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Zinc finger proteins in cancer progression
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Abstract

Zinc finger proteins are the largest transcription factor family in human genome. The diverse combinations and
functions of zinc finger motifs make zinc finger proteins versatile in biological processes, including development,
differentiation, metabolism and autophagy. Over the last few decades, increasing evidence reveals the potential
roles of zinc finger proteins in cancer progression. However, the underlying mechanisms of zinc finger proteins in
cancer progression vary in different cancer types and even in the same cancer type under different types of stress.
Here, we discuss general mechanisms of zinc finger proteins in transcription regulation and summarize recent
studies on zinc finger proteins in cancer progression. In this review, we also emphasize the importance of further
investigations in elucidating the underlying mechanisms of zinc finger proteins in cancer progression.
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Background
Transcription factors play a central role in regulating
gene expression, and therefore coordinate a plethora of
biological processes, including differentiation, develop-
ment, metabolism, apoptosis, autophagy and stemness
maintenance [1–5]. Based on different DNA binding
motifs, transcription factors can be majorly categorized
into classical zinc fingers [6], homeodomains [7], and
basic helix-loop-helix [8]. Among these, classical zinc
finger containing proteins (ZNFs) form the largest fam-
ily of sequence-specific DNA binding protein, which
are encoded by 2 % of human genes [9, 10]. To date, 8
different classes of zinc finger motifs have been reported,
including Cys2His2 (C2H2) like, Gag knuckle, Treble
clef, Zinc ribbon, Zn2/Cys6, TAZ2 domain like, Zinc
binding loops and Metallothionein [11]. Different types
of zinc finger motifs show great diversity of biological
functions. Notably, in addition to DNA binding, studies
have recently revealed the RNA, protein and lipids
interacting abilities of zinc finger motifs [12–15].
Therefore, with different combinations of multiple zinc
finger motifs, ZNFs can greatly expand their diverse
role in gene regulations under different cell contexts or
stimuli. The general mechanism of gene regulation by

ZNFs and their great variety of roles in cancer progres-
sion will be discussed in this review.

The transcription regulation of ZNFs
C2H2-type zinc finger motif is the largest group of all
zinc finger motif classes. According to the InterPro
database (updated on April 14th 2016), there are 5,926
members in the C2H2-type ZNF family. C2H2-type zinc
finger motif is composed of CX2CX3FX5LX2HX3H, and
its two cysteine and two histidine residues fold into a
finger-like structure of a two-stranded antiparallel β-sheet
and an α-helix after interacting with zinc ions [16, 17].
Studies have demonstrated that two to three successive
C2H2-type zinc finger motifs are the most suitable unit
for DNA binding [6]. In addition, GC-rich or GT-rich se-
quences serve as C2H2-type ZNF cis-regulatory elements.
For example, CTGGCAGCGC has been revealed as SP1
consensus binding element to transcriptionally acti-
vate BRK1 expression, while (T/A)(G/A)CAGAA(T/G/C)
is the consensus element for ZNF217 to suppress E-
cadherin expression [18, 19].
In addition to tandem zinc finger motifs, C2H2-type

ZNF also contains other functional domains, such as
BTB (Broad-Complex, Tramtrack, and Bric-a-brac)/
POZ (poxvirus and zinc finger), the Krüppel-associated
box (KRAB), and SCAN (SRE-ZBP, CTfin51, AW-1 and
Number 18 cDNA) domain. These functional domains
may control subcellular localization, DNA binding and
gene expression by regulating selective binding of the
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transcription factors with each other or with other cel-
lular component. For instance, zinc finger protein
GATA-1 has been reported to interact with different
partners, including Fli-1, Sp1, EKLF and PU.1 [20–22].
ZNF proteins can carry out different functions with

different partners and even elicit opposing actions on
different partners. For example, physical interaction
between GATA-1 and Fli-1, a member of Ets family of
transcriptional activator, cooperatively activate the expres-
sion of megakaryocyte-specific genes, including GPIX
and GPIbalpha, at transcriptional level [20]. In contrast,
interacting with PU.1, another Ets family member,
blocks GATA-1 DNA binding ability and therefore inhibits
erythroid differentiation [23]. Recent study also shows
that ZEB1, a transcription repressor of differentiation-
associated genes, turns its function into a transcrip-
tional co-activator of a common ZEB1/YAP target genes
through interacting with YAP and therefore leading to
aggressive cancer phenotype [24].
Studies have demonstrated that ZNF proteins show

