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ABSTRACT Although the intriguing role of zinc as an essential trace element for immune function is well
established, particular progress in determining the molecular principles of action of this ion was made recently.
Leukocyte responsiveness is delicately regulated by zinc concentration. Zinc deficiency as well as supraphysi-
ologic levels impair immune function. Furthermore, the activities of many immunostimulants frequently used in
immunologic studies are influenced by zinc concentration. Therefore, our knowledge from in vitro studies is widely
dependent on the zinc concentration, and when not in physiologic range, immunologic responses are artificially
low. Decreased production of TH1 cytokines and interferon-a by leukocytes in the healthy elderly person is
correlated with low zinc serum level. The defect in interferon-a production is reconstituted by the addition of
physiologic amounts of zinc in vitro. Interestingly, zinc induces cytokine production by isolated leukocytes. Zinc
induces monocytes to produce interleukin-1, interleukin-6 and tumor necrosis factor-a in peripheral blood mono-
nuclear cells and separated monocytes. This effect is higher in serum-free medium. However, only in the presence
of serum does zinc also induce T cells to produce lymphokines. This effect on T cells is mediated by cytokines
produced by monocytes. Stimulation also requires cell-to-cell contact of monocytes and T cells. Information is
presented to illustrate the concepts that the zinc concentration must be taken into account whenever in vitro
studies are made or complex alterations of immune functions are observed in vivo. J. Nutr. 130: 1407S—1411S,
2000.
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Zinc is a cofactor of .300 enzymes. It is involved in a
variety of general cellular functions, including signal transduc-
tion, transcription and replication (Coleman 1992, Vallee and
Falchuk 1993). The immune system is strongly influenced by
zinc, because it is one of the most highly proliferative organs.
Furthermore, zinc specifically interacts with components of
the immune system. The important role of zinc as an essential
trace element for immune function has already been well
established (Bach 1981, Crea et al. 1990, Cunningham-
Rundles et al. 1980, Good 1981, Keen and Gershwin 1990,
Kruse-Jarres 1989, Wellinghausen et al. 1997, Wellinghausen
and Rink 1998). However, progress in determining the mo-
lecular principles of action of this ion was made recently. In

this review, advances in the field of zinc immunology are
focused on the interaction of zinc with human leukocytes on
a cellular and molecular basis, the influence on immunostimu-
lants and the therapeutic use of zinc. This review critically
reflects the importance of knowledge about the zinc status for
the interpretation of in vivo observations and in vitro exper-
iments with leukocytes.

Zinc deficiency

The physiologic plasma zinc concentration is low (12–16
mM) and reflects a minor pool of total body zinc (Bettger and
O’Dell 1993). However, it represents a very mobile and im-
munologically important pool. Zinc is transported to cells
bound to proteins, predominantly albumin, a2-macroglobulin
and transferrin, but only free zinc ions seem to be biologically
active (Borth and Luger 1989, Gless et al. 1992, Phillips 1976,
Vallee and Falchuk 1993). The function of a2-macroglobulin
is regulated by zinc itself. Zinc alters the structure of a2-
macroglobulin and enhances its interaction with cytokines
and proteases, and in this way, it indirectly influences immune
function (Borth and Luger 1989, James 1990).

Various diseases associated with an impaired immune re-
sponse are characterized by low plasma zinc levels or a notice-
able zinc deficiency. Zinc absorption and nutritional aspects of
zinc status are beyond the scope of this article and are reviewed
in detail by others (Prasad 1995, Vallee and Falchuk 1993).
Zinc deficiency can be studied in the zinc-specific malabsorp-
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tion syndrome, acrodermatitis enteropathica, a rare autosomal
recessive inheritable disease (Neldner and Hambidge 1975).
This extreme form of zinc deficiency shows thymic atrophy
and a high frequency of bacterial, viral and fungal infections.
Untreated, this disease is lethal within a few years, but phar-
macologic zinc supplementation can reverse all symptoms
(Neldner and Hambidge 1975). Impairment of immune func-
tion has been attributed to zinc deficiency in other conditions
like malnutrition and in certain malignancies as well (Good
1981, Prasad et al. 1997, Schloen et al. 1979). Furthermore, a
decreased serum zinc level is observed in chronic inflammatory
or infectious diseases. This often reflects a redistribution of
serum zinc into the liver within the acute phase reaction,
caused by increased production of proinflammatory cytokines,
mainly interleukin (IL)3-1 and IL-6, and the subsequent in-
duction of zinc-binding metallothionein in hepatocytes (Kush-
ner 1982, Singh et al. 1991).

