correspond to this level are available in isomeric SMILES format.
2. Catalog - Corresponds to a vendor-supplied file of molecules, usually dated and having a version number. Many vendors issue new catalogs monthly. We maintain two catalogs for each supplier: currently available compounds and retired compounds. We encourage our users to use the current catalog only.
3. Catalog_item - Corresponds to a single entry in a vendor's catalog, and has a single catalog number for purchasing. One catalog item may point to more than one substance, for example, a racemic mixture. A single substance may point to several catalog items, indicating its availability from those vendors.
4. Anno_source - Corresponds to sources of annotation, e.g. NCI, ChemBank and usersupplied annotations.
5. Annotation - Corresponds to a single annotation (e.g. COX-2 inhibitor).
6. Note - Is a single annotation that attributes a single annotation to a single substance.
7. Ph_model - Corresponds to our hand-crafted rules for alternate protonation forms of molecules (table 5).
8. Protomer - Corresponds to a protonated, 3D molecule, either a tautomer (e.g. folate) or an alternate protonated form (e.g. imidazole, pteridine). Molecule files that correspond to this level are available in mol2 and SDF formats from our website.
9. Fragmer - Corresponds to rigid fragment choices, also known as "anchors" in docking parlance. Typically rings are used for rigid fragments, so the number of fragmers is often the number of rigid ring systems. Molecule files that correspond to this level are available in DOCK flexi-base format.
10. Subset - Corresponds to selections of molecules from the database and available as exported files from our website. Subsets are also used for sets of molecules uploaded by users for processing.

Figure S2. Our version of the filter_light.txt parameter file for OpenEye's filter.1.0.2.

```
#This file defines the rules for filtering multi-structure files based on
#properties and substructure patterns.
#NOTE: this rule file is suitable for drug-like filtering and may be
# too restrictive for reagent filtering.
#These rules include the contributions of countless chemists & modellers
including:
#Rule of 5:
# Lipinski, C, et al., Adv.Drug Deliv. Rev., 23:3, 1997.
#General Filtering:
# Oprea, T., JCAMD 14:251-264, 2000.
#XLogP:
# Wang, R, Ying, Fu, & Lai, Luhua, J.Chem. Inf. Comput. Sci., 37:615-621,
1997.
#Polar Surface Area
# Peter Ertl, Bernhard Rohde, & Paul Slzer, J. Med. Chem. 43:3714-3717,
2000.
# David E. Clark, Journal of Pharmaceutical Sciences, 88(8):807-814,
1999.
```


Irwin and Shoichet

```
#functional groups which often eliminate compounds from consideration
RULE 0 acid_halide
#RULE 0 aldehyde
#RULE 0 alkyl_halide
RULE 0 anhydride
RULE 0 azide
RULE 0 azo
RULE 0 di_peptide
RULE 0 long_aliphatic_chain //(>7 atoms)
#RULE 0 michael_acceptor
RULE 0 beta_halo_carbonyl
#RULE 0 nitro
RULE 0 peroxide
RULE 0 phosphonic_acid
RULE 0 phosphonic_ester
RULE 0 phosphoric_acid
RULE 0 phosphoric_ester
RULE 0 sulfonic_acid
RULE 0 sulfonic_ester
RULE 0 triphenyl_phosphene
RULE 0 unbranched_chain //(>4_atoms)
#RULE 0 epoxide
#RULE 0 hetero_hetero
RULE 0 sulfonȳl_halide
RULE 0 halopyrimidine
RULE 0 perhalo_ketone
#RULE 0 methyl_ketone
RULE 0 aziridine
#RULE 0 imine
RULE 0 oxalyl
#the dye group includes a set of patterns which describe all cpds with colors
in their names from the ACD98.2
RULE 0 dye
#functional groups which are allowed, but may not be wanted in high
quantities
#common functional groups
\begin{tabular}{lll} 
RULE & 6 & alcohol \\
RULE & 8 & alkene \\
RULE & 4 & amide \\
RULE & 4 & amino_acid \\
RULE & 4 & amine \\
RULE & 4 & primary_amine \\
RULE & 4 & secondary_amine \\
RULE & 4 & tertiary_amine \\
RULE & 4 & carboxylic_acid \\
RULE & 6 & halide \\
RULE & 1 & iodine \\
RULE & 4 & ketone \\
RULE & 4 & phenol \\
& \\
\#other functional groups
\end{tabular}
```

RULE	4	alkyne
RULE	4	aniline
RULE	4	aryl_halide
RULE	4	carbamate
RULE	4	ester
RULE	4	ether
RULE	4	hydrazine
RULE	4	hydrazone
RULE	4	hydroxylamine
RULE	4	nitrile
RULE	4	sulfide
RULE	4	sulfone
RULE	4	sulfoxide
RULE	4	thiourea
RULE	4	thioamide
RULE	4	thiol
RULE	4	urea

Figure S3. Our version of the services/data/ionizer.ini file for Schrodinger's LigPrep.

```
##############################################################
# $Id: ionizer.ini,v 1.40 2004/02/06 19:46:18 reboul Exp $
# Control specs for ionization state expander
# Copyright 2002-2003 Schrodinger, LLC.
# All rights reserved.
##############################################################
###############################################################
#
# Ionization pattern spec syntax
# ===============================
#
# In the Ionizer's processing of this data file, blank lines
# are ignored, and any text to the right of a '#' is treated
# as a comment.
#
# All other text is treated as an ionization spec. Each valid
# ionization spec consists of a command name, followed by the
# command's required parameters. These ion spec commands are
# supported --
#
# Acid: Specifies an acid group, and how to ionize it
#
# Base: Specifies a Base group, and how to ionize it
#
# Exclude: Specifies a group to exclude from consideration
    as ionizable; used to selectively "forget" group
    matches Based on prior Acid/Base specs
```