diverse regulation mechanisms on a wide variety of
downstream genes through recruiting different chromatin
modifiers. Some ZNF proteins work as transcriptional re-
pressors by recruiting co-repressors [25–27]. For example,
ZNF217 has been found to suppress downstream gene
expression by interacting with co-repressors, including
CoREST, lysine demethylase 1, histone deacetylase 2 and
C-terminal binding protein [25]. Some ZNF proteins, on
the other hand, work as transcriptional activators by inter-
acting with co-activators, including CBP/p300 and C/EBP
[28, 29]. These studies clearly indicate that trans-acting
proteins play important roles in determining ZNFs as
transcription activators or repressors.

Post-translational modifications on ZNFs
The post-translational modifications (PTMs) of ZNFs,
especially acetylation and phosphorylation, add another
layer of regulation for ZNFs in which transcription may
be activated or repressed. GATA1, a transcription factor
that contains 2 highly conserved zinc finger motifs, is
found acetylated at the lysine residues adjacent to the C
terminal zinc finger by acetyltransferase CBP and p300.
Acetylation of GATA1 shows stable association with
chromatin probably by facilitating protein interactions,
such as bromodomain-containing protein Brd3 [30–32].
Erythroid Krüppel-like factor, also known as EKLF, is acet-
ylated at lysine residues 288 and 302 near its zinc finger
motif mediated by CBP and p300 [33]. The acetylated
EKLF at lysine residue 288 can transactivate β-globin
expression through recruiting the large erythroid complex
(ERC-1) that contains SWI/SNF chromatin-remodeling
proteins and histone 3.3 [33, 34]. Another C2H2 zinc
finger protein, YY1, is acetylated by p300/CBP associated
factor (PCAF) at its zinc finger motif and inhibits its DNA

binding capacity. Acetylation mediated by p300 and PCAF
at the central glycine-lysine rich domain of YY1, however,
does not affect DNA binding affinity but fully suppresses
target gene transcription [35].
Phosphorylation on serine or threonine residues of the

ZNFs linker peptide has been reported [36]. ZNFs, in-
cluding Ikaros, Sp1 and YY1, are found to be highly
phosphorylated on threonine/serine residues of their
linker peptide during mitosis and therefore abrogated
their DNA binding ability [37, 38]. Rizkallah et al. gener-
ated an antibody raised against phosphorylated linker
peptide TGEKP to show that about 50 % of all linkers in
80 % of C2H2-type ZNFs are phosphorylated, indicating
that phosphorylation is a highly coordinated mechanism
to keep ZNFs away from DNA during mitosis [39].

The oncogenic ZNFs in cancer progression
Recent studies revealed that aberrant expression of
C2H2 ZNF proteins contributes to tumorigenesis in
different aspects (summarized in Table 1). For ex-
ample, amplification and overexpression of ZKSCAN3,
also known as ZNF306 or ZNF309, was first reported
in invasive colorectal cancers. The authors showed that
ZKSCAN3 knockdown in colorectal cancer cells inhibited
anchorage-independent growth and orthotopic tumor
growth, while ZKSCAN3 overexpression exerted opposite
effects [40]. To identify ZKSCAN3 downstream genes,
these authors further conducted expression array and
identified candidate target genes enriched in growth, cell
migration, angiogenesis and proteolysis [41]. Studies con-
firm that ZKSCAN3 transcriptionally activates integrin β4
and vascular endothelial growth factor, which are involved
in ZKSCAN3-mediated colorectal tumorigenesis [41]. In
addition, ZKSCAN3 is also found to be amplified and
overexpressed in multiple myeloma and prostate cancer
[42, 43]. The overexpression of ZKSCAN3 enhances cell
proliferation through transcriptionally activating cyclin D2
expression [42]. Interestingly, a recent study reveals a
novel role of ZKSCAN3 in autophagy using cervical
cancer, colon cancer, neuroblastoma, and ovarian cancer
models [4]. Chauhan et al., show that ZKSCAN3 translo-
cates into the nucleus and acts as a master transcriptional
repressor of a large set of genes involved in autophagy and
lysosome biogenesis, including Map1lC3b and Wipi2,
under serum stimulation [4].
ZNF322A, also known as ZNF388 or ZNF489, con-