Zinc therapy

In acrodermatitis enteropathica as well as in unspecific
malabsorption syndromes, zinc has been successfully used to
restore impaired immune functions (Cunningham-Rundles et
al. 1980, Neldner and Hambidge 1975). A major and unre-
solved question is the optimal therapeutic dosage of zinc. The
dosage to reverse zinc deficiency should be adapted to the
actual requirements to avoid negative effects on the immune
system. Therefore, the control of plasma zinc concentration,
not exceeding 30 mmol/L, may be a limiting factor, as dis-
cussed later. However, the immunosuppressive effect of zinc
may be a completely new therapeutic tool for the selective
suppression of lymphocyte functions. In comparison to con-
ventional immunosuppressive drugs, zinc has the advantage of
being extremely nontoxic, even in dosages well exceeding the
recommended dietary intake (Fosmire 1990). Interestingly, in
rheumatoid arthritis, an autoreactive T-cell disease, dimin-
ished plasma zinc levels have been reported (Naveh et al.
1997). Oral application of zinc sulfate over a 12-wk period has
shown a clear clinical benefit with regard to joint swelling,
morning stiffness and estimation of overall disease activity in
rheumatoid arthritis patients (Simkin 1976). This effect might
be due to the T-cell inhibitory influence of zinc.

Low serum zinc levels and impaired immunologic functions
are reported in patients undergoing hemodialysis and in elderly
individuals, selected according to the immunogerontologic
SENIEUR (Lighart et al. 1984) protocol (Bonomini et al.
1993, Cakman et al. 1996, Fraker et al. 1986, Sandstaed et al.
1982). Significantly, decreased zinc values (Bonomini et al.
1993) or concentrations at the lower limits of the normal
range (perhaps due to zinc supplementation via the dialysate)
are described in hemodialysis patients. These low zinc level
have clinical relevance because they are related to an impaired
immune response to diphtheria vaccination (Kreft et al. 2000).
The immune defects in elderly individuals mainly concern
cell-mediated immunity, including a diminished T-cell count,
dysfunction of T helper cell subpopulations and a decreased
secretion of interferon (IFN)-a after virus stimulation in vitro
(Cakman et al. 1996, Sandstaed et al. 1982). Interestingly, the
plasma zinc levels are significantly lower compared with the
control groups but still within the normal range (Cakman et
al. 1996), a situation similar to that seen in hemodialysis
patients. The diminished IFN-a secretion by elderly individ-

uals has been fully reconstituted by the in vitro addition of
zinc. However, high dose zinc supplementation, achieving 7–8
times the physiologic value, blocks IFN-a induction in elderly
individuals (Cakman et al. 1997). Zinc has also been shown to
be effective in the treatment of the common cold (Al-Nakib
et al. 1987, Eby et al. 1984, Mossad et al. 1996), but there are
several possible explanations for this effect (Bashford et al.
1986, Korant and Butterworth 1976, Pasternak 1986, Ratka et
al. 1989), which are discussed in detail by P. Fraker and J. L.
Jackson in this supplement. There are limited data about zinc
status in human immunodeficiency virus–infected patients. A
decreased serum zinc level is repeatedly reported for human
immunodeficiency virus–infected patients, but the relation-
ship between zinc status and disease progression is conflicting
(Baum et al. 1995, Beach et al. 1992, Koch et al. 1996).
Independent of disease progression, hypozincemia has been
associated with a higher incidence of opportunistic bacterial
infections (Koch et al. 1996), and oral zinc supplementation
leads to an increase in the CD4 count and to a reduced
incidence of opportunistic infections (Isa et al. 1992, Mocche-
giani et al. 1995b). These reports clearly show that zinc sup-
plementation has some clinical benefit by restoring impaired
immune function. However, the molecular basis of these ef-
fects is largely unknown (Rice et al. 1995). Furthermore, zinc
influences the in vitro systems to investigate the immune
response. Some of the molecular mechanisms of zinc treatment
and the interference with immunostimulants are discussed
next.