Irwin and Shoichet

```
# Ionizable groups are specified using Schrodinger's linear
# substructure notation, which goes by the name "mmsubs". That
# syntax is described in this installed document --
#
# $SCHRODINGER/services-v#####/doc/mmsubs_syntax.txt
#
##############################################################
#
# Note Well
# =========
#
Every input CT is tested for any substructures matching
the specified ionizable groups, in the order in which they
# appear below. The effect of a later pattern match will
# supersede the effect of an earlier pattern match. Thus,
anyone crafting pattern specs like these must think very
carefully about the proper order for the desired effects.
#
For example -- look below -- the sulfonic pattern has to
come after the sulfinic pattern, because the sulfonic
pattern is a specialization of the sulfinic pattern. Any
group which matches sulfonic will also match sulfinic, but
the opposite assertion is not necessarily true.
#
If the order of the two patterns were reversed below, then
a sulfonic match would always be superseded by the sulfinic
match, thereby losing the intended distinction between the
two.
#
# Because of the great generality of this syntax, the inter-
# pattern precedences can be much less obvious than for the
sulfinic vs. sulfonic case. Be careful!
#
##############################################################
#
We now describe the command parameter syntax....
    Acid <mmsubs_pattern> <ionized_fragment> <pKa>
    Base <mmsubs pattern> <ionized fragment> <pKa>
For each input CT, in any substructure found to match the
specified mmsubs pattern, the atom matching the pattern's
leading atom will be considered for ionization via fusion
of the specified ionized fragment. The ion group will be
treated as acid or Base according to the command used.
#
# The fragment named must be in this program's custom
fragment library. The library is named "ionized", and it
currently contains fragments named Ammonium, Hydroxide,
N-minus, and Thiolate.
#
# The Acid/Base spec's 3rd parameter, a pKa value for the
# matching group, is used in deciding which ion combinations
# to actually generate in the output, Based on pK and/or
# pH considerations at run time. Note that pKa is used for
# both acids and Bases.
#
```

```
# You cannot specify an Acid/Base pattern in this file
# without supplying a pKa value for it. It is assumed that
# a pKa value is at least somewhat accurate, as it is going
# to be used in the program's restriction determinations.
#
# When one Acid/Base pattern is a specialization of another
# Acid/Base pattern, it is probably the case that the pKa
# value for the more specialized pattern can be given more
# precisely. Assuming that the patterns are presented in
# order of increasing specificity, the more precise pKa will
# be assigned ultimately.
#
# Exclude specs don't specify a fragment or pKa....
#
# Exclude <mmsubs_pattern>
#
# For each input CT, in any substructure matching the
# specified pattern, the atom matching the pattern's
# leading atom will be _excluded_ from consideration for
# ionization.
#
# An Exclude pattern match causes an effect only if the
# leading atom coincides with a prior Acid/Base pattern
# match's leading atom. If there is no corresponding prior
# Acid/Base match, the Exclude match is simply ignored.
#
# Because of the Ionizer's top-to-bottom processing of these
# pattern specs, each Exclude pattern must be placed after
# all the Acid/Base specs whose matches it might negate.
#
# It is possible for a given input CT atom to be matched as
# an ionization center due to some Acid/Base pattern spec,
# then excluded from consideration due to a later Exclude
# pattern, then re-matched due to an even later Acid/Base
# spec.
#
###############################################################
#
# Important note
# ==============
#
# The following specifications are _not_ an encyclopedic list
# of ionizable groups!
#
# Some users will wish to prepare their own customized data
# file, presumably by adapting a copy from this one, and then
# running with the customized data, specified via command-
# line option.
#
# Such users must understand Schrodinger's "mmsubs" linear
# substructure notation. Correct use of the syntax is not
# trivially easy. Users may need to contact Schrodinger for
# assistance.
#
##############################################################
##############################################################
```

```
# Specs for acids, to be deprotonated
# carboxylic
#Acid OO(-HO)-C2(=OO)-CO Hydroxide 4.0
# for now, I don"t want them to be protonated for the CCP pocket
Acid OO(-HO)-C2(=OO)-CO Hydroxide 2.0
# phosphoric
Acid OO(-HO)-PO(=OO)(-OO)-OO Hydroxide 2.1
# phosphorylamide
Acid OO(-HO)-PO(=OO)(-NO)-OO Hydroxide 2.6
# phosphonic
Acid OO(-HO)-PO(=OO)(-OO)-CO Hydroxide 2.5
# phosphonamide
Acid OO(-HO)-PO(=OO)(-NO)-CO Hydroxide 2.9
# sulfuric
Acid OO(-HO)-SO(=OO)(=OO)-OO Hydroxide -2.0
# sulfinic
Acid OO(-HO)-SO(=OO)-CO Hydroxide 2.0
# sulfonic
# (supersedes match on sulfinic above)
Acid OO(-HO)-SO(=OO) (=OO)-CO Hydroxide -1.0
# hydroxamic
Acid OO(-HO)-NO(-HO)-CO=OO Hydroxide 8.5
Acid OO(-HO)-NO(-C3)-CO=OO Hydroxide 8.5 # estimated
# sulfonamides
# aromatic or alkene
Acid NO(-HO) (-C2=C2)-SO(=OO) (=OO)-CO N-minus 8.2
# pyridyl
Acid NO(-HO)(-C2=N2)-SO(=OO)(=OO)-CO N-minus 8.2
# carbonyl
Acid NO(-HO) (-C2=O2)-SO(=OO) (=OO)-CO N-minus 4.5
# alkyl
Acid NO(-HO)(-C3)-SO(=OO)(=OO)-CO N-minus 11.6
# Chlorine
Acid NO(-HO) (-Cl)-SO(=OO) (=OO)-CO N-minus 4.5
# tetrazole
Acid NO(-HO)-NO=NO-NO=C2-1 N-minus 4.5
Acid NO(-HO)-NO=NO-C2=NO-1 N-minus 4.5
# phenol
Acid O3(-H0)-C2*C2(-00)*C2(-00)*C2(-00)*C2(-00)*C2(-00)*3 Hydroxide 10.0
# Regarding the phenol pattern, one co-worker said --
#
# "The phenol pattern above correctly works with most of my tested
# phenols and non-phenols. It is great for single carbon aromatic
# rings, and avoids greedy matches with compounds it should not.
```

```
# However, the pattern above does not match some canonical resonance
# structures of polycyclic benzenoid aromatics."
#
# "My opinion is that the pattern is pretty good, and certainly
# better than not having it at all. The polycyclic benzenoid
# compounds are vexing."
# 2-nitrosophenol/2-nitrophenol
Acid OO(-HO)-C2*C2(-NO=OO)*C2(-00)*C2(-00)*C2(-00)*C2(-00)*3 Hydroxide 6.5
# 4-nitrosophenol/4-nitrophenol
Acid OO(-HO)-C2*C2(-00)*C2(-00)*C2(-NO=OO)*C2(-00)*C2(-00)*3 Hydroxide 6.5
# 3,5-dinitrosophenol/3,5-dinitrophenol
Acid OO(-HO)-C2*C2(-00)*C2(-NO=OO)*C2(-00)*C2(-NO=OO)*C2(-00)*3 Hydroxide 6.7
# alkylthiol
Acid SO(-HO)-C3 Thiolate 9.5
# thiophenol
Acid S0(-HO)-C2*C2(-00)*C2(-00)*C2(-00)*C2(-00)*C2(-00)*3 Thiolate 6.6
Acid SO(-HO)-C2*N2*C2(-00)*C2(-00)*C2(-00)*C2(-00)*3 Thiolate 6.6
Acid SO(-HO)-C2*C2 (-00)*N2*C2 (-00)*C2 (-00)*C2(-00)*3 Thiolate 6.6
Acid SO(-HO)-C2*C2(-00)*C2(-00)*N2*C2(-00)*C2(-00)*3 Thiolate 6.6
Acid SO(-HO)-C2*N2*C2(-00)*N2*C2(-00)*C2(-00)*3 Thiolate 6.6
# Don't match sulfinic acid tautomer
Exclude SO(-HO) (=OO) (=OO)
##############################################################
# In many ring patterns, both above and below here, note the
# use of *C2(-00)*, where -00 (two zeroes) signifies single
# bond to any atom. This restricts the matches to only those
# substructures with aromatic carbons. We have to do this in
# light of our atom types. As one co-worker explained --
#
# "[B]ecause of our broad definition of the aromatic C (*C2*),
# our patterns would [otherwise] match quinone or uracyl type
# compounds. Hence we [...] have to impose a single-bonded
# substituent on every aromatic C to distinguish between them
# and carbonyl type C2."
##############################################################
##############################################################
# Specs for Bases, to be protonated
# We require Base pattern leading Nitrogens to be uncharged,
# to ignore some input molecules' N+ atoms otherwise matching
# these patterns; hence the "[Ajay #79]" qualifiers, which are the
# mmsubs-extension syntax for zero formal charge.
# dialkylaniline
Base NO{0}(-C3) (-C3)-C2*C2(-00)*C2(-00)*C2(-00)*C2(-00)*C2(-00)*4 Ammonium
4.5
# amine
```

