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Summary

 

Zinc (Zn) is an essential component of thousands of proteins in plants, although it is
toxic in excess. In this review, the dominant fluxes of Zn in the soil–root–shoot con-
tinuum are described, including Zn inputs to soils, the plant availability of soluble
Zn

 

2

 

+

 

 at the root surface, and plant uptake and accumulation of Zn. Knowledge of
these fluxes can inform agronomic and genetic strategies to address the widespread
problem of Zn-limited crop growth. Substantial within-species genetic variation in
Zn composition is being used to alleviate human dietary Zn deficiencies through bio-
fortification. Intriguingly, a meta-analysis of data from an extensive literature survey
indicates that a small proportion of the genetic variation in shoot Zn concentration
can be attributed to evolutionary processes whose effects manifest above the family
level. Remarkable insights into the evolutionary potential of plants to respond to
elevated soil Zn have recently been made through detailed anatomical, physiological,
chemical, genetic and molecular characterizations of the brassicaceous Zn hyper-
accumulators 

 

Thlaspi caerulescens

 

 and 

 

Arabidopsis halleri

 

.

 

New Phytologist

 

 (2007) 

 

173

 

: 677–702

© The Authors (2007). Journal compilation © 

 

New Phytologist

 

 (2007) 

 

doi

 

: 10.1111/j.1469-8137.2007.01996.x

 

Author for correspondence: 

 

Martin R. Broadley

 

 

 

Tel: +44 (0)1159516382
Fax: +44 (0)1159516334
Email: martin.broadley@nottingham.ac.uk

 

Received: 

 

13 September 2006

 

 
Accepted: 

 

1 December 2006

 

Key words:

 

Brassicaceae, cadmium (Cd), 
Genechip, genetics, hyperaccumulation, 
ion transport, transcriptomics, uptake 
kinetics.



 

Tansley review

 

New Phytologist

 

 (2007) 

 

173

 

: 677–702

 

www.newphytologist.org

 

© The Authors (2007). Journal compilation © 

 

New Phytologist

 

 (2007)

 

Review678

 

I. Physical and chemical properties of zinc

 

Zinc is a transition metal of atomic number 30 and is the 23rd
most abundant element on earth. Zinc has five stable isotopes:

 

64

 

Zn (48.63%), 

 

66

 

Zn (27.90%), 

 

67

 

Zn (4.90%), 

 

68

 

Zn (18.75%)
and 

 

70

 

Zn (0.62%). Heavy and light isotopic enrichments of
root and shoot Zn fractions, respectively, have been reported
in plants (Weiss 

 

et al

 

., 2005). Approximately 30 short-lived
Zn radioisotopes occur in the atomic mass range 54–83, and
the longest-lived (

 

65

 

Zn, 

 

t

 

1/2

 

 

 

=

 

 244.26 d) is frequently used as
a Zn tracer in plants. In solution, Zn exists in the 

 

+

 

2 oxidation
state and, unlike Fe

 

2

 

+

 

 and Cu

 

2

 

+

 

, is redox-stable under physio-
logical conditions as a result of a complete 

 

d

 

-shell of electrons
(Barak & Helmke, 1993; Auld, 2001). Additionally, Zn

 

2

 

+

 

 has
pronounced Lewis acid characteristics because of its small radius
to charge ratio (i.e. 0.83 Å, coordination number, CN 

 

=

 

 6)
compared, for example, with Ca

 

2

 

+

 

 (1.08 Å, CN 

 

=

 

 6), and thus
forms strong covalent bonds with S, N and O donors. This
electron configuration of aqueous Zn

 

2

 

+

 

 complexes favours
octahedral coordination geometries (CN 

 

=

 

 6), although CN 

 

=

 

 4
and CN 

 

=

 

 5 geometries also occur (Barak & Helmke, 1993).
Zinc forms numerous soluble salts, including halides, sulphates,
nitrates, formates, acetates, thiocyanates, perchlorates, fluosilicates,
cyanides, alkali metal zincates and Zn-ammonia salts; sparingly
soluble compounds, including Zn-ammonium phosphate, Zn
hydroxide and Zn carbonate; and a range of soluble and insoluble
organic complexes (Lindsay, 1979; Barak & Helmke, 1993).