Zinc in innate immunity

Natural killer (NK) cell activity, phagocytosis of macro-
phages and neutrophils and certain functions like chemotaxis
and generation of the oxidative burst are impaired by de-
creased zinc concentrations in vivo (Allen et al. 1983, Keen
and Gershwin 1990). The p58 killer cell inhibitory receptor
(KIR) on NK cells requires zinc for the recognition of major
histocompatibility complex (MHC) class I molecules on target
T cells (Rajagopalan et al. 1995). Zinc may not only influence
NK cell–mediated killing but also could modulate cytolytic
T-cell activity (Mingari et al. 1998). Besides reduced NK- and
T-cell functions, a reduced capability of mononuclear phago-
cytes to kill intracellular Trypanosoma cruzi has been reported
in zinc-deficiency states (Cook-Mills et al. 1990, Wirth et al.
1989). The deprivation of essential nutrients such as iron and
zinc represents a simple but effective mechanism to fight
foreign pathogens. The S-100 Ca21 binding protein calpro-
tectin (formerly known as L1 protein) chelates zinc when
released by the degradation of neutrophils. Zinc chelation
within abscesses inhibits the reproduction of bacteria and
Candida albicans (Clohessy and Golden 1995, Murthy et al.
1993, Sohnle et al. 1991).

Zinc and T cells

Initial evidence for the essential role of zinc in the immune
system was related to its importance for the development of T
cells. Zinc deficiency causes thymic atrophy, and the thymus
changes are reversible by zinc supplementation (Mocchegiani
et al. 1995a), confirming that zinc interferes with the earliest
steps of T-cell maturation. This effect depends in part on the
regulation of thymulin, an important thymic hormone se-
creted by thymic epithelial cells (Dardenne et al. 1982, Had-
den 1992). For thymulin, zinc is an essential cofactor. Differ-
entiation of immature T cells in the thymus is induced by
thymulin. Furthermore, thymulin regulates the functions of

3 Abbreviations used: IFN, interferon; IL, interleukin; LPS, lipopolysaccharide;
MHC, major histocompatibulity complex; NK, natural killer; PBMC, peripheral
blood mononuclear cells; PKC, protein kinase C; TNF, tumor necrosis factor.
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mature T cells in the periphery. Modulation of cytokine se-
cretion by peripheral blood mononuclear cells (PBMC) and
proliferative effects on CD8 T cells in combination with IL-2
were reported for thymulin (Coto et al. 1992, Safie-Garabe-
dian et al. 1993). The expression of the high affinity receptor
for IL-2 on mature T cells (Tanaka et al. 1989) is induced by
thymulin. This is in agreement with the observation that zinc
deficiency is associated with decreased T-cell proliferation
after mitogen stimulation (Crea et al. 1990, Dowd et al. 1986).
Zinc regulates lymphocyte homeostasis not only by maintain-
ing proliferation but also by suppressing death, namely through
the inhibition of apoptosis as discussed by Peter Zalewski in
the present supplement (Sundermann 1995, Zalewski and
Forbes 1993). However, cell activation by zinc could also
prevent the cells from undergoing apoptosis.

Direct effects of zinc on mononuclear cells

One of the first observations regarding the interaction of
zinc with leukocytes was that zinc ions induce blast transfor-
mation in human lymphocytes (Berger and Skinner 1974,
Kirchner and Rühl 1970, Rühl et al. 1971). More recently, it
was discovered that zinc induces a specific cytokine response in
human PBMC. Zinc stimulated PBMC in a dose-dependent
manner to release IL-1, IL-6, tumor necrosis factor (TNF)-a
and IFN-g ((Driessen et al. 1994, Salas and Kirchner 1987,
Scuderi 1990). IL-1, IL-6 and TNF-a are directly induced in
monocytes by zinc. This effect is independent of the presence
of lymphocytes, because separated monocytes and monocytic
cell lines respond to zinc (Driessen et al. 1994). At least for
TNF-a it has been shown that cytokine release after zinc
stimulation is caused by the induction of mRNA transcription
rather than by the enhanced translation or stabilization of
already expressed mRNA (Wellinghausen et al. 1996a).