Irwin and Shoichet

```
Base NO{O}(-HO)(-HO)-C3 Ammonium 10.5 # primary
Base NO{0}(-HO) (-C3)-C3 Ammonium 11.0 # secondary
Base NO{0}(-C3) (-C3)-C3 Ammonium 10.0 # tertiary
# hydrazine
Base NO{O}(-HO) (-HO) -N3 Ammonium 10.0 # primary
Base NO{0}(-H0) (-C3)-N3 Ammonium 10.0 # secondary
Base NO{0}(-C3) (-C3)-N3 Ammonium 10.0 # tertiary
# imine
Base NO{0}(-HO)=C2(-HO)-C3 Ammonium 11.5
Base NO{0} (-H0) =C2 (-C3)-C3 Ammonium 11.5
Base NO{0} (-C3) =C2(-H0)-C3 Ammonium 11.5
Base NO{0}(-C3)=C2(-C3)-C3 Ammonium 11.5
# amidine
Base NO{O}(-HO)=C2(-HO)-NO-HO Ammonium 12.0
Base NO{0}(-HO)=C2(-HO)-NO-C3 Ammonium 12.0
Base NO{O}(-HO)=C2(-CO)-NO-HO Ammonium 12.0
Base NO{0}(-HO)=C2(-CO)-NO-C3 Ammonium 12.0
Base NO{0} (-C3) = C2 (-HO)-NO-HO Ammonium 12.0
Base NO{0} (-C3) =C2 (-H0)-NO-C3 Ammonium 12.0
Base NO{0} (-C3) =C2 (-CO)-NO-HO Ammonium 12.0
Base NO{0}(-C3)=C2(-C0)-NO-C3 Ammonium 12.0
# guanidine
Base NO{O}(-HO)=C2(-NO-HO)-NO-HO Ammonium 12.5
Base NO{O}(-HO)=C2(-NO-HO)-NO-C3 Ammonium 12.5
Base NO{0}(-HO)=C2(-NO-C3)-NO-HO Ammonium 12.5
Base NO{0}(-HO)=C2(-NO-C3)-NO-C3 Ammonium 12.5
Base NO{0}(-C3)=C2(-NO-HO)-NO-HO Ammonium 12.5
Base NO{O} (-C3) =C2(-NO-HO)-NO-C3 Ammonium 12.5
Base NO{0} (-C3) =C2 (-NO-C3)-NO-HO Ammonium 12.5
Base NO{0}(-C3) =C2(-NO-C3)-NO-C3 Ammonium 12.5
# enamine
Base NO{O}(-HO) (-HO)-C2(-HO)=C2 Ammonium 10.5 # primary
Base NO{0}(-HO) (-HO)-C2 (-C3) =C2 Ammonium 10.5 # primary
Base NO{0}(-HO) (-C3)-C2(-H0)=C2 Ammonium 10.5 # primary
Base NO{0}(-H0) (-C3)-C2 (-C3) =C2 Ammonium 10.5 # primary
Base NO{0}(-C3) (-C3)-C2 (-H0) =C2 Ammonium 10.5 # primary
Base NO{0}(-C3) (-C3)-C2(-C3) =C2 Ammonium 10.5 # primary
#
# Screen out some matches on enamines above --
#
Exclude NO{0}(-HO)(-HO)-C2=C2-C2=OO
Exclude NO{0}(-H0)(-C3)-C2=C2-C2=O0
Exclude NO{0}(-C3)(-C3)-C2=C2-C2=O0
#
Exclude NO{0}(-H0)(-H0)-C2=C2-C1%NO
Exclude NO{0}(-H0) (-C3)-C2=C2-C1%NO
Exclude NO{0}(-C3)(-C3)-C2=C2-C1%NO
# aniline
Base NO{0}(-HO) (-H0)-C2*C2(-00)*C2(-00)*C2(-00)*C2(-00)*C2(-00)*4 Ammonium
4.5 # primary
```

Base $\mathrm{NO}\{0\}(-\mathrm{HO})(-\mathrm{CO})-\mathrm{C} 2 * \mathrm{C} 2(-00) * 4$ Ammonium 4.5 \# secondary
\#the problem with the rule above is that compounds also get protonated, if the N is part of a ring

```
Exclude NO*C2*C2*C2*C2*1 #anniliertes pyrrole
```

