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Abstract
Coronavirus disease-2019 (COVID-19) pandemic continues to threaten patients, societies, and economic and healthcare systems
around the world. Like many other diseases, the host immune system determines the progress of COVID-19 and fatality.
Modulation of inflammatory response and cytokine production using immunonutrition is a novel concept that has been applied
to other diseases as well. Zinc, one of the anti-inflammatory and antioxidant micronutrient found in food with well-established
role in immunity, is currently being used in some clinical trials against COVID-19. This review integrates the contemporary
studies of role of zinc in antiviral immunity along with discussing its potential role against COVID-19, and ongoing COVID-19
clinical trials using zinc.
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Introduction

As the whole world is grappling with coronavirus disease-
2019 (COVID-19) pandemic caused by the severe acute re-
spiratory syndrome coronavirus-2 (SARS-CoV-2), there is a
frantic race for finding treatment regimens based on current
knowledge until effective vaccine and ad hoc drugs are devel-
oped. Indeed, therapeutic approaches against COVID-19, mostly
centered on the management of its immunopathology and/or
tailored to directly control viral replication, are for now based
on off-label prescription. Several human trials are currently in

progress to assess the therapeutic indexes of drugs already ap-
proved for other diseases (i.e., drug repurposing), and in combi-
nation with dietary supplements like vitamin C, vitamin D, vita-
min B12, probiotics, and zinc (Zn). Zn is a common theme in
both prophylactic and curative COVID-19 clinical studies using
nutritional supplements.

Zn, the second most abundant trace metal in the human
body after iron, is essential for multiple cellular functions in-
cluding maintenance of immune health. Notably, “Zn prote-
ome” is estimated to encompass around 3000 proteins [1]
including ∼ 750 Zn finger transcription factors, a number of
which are deeply implicated in homeostasis and inflamma-
tion. Ever since Zn deficiency was demonstrated as a human
disease more than 56 years ago, it has been implicated in
immune dysfunction, growth retardation, hypogonadism,
and cognitive impairment [2, 3]. Importantly, Zn also plays
a critical role in antiviral immunity [4, 5]. Readers are referred
to specialized reviews on essential role of Zn in human health
(including Zn homeostasis and transporters) and other non-
viral/viral diseases [5–16].

With so many clinical trials going on against the COVID-
19 pandemic, there is scientific curiosity about the nature and
basis of these trials [17]. In this review, we will discuss the
basis of clinical trials using adjunct Zn therapy for COVID-19
through the prism of its indispensable role in antiviral immu-
nity along with briefly discussing immunopathology of
COVID-19.
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COVID-19 Immunopathology

As already shown for SARS and Middle East respiratory syn-
drome (MERS), the host immune response plays a central role
also in the pathology associated to SARS-CoV-2 infection, as
the fatalities occurring among COVID-19 patients are often
preceded by the so-called cytokine storm, a massive systemic
release of proinflammatory cytokines such as interleukin (IL)-
1b, IL-6, and tumor necrosis factor-α (TNF-α). These events
ultimately contribute to acute respiratory distress syndrome
(ARDS) and lead to vascular hyperpermeability, diffuse coag-
ulopathy, multi-organ failure, and eventually death [18, 19].
These cytokines are mainly secreted by innate immune cells
such as monocytes, macrophages, and dendritic cells (DC),
which are supposed to act mainly in the early phases of infec-
tions. However, cytokine storm occurs at late stages of SARS-
CoV-2 infection, when the adaptive, instead of the innate im-
mune response, is known to become prominent.

A series of timely coordinated actions are required for an
effective immune response against viral infections, and the
agenda in which these actions move may be outlined by op-
posing early/innate versus late/adaptive immune response
waves. Firstly, innate immune and infected tissue cells initiate
primitive and unspecific reactions in an attempt to restrain
viral replication by producing type-I interferons (IFN),
IFN-α and IFN-β, and to attract blood cells to the site of
infection by producing chemokine and TNF-α, which acti-
vates endothelial cells enhancing vascular adhesion and dia-
pedesis of leukocytes, and by secreting other proinflammatory
cytokines to activate leukocytes. It is peculiar that, while
SARS-CoV-2 replication in permissive cells may be effective-
ly inhibited by exogenously added type-I IFN, endogenous
production of IFN-α and IFN-β upon infection is inhibited
by proteins encoded by SARS-CoV-related viruses, whereas
chemokines and inflammatory cytokines are highly produced
contributing to an unbalanced response [20, 21].