 

II. Biochemical properties of zinc

 

Zinc is typically the second most abundant transition metal in
organisms after iron (Fe), and the only metal represented in all
six enzyme classes (Enzyme Commission number, EC 1–6;
(oxidoreductases, transferases, hydrolases, lyases, isomerases,
ligases; http://www.chem.qmul.ac.uk/iubmb/enzyme/; Webb,
1992). Enzymatic function and reactivity are determined by
the geometric and binding characteristics of Zn

 

2

 

+

 

-ligand
complexes and three primary Zn

 

2

 

+

 

-ligand binding sites are
recognized: structural, catalytic and cocatalytic (Auld, 2001;
Maret, 2005). Structural Zn sites, in which Zn ensures
appropriate protein folding (e.g. alcohol dehydrogenases, protein
kinases), comprise four ligands, frequently cysteine (Cys), and
no bound water molecule. In catalytic sites, Zn is directly
involved in the catalytic function of the enzyme (e.g. carbonic
anhydrases); histidine (His) is the primary amino acid and
Zn

 

2

 

+

 

 is complexed with water and any three S, N or O donors.
In cocatalytic sites, Zn

 

2

 

+

 

 can be used for catalytic, regulatory
and structural functions (e.g. superoxide dismutases, purple acid
phosphatases, metallo-

 

β

 

-lactamases). At such sites, two or three
Zn

 

2

 

+

 

 occur in close proximity and are bridged by amino acid
residues, principally aspartic acid (Asp) or glutamic acid (Glu),
but also His and potentially a water molecule, but not Cys. A
fourth type of Zn

 

2

 

+

 

-ligand binding or protein interface site can
behave as a catalytic or structural site. These occur when ligands

from the surface of two protein molecules bind to a single Zn
atom (e.g. nitric oxide synthases). Zinc binding sites also occur in
a wide range of other proteins, membrane lipids and DNA/
RNA molecules. The largest class of Zn-binding proteins in
organisms is the zinc finger domain containing proteins, which
can regulate transcription directly through effects on DNA/
RNA binding, and also through site-specific modifications,
regulation of chromatin structure, RNA metabolism and protein–
protein interactions (Klug, 1999; Englbrecht 

 

et al

 

., 2004).

 

III. Proteins interacting with zinc

 

In 

 

Escherichia coli

 

, femtomolar (1 

 

×

 

 10

 

−

 

15

 

 

 

M

 

) cytosolic con-
centrations of free Zn

 

2

 

+

 

 induce the activity of Zn influx (Zur)
and efflux (ZntR) proteins (Outten & O’Halloran, 2001).
Since these concentrations are 10

 

6

 

 times lower than one Zn

 

2

 

+

 

ion per cell, contrasting with a minimal Zn content of an 

 

E. coli

 

cell in the millimolar range (

 

c

 

. 200 000 atoms per cell), cytosolic
free Zn

 

2

 

+

 

 pools are not thought to persist. Ionic Zn is likely to
be excluded from the cytosol via direct transfer between proteins,
with 

 

>

 

 10% of cellular Zn thought to be tightly bound to just
six proteins, including an RNA polymerase expressed at 5000
copies per cell with two Zn atoms bound per copy, and five
tRNA synthetases expressed at 2000–3000 copies per cell with
a single Zn atom bound per copy (Outten & O’Halloran,
2001). Since there are 

 

>

 

 30 further proteins of unknown copy
number which require tightly bound Zn (Katayama 

 

et al

 

., 2002),
and many other proteins, amino acids and nucleotides with
lower affinities for Zn, a large Zn-binding overcapacity in the
cytosol of 

 

E. coli

 

 has been predicted (Outten & O’Halloran,
2001). In plant cells, high Zn-status leaf epidermal cell
vacuoles, cell walls and cytoplasm (i.e. cytosol and organelles
excluding the vacuole) can contain, respectively, 74 305,
11 577 and 3205 µg Zn g

 

−

 

1

 

 DW (dry weight); lower Zn-status
leaf mesophyll cell vacuoles, cell walls and cytoplasm contain,
respectively, 327, 9353 and 

 

≤

 

 262 µg Zn g

 

−

 

1

 

 DW; and
root cortical vacuoles, cell walls and cytoplasm contain,
respectively, 

 

≤

 

 262, 589 and 

 

≤

 

 262 µg Zn g

 

−

 

1

 

 DW (Frey 

 

et al

 

.,
2000). Thus, 9.6 

 