Exclude NO*C2*NO*C2*C2*1 \#anniliertes imidazole
Exclude NO*NO*C2*C2*C2*1 \#anniliertes pyrazole (?)
\#Exclude F or Cl sub.
Exclude $\mathrm{NO}(-\mathrm{HO})(-00)-\mathrm{C} 2 * \mathrm{C} 2(-\mathrm{Hl}) * \mathrm{C} 2(-00) * \mathrm{C} 2(-00) * \mathrm{C} 2(-00) * \mathrm{C} 2(-00) * 4 \quad$ \# F or
Cl substiuent
Exclude $\mathrm{NO}(-\mathrm{HO})(-00)-\mathrm{C} 2 * \mathrm{C} 2(-00) * \mathrm{C} 2(-\mathrm{H} 1) * \mathrm{C} 2(-00) * \mathrm{C} 2(-00) * \mathrm{C} 2(-00) * 4 \quad$ \# F or
Cl substiuent
Exclude $\mathrm{NO}(-\mathrm{HO})(-00)-\mathrm{C} 2 * \mathrm{C} 2(-00) * \mathrm{C} 2(-00) * \mathrm{C} 2(-\mathrm{Hl}) * \mathrm{C} 2(-00) * \mathrm{C} 2(-00) * 4 \quad$ \# F or
Cl substiuent
Exclude $\mathrm{NO}(-\mathrm{HO})(-00)-\mathrm{C} 2 * \mathrm{C} 2(-00) * \mathrm{C} 2(-00) * \mathrm{C} 2(-00) * \mathrm{C} 2(-\mathrm{H} 1) * \mathrm{C} 2(-00) * 4 \quad$ \# F or
Cl substiuent
Exclude $\mathrm{NO}(-\mathrm{HO})(-00)-\mathrm{C} 2 * \mathrm{C} 2(-00) * \mathrm{C} 2(-00) * \mathrm{C} 2(-00) * \mathrm{C} 2(-00) * \mathrm{C} 2(-\mathrm{Hl}) * 4 \quad$ \# F or
Cl substiuent
Base $\mathrm{NO}\{0\}(-\mathrm{CO})(-\mathrm{CO})-\mathrm{C} 2 * \mathrm{C} 2(-00) * 4$ Ammonium
4.5 \# tertiary
\# 1,4-diaminobenzene
Base $\mathrm{NO}\{\mathrm{O}\}(-\mathrm{HO})(-\mathrm{HO})-\mathrm{C} 2 * \mathrm{C} 2(-\mathrm{OO}) * \mathrm{C} 2(-\mathrm{OO}) * \mathrm{C} 2(-\mathrm{NO}(-\mathrm{HO})(-\mathrm{HO})) * \mathrm{C} 2(-\mathrm{OO}) * \mathrm{C} 2(-0 \mathrm{O}) * 4$
Ammonium 6.2
Base $\mathrm{NO}\{\mathrm{O}\}(-\mathrm{HO})(-\mathrm{HO})-\mathrm{C} 2 * \mathrm{C} 2(-\mathrm{OO}) * \mathrm{C} 2(-\mathrm{OO}) * \mathrm{C} 2(-\mathrm{NO}(-\mathrm{HO})(-\mathrm{C} 3)) * \mathrm{C} 2(-00) * \mathrm{C} 2(-00) * 4$
Ammonium 6.2
Base $\mathrm{NO}\{0\}(-\mathrm{HO})(-\mathrm{HO})-\mathrm{C} 2 * \mathrm{C} 2(-00) * \mathrm{C} 2(-00) * \mathrm{C} 2(-\mathrm{NO}(-\mathrm{C} 3)(-\mathrm{C} 3)) * \mathrm{C} 2(-00) * \mathrm{C} 2(-00) * 4$
Ammonium 6.2
Base $\mathrm{NO}\{0\}(-\mathrm{HO})(-\mathrm{C} 3)-\mathrm{C} 2 * \mathrm{C} 2(-00) * \mathrm{C} 2(-\mathrm{OO}) * \mathrm{C} 2(-\mathrm{NO}(-\mathrm{HO})(-\mathrm{HO})) * \mathrm{C} 2(-\mathrm{OO}) * \mathrm{C} 2(-00) * 4$
Ammonium 6.0
Base $\mathrm{NO}\{0\}(-\mathrm{HO})(-\mathrm{C} 3)-\mathrm{C} 2 * \mathrm{C} 2(-\mathrm{OO}) * \mathrm{C} 2(-\mathrm{OO}) * \mathrm{C} 2(-\mathrm{NO}(-\mathrm{HO})(-\mathrm{C} 3)) * \mathrm{C} 2(-\mathrm{OO}) * \mathrm{C} 2(-00) * 4$
Ammonium 6.0
Base $\mathrm{NO}\{0\}(-\mathrm{HO})(-\mathrm{C} 3)-\mathrm{C} 2 * \mathrm{C} 2(-00) * \mathrm{C} 2(-00) * \mathrm{C} 2(-\mathrm{NO}(-\mathrm{C} 3)(-\mathrm{C} 3)) * \mathrm{C} 2(-00) * \mathrm{C} 2(-00) * 4$
Ammonium 6.0
Base $\mathrm{NO}\{0\}(-\mathrm{C} 3)(-\mathrm{C} 3)-\mathrm{C} 2 * \mathrm{C} 2(-\mathrm{OO}) * \mathrm{C} 2(-\mathrm{OO}) * \mathrm{C} 2(-\mathrm{NO}(-\mathrm{HO})(-\mathrm{HO})) * \mathrm{C} 2(-\mathrm{OO}) * \mathrm{C} 2(-00) * 4$
Ammonium 6.0

Ammonium 6.0
Base $\mathrm{NO}\{0\}(-\mathrm{C} 3)(-\mathrm{C} 3)-\mathrm{C} 2 * \mathrm{C} 2(-00) * \mathrm{C} 2(-00) * \mathrm{C} 2(-\mathrm{NO}(-\mathrm{C} 3)(-\mathrm{C} 3)) * \mathrm{C} 2(-00) * \mathrm{C} 2(-00) * 4$
Ammonium 6.0
\# N-heterocycles....
\# imidazole
Base $\mathrm{NO}\{0\}=\mathrm{C} 2-\mathrm{NO}-\mathrm{C} 2=\mathrm{C} 2-1$ Ammonium 7.0
\#RB no $C l$ or F substiuents
Exclude $\mathrm{N} 0=\mathrm{C} 2(-\mathrm{Hl})-\mathrm{NO}-\mathrm{C} 2=\mathrm{C} 2-1$
Exclude $\mathrm{N} 0=\mathrm{C} 2-\mathrm{NO}-\mathrm{C} 2=\mathrm{C} 2(-\mathrm{Hl})-1$
Exclude $\mathrm{NO}=\mathrm{C} 2-\mathrm{NO}-\mathrm{C} 2(-\mathrm{Hl})=\mathrm{C} 2-1$
\# pyridine
Base $\mathrm{N} 2\{0\} * \mathrm{C} 2(-00) * 1$ Ammonium 5.5
\#3-aminopyridine has got an pKa of 6.2 in ACD labs
\#RB

Irwin and Shoichet

Base $\mathrm{N} 2\{0\} * \mathrm{C} 2(-00) * \mathrm{C} 2(-\mathrm{NO}(-\mathrm{HO})(-\mathrm{HO})) * \mathrm{C} 2(-00) * \mathrm{C} 2(-00) * \mathrm{C} 2(-00) * 1$ Ammonium 6.2

```
# pyridine with C=O, C=C or halide
Exclude N2*C2(-H1)*C2*C2*C2*C2*1
Exclude N2*C2*C2(-H1)*C2*C2*C2*1
Exclude N2*C2*C2*C2 (-H1)*C2*C2*1
Exclude N2*C2(*C2=O2)*C2*C2*C2*C2*1
Exclude N2*C2*C2(*C2=O2)*C2*C2*C2*1
Exclude N2*C2*C2*C2(*C2=O2)*C2*C2*1
Exclude N2*C2 (*C2=N2) *C2*C2*C2*C2*1
Exclude N2*C2*C2 (*C2=N2)*C2*C2*C2*1
Exclude N2*C2*C2*C2(*C2=N2)*C2*C2*1
```

\# 2-aminopyridine (ACD labs says 6.7) (they should still be protonated at pH 4.5, even with F or Cl subs.)

Base $\mathrm{N} 2\{0\} * \mathrm{C} 2(-\mathrm{NO}(-\mathrm{HO})(-\mathrm{HO})) * \mathrm{C} 2(-00) * \mathrm{C} 2(-00) * \mathrm{C} 2(-\mathrm{OO}) * \mathrm{C} 2(-00) * 1$ Ammonium 7.5
Base $\mathrm{N} 2\{0\} * \mathrm{C} 2(-\mathrm{NO}(-\mathrm{HO})(-\mathrm{C} 3)) * \mathrm{C} 2(-00) * \mathrm{C} 2(-00) * \mathrm{C} 2(-00) * \mathrm{C} 2(-00) * 1$ Ammonium 7.5
Base $\mathrm{N} 2\{0\} * \mathrm{C} 2(-\mathrm{N} 0(-\mathrm{C} 3)(-\mathrm{C} 3)) * \mathrm{C} 2(-00) * \mathrm{C} 2(-00) * \mathrm{C} 2(-00) * \mathrm{C} 2(-00) * 1$ Ammonium 7.5
\# 4-aminopyridine (they should still be protonated at pH 4.5, even with F or Cl subs. the better way to go would probably to define diffrent pkas
\#for the subtituet ones)
Base $\mathrm{N} 2\{0\} * \mathrm{C} 2(-00) * \mathrm{C} 2(-00) * \mathrm{C} 2(-\mathrm{NO}(-\mathrm{HO})(-\mathrm{HO})) * \mathrm{C} 2(-00) * \mathrm{C} 2(-00) * 1$ Ammonium 9.0
Base $\mathrm{N} 2\{0\} * \mathrm{C} 2(-00) * \mathrm{C} 2(-00) * \mathrm{C} 2(-\mathrm{NO}(-\mathrm{HO})(-\mathrm{C} 3)) * \mathrm{C} 2(-00) * \mathrm{C} 2(-00) * 1$ Ammonium 9.0 Base $\mathrm{N} 2\{0\} * \mathrm{C} 2(-00) * \mathrm{C} 2(-00) * \mathrm{C} 2(-\mathrm{NO}(-\mathrm{C} 3)(-\mathrm{C} 3)) * \mathrm{C} 2(-00) * \mathrm{C} 2(-00) * 1$ Ammonium 9.0
\# 4-methoxypyridine
Base $\mathrm{N} 2\{0\} * \mathrm{C} 2(-00) * \mathrm{C} 2(-00) * \mathrm{C} 2(-\mathrm{OO}-\mathrm{C} 3) * \mathrm{C} 2(-00) * \mathrm{C} 2(-00) * 1$ Ammonium 6.5
\# new rules for 3 -aminopyridazine (pyridazine itself has got a pKa of about 2.5)