During this first phase of the immune response, DCmigrate
to lymph nodes and initiate a complex and slower intercellular
cascade, ultimately culminating in the expansion and matura-
tion of adaptive, virus-specific T and B lymphocytes.
Seroconversion—i.e., the appearance in the blood of antibod-
ies against immunogenic viral proteins—and probably the
clonal expansion of virus-specific T cells, occurs in most
COVID-19 patients 10 days after symptom onset [22] and
severe disease and cytokine storm are associated in time and
magnitude with the immunoglobulin response in SARS-CoV-
1 [23] and SARS-CoV-2 infection [24, 25].

Strikingly, a similar cytokine storm is also the most notable
side effect of chimeric antigen receptor T (CAR-T) cell ther-
apy, and its severity is forecasted by the extent of tumor bur-
den [26], leading to the hypothesis that a high antigen (i.e.,
viral) load at the time of the (late) adaptive immune cell activ-
ity against SARS-CoV-2, when antibodies and virus-specific

T cells arise, may favor a massive second wave of cytokine
release by innate cells in a positive feedback loop. Much effort
is now trying to decipher, in the immunotherapy setting, the
exact mechanisms pushing this positive feedback from adap-
tive to innate cells, which may deserve our attention to antic-
ipate plausible pathways to interfere with COVID-19 immu-
nopathology. One line of evidence points to cytokines pro-
duced by T cells upon antigenic stimulation, namely to
TNF-α [27] and granulocyte-macrophage colony-stimulating
factor (GM-CSF) [28], as triggers of the secondary systemic
toxic cytokine release by innate cells. Importantly, these two
cytokines are unnecessary (both) or detrimental (GM-CSF)
for on-target effects of CAR-T cells [28], which suggests that
they may be dispensable also for the antiviral response to
SARS-CoV-2.

There is a clear sex- and age-dependent bias in COVID-19-
related mortality. Better outcomes in women, for instance,
may be the result of a more pronounced IFN-α production
by plasmacytoid DC [29] during initial phases of infection.
The more effective viral containment operated by such a re-
sponse could be assumed to lower the antigen load at the onset
of the adaptive wave and prevent the cytokine storm. In stud-
ies from patients during the 2003 SARS-CoV-1 outbreak,
treatment with synthetic type-I IFN in conjunction with ste-
roids has proven useful to ameliorate pneumonia course [30],
and early, in contrast to delayed, type-I IFN treatment rescued
mice from death after SARS-CoV-1 infection [31]. On the
other hand, aging of the immune system, which is associated
to chronic low-level activation of innate cells, also entails a
delayed and inflated response upon pathogen encountering
[32]. Lastly, with age, adaptive cells become slow in mount-
ing antigen-specific responses to novel pathogens secondary
to the loss of the naive B and T cell repertoire due to thymic
involution [33].

Immunological Functions of Zn

Data gleaned from seminal animal model studies have added
considerable knowledge about the principal roles of Zn in the
immune system. Zn is an essential micronutrient, which plays
an important role in the physiology of the immune system by
acting as signaling molecule. Zn not only acts as an anti-
inflammatory agent but also functions as an antioxidant stabi-
lizing membrane [34]. Zn deficiency impinges on survival of
immune cells and adversely affects important functions such
as phagocytosis, target cell killing, and cytokine production
(Fig. 1). It is clearly evident from studies on preclinical models
that Zn deficiency plays a role in thymus and lymphoid tissue
atrophy [35] and declines in the mechanisms of activation of
both helper T cell [36] and cytotoxic CD8+ T cell responses
[37]. Specifically, Zn deficiency leads to compromised im-
mune system, as evidenced by degeneration of thymus,
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lymphopenia, and defective lymphocyte responses [3, 5, 34].
Zn deficiency causes immunodeficiency with severe lympho-
penia that is characterized in part by a considerable decrease in
developing B cell compartments in the bone marrow [3, 38].
Moreover, Zn potentiates IFN-α effect by an order of magni-
tude [39] which can be used to counteract IFN antagonism by
SARS-CoV-2 proteins.