×

 

 10

 

10

 

, 2.7 

 

×

 

 10

 

9

 

 and 1.8 

 

×

 

 10

 

9

 

 atoms of
Zn can occur in leaf epidermal cell vacuoles, cell walls and
cytoplasm, respectively. Leaf mesophyll cell vacuoles, cell
walls and cytoplasm contain 4.2 

 

×

 

 10

 

8

 

, 2.2 

 

×

 

 10

 

9

 

 and

 

≤

 

 1.5 

 

×

 

 10

 

8

 

 atoms of Zn respectively, and root cortical cell
vacuoles, cell walls and cytoplasm contain 

 

≤

 

 3.4 

 

×

 

 10

 

8

 

,
1.4 

 

×

 

 10

 

8

 

 and 

 

≤

 

 1.5 

 

×

 

 10

 

8

 

 atoms of Zn, respectively. These
calculations assume that a plant cell comprises 1 

 

×

 

 10

 

−

 

15

 

 m

 

3

 

 with
a mass of 1 

 

×

 

 10

 

−

 

9

 

 g FW (fresh weight); the vacuole, cell wall
and cytoplasm occupy 70, 5 and 25%, respectively, of the
cell volume; and FW : DW ratios are five, two and four for
vacuoles, cell wall and cytoplasm, respectively (Flowers & Yeo,
1992; Frey 

 

et al

 

., 2000). It is not yet known what proportion
of plant cytoplasmic Zn is present as free Zn

 

2

 

+

 

 or as Zn bound
to protein, amino acid, nucleotide or lipid ligands at lower
affinities, or compartmentalized into organelles. However, by

http://www.chem.qmul.ac.uk/iubmb/enzyme/
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analogy with 

 

E. coli

 

, it seems likely that (i) cytosolic Zn2+

concentration ([Zn2+]cyt) will be vanishingly low to prevent
interference with metalloregulatory and other signalling
proteins; and (ii) low [Zn2+]cyt will be maintained through
high-affinity binding of Zn in the cytosol and through
compartmentalization of Zn into cytoplasmic organelles.
In mammals, cytoplasmic Zn can be sequestered into vesicles
(‘zincosomes’; Beyersmann & Haase, 2001), and this process
might also occur in plants.

In the human genome, annotation- and Zn-binding domain-
based searches reveal that c. 10% of proteins (i.e. 2800) poten-
tially bind Zn (Andreini et al., 2006), with hundreds more
involved in Zn transport and trafficking (Beyersmann &
Haase, 2001). A similar in silico study of the complement of
Zn-binding proteins in Arabidopsis thaliana (L.) Heynh. was
undertaken here. First, protein domains with observed or pre-
dicted capabilities for binding Zn were identified from the
Pfam database (http://www.sanger.ac.uk/Software/Pfam/; 25
July 2006). Approximately 120 putative Zn-binding protein
domains were identified, with 2042 A. thaliana proteins
(TAIR6) containing one or more of these domains (Supple-
mentary material, Table S1). Secondly, annotation searches
using the words ‘zinc’ or ‘Zn’, corrected for false positives,
revealed 1245 genes (Table S2), of which 1096 were common
to the domain-based search. Finally, proteins implicated in Zn
homeostasis were hand-compiled (Table S3). These included
the remaining carbonic anhydrases, alcohol dehydrogenases
and proteins with putative Zn transport functions, including
PIB-type ATPases, divalent cation transporters and non-
specific cation channels. This third list contained 1635 proteins,
176 of which were unique. In total, 2367 proteins (Table S4)
in 181 gene families (Table S5) were identified as Zn-related.
Briefly, one or more Gene Ontology molecular function
(GO:3674) subcategories were assigned to each gene using
GeneSpring GX (Agilent Technologies Inc., Palo Alto, CA,
USA) (Table 1). The largest group of Zn-binding proteins in
A. thaliana are Zn finger domains, assigned to transcription
regulator activity (GO:30528) and binding (GO:5488)
functional subcategories. The catalytic activity (GO:3824)
subcategory comprises numerous proteins, including those
with hydrolase activity (GO:16787, e.g. P1B-ATPases) and
transferase activity (GO:16740, e.g. mitogen-activated pro-
tein kinases (MAPKs)). The transporter activity (GO:5215)
subcategory includes ABC transporters, PIB-ATPases, various
divalent cation transporters (for example, the cation diffusion
facilitator family (CDFs)), Zn-Fe permeases (ZIPs) and non-
specific cation channels.