Base $\mathrm{N} 2\{0\} * \mathrm{~N} 2 * \mathrm{C} 2(-\mathrm{NO}(-\mathrm{HO})(-\mathrm{HO})) * \mathrm{C} 2 * \mathrm{C} 2 * \mathrm{C} 2 * 1$ Ammonium 5.0
\#No substituentns on the $\mathrm{N}-\mathrm{N}$ pattern
Exclude $\mathrm{N} 2(* 00) * \mathrm{~N} 2 * \mathrm{C} 2(-\mathrm{NO}(-\mathrm{HO})(-\mathrm{HO})) * \mathrm{C} 2 * \mathrm{C} 2 * \mathrm{C} 2 * 1$
Exclude N2*N2 (*00) * $\mathrm{C} 2(-\mathrm{NO}(-\mathrm{HO})(-\mathrm{HO})) * \mathrm{C} 2 * \mathrm{C} 2 * \mathrm{C} 2 * 1$
\#Exclude 3,5, Diaminopyridazines, since they would be again covered by the following rule (RB)
Exclude $\mathrm{N} 2 * \mathrm{~N} 2 * \mathrm{C} 2(-\mathrm{NO}(-\mathrm{HO})(-\mathrm{HO})) * \mathrm{C} 2 * \mathrm{C} 2(-\mathrm{NO}(-\mathrm{HO})(-\mathrm{HO})) * \mathrm{C} 2 * 1$
\# new rules for 4-aminopyridazine (pyridazine itself has got a pKa of about 2.5)

Base $\mathrm{N} 2\{0\} * \mathrm{~N} 2 * \mathrm{C} 2 * \mathrm{C} 2(-\mathrm{NO}(-\mathrm{HO})(-\mathrm{HO})) * \mathrm{C} 2 * \mathrm{C} 2 * 1$ Ammonium 6.5
Exclude $\mathrm{N} 2(* 00) * \mathrm{~N} 2 * \mathrm{C} 2 * \mathrm{C} 2(-\mathrm{NO}(-\mathrm{HO})(-\mathrm{HO})) * \mathrm{C} 2 * \mathrm{C} 2 * 1$
Exclude $\mathrm{N} 2 * \mathrm{~N} 2(* \mathrm{OO}) * \mathrm{C} 2 * \mathrm{C} 2(-\mathrm{NO}(-\mathrm{HO})(-\mathrm{HO})) * \mathrm{C} 2 * \mathrm{C} 2 * 1$
\# new rules for 2 -aminopyrazine (pyrazine itself has got a pKa of about -0.5) Base $\mathrm{N} 2\{0\} * \mathrm{C} 2(-\mathrm{N} 0(-\mathrm{HO})(-\mathrm{HO})) * \mathrm{C} 2 * \mathrm{~N} 2 * \mathrm{C} 2 * \mathrm{C} 2 * 1$ Ammonium 3.0
\#new rule for 4-aminopyrimidne
\#Base $\mathrm{N} 2\{0\} * \mathrm{C} 2(-00) * \mathrm{NO} * \mathrm{C} 2(-\mathrm{NO}(-\mathrm{HO})(-\mathrm{HO})) * \mathrm{C} 2 * \mathrm{C} 2 * 1$ Ammonium 5.5
\# new rule for 2,4-aminopyrimidine (2-aminopyrimidine has got a pKa of about 2.6)

Base $\mathrm{N} 2\{0\} * \mathrm{C} 2(-\mathrm{NO}(-\mathrm{HO})(-\mathrm{HO})) * \mathrm{~N} 2 * \mathrm{C} 2(-\mathrm{NO}(-\mathrm{HO})(-\mathrm{HO})) * \mathrm{C} 2 * \mathrm{C} 2 * 1$ Ammonium 6.5

Irwin and Shoichet

```
#exclude pyrimidines with a Cl or F substituent (RB)
Exclude N2*C2(-H1)*NO*C2(-NO(-HO) (-HO)) *C2*C2*1
Exclude N2*C2*NO*C2(-NO(-HO) (-HO)) *C2(-H1)*C2*1
Exclude N2*C2*NO*C2(-NO(-HO)(-HO))*C2*C2(-Hl)*1
#exclude all 6-membered N-containing rings with more than 1 F or Cl (RB)
Exclude NO*00(-Hl)*00(-Hl)*00*00*00*1
Exclude NO*OO(-Hl)*00*00(-Hl)*00*00*1
Exclude NO*00(-Hl)*00*00*00(-Hl)*00*1
Exclude NO*00(-Hl)*00*00*00*00(-Hl)*1
Exclude N0*00*00(-Hl)*00(-Hl)*00*00*1
Exclude NO*00*00(-Hl)*00*00(-Hl)*00*1
```

\#new rule for 2amino-thiazole
Base $\mathrm{N} 2\{0\} * \mathrm{C} 2(-\mathrm{NO}(-\mathrm{HO})(-\mathrm{HO})) * \mathrm{SO} \mathrm{CL}_{\mathrm{C}}(-\mathrm{OO}) * \mathrm{C} 2(-00) * 1$ Ammonium 5.5
\# purine
\# (supersedes match on imidazole above) and other heterocycles (new
placement, RB)
\#Exclude $\mathrm{NO}=\mathrm{C} 2-\mathrm{NO}-\mathrm{C} 2 * \mathrm{NO}$ *C2 (-00) *NO*C2*C2 (-1) (*5)
\#Exclude $\mathrm{N} 2 * \mathrm{C} 2 * \mathrm{~N} 2 * \mathrm{C} 2 * \mathrm{C} 2 * 1$
Exclude NO*CO*NO*CO*NO*CO*NO*CO*CO (*1) (*4)
\#Why does this rule not get applied?????
\# benzimidazole family
Exclude $\mathrm{N} 2\{0\} * \mathrm{C} 2 * \mathrm{~N} 2 * \mathrm{C} 2 * \mathrm{C} 2(* 02 * 02 * 02 * 02 * 4) * 1$
\#
\# Alternative method for not matching N+ atoms
\#
\# Don't specify "\{0\}" in the Base N^{*} patterns above, but
\# then, after all the Base N^{*} patterns, Exclude matches on
\# Nitrogens with total bond order 4, which must be N+ atoms.
\#
\# With "\{0\}" qualifiers still in place above, the following
\# is redundant, that is, it has no effect.
\#
\# Because the following patterns are so simple, they may hit
\# some Nitrogens not matched by the Base patterns above. Any
\# such matches are simply ignored, since there are no prior
\# matches to undo.