A marked neutrophilia is observed in severe COVID-19 pa-
tients [40]. Zn gluconate supplementation is able to reduce air-
way neutrophil infiltration and TNF-α release by inhibiting NF-
kB-dependent transcription of inflammatory genes [41]. The Zn
finger CCHC-type containing 3 (ZCCHC3) potentiates TLR3
signaling induced by double-strand RNA [42], which is pro-
duced during intracellular replication of coronaviruses.

In vitro, Zn deficiency induced enhanced IL-6 and IL-1β
production, as well as higher expression of intercellular adhe-
sion molecule 1 (ICAM-1), important for leukocytes’ extrav-
asation, of CD86, a co-stimulatory molecule involved in T cell
activation, and of HLA-DR, a MHC-II molecule, in cultured
human monocytic cells [43]. Moreover, aged mice have lower
plasma Zn concentration, and this was associated to higher
IL-6 and ICAM-1 gene expression in splenocytes [43].
Thus, Zn supplementation may be instrumental to re-
duce inflammatory cytokines, particularly IL-6 and IL-
1β, and at the same time to enhance the protective,
though inhibited, type-I IFN response in SARS-CoV-2
infection. Zn deficiency indicates towards the decreased
interferon-γ (IFN-γ) production, a major component of
Th1 cytokine panel [44]. Since Th1 and Th2 responses
are mutually inhibited by the effect of their respective
signature cytokines IFN-γ and IL-4, such imbalance be-
tween Th1 and Th2 might lead to dysfunctions in cell-
mediated immune response [34].

There can be a whole lot of factors for the development of
Zn deficiency, whether geographic, socioeconomic, nutrition-
al, or as a result of disease pathologies such as chronic viral
infections. Notably, during infection, Zn levels decrease sig-
nificantly and a person’s requirement for Zn may increase
with the severity of the infection. Aged individuals, infants,
and chronic alcoholics are particularly more susceptible to Zn
deficiency, increasing their chances of acquiring life-
threatening viral infections [45–48]. As Zn is indispensable
for a strong immune response, Zn deficiency (persistent
hypozincemia [serum Zn < 70 μg/dL]) can considerably
dampen innate as well as adaptive antiviral immunity [4, 5].

The Role of Zn in Antiviral Immunity

There is very scant information available on the role and effect
of Zn in SARS and coronavirus disease, even though literature
is rapidly increasing [17, 49]. Much of the current knowledge
about the use of Zn as an antiviral therapy and immunomod-
ulatory agent has originated from studies done with other viral
diseases (Readers are referred to these specialized articles for
role of Zn in viral diseases [4, 5]). Zn is an essential constit-
uent of thymulin hormone, which is involved in maturation
and differentiation of T cells in thymus gland. Zn not only
plays an important role in IL-2 and IFN-γ production but also
stimulates macrophages to produce IL-12. IL-12 activates the
natural killer cells and T cytotoxic cells. Both IFN-γ and IL-
12 play a crucial role in destruction of various pathogens.
Among anti-inflammatory cytokines, only IL-10 production
is affected by Zn deficiency, whose enhanced levels adversely
affect the functioning of macrophages and Th1 response [50].

Fig. 1 Balance between helpful
and harmful effects of zinc for
COVID-19
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The rationale behind the use of Zn in COVID-19 studies
aroused from the observation that Zn ions and Zn ionophores,
such as pyrithione (PT), have previously been described as
potent inhibitors of various RNA viruses [51]. Also, targeting
of RNA-dependent RNA polymerase (RdRps) of RNA virus-
es like SARS-CoV-2 is more suitable for antiviral drug devel-
opment as RdRp activity is strictly virus-specific and may be
blocked without severely affecting key cellular functions. The
basis of Zn therapy in coronavirus infection is shown in Fig. 2.
It is known previously that Zn ions are involved in many
different cellular processes, proper folding, and activity of
various cellular enzymes and transcription factors. On the oth-
er hand, Zn2+ is probably an important cofactor for numerous
viral proteins as well. Zn2+ can serve as intracellular second
messenger and may trigger apoptosis or a decrease in protein
syn the s i s a t e l eva t ed concen t r a t i on s [52–54 ] .
Metallothioneins, a family of metal-binding proteins, regulate
homeostasis of Zn and copper, alleviate heavy metal poison-
ing, and lessen the superoxide stress. Various evidence indi-
cates that metallothionein expression is increased in response
to bacterial and viral infections, and it is anticipated that up-
regulated biosynthesis of human metallothionein might play a
significant role in nutritional immunity at the time of active
infection [55].