In contrast to the direct stimulation of monocytes, the
stimulative effect on T cells represents an indirect effect that
is dependent on monocytes in the culture (Driessen et al.
1994, Rühl and Kirchner 1978, Wellinghausen et al. 1997).
IFN-g and sIL-2 receptor release by T cells is mediated by
monocyte-released IL-1 and IL-6 and a cell-to-cell contact
between monocytes and T cells (Driessen et al. 1994, Well-
inghausen et al. 1997). Zinc fails to induce cytokine produc-
tion in isolated and monocyte-depleted T cells (Hadden 1995,
Wellinghausen et al. 1997), B cells (Crea et al. 1990), NK
cells (Crea et al. 1990) or neutrophils (Rink et al. unpublished
results). Despite the different response of these leukocyte
subsets, the zinc-mediated activation of monocytes and T cells
is strongly regulated by the protein composition of the culture
medium. Insulin and transferrin, common supplements in se-
rum-free cell culture media, specifically enhance zinc-induced
monocyte activation by a non–receptor-dependent mecha-
nism (Crea et al. 1990, Driessen et al. 1995c, Phillips and
Azari 1974, Wellinghausen et al. 1996b). However, complete
fetal calf serum in the culture medium prevents monocyte
stimulation by low zinc concentrations due to binding of free
zinc ions. In serum-free culture medium, higher zinc concen-
tration (;100 mM) stimulates monocytes but inhibits T-cell
functions. This may depend on the cellular tolerance of zinc in
these leukocyte subsets. T cells have a lower intracellular zinc
concentration than monocytes. Furthermore, T cells are more
susceptible to increasing zinc levels than monocytes (Bulgarini
et al. 1989, Goode et al. 1989). In conclusion, indirect T-cell
stimulation by zinc takes place only in concentrations high
enough for monokine induction but not exceeding the critical
concentration for T-cell suppression. The physiologic zinc

level obviously represents a concentration that ensures opti-
mally balanced T-cell function.

We recently discovered a zinc-dependent mechanism of
T-cell inhibition. IL-1–dependent proliferation of the T cell
line D10 is inhibited by high zinc concentration. The molec-
ular basis of this effect is the zinc-specific inhibition of the IL-1
type I receptor–associated kinase at a concentration that rep-
resents ;8 times the physiologic serum level (Wellinghausen
et al. 1997). This in vitro observation correlates with the T
cells’ inhibitory effect after high dose zinc supplementation in
vivo as observed in clinical studies (Chandra 1984, Duchateau
et al. 1981). Interestingly, much lower concentrations of zinc,
representing 3–4 times the physiologic zinc level, inhibit
alloreactivity in the mixed lymphocyte culture model
(aCampo C., Wellinghausen, N., Faber, C., Fischer, A. &
Rink, L. unpublished results).

As described, high zinc concentrations are inhibitory for
T-cell functions, but sometimes T-cell functions also are dys-
regulated in moderate zinc deficiency. For example, rheuma-
toid arthritis and other diseases with autoreactive T-cell pa-
thology are often associated with low serum zinc levels
(Simkin 1976). Low zinc intake during pregnancy and de-
creased plasma zinc levels correlate with an increased risk of
preterm delivery and abortion (Bedwal and Bahuguna 1994,
Favier 1992, Jameson 1993), which might reflect the activa-
tion of normally suppressed alloreactive T cells. In conclusion,
T-cell function is delicately regulated by the concentration of
zinc in the cell or plasma.

Molecular basis of zinc-mediated effects

As described earlier, zinc has a number of effects on leuko-
cytes in vivo and in vitro. However, we still do not know how
zinc mediates its effects and how it enters the cells. Here we
describe some recent insights into zinc signaling. The trans-
ferrin receptor (CD71) was considered to be a particular can-
didate for specific zinc uptake, because some of the serum zinc
is bound to transferrin (Cunningham-Rundles et al. 1980,
Mathe et al. 1985, Phillips 1976). However, data clearly in-
dicating CD71 as a zinc receptor are not available, and thus no
specific receptor that facilitates zinc uptake or triggers intra-
cellular messages has yet been confirmed. Zinc enters the cell
within minutes and its uptake increases a little during the first
hours (Naber et al. 1994, Wellinghausen et al. 1996b). Sur-
prisingly, in contrast to its divergent effect on monocytes and
T cells, zinc uptake does not differ significantly in either cell
population (Wellinghausen et al. 1997). The majority of zinc
that is taken up by PBMC is bound to proteins, because the
total intracellular zinc concentrations exceed the amount of
free zinc (Rink et al. unpublished results).