\#
\# Please do not alter or remove the comments below capturing

Irwin and Shoichet

```
# the RCS revision info on this data file! The Ionizer's
# handling of the -v|-ver|-version option expects to find
# these here, in exactly this form --
#
# VERSION $Revision: 1.40 $
# VERSION $Date: 2004/02/06 19:46:18 $
##############################################################
```

Figure S4. Our version of the macromodel/data/tautomer_list file for Schrodinger's

LigPrep.

```
Note that we have changed the ligprep script to use 20% (0.2) as the lower
limit for tautomeric equilibria. Schrodinger's default value was 0.01.
# instructions:
# Within a set of tautomers
# Covalent bonds involving Hydrogen that are moved in any tautomer must be
represented
# explicitly and proceeded by a -.
# Hydrogens that move must be respresented using a [ #1]
# Bonds that change in any tautomer must be represented explicitly.
# Heavy atoms must appear in the same order in all tautomers.
# All instances of asymmetric tautomers must be represented
# (see for example double-sided_ketol-enol).
# larger matches have precedence
# earlier matches of the same size have precedence
# for changing in bonding for aromatic N's (n)
# all bond orders which should change need to be represented by ':'
# see imidazole for an example
tautomer_set{
    name= imidazole
        tautomer{
        name: form1
        pattern: cln(-[ #1])-c=[nX2]c1
        probability: 0.50
        }
        tautomer{
        name: form2
        pattern: c1[nX2]=c-n(-[ #1])c1
        probability: 0.50
    }
}
tautomer_set{
    name: double-ket-enol
# may want to make special allowances for outside enol (C=C outside
```

```
# central region)
# From: Handbook of organic chemistry
    tautomer{
        name: enol_ket
        pattern: [CX3](-[*;!#8;!#7])(=[CX3]([*;!#8;!#7])-0-[ #1])-
[CX3]([*;!#8;!#7]) =0
    probability: 0.381
    }
    tautomer{
    name: diket
    pattern: C(-[ #1])(-[*;!#8;!#7])(-[CX3]([*;!#8;!#7])=0)-
[CX3]([*;!#8;!#7])=0
    probability: 0.238
    }
    tautomer{
        name: ket enol
        pattern: [CX3](-[*;!#8;!#7])(-[CX3]([*;!#8;!#7])=0) = [CX3]([*;!#8;!#7])-
O-[ #1]
    probability: 0.381
    }
}
tautomer_set{
    name: single-sided_ket-enol
# From: Handbook of organic chemistry
    tautomer{
        name: enol
        pattern: [CX3]=[CX3]([*;!#8;!#7])-O-[ #1]
        probability: 0.00005
    }
    tautomer{
        name: ket
        pattern: [CX4](-[ #1])-[CX3]([*;!#8;!#7])=0
        probability: 0.99995
    }
}
tautomer_set{
    name: double-sided ket-enol
# From: Handbook of organic chemistry
    tautomer{
        name: lenol
        pattern: [CX3]=[CX3](-[CX4]-[ #1])-O-[ #1]
        probability: 0.00000001
    }
    tautomer{
        name: ket
        pattern: [CX4](-[ #1])-[CX3](-[CX4]-[ #1])=0
        probability: .99999998
    }
```

Irwin and Shoichet

```
    tautomer{
        name: 2enol
        pattern: [CX4](-[ #1])-[CX3](=[CX3])-O-[ #1]
        probability: 0.00000001
    }
}
tautomer_set{
    name: single-sided_thio_ket-enol
    tautomer{
        name: thiol
        pattern: [CX3]=[CX3]([*;!#8;!#7])-S-[ #1]
        probability: 0.00005
    }
    tautomer{
        name: thio-acetal
        pattern: [CX4](-[ #1])-[CX3]([*;!#8;!#7])=S
        probability: 0.99995
    }
}
tautomer_set{
    name: double-sided_thio_ket-enol
    tautomer{
        name: 1thiol
        pattern: [CX3]=[CX3](-[CX4]-[ #1])-S-[ #1]
        probability: 0.00005
    }
    tautomer{
        name: thio-ketone
        pattern: [CX4](-[ #1])-[CX3](-[CX4]-[ #1])=S
        probability: 0.9999
    }
    tautomer{
        name: 2thiol
        pattern: [CX4](-[ #1])-[CX3](=[CX3])-S-[ #1]
        probability: 0.00005
    }
}
tautomer_set{
    name: single-sided_N
    tautomer{
        name: enol
        pattern: [CX3]=[CX3]([*;!#8;!#7])-[NX3](-[*])-[ #1]
        probability: 0.999986
    }
    tautomer{
        name: ket
```

```
        pattern: [CX4](-[ #1])-[CX3]([*;!#8;!#7])=[NX2](-[*])
        probability: 0.000014
    }
}
tautomer_set{
    name: double-sided_N
    tautomer{
        name: lenol
        pattern: [CX3]=[CX3](-[CX4]-[ #1])-[NX3](-[*])-[ #1]
        probability: 0.499996
    }
    tautomer{
        name: ket
        pattern: [CX4](-[ #1])-[CX3](-[CX4]-[ #1])=[NX2]-[*]
        probability: 0.000008
    }
    tautomer{
        name: 2enol
        pattern: [CX4](-[ #1])-[CX3] (=[CX3])-[NX3] (-[*])-[ #1]
        probability: 0.499996
    }
}
tautomer_set{
    name: 1,2-diazole
    tautomer{
        name: 1H
        pattern: c-1=c-c=[nX2]-[nX3](-[ #1])-1
        probability: 0.50
    }
    tautomer{
        name: 2H
        pattern: c=1-c=c-[nX3](-[ #1])-[nX2]=1
        probability: 0.50
    }
}
tautomer_set{
    name: triazole
    tautomer{
        name: 1H
        pattern: c-1=c-[nX2]=[nX2]-[nX3](-[ #1])-1
        probability: 0.25
    }
    tautomer{
        name: 2H
        pattern: c=1-c=[nX2]-[nX3](-[ #1])-[nX2]=1
        probability: 0.5
    }
    tautomer{
```

```
        name: 3H
        pattern: c-1=c-[nX3](-[ #1])-[nX2]=[nX2]-1
        probability: 0.25
    }
}
tautomer_set{
    name: tetraazole
    tautomer{
        name: 1H
        pattern: c=1-[nX3](-[ #1])-[nX2]=[nX2]-[nX2]=1
        probability: 0.40
    }
    tautomer{
        name: 2H
        pattern: c-1=[nX2]-[nX3](-[ #1])-[nX2]=[nX2]-1
        probability: 0.10
    }
    tautomer{
        name: 3H
        pattern: c=1-[nX2]=[nX2]-[nX3] (-[ #1])-[nX2]=1
        probability: 0.10
    }
    tautomer{
        name: 4H
        pattern: c-1=[nX2]-[nX2]=[nX2]-[nX3](-[ #1])-1
        probability: 0.40
    }
}
tautomer_set{
    name: 4-oxy-pyridine
    tautomer{
        name: one
        pattern: [nX3]-1(-[ #1])-c=c-c(=O)-c=c-1
        probability: 0.50
    }
    tautomer{
        name: hydroxy
        pattern: [nX2]=1-c=c-c(-O-[ #1])=c-c=1
        probability: 0.50
    }
}
tautomer_set{
    name: 2-oxy-pyridine
# see if non-one or hydroxy c can be changed to a
    tautomer{
        name: one
        pattern: [nX3]-1(-[ #1])-c(=O)-[a]=[a]-[a]=[a]-1
#
            pattern: [nX3]-1(-[ #1])-c(=0)-c=c-c=c-1
            probability: 0.90
    }
```

```
    tautomer{
        name: hydroxy
        pattern: [nX2]=1-c(-O-[ #1])=[a]-[a]=[a]-[a]=1
        pattern: [nX2]=1-c(-O-[ #1])=c-c=c-c=1
        probability: 0.10
    }
}
# disabled because not all forms interconvert readily
#tautomer_set{
# name: buten_aldehyde
#
    tautomer{
        name: but-3-en-aldehyde
        pattern: [CX3](=O)-[CX4](-[ #1])-[CX3]=[CX3](!#8)!#8
        probability: 0.005
    }
    tautomer{
        name: but-2-en-aldehyde
        pattern: [CX3](=O)-[CX3]=[CX3]-[CX4](-[ #1])(!#8)!#8
        probability: 0.99
    }
    tautomer{
        name: but-1,3-dien-1-ol
        pattern: [CX3](-O-[ #1])=[CX3]-[CX3]=[CX3](!#8)!#8
        probability: 0.005
    }
#}
# disabled because not all forms interconvert readily
#tautomer_set{
name: penten_aldehyde
# tautomer{
        name: pent-3-en-aldehyde
        pattern: [CX3](=O)-[CX4](-[ #1])-[CX3]=[CX3]-[CX3]=0
        probability: 0.45
    }
    tautomer{
        name: pent-3-en-1-aldehyde-5-ol
        pattern: [CX3](-O-[ #1])=[CX3]-[CX3]=[CX3]-[CX3]=O
        probability: 0.05
    }
    tautomer{
        name: pent-3-en-aldehyde
        pattern: [CX3](=O)-[CX3]=[CX3]-[CX4](-[ #1])-[CX3]=0
        probability: 0.45
    }
    tautomer{
        name: pent-3-en-aldehyde
        pattern: [CX3](=O)-[CX3]=[CX3]-[CX3]=[CX3]-O-[ #1]
        probability: 0.05
    }
#}
tautomer_set{
```