In cell culture studies, inhibition of the replication of various
RNA viruses was reported using high Zn2+ concentrations and
addition of compounds that stimulate cellular import of Zn2+,
such as hinokitiol, pyrrolidine dithiocarbamate, and PT as men-
tioned above (reviewed in) [5]. Around 10 years ago, an in vitro
study demonstrated that the Zn ionophore PT in combination
with Zn2+ is a potent inhibitor of the replication of SARS-CoV-
1 [51]. In addition, authors also studied the effect of Zn ions on

the RdRp of SARS-CoV-1 and demonstrated that Zn2+ directly
inhibited the in vitro activity of RdRp (Fig. 2). More specifi-
cally, Zn2+ was found to block the SARS-CoV-1 RdRp elon-
gation step along with reduced template binding. Further
strengthening their claim, authors also showed that the Zn2+-
mediated RdRp inhibition of SARS-CoV-1 could be reversed
through the addition of a Zn2+ chelator [51].

Recently, Finzi (2020) has reported that treatment of four
COVID-19 cases with high dose of zinc salts initiated the
reduction of disease symptoms within 24 h after initiation of
high dose zinc salt lozenges [56]. As adjuvant therapy, Zn (in
appropriate dose) may provide protection through decreasing
lung inflammation, enhancing mucociliary clearance,
inhibiting the ventilator-induced lung injury, and
immunomodulation in COVID-19 patients [49].

COVID-19: Interventional Clinical Trials
of Drugs/Nutritional Supplements with Zn

As of 4 August 2020, 22 studies were found after searching
for Zn and COVID-19 at the clinical trial website https://
clinicaltrials.gov/ct2/home. However, upon narrowing down
the search criteria, 19 studies were clinical trials and the
remaining 3 were observational studies (NCT04326725,
NCT04407572, NCT04412746). Furthermore, among the
remaining 19 studies, one study (NCT04371952 entitled
DYNAMIC Study [DoxycYcliNe AMbulatoIre COVID-19])
was based on the fact that doxycycline, a tetracycline
ant ib io t ic , i s known to chela te Zn from matr ix
metalloproteinases, which may help in part to inhibit
COVID-19 infection by limiting its ability to replicate in the

Fig. 2 Schematic representation of different stages of SARS-CoV-1 and
coronavirus replication cycle. Viral attachment (1), entry (2), uncoating
(3), transcription (4), viral protein translation (5), replication (6), assem-
bly and maturation (7), and finally viral release (8). Data from in vitro
studies has demonstrated two mechanisms by which zinc interferes with
these viruses’ replication cycle steps that include viral genome

transcription for SARS-Cov-1 (5), and viral protein translation and poly-
peptide processing for CV (6). However, to date, no studies have shown
zinc-mediated inhibition of SARS-CoV-1 or CV entry, receptor binding,
uncoating, assembly, and/or viral particle release. CV, coronavirus;
RdRp, RNA-dependent RNA polymerase; SARS, severe acute respirato-
ry syndrome coronavirus; Zn, zinc
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host. There is no intervention of Zn supplementation to the
patient, so this study was ruled out for present review. Three
mo r e s t ud i e s (NCT04485130 , NCT04491994 ,
NCT04485169) also did not use zinc in the experimental
arm, so similarly left out from the present article.