sists of 11 tandem repeats of C2H2 zinc finger motif.
ZNF322A was first identified as oncogene by Lo et al.,
showing that ZNF322A residing region is amplified in
both Asian and Caucasian lung cancer patients [44].
Further study reveals that ZNF322A promotes cell prolif-
eration, migration and invasion through transcriptionally
activating cyclin D1 and alpha-adducin but suppressing
p53 in lung cancers [45]. Multivariate Cox regression
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Table 1 Summary of differential roles of ZNF proteins in cancer progression

ZNFs Aliases Role Cancer models Target genes Mechanism in tumorigenesis References

ZKSCAN3 ZNF306, ZNF309 Oncogene Colorectal cancer Integrin β4 ↑, VEGF ↑ Promotes cancer cell growth,
migration, angiogenesis,
proteolysis

[40, 41]

Multiple myeloma Cyclin D2 ↑ Enhances cell proliferation [42]

Prostate cancer - Promotes cell migration [43]

Cervical, colon, ovarian
cancer, neuroblastoma

MAP1LC3B ↓, WIPI2 ↓ Suppresses autophagy and
lysosome biogenesis

[4]

ZNF322A ZNF388, ZNF489 Oncogene Lung cancer - Chromosome locus 6p22.1 is
amplified

[44]

ADD1 ↑, CCND1 ↑, p53 ↓ Promotes cell growth, migration
and invasion

[45]

ZNF304 - Oncogene Colorectal p14ARF ↓, p15INK4B ↓,
p16INK4A ↓

Suppresses tumor suppressor
genes through recruiting a co-
repressor complex, including
DNMT1

[48]

Ovarian cancer Integrin β1 ↑ Activates Src/focal adhesion
kinase and paxillin and therefore
prevents anoikis

[49]

ZNF139 ZKSCAN1, ZNF36,
ZSCAN33, KOX18

Oncogene Gastric cancer - Serves an independent
prognostic factor for gastric
cancer patients

[50]

Survivin ↑, x-IAP ↑, Bcl2 ↑,
Caspase-3 ↓, Bax ↓

Promotes cell proliferation and
inhibits apoptosis

[51]

MMP-2 ↑, MMP-9 ↑, ICAM-1
↑, TIMP-1 ↓

Promotes cell migration and
invasion

[52]

MDR-1/P-gp ↑, MRP1 ↑,
Bcl-2 ↑, Bax ↓

Contributes to multi-drug
resistance

[53]

ZFX ZNF926 Oncogene Hepatocellular carcinoma Nanog ↑, SOX2 ↑ Confers self-renewal properties
and chemoresistance

[5]

Nasopharyngeal carcinoma E-cadherin ↓ May be involved in EMT [54]

Glioma, lung, oral, breast
cancer

- Promotes cell proliferation and
survival

[55, 56, 58,
60]

Gastric cancer - Promotes cell growth through
up-regulating ERK-MAPK
pathway

[57]

Gallbladder cancer - Promotes proliferation,
migration and invasion
potentially through activation of
PI3K/AKT pathway

[59]

Glioblastoma c-Myc ↑ Promotes glioma stem cell
maintenance

[61]

ZEB1 ZFHX1A,
DELTAEF1

Oncogene Breast cancer ESRP2 ↓ Promotes TGF-β-induced EMT [68]

Glioma - SHP-2 up-regulates ZEB1 expres-
sion to mediate EMT, invasion
and growth

[69]

Cervix, breast cancer,
osteosarcoma, adrenal
carcinoma

E-cadherin ↓ Down-regulates E-cadherin and
cell polarity factors by recruiting
co-repressor CtBP or BRG1

[70, 71]