Irwin and Shoichet

```
    name: guanine
# Tuatomer naming from Hanus et a. JACS 125, 7678 (2003)
# Their frame work atom numbering:
# (bond orders left out)
#
# n
#
#
#
#
#
#
#
#
#
#
#
#
#
# 3 N
# So that tautomer names equivalences are:
# Used Here Hanus et al.
# 1-5 1-9
# 1-7 1-7
# 3-7 3-7
# 3-5 3-9
# 5-7 7-9
# 5-0 9-0
# 7-0 7-0
    tautomer{
        name: 1H,9H,2-amino,6-one
        pattern: [nX3]-1(-[ #1])-c(-[NX3]-[ #1])=[nX2]-c=2[nX3](-[ #1])-
c=[nX2] c=2-c-1=0
        probability: 0.7781
    }
    tautomer{
        name: 1H,7H,2-amino,6-one
        pattern: [nX3]-1(-[ #1])-c(-[NX3]-[ #1]) = [nX2]-c=2[nX2]=c-[nX3](-[
#1]) c=2-c-1=0
        probability: 0.2194
    }
    tautomer{
        name: 3H,7H,2-amino,6-one
        pattern: [nX2]-1=c(-[NX3]-[ #1])-[nX3] (-[ #1])-c=2[nX2]=c-[nX3](-[
#1]) c=2-c-1=0
        probability: 0.0025
    }
    tautomer{
        name: 3H,9H,2-amino,6-one
    pattern: [nX2]-1=c(-[NX3]-[ #1])-[nX3] (-[ #1])-c=2[nX3] (-[ #1])-
c=[nX2] c=2-c-1=0
    probability: 1.67e-05
```

```
    }
    tautomer{
    name: 9H,2-amino,6-hydroxy
    pattern: [nX2]-1=c(-[NX3]-[ #1])-[nX2]=c-2[nX3](-[ #1])-c=[nX2]c-2=c-1-
O-[ #1]
    probability: 2.39e-06
    }
    tautomer{
    name: 7H,2-amino,6-hydroxy
    pattern: [nX2]-1=c(-[NX3]-[ #1])-[nX2]=c-2[nX2]=c-[nX3](-[ #1])c-2=c-1-
O-[ #1]
    probability: 4.11e-7
    }
    tautomer{
    name: 1H,3H,7H,2-imino,6-one
    pattern: [nX3]-1(-[ #1])-c(=[NX2])-[nX3](-[ #1])-c=2[nX2]=c-[nX3](-[
#1]) c=2-c-1=0
    probability: 2.34e-7
    }
    tautomer{
    name: 1H,3H,9H,2-imino,6-one
    pattern: [nX3]-1(-[ #1])-c(=[NX2])-[nX3](-[ #1])-c=2[nX3](-[ #1])-
c=[nX2] c=2-c-1=0
    probability: 2.18e-8
    }
    tautomer{
            name: 1H,7H,2-imino,6-hydroxy
            pattern: [nX3]-1(-[ #1])-c(=[NX2])-[nX2]=c-2[nX2]=c-[nX3] (-[ #1])c-
2=c-1-O-[ #1]
# probability: 2.63e-19
# }
}
tautomer_set{
    name: guanosine
# Actually a methyl is used in place of the sugar which is OK for
# tautomers.
# This is similar to guanine except that there is one less H atom
# to move around and position 9 is blocked by the methyl
#
#
# 
#
#
#
#
#
# Me 3 N
# based upon guanine
tautomer{
    name: 1H,2-amino,6-one
```

```
    pattern: [nX3]-1(-[ #1])-c(- [NX3]-[ #1]) = [nX2]-c=2[nX3](-[!#1])-
c=[nX2] c=2-c-1=0
    probability: 0.9999785
    }
    tautomer{
    name: 3H,2-amino,6-one
    pattern: [nX2]-1=c(-[NX3]-[ #1])-[nX3] (-[ #1])-c=2[nX3](-[!#1])-
c=[nX2] c=2-c-1=0
    probability: 2.15e-05
    }
    tautomer{
        name: 2-amino,6-hydroxy
        pattern: [nX2]-1=c(-[NX3]-[ #1])-[nX2]=c-2[nX3] (-[!#1])-c=[nX2]c-2=c-1-
O-[ #1]
            probability: 3.07e-06
        }
    tautomer{
            name: 1H,3H,2-imino,6-one
            pattern: [nX3]-1(-[ #1])-c(=[NX2])-[nX3] (-[ #1])-c=2[nX3](-[!#1])-
c=[nX2] c=2-c-1=0
            probability: 2.80e-8
    }
}
tautomer_set{
    name: uracil-thymine
# Here we use (not counting H's and the N side-chain):
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
```



```
    tautomer{
```

 tautomer{
 name: 1H,3H,2,4-dione
 name: 1H,3H,2,4-dione
 pattern: n-1(-[#1])-c(=O)-n(-[#1])-c(=O)-c=c-1
 pattern: n-1(-[#1])-c(=O)-n(-[#1])-c(=O)-c=c-1
 probability: 0.999999707
 probability: 0.999999707
 }
 }
 tautomer{
    ```
    tautomer{
```