IV. Zinc fluxes in the soil–root–shoot continuum

1. Zinc inputs to soils

The primary input of Zn to soils is from the chemical and
physical weathering of parent rocks. The lithosphere typically

comprises 70–80 µg Zn g−1, whilst sedimentary rocks contain
10–120 µg Zn g−1 (Friedland, 1990; Barak & Helmke, 1993;
Alloway, 1995). Mean soil Zn concentrations ([Zn]soil) of 50
and 66 µg total Zn g−1 soil are typical for mineral and organic
soils, respectively, with most agricultural soils containing 10–
300 µg Zn g−1 (Alloway, 1995; Barber, 1995). Zinc occurs
in rock-forming minerals as a result of the nonspecific
replacement of Mg and Fe with Zn (Barak & Helmke, 1993).
Rocks containing weathered Zn minerals, including Zn
sulphide (sphalerite, wurtzite), sulphate (zincosite, goslarite),
oxide (zincinte, franklinite, gahnite), carbonate (smithsonite),
phosphate (hopeite) and silicate (hemimorphite, willemite)
minerals, can form ‘calamine’ soils containing extremely high
concentrations of Zn and other metals (Barak & Helmke,
1993). For example, in Plombières in Belgium, [Zn]soil exceeds
100 000 µg Zn g−1 (Cappuyns et al., 2006). Such sites are
usually localized to a few hectares, although adjacent soils can
also have high [Zn]soil through water seepage from ore bodies
(Chaney, 1993). Secondary natural inputs of Zn to soils arise
because of atmospheric (e.g. volcanoes, forest fires, and surface
dusts) and biotic (e.g. decomposition, leaching/washoff from
leaf surfaces) processes (Friedland, 1990).

Humans have long influenced Zn inputs to soils. Two
thousand years ago, approx. 10 000 tonnes Zn yr−1 were emitted
as a result of mining and smelting activities (Nriagu, 1996).
Since 1850, emissions have increased 10-fold, peaking at
3.4 Mt Zn yr−1 in the early 1980s, and then declining to 2.7
Mt Zn yr−1 by the early 1990s (Nriagu, 1996). Arctic tropo-
sphere Zn concentrations (c. 2 ng Zn m−3 in winter months)
are yet to reflect this decline (Gong & Barrie, 2005). The ratio
of Zn emissions arising from anthropogenic and natural inputs
is estimated to be > 20 : 1 (Friedland, 1990). Other anthro-
pogenic inputs of Zn to soils include fossil fuel combustion,
mine waste, phosphatic fertilizers (typically 50–1450 µg Zn
g−1), limestone (10–450 µg Zn g−1), manure (15–250 µg Zn
g−1), sewage sludge (91–49 000 µg Zn g−1), other agrochemicals,
particles from galvanized (Zn-plated) surfaces and rubber
mulches (Chaney, 1993; Alloway, 1995). Crop Zn toxicity
can occur in Zn-contaminated soils (discussed in Section VI.1).

2. Zinc behaviour in soils

Soil Zn occurs in three primary fractions: (i) water-soluble Zn
(including Zn2+ and soluble organic fractions); (ii) adsorbed
and exchangeable Zn in the colloidal fraction (associated with
clay particles, humic compounds and Al and Fe hydroxides);
and (iii) insoluble Zn complexes and minerals (reviewed by
Lindsay, 1979; Barrow, 1993; Alloway, 1995; Barber, 1995).
The distribution of Zn between soil fractions is determined
by soil-specific precipitation, complexation and adsorption
reactions. The dominant factor determining soil Zn distribution
is pH; Zn is more readily adsorbed on cation exchange sites at
higher pH and adsorbed Zn is more readily displaced by
CaCl2 at lower pH. Thus, soluble Zn and the ratio of Zn2+ to

http://www.sanger.ac.uk/Software/Pfam/
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Table 1 Gene Ontology molecular function (GO:3674) assigned to 2367 Zn-related genes in Arabidopsis thaliana, identified through annotation-, domain- and literature-based searches using 
GeneSpring GX (Agilent Technologies, Inc., Palo Alto, CA, USA) (primary data in Supplementary material, Table S4)