Cervix, colorectal cancer - Activates genes involved in TGF-
β/BMP signaling by recruiting
p300 and P/CAF

[72, 73]

Lung cancer E-cadhein ↑, ST14 ↑,
Vimentin ↑

Confers EMT-related acquired
resistance to EGFR-TKI

[74]

Breast cancer VEGFA ↑ Promotes angiogenesis [75]
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analysis indicates ZNF322A is an independent risk
factor of poor outcome in lung cancer patients [45].
Notably, ZNF322A mouse ortholog, Zfp322a, is reported
as a novel essential component of the transcription
network, which maintains the self-renewal and pluripo-
tency of mouse embryonic stem (mES) cells [46]. Zfp322a
promotes OKSM (Oct4, Klf4, Sox2, c-Myc)-induced
mouse embryonic fibroblast reprogramming to mES
cells by transcriptionally activating Oct4 and Nanog
expression [46]. The study on Zfp322a implies a potential
role of human ZNF322A in maintaining the pluripotency
of embryonic stem cells or cancer stem cells.

ZNF304, which contains a KRAB domain and 13
C2H2 zinc finger motifs, was first identified by AU-
motif directed display and RACE in 2002 [47]. ZNF304
plays a pivotal role in silencing tumor suppressors,
including p14ARF, p15INK4B and p16INK4A, through
recruiting a co-repressor complex that includes DNA
methyltransferase DNMT1 [48]. In addition, an integra-
tive bioinformatic analysis of The Cancer Genome
Atlas ovarian cancer dataset and experimental valid-
ation reveals the association between ZNF304 and ovarian
cancer metastasis [49]. The authors show that ZNF304
transcriptionally activates integrin β1 expression, which

Table 1 Summary of differential roles of ZNF proteins in cancer progression (Continued)

ZNF545 ZFP82 TSG Nasopharyngeal,
esophageal, lung, gastric,
colon, breast cancer

- Induces cell apoptosis by
repressing ribosome biogenesis
and NF-kB and AP-1 signaling

[76]

ZNF331 ZNF361, ZNF463 TSG Gastric cancer DSTN ↓, EIF5A ↓, GARS ↓,
DDX5 ↓, STAM ↓, UQCRFS1
↓, SET ↓, ACTR3 ↓

Inhibits cell growth, migration
and invasion

[78]

Gastrointestinal, esophageal
cancer

- Promoter hypermethylation is
found in various cancer types

[79, 80]

ZNF24 ZNF191, Kox17 TSG Breast cancer VEGF ↓ Inhibits angiogenesis [82, 83]

Gastric cancer - miR940 promotes cancer
migration and invasion by
targeting ZNF24

[84]

ZNF668 - TSG Breast cancer - Suppresses cell proliferation by
promoting MDM2
autoubiquitination and
therefore p53 stabilization

[85]

Osteosarcoma - Involved in DNA repair by
regulating chromatin relaxation
and recruiting repair proteins to
DNA lesions

[86]

ZHX1 - TSG Gastric cancer - miR-199a-3p promotes cell
proliferation and suppresses
apoptosis by targeting to ZHX1

[88]

CCND1 ↓, CCNE ↓, Bcl2 ↓,
Bax ↑, cleaved Caspase-3 ↑

Induce G1/S arrest and
apoptosis

[89]

ZNF395 PBF, HDBP2 Oncogene Ewing’s sarcoma,
osteosarcoma, renal cell
carcinoma

- Overexpressed in various
cancers

[90–92]

Glioblastoma - Induced under hypoxia stress [93]

Skin and cervix cancer,
glioblastoma

IFIT1/ISG56 ↑, IFI44 ↑, IFI16
↑

Supports inflammation and
cancer progression

[94]

TSG Liver cancer - miR-525-3p promotes cell
migration and invasion by
targeting ZNF395

[95]

Kaiso ZNF348, ZBTB33 TSG Breast and colon cancer CCND1 ↓ Suppresses cell proliferation [99]

Oncogene Breast cancer Vimentin ↑, Slug ↑, ZEB1 ↑ Involved in TGF-β-mediated
metastasis

[100]