So far we have fragmentary information that zinc signaling
does occur. Protein tyrosine kinases, as well as cAMP- and
cGMP-dependent protein kinases, are clearly involved in zinc-
mediated stimulation (Wellinghausen et al. 1996b). Further-
more, zinc increases the activity of protein kinase C (PKC)
and regulates its intracellular translocation, but zinc is not part
of the active center (Csermely et al. 1988, Zalewski et al.
1990). Structural stabilization of PKC depends on a unique
zinc cluster motif (Vallee and Falchuk 1993). However, an
involvement of PKC in zinc-induced signal transduction in
PBMC has not been confirmed (Wellinghausen et al. 1996b).
Zinc is also integrated in the active center of phospholipase C,
but its effect on cell activation is questionable (Coleman
1992). Immunologically more important than a specific inter-
action of zinc with certain molecules is a general influence of
zinc on the fluidity of lipids and thus also of biological mem-
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branes as discussed by others in the present supplement (Bett-
ger and O9Dell 1993, Chvapil 1976, Kruse-Jarres 1989).

Zinc-altered activity of immunostimulants

Experimental immunology mainly depends on experimen-
tal subsets where leukocytes are stimulated by immunostimu-
lants. Therefore, current knowledge about different leukocyte
subsets is based on stimulation of the cells with specific or
unspecific stimulants. The independence of the immunostimu-
lant from the changes in the experimental system to be eval-
uated is a prerequisite. Here we summarize that zinc alters the
function of different immunologically relevant mitogens and
bacterial stimulants. Interestingly, one of the earliest reports
about the immunobiology of zinc concerned its comitogenic
activity with phytohemagglutinin (Duchateau et al. 1981,
Fraker et al. 1986, Warner and Lawrence 1986). Whether this
effect depends on an alteration of phytohemagglutinin or
whether zinc is really comitogenic is still unresolved. Another
explanation is that zinc enhances the activity of contaminat-
ing lipopolysaccharide (LPS). Zinc, even in substimulatory
concentrations, acts synergistically with LPS with respect to
cytokine induction in leukocytes (Driessen et al. 1995a and
1995b). This synergism is based on a specific zinc-induced
structural alteration of LPS. Through the addition of zinc, LPS
is transformed in its biologically more active, less-fluid form
(Wellinghausen et al. 1996). Due to the described synergism
in even minimal, substimulating concentrations of both LPS
and zinc (Driessen et al. 1995c), exceptional care must be
exercised in cell culture experiments to exclude unwanted
effects.

In contrast to its synergism with LPS, zinc inhibits the
function of some bacterial superantigens (Driessen et al. 1995a
and 1995b). Zinc inhibits only superantigens binding to the
MHC class-II b-chain, like Staphylococcus aureus enterotoxins
(SE) A, D and E and the Mycoplasma arthritidis superantigen
(Bernatchez et al. 1997, Fraser et al. 1992, Kim et al. 1994,
Sundström et al. 1997). The interaction between these supe-
rantigens and the MHC-II b-chain is mediated by a zinc
cluster involving amino acids from the superantigen and his-
tidine-81 of the MHC-II b-chain. High-dose zinc might sat-
urate both sites independently, thus preventing complex for-
mation. The absence of a zinc-binding motif in superantigens
that bind only to the MHC-II a-chain explains the lack of
inhibition by excess zinc. Interestingly, zinc influences super-
antigens in a second way. SED forms homodimers due to zinc
bridges, which have the capacity for T-cell–independent in-
teraction with MHC-II molecules, resulting in direct mono-
cyte activation (Sundström et al. 1996).

Zinc is important for leukocyte functions both in vivo and
in vitro. The interaction within the immune system is com-
plex and delicately regulated by zinc. Zinc deficiency leads to
dysfunction of the immune system, but in addition, high doses
of zinc have negative effects on leukocyte functions. Although
knowledge about the molecular mechanisms of zinc has in-
creased during the past years, we still do not know the most
effective therapeutic dosage. From in vitro studies we learned
that zinc levels of .30 mM were found to have more inhib-
iting than stimulating effects to the immune system. However,
these inhibiting effects might be useful as a new therapeutic
tool. Because most experimental systems in immunologic re-
search depends on the stimulation of leukocytes in vivo or in
vitro, the modulation of immunostimulants by zinc is a trap.
Zinc-specific alteration of the activity of stimulants might
mimic effects on the immune system. As a consequence, the
zinc concentration should be considered whenever complex

alterations of immune functions are observed in vivo or in
vitro.
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