Gene Ontology: 
molecular function 
(GO:3674) subcategories Example gene families

Number of genes 
with potential role 
in Zn homeostasis Selected references

Binding (GO:5488) Zinc finger proteins 1503 Berg & Shi (1996), Klug (1999), Auld (2001)
Squamosa promoter binding proteins Yamasaki et al. (2004)
Metallothioneins Blindauer & Sadler (2005), Roosens et al. (2005), 

Zimeri et al. (2005) 
Eulgem et al. (2000)WRKY family transcription factors

Catalytic activity (GO:3824) Alcohol dehydrogenases 634 Chase (1999), Kim et al. (2004)
Carbonic anhydrases Moroney et al. (2001), Tiwari et al. (2005)
Superoxide dismutases Mittler et al. (2004)
Glutathione transferases Edwards & Dixon (2005)
Metallo β-lactamases Auld (2001)
Purple acid phosphatases Olczak et al. (2003)
Mitogen-activated protein kinases (MAPK) Morris (2001)
SET-domain transcriptional regulators Cheng et al. (2005)
PIB-ATPases Williams & Mills (2005)

Transcription regulator 
activity (GO:30528) 

Zinc finger proteins (e.g. CCHC, CONSTANS B-Box, 
Cys2/His2, Dof, GATA)

379 Clay & Nelson (2005), Robson et al. (2001), 
Reyes et al. (2004), Sakamoto et al. (2004), 
Yanagisawa (2004)

Squamosa promoter binding proteins Yamasaki et al. (2004)
WRKY family transcription factors Ülker & Somssich (2004), Zhang & Wang (2005)

Transporter activity (GO:5215) ABC transporters 254 Hall & Williams (2003), Hantke (2005)
PIB-ATPases Williams & Mills (2005)
Divalent cation transporters from several families 
(e.g. cation diffusion facilitators, CDFs, Zn-Fe permeases, ZIPs)

Colangelo & Guerinot (2006), 
Mäser et al. (2001)

Nonspecific cation channels White et al. (2002a)
Molecular function unknown (GO:5554) 241
Signal transducer activity (GO:4871) Mitogen-activated protein kinases (MAPK) 26 Morris (2001)
Structural molecule activity (GO:5198) 40S ribosomal protein S27 12 McIntosh & Bonham-Smith (2006)
Translation regulator activity (GO:45182) Translation initiation factors 10 Browning (2004)
Enzyme regulator activity (GO:30234) GTPase activator proteins of Rab-related 

small GTPases-like protein
7 Saito et al. (2002)
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organic Zn-ligand complexes increase at low pH, especially
in soils of low soluble organic matter content. Soil type, soil
moisture, mineral and clay types and contents, diffusion and
mass flow rates, weathering rates, soil organic matter, soil biota
and plant uptake will also affect Zn distribution. Insoluble Zn
comprises > 90% of soil Zn and is unavailable for plant
uptake. Exchangeable Zn typically ranges from 0.1 to 2 µg Zn
g−1. Concentrations of water-soluble Zn in the bulk soil
solution ([Zn]bss) are low, typically between 4 × 10−10 and
4 × 10−6 M (Barber, 1995), even in Zn-contaminated soils
(Knight et al., 1997). Numerous Zn-ligand complexes can
exist in solution which can be difficult to measure directly, and
speciation models, based on total dissolved concentrations of
elements and ligands, their stability constants and mineral
equilibria reactions, are often used to infer [Zn2+]bss (Barak
& Helmke, 1993; Zhang & Young, 2006). Zn2+ typically
accounts for up to 50% of the soluble Zn fraction and is the
dominant plant-available Zn fraction. However, in calcareous
soils, Zn2+ may be as low as 10−11−10−9 M and can limit crop
growth (Hacisalihoglu & Kochian, 2003; discussed in Section
V.1).