Prostate cancer miR-31 ↓ Promotes cell migration and
invasion

[101]

Breast and colorectal
cancer

HIF-1α ↓ - [102]

-, target not-determined
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subsequently activates Src/focal adhesion kinase and
paxillin and eventually prevents anoikis [49]. Using deliv-
ery of ZNF304 siRNA by a dual assembly nanoparticle,
these authors successfully conducted a sustained ZNF304
silencing which increased anoikis and reduced ovarian
tumor growth in orthotopic mouse models [49].
ZNF139 is significantly overexpressed in gastric cancer

patients. Cox survival analysis reveals ZNF139 overex-
pression as an independent prognostic factor for gastric
cancer patients [50]. ZNF139 has been reported to
promote proliferation and inhibit apoptosis through
up-regulating the expression of Survivin, x-IAP and
Bcl-2, and down-regulating Caspase-3 and Bax [51]. In
addition, ZNF139 promotes cancer migration and invasion
in gastric cancer by increasing the expression of MMP-2,
MMP-9 and ICAM-1, and decreasing the expression of
TIMP-1 [52]. ZNF139 also contributes to multi-drug re-
sistance by enhancing the expression of MDR-1/P-gp,
MRP1, Bcl-2 while inhibiting Bax expression [53].
Overexpression of zinc finger protein, X-linked (ZFX)

has been shown to promote cell growth and metastasis
in laryngeal squamous cell carcinoma, glioma, non-small
cell lung cancer, gastric cancer, oral squamous cell car-
cinoma, gallbladder cancer and breast cancer [5, 54–60].
In addition, ZFX is found to confer self-renewal proper-
ties and chemoresistance in hepatocellular carcinoma
through transcriptional activation of Nanog and SOX2
expression [5]. Fang et al. also showed that ZFX tran-
scriptionally up-regulates c-Myc expression leading to
glioma stem cell maintenance [61]. Inhibition of ZFX
using siRNA oligo or drug treatment suppresses cancer
progression, indicating the potential of oncogenic ZNFs
as therapeutic targets [62, 63].
Zinc finger E-box-binding homeobox, ZEB1, is a

well-studied transcription factor involved in Epithelial-
Mesenchymal Transition (EMT) in several cancer types,
including breast cancer, lung cancer, pancreatic cancer
and prostate cancer [64–67]. ZEB1 expression in cancer
cells is elevated upon signaling induction, including TGF-
β and platelet-driven growth factor receptor-α signaling
[68, 69]. As an activator of EMT, increased ZEB1 binds
to E-boxes containing downstream targets, including E-
cadherin and cell polarity factors, and represses their
transcription by recruiting co-repressors CtBP or SWI/
SNF chromatin-remodeling protein BRG1 [70, 71]. Not-
ably, studies also reveal that ZEB1 can transcriptionally
activate genes involved in TGF-β/BMP signaling through
recruiting co-activators, p300 and P/CAF [72, 73]. In
addition to its role in EMT, ZEB1 overexpression further
contributes to EMT-related acquired resistance to epi-
dermal growth factor receptor-tyrosine kinase inhibi-
tors (EGFR-TKI) in non-small cell lung cancer through
transcriptionally up-regulating E-cadherin, ST14 and
vimentin [74]. Moreover, Yoshida et al., show that silencing

ZEB1 expression restores sensitivity to EGFR-TKI, suggest-
ing targeting ZEB1 could be a potential therapy to resensi-
tize TKI-resistant tumors [74]. A recent study also reveals
a novel role of ZEB1 in promoting angiogenesis in breast
cancer [75]. The authors show that ZEB1 overexpression
in breast cancer cells recruits Sp1 to VEGFA promoter
region and activates VEGFA expression and secretion,
therefore promoting angiogenesis in vitro and in vivo [75].