Among the remaining 15 studies (Table 1), 4 studies are
exclusively using different combinations of dietary supple-
ment including Zn as an intervention against COVID-19
(NCT04351490, NCT04342728, NCT04323228,
NCT04468139 at serial nos. 1, 2, 3, and 4 of Table 1,
respectively). None of the four studies is completed yet at
the time of writing this review. The NCT04351490 trial is
using combination of vitamin D3 with Zn gluconate with the
rationale that these two micronutrients are able to modulate
the immune response by reducing the inflammatory storm.
Vitamin D, a steroid hormone synthesized from cholesterol,
has recently been reported to have anti-fibrotic, anti-inflam-
matory, and immunomodulatory properties on the basis of
various studies done with hepatitis C virus infection.
Vitamin D impedes T cell proliferation, expression of
IFN-γ, expression of IL-2, and CD8 T lymphocyte–
mediated cytotoxicity [57].

The NCT04342728 trial is primarily studying whether
ascorbic acid and Zn gluconate either alone or in combination
can decrease the duration of symptoms in newly diagnosed
COVID-19 patients. Ascorbic acid, also known as vitamin C
which has potent antioxidant properties, has a very long his-
tory (> 45 years) in combating or relieving the symptoms of
rhinoviruses or common cold [58], and having immune boost-
er properties [59]. Interestingly, various in vitro animal and
clinical trials have shown that vitamin C may affect suscepti-
bility to lower respiratory tract infections during the 2003
SARS epidemic [59]. Taking a holistic approach, clinical trial
NCT04323228 is using an anti-inflammatory and antioxidant
oral nutrition supplement against COVID-19 with rationale
that n-3 fatty acids, vitamin A, vitamin C, vitamin E, seleni-
um, and Zn in extraordinary doses may modulate the immune
system response and improve the cytokine storm–associated
COVID-19 (Readers are referred to specialized articles on
antioxidant and/or antiviral properties of various nutrients
[4]).

Four clinical studies (NCT04377646, NCT04335084,
NCT04384458, NCT04446104 at serial nos. 5, 6, 7, and 8
in Table 1, respectively) are preventive studies, which are
studying whether hydroxychloroquine and/or vitamin supple-
ments in combination with Zn are effective as a prophylaxis
for asymptomatic healthcare workers/general public.
Hydroxychloroquine, derivative of chloroquine having anti-
inflammatory, immunosuppressive, and anti-autophagy activ-
ities, is an anti-malarial drug and anti-rheumatologic agent.
Besides, both hydroxychloroquine and chloroquine constrain
pH-dependent steps of SARS-CoV-2 replication by increasing
pH in intracellular vesicles [60]. Due to these properties,

hydroxychloroquine with Zn and/or azithromycin has been
touted as the medicine and as a prophylactic drug for
COVID-19 [61–63]. More importantly, chloroquine and
hydroxychloroquine work as Zn ionophore, thereby increas-
ing the intracellular Zn concentration [64]. This increase of
intracellular Zn concentration will in turn may help in the
inhibition of RdRp of SARS-CoV-2 (reviewed in) [51, 61].

The rest of 5 clinical trials (serial nos. 10–15 of Table 1) are
aimed at finding better treatment option for COVID-19 by
using various combinations of antiviral drugs/dietary supple-
ments with Zn. The results of these studies are still awaited.
The common denominator among the above mentioned trials
is the use of Zn by virtue of its antioxidant, anti-inflammatory,
and antiviral properties [4, 5]. Based on its antioxidant prop-
erties, Zn can protect against age-associated macular degener-
ation, induced by oxidative stress [65]. In general, these prop-
erties are the therapeutic basis of the indication of Zn for the
treatment of wounds, burns, and acne vulgaris. In addition, Zn
is very effective in controlling toxic levels of non-
ceruloplasmin copper in Wilson’s disease and other copper-
related diseases [7]. Acting synergistically, various antioxi-
dants and anti-inflammatory nutrients/drugs combined with
antiviral drugs may be beneficial at least in alleviating the
COVID-19 symptoms or halting the progression to more se-
vere form of COVID-19. For a clear picture, results of these
randomized control trials will be eagerly awaited.

Word of Caution: Zn Toxicity

The recommended dietary allowance (RDA) for Zn is 11 mg/
day for men and 8 mg/day for women [66]. Zn absorption is
influenced by some foods; e.g., animal proteins result in great-
er Zn absorption, while phytates reduce its absorption
(reviewed in [67]). Zn elimination half-life is in the range of
0.9–1.2 h.