Soil Zn fractions in the solid phase can be quantified using
sequential extractions or isotopic dilution techniques (Young
et al., 2006). For example, Zn extracted by H2O (‘water-
soluble’), KNO3 (‘exchangeable’), Na4P2O7 (‘organically
bound’), EDTA (‘carbonate/noncrystalline iron occluded’),
NH2OH (‘manganese oxide occluded’), Na2S2O4 (‘crystalline
iron oxide occluded’), HNO3 (‘sulphides’), HNO3 + H2O2
(‘residual’) represented 0.2, 10.0, 32.5, 7.9, 7.2, 7.5, 3.3 and
32.3% of total soil Zn, respectively, in a mineral soil from
Indiana, in the USA (Miller & McFee, 1983). Despite recent
methodological advances in measuring metal species in the
soil solution (Zhang & Young, 2006), Zn availability at the
soil–root interface ([Zn]ext) can still be difficult to determine
satisfactorily, especially if Zn uptake by roots is high and Zn-
depletion zones develop around the root. Thus, modelling
approaches to determine soil and plant effects on Zn dynamics
have been developed (Barber & Claassen, 1977; Bar-Yosef et al.,
1980; Barber, 1995; Whiting et al., 2003; Qian et al., 2005;
Lehto et al., 2006). For example, Whiting et al. (2003) adapted
a transport model of Baldwin et al. (1973) to calculate [Zn]ext,
using empirically derived soil parameters (Barber, 1995) and
empirically derived or inferred plant parameters. The para-
meters were [Zn]bss (concentration of Zn in the bulk soil solu-
tion), D (the effective diffusion coefficient of Zn in the soil
solution), b (the Zn-buffering power of the soil), x (the radius
of the soil cylinder that can be exploited by the root), α (the
root absorption power of plant for Zn), õ (the water flux from
the soil to the root surface) and a (the root radius). Values for
[Zn]bss vary widely, as described previously, typically in the
range 1 × 10−8 to 1 × 10−6 M. Values of D also vary widely,
increasing at high [Zn]soil, high soil bulk density (air-filled
pores increase diffusion resistance), high soil water content
and low pH, typically within the range 10−10−10−8 cm2 s−1 for

Zn (Barber, 1995). Values of b represent the distribution of
Zn between the solution and the solid phases and are esti-
mated from empirically derived Zn adsorption isotherms
(Barber, 1995). Values of b are highest at low [Zn]bss, and thus
at high cation exchange capacity (CEC) and pH. Values of b
typically range from 2.4 to 571 (Barber, 1995), and for verti-
sols from 217 to 790 (Dang et al., 1994). Paramaters õ and α
represent plant-specific transpiration and Zn uptake rates and
root morphology. For plants of the same size and with the
same root Zn and water-absorbing power, the primary drivers
of [Zn]ext are [Zn]bss and b (Whiting et al., 2003). At high b
(> 200), [Zn]ext is proportional to, or approximates, [Zn]bss,
that is, plant-available Zn is determined by the capacity of the
soil to replenish the soluble Zn fraction as it is removed by the
plant. However, when b < 200, [Zn]ext is << [Zn]bss, and espe-
cially so when b < 50.

Modelling [Zn]ext requires assumptions to minimize com-
plexity and to compensate for a lack of adequate input data.
For example, Whiting et al. (2003) assumed that: (i) [Zn]ext
was in steady state with roots nonrandomly dispersed at
constant density in a finite volume of soil; (ii) only radial
transport of Zn occurred; (iii) all Zn in the soil solution was
available for uptake; and (iv) no compounds mobilizing Zn
from the solid phase were secreted from roots, mycorrhiza or
other soil-dwelling organisms. However, models to predict
[Zn]ext are continually being improved for both soil (Lehto
et al., 2006) and plant (Qian et al., 2005) parameters, and are
likely to become invaluable in improving our understanding
of whole-plant physiological processes, optimizing crop Zn
nutrition through the application of fertilizers and soil amend-
ments, and improving risk assessments for metal-contaminated
environments.

3. Zinc fluxes into plants

Zinc is acquired from the soil solution primarily as Zn2+,
but also potentially complexed with organic ligands, by roots
which feed the shoots via the xylem. The relationship between
Zn influx (and uptake or accumulation) to excised roots and
intact plants, V, and [Zn]ext is often characterized by the sum
of one or more Michaelis–Menten functions, each defined
by a Vmax (the rate at [Zn]ext = ∞) and an affinity constant,
Km ([Zn]ext when V = 0.5Vmax), plus a linear term, k (V/
[Zn]ext). Most detailed kinetic studies report a Michaelis–
Menten function with a Km of 1.5–50 µm (with Vmax values
of up to 5.74 µmol g−1 FW h−1), and, occasionally, additional
Michaelis–Menten functions with higher Km values (Table 2).
These Km values are generally higher than [Zn2+]bss (10−11−
10−6 M; see Section IV.2). Two studies have reported Michaelis–
Menten functions for wheat plants with Km values of 0.6–
2.3 nM for Zn2+ uptake (Wheal & Rengel, 1997; Hacisalihoglu
et al., 2001). Whilst Km and Vmax do not differ greatly between
Zn-efficient and Zn-inefficient wheat varieties, suggesting
that the kinetics of Zn influx per se do not play a significant
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Table 2 Published Michaelis–Menten functions, describing the relationship between zinc influx (and uptake or accumulation) and excised roots and intact plants, V, according to the terms Vmax 
(V, when [Zn]ext = ∞), Km ([Zn]ext, when V = 0.5Vmax), and a linear term k (V/[Zn]ext) 