The tumor suppressor ZNFs in cancer progression
In addition to cancer promotion, several ZNFs have
been found to function as tumor suppressors. For ex-
ample, ZNF545, which is down-regulated in cancer cells
as a consequence of promoter methylation, acts as a
tumor suppressor by inducing cell apoptosis, repressing
ribosome biogenesis and suppressing NF-kB and AP-1
signaling in nasopharyngeal, esophageal, lung, gastric,
colon and breast cancer [76]. Notably, methylated de-
grees of five CpG sites (-232, -214, -176, -144 and -116)
discriminate gastric cancer patients’ survival outcome
with higher CpG methylation predicting poorer overall
survival [77]. Another ZNF known to be inactivated by
promoter hypermethylation is ZNF331, also known as
ZNF361 or ZNF463 [78–80]. Overexpression of ZNF331
inhibits cell growth by down-regulating genes, including
DSTN, EIF5A, GARS, DDX5, STAM, UQCRFS1 and SET,
and inhibits cell migration/invasion by down-regulating
genes, including DSTN and ACTR3 [78].
ZNF24, also known as ZNF191 or Kox17, contains 4

Krüppel-like C2H2 zinc finger domains on C-terminus
that function as DNA binding domains [81]. ZNF24
suppresses VEGF expression by binding to the proximal
VEGF promoter, and negatively regulates tumor growth
by inhibiting angiogenesis in breast cancer [82, 83]. Using
transgenic zebra fish model, Jia et al., demonstrate that ex-
pression of human ZNF24 induces vascular defects, which
can be recovered by VEGF overexpression [83]. Clinical
studies of human breast cancer confirm the inverse correl-
ation between ZNF24 and VEGF, indicating the tumor
suppressor role of ZNF24 in breast cancer tumorigenesis
by inhibiting angiogenesis [83]. Interestingly, a recent
study shows that miR940 is up-regulated in gastric cancer
and promotes gastric cancer migration and invasion by
targeting tumor suppressor ZNF24 [84].
ZNF668 is a member of Krüppel C2H2 zinc finger pro-

tein family, which possesses 16 C2H2-type zinc fingers.
ZNF668 facilitates p53 stabilization and activity by dis-
rupting MDM2-mediated ubiquitination and degradation
in breast cancer [85]. In addition, ZNF668 interacts with
Tip60 to enhance H2AX hyperacetylation in response to
ionizing radiation and promote RPA phosphorylation and
recruitment to DNA damage foci upon UV damage,
therefore leading to chromatin relaxation and loading of
DNA repair proteins [86].
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Zinc-fingers and homeoboxes-1 (ZHX1), which contains
two C2H2 zinc finger motifs and five homeodomains, has
been reported to be down-regulated in hepatocellular
carcinoma and gastric cancer [87–89]. ZHX1 induces
G1/S arrest through down-regulating cyclin D1 and
cyclin E expression, and enhances apoptosis through
down-regulating Bcl2 and up-regulating Bax and cleaved
Caspase-3 [89]. Of note, Wang et al., demonstrate that
miRNA, miR-199a-3p, targets ZHX1 for RNA degradation
to promote cell proliferation and suppresses apoptosis in
gastric cancer. Reconstitution of ZHX1 expression abro-
gates gastric cancer oncogenicity [88].

ZNFs: double-edged sword in tumorigenesis
Some ZNFs have been shown to play different roles in
different cancer types and stimuli. For example, ZNF395
is overexpressed in various cancers, including Ewing
sarcomas, osteosarcomas and renal cells carcinomas
[90–92]. Moreover, ZNF395 expression is induced
under hypoxic stress in glioblastoma, neuroblastoma
and skin cancer [90, 93, 94]. Hypoxia-induced ZNF395
can transcriptionally up-regulate cancer-related genes
and interferon-stimulated genes, such as IFIT1/ISG56,
IFI44 and IFI16, in an IKK signaling-dependent manner
[94]. These results implicate ZNF395 as a novel

transcription factor which supports inflammation and
cancer progression. However, a recent study reveals the
tumor suppressor role of ZNF395 in liver cancer. The
authors show that miR-525-3p, which is overexpressed in
liver cancer, promotes liver cancer cell migration and inva-
sion by targeting and down-regulating ZNF395 expression
[95]. The clinical analysis indeed confirms the inverse
correlation of miR-525-3p and ZNF395 in liver cancer
[95]. These studies collectively show that ZNF395 may
play different roles in different cancer types.
Kaiso, also known as ZNF348 or ZBTB33, belongs to