```
    name: 1H,2-hydroxy,4-one
    pattern: n-1(-[ #1])-c(-O-[ #1]) =[nX2]-c(=O)-c=c-1
    probability: 1.87e-10
    }
    tautomer{
    name: 1H,2-one,4-hydroxy
    pattern: n-1(-[ #1])-c(=O)-[nX2]=c(-O-[ #1])-c=c-1
    probability: 2.93e-7
    }
    tautomer{
    name: 3H,2-hydroxy,4-one
    pattern: [nX2]-1=c(-O-[ #1])-n(-[ #1])-c(=O)-c=c-1
    probability: 4.59e-9
    }
    tautomer{
    name: 2-hydroxy,4-hydroxy
    pattern: [nX2]-1=c(-O-[ #1])-[nX2]=c(-O-[ #1])-c=c-1
    probability: 4.72e-12
    }
    tautomer{
    name: 3H,2-one,4-hydroxy
    pattern: [nX2]=1-c(=O)-n(-[ #1])-c(-O-[ #1]) =c-c=1
    probability: 1.09e-09
    }
}
tautomer_set{
    name: uridine-thymidine
# Actually a methyl is used in place of the sugar which is OK for
# tautomers.
# This is similar to uracil except that there is one less H atom to move
# around and position 1 is blocked by the methyl
    tautomer{
        name: 3H,2,4-dione
        pattern: n1(-[!#1])-c(=O)-n(-[ #1])-c(=O) ccl
        probability: 0.99999724
    }
    tautomer{
        name: 2-hydroxy,4-one
        pattern: n1(-[!#1])-c(=O)-[nX2]=c(-O-[ #1])cc1
        probability: 2.76e-6
    }
    tautomer{
        name: 2-one,4-hydroxy
        pattern: n1(-[!#1])-c(-0-[ #1])=[nX2]-c(=O) cc1
        probability: 1.87e-10
    }
}
```

Irwin and Shoichet

```
tautomer_set{
    name: cytosine
#Is this complete what about 1-3?
# Here we use (not counting H's and the N side-chain):
# NH2
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
    tautomer{
        name: 1H,2-one,4-amino
        pattern: n-1(-[ #1])-c(=O)-[nX2]=c(-[NX3]-[ #1])-c=c-1
        probability: 0.996
    }
    tautomer{
        name: 3H,2-one,4-amino
        pattern: [nX2]=1-c(=O)-n(-[ #1])-c(-[NX3]-[ #1]) =c-c=1
    probability: 0.00398
    }
    tautomer{
        name: 2-hydroxy,4-amino
        pattern: [nX2]-1=c(-O-[ #1])-[nX2]=c(-[NX3]-[ #1])-c=c-1
        probability: 5.63e-7
    }
    tautomer{
    name: 1H,3H,2-one,4-imino
    pattern: n-1(-[ #1])-c(=O)-n(-[ #1])-c(=[NX2])-c=c-1
    probability: 3.056e-6
    }
}
tautomer_set{
    name: 2,4-diaminopyrimidine
# (based on cytosine model)
#Is this complete what about 1-3?
# Here we use (not counting H's and the N side-chain):
```

```
## cloc
#
#
#
    tautomer{
        name: 1H,2-one,4-amino
        pattern: n-1(-[ #1])=c(-[NX3])-[nX2]=c(-[NX3])-c=c-1
        probability: 0.5
    }
    tautomer{
        name: 3H,2-one,4-amino
        pattern: [nX2]-1=c(-[NX3])-n(-[ #1]) =c(-[NX3])-c=c-1
        probability: 0.5
    }
}
tautomer_set{
    name: cytidine
#probabilities based upon corresponding structures for
#cytosine
    tautomer{
        name: 2-one,4-amino
        pattern: n1(-[!#1])c(=O)-[nX2]=c(-[NX3]-[ #1])ccl
        probability: 0.997
    }
    tautomer{
        name: 3H,2-one,4-imino
        pattern: n1(-[!#1])c(=O)-n(-[ #1])-c(=[NX2]) cc1
        probability: 3.056e-6
    }
}
tautomer_set{
    name: adenine
    tautomer{
        name: 9H,6-amino
        pattern: [nX2]=1-c=[nX2]c=2-[nX3] (-[ #1])-c=[nX2]c=2-c=1-[NX3]-[ #1]
        probability: 0.911
    }
    tautomer{
        name: 7H,6-amino
        pattern: [nX2]=1-c=[nX2]c=2-[nX2]=c-[nX3] (-[ #1]) c=2-c=1-[NX3]-[ #1]
```

```
    probability: 0.084
    }
    tautomer{
    name: 3H,6-amino
    pattern: [nX2]-1=c-[nX3](-[ #1])c-2=[nX2]-c=[nX2]c-2=c-1-[NX3]-[ #1]
    probability: 0.0046
    }
    tautomer{
    name: 1H,6-amino
    pattern: [nX3]-1(-[ #1])-c=[nX2]c-2=[nX2]-c=[nX2]c-2=c-1-[NX3]-[ #1]
    probability: 0.00043
    }
    tautomer{
    name: 1H,7H,6-imino
    pattern: [nX3]-1(-[#1])-c=[nX2]c=2-[nX2]=c-[nX3](-[ #1]) c=2-c-1=[NX2]
    probability: 2.88e-7
    }
    tautomer{
    name: 1H,9H,6-imino
    pattern: [nX3]-1(-[ #1])-c=[nX2]c=2-[nX3] (- [ #1])-c=[nX2]c=2-c-1=[NX2]
    probability: 1.01e-6
    }
    tautomer{
        name: 3H,7H,6-imino
        pattern: [nX2]-1=c-[nX3](-[ #1]) c=2-[nX3](-[ #1])-c=[nX2]c=2-c-1=[NX2]
        probability: 8.75e-10
    }
    tautomer{
        name: 3H,9H,6-imino
        pattern: [nX2]-1=c-[nX3](-[ #1]) c=2-[nX2]=c-[nX3](-[ #1])c=2-c-1=[NX2]
        probability: 7.16e-12
    }
}
tautomer_set{
    name: adenosine
# based upon adenine probabilities
    tautomer{
        name: 6-amino
        pattern: [nX2]=1-c=[nX2]c=2-[nX3] (-[!#1])-c=[nX2]c=2-c=1-[NX3]-[ #1]
        probability: 0.9999989
    }
    tautomer{
        name: 1H,6-imino
        pattern: [nX3]-1(-[ #1])-c=[nX2]c=2-[nX3] (-[!#1])-c=[nX2]c=2-c-1=[NX2]
        probability: 1.1e-6
    }
    tautomer{
        name: 3H,6-imino
        pattern: [nX2]-1=c-[nX3](-[ #1])c=2-[nX3](-[!#1])-c=[nX2]c=2-c-1=[NX2]
```

Irwin and Shoichet

```
    probability: 7.8e-12
    }
}
```