Zn deficiency is far more widespread in population than Zn
toxicity (Zn toxicity is very sporadic and occurs very rarely).
In comparison to several other metal ions with similar chem-
ical properties, Zn is relatively harmless. Having said that,
caution should be practiced against indiscriminate self-
medication and chronic use of Zn supplements without proper
medical prescription/monitoring as Zn toxicity has also been
reported in the literature [68–70]. Acute Zn intoxication is a
rare event though exposure to high doses leads to toxic effects.
However, it is well established that copper deficiency is asso-
ciated with taking up large doses of supplemental Zn over
extended periods of time [71–73]. In addition, chronic use of
Zn as supplements [68] or as a medication [74] can block
intestinal absorption of copper [75]. The finely tuned and syn-
chronized systemic homeostasis and efficient regulatory
mechanisms keep a check on the cytotoxic doses of exoge-
nous Zn. It is the endogenous Zn that plays a pivotal role in
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Zn-induced cytotoxic events in single cells. Brain, in particu-
lar, is very sensitive to Zn toxicity.

Zinc as a Two-Edged Sword

Using Zn as a supplement or treatment adjuvant is a two-
edged sword. Large doses of Zn (300 mg/day) over 6 weeks
can affect the immune response, impairing lymphocyte, and
neutrophil function [76]. On this basis, a concern had arisen
that long-term Zn treatment can cause suppression of the im-
mune system. On the similar lines, using excess Zn supple-
mentation as an antiviral therapy can also do harm to the
immune system. Maywald et al. have shown in an in vitro
study that excess Zn supplementation can in fact reduce the
expression of IFN-γ (a key cytokine for T-helper-1 immune
reactions) by reducing interferon regulatory factor 1 expres-
sion in regulatory T cells [77]. However, it has been shown for
elderly persons that zinc supplementation increased
interferon-alpha (IFN-α) production by leukocytes in vitro
as compared to younger subjects [78]. This observation ne-
cessitates the need to continuously monitor the levels of Zn to
obtain maximum therapeutic efficacy. Cellular Zn intake can
be improved by ionophores including chloroquine and some
of its derivatives such as hydroxychloroquine [64].
Alternatively, natural ionophores of potential use with a good
tolerability profile are quercetin and epigallocatechin gallate
[79].

Summary and Future Directions

With no slowing down of COVID-19 pandemic as indicated
by 18 million confirmed cases including 0.69 million deaths
worldwide as of August 4, 2020 (https://covid19.who.int/),
researchers are seeking ways in which to potentially protect
people from the SARS-CoV-2 or to alleviate its effects once
caught. One such means is Zn therapy in addition to other
antiviral drugs. Zn is well tolerated and it is best known for
its antioxidant, anti-inflammatory, immunomodulatory, and
antiviral activities, the latter possibly mediated by its ability
to inhibit RNA virus RdRp [51], thus protecting the body’s
cells and tissues from viral infection, oxidative damage, and
dysfunction. Based on the current knowledge of beneficial
and harmful effects of Zn (Fig. 1), it can be safely concluded
that risk to reward ratio is in favor of Zn supplementation in
COVID-19. However, the clinical and preclinical data on this
aspect is very scanty now and results of current clinical trials
employing Zn in COVID-19 can somehow shed more light on
the efficacy of Zn against viral infections in vivo. The inves-
tigators of the different studies hope to complete the trials in
the near future.

Basic and experimental research is still at infancy stage
with regard to antiviral mechanisms, clinical benefits, and
optimal dose of Zn supplementation as a therapeutic treatment
as well as a preventative measure for viral infections including
SARS-CoV-2. Generous funding is the need of hour to rigor-
ously pursue this aspect of basic research and provide conclu-
sive evidence to the clinical trials and assumptions based on
current knowledge. Although the findings of these trials will
be too late for the many thousands of people currently infected
with COVID-19, these studies will offer valued data as to the
potential alleviation of symptoms by adjunct Zn during future
viral/COVID-19 outbreaks and provide platform for future
research avenues.
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