the BTB/POZ subfamily of ZNFs. Kaiso can bind to
sequence-specific or methyl-CpG DNA using its zinc
finger motifs, while its N-terminus POZ domain helps
homodimerization or heterodimerization with chromatin
co-repressors, including nuclear receptor co-repressor I
[96–98]. By recruiting chromatin co-repressors, Kaiso
transcriptionally suppresses downstream gene expression.
Kaiso was first identified as a tumor suppressor that tran-
scriptionally suppressed oncogenic genes in sequence- or
methyl-CpG-specific manner. For example, Kaiso re-
presses cyclin D1 expression by binding to CCND1 pro-
moter in a sequence- and methyl-CpG-specific manner in
breast and colon cancer [99]. Since then, more and more
studies have demonstrated the oncogene role of Kaiso in

Fig. 1 Various regulations of ZNF proteins’ functions in cancer progression. The versatile roles of ZNF proteins in cancer progression can be regulated
at different levels. Differential expression of ZNF proteins in different cancer types can be regulated by 1) cancer-related miRNAs, including
miR-199a-3p, miR-525-3p, miR-940 and miR-31, or 2) different environmental stimuli, which activate signaling cascades and therefore fine-tune
ZNF protein functions through various of PTMs, including phosphorylation (P) and acetylation (Ac). 3) ZNF proteins at different protein domains or with
various PTMs recruit different interacting proteins namely X, including transcription co-activators/co-repressors, chromatin modifiers and other
transcription factors, to activate or suppress downstream genes. 4) ZNF proteins show diverse sequence-specific DNA binding abilities due to
different combinations of zinc finger motifs shown as boxes

Jen and Wang Journal of Biomedical Science  (2016) 23:53 Page 6 of 9



various cancers. For example, Kaiso is found highly
expressed in triple negative breast cancers and involved
in TGF-β-mediated metastasis by up-regulating several
EMT genes, including Vimentin, Slug and ZEB1 [100].
High expression of Kaiso in prostate cancer promotes cell
migration and invasion through transcriptional suppres-
sion of miR-31 expression in methyl CpG-specific manner
[101]. In addition, Pierre et al., show that Kaiso transcrip-
tionally suppresses HIF-1α expression by targeting to
methylated HIF1A promoter in breast and colorectal can-
cer [102]. Kaiso is a versatile ZNF, which exerts different
functions in different cell types in respond to different
stimuli.

Conclusion
Recent studies show that C2H2 ZNF proteins play im-
portant roles in cancer progression through regulating
transcription of downstream genes, which are involved
in proliferation, apoptosis, migration and invasion. Al-
though more and more studies have been focused on
the underlying mechanism of C2H2 ZNF transcription
regulation, results remain conflicting. It is now under-
stood that different layers of regulations lead C2H2
ZNF proteins to different roles in tumorigenesis. In this
review, we summarize various levels of ZNF proteins
regulation in tumorigenesis (Fig 1). First, differential
expression levels of ZNF proteins in different cancer
types are regulated by cancer-related miRNA, including
miR-199a-3p, miR-525-3p, miR-940 and miR-31. Second,
different environmental stimuli activate signaling cascades
and therefore fine-tune ZNF protein functions through
various PTMs, including phosphorylation and acetylation.
PTMs regulation affects DNA binding abilities and inter-
acting proteins recruitments of ZNF proteins. Third,
ZNF proteins at different protein domains or with vari-
ous PTMs recruit different interacting proteins, includ-
ing transcription co-activators/co-repressors, chromatin
modifiers and other transcription factors. Therefore, ZNF
proteins can activate or suppress downstream genes by
recruiting different interacting partners. Fourth, ZNF
proteins show diverse sequence-specific DNA binding
abilities with different combinations of zinc finger motifs.
Knowing the complexities and diversities of ZNF proteins,
it is important to elucidate the underlying mechanisms of
C2H2 ZNF proteins in different cancers under different
environmental stimuli. Therefore, drugs targeting specific
C2H2 ZNF protein expression or activity can be devel-
oped for therapeutic strategy against tumors in a specific
stage of cancer progression.
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