Reference
[Zn]ext 
(µM)

Function 1 Function 2 Function 3

k Notesb
Km 
(µM)

Vmax
a 

(nmol g−1 h−1) Km (µM)
Vmax

a 
(nmol g−1 h−1)

Km 
(µM)

Vmax
a 

(nmol g−1 h−1)

Schmid et al. (1965) 0.5–10 21.6 714 FW No No No No No
Excised barley roots, [A], [C], 
[F], inhibition by 10 µM Cu

Chaudhry & Loneragan (1972a) 0.5–10 3.1 275 FW No No No No No Wheat seedlings, [A], [D], [F], 
noncompetitive inhibition by 
250 µM Mg, Ba, Sr, Ca

Chaudhry & Loneragan (1972b) 0.05–5 1.0 6.31 FW No No No No No Wheat seedlings, [A], [D], [F] 
Chaudhry & Loneragan (1972c) 0.5–10 36 50.8 FW No No No No No Wheat seedlings, [A], pH 4, [D], 

[F], competitive inhibition 
by 1 µM Cu

Bowen (1973) 8–500 a) 18
b) 103

4000 DW 
18 300 DW

No No No No No Excised sugarcane roots of 
(i) Zn-efficient [H53-263] and 
(ii) Zn-inefficient [H57-5174] 
clones, [A], [D], [F]

Brar & Sekhon (1976) 0.5–2 5.3 4154 DW No No No No No Wheat plants, [A], [D], [F], 
competitive inhibition by 
5 µM Cu

Hassan & van Hai (1976) 0.01–500 (a) 1.6 ± 1.0 (a) 210 DW (a) 83 ± 24 (a) 3880 DW (a) 120 ± 30 (a) 7810 DW No (a) Excised roots and (b) intact
(b) 3.9 ± 3.2 (b) 100 DW (b) 53 ± 18 (b) 1790 DW (b) 150 ± 60 (b) 7220 DW plants of sour orange, [B], [C], [G]

Veltrup (1978) 1.5–1380 3.18 ± 1.8 530 DW 151 ± 43.8 10.6 DW 490 ± 200 18.2 DW No Barley plants, [B], [D], rinse, 
[G], unaffected by 16 µM Cu

Bowen (1981) 20–250 16 5710 DW 42 20 400 DW No No No Excised barley roots, 
[A], [C], [F], [G]

Homma & Hirata (1984) 0.089–8.9 0.37 28.7 FW 5.4 194.1 FW No No No Rice seedlings, [A], [D], [F]
Bowen (1986) 10–500 (a) 6 (a) 2900 FW No No No No No Excised root apices of (a) 

Zn-efficient [M101] and 
(b) Zn-inefficient [IR26] 
rice varieties, [A], [D], [F]

(b) 13 (b) 5740 FW

Mullins & Sommers (1986) 0–10 1.5–2.2 2.9–4.0 FWc No No No No No Maize plants, [B], [E]
Bowen (1987) 10–500 (a) 50 (a) 7220 No No No No No Excised root apices of 

(a) Zn-efficient [Kewalo] and 
(b) Zn-inefficient [Sel 7625-2] 
tomato, [A], [C], [F], competitive 
inhibition by Cu

(b) 57 (b) 2340

Lasat et al. (1996) 0.5–100 8 270 FW No No No No [H] Thlaspi caerulescens seedlings, 
[A], [C], [F]

Lasat et al. (1996) 0.5–100 6 60 FW No No No No [H] Thlaspi arvense seedlings, 
[A], [C], [F]

Rengel & Wheal (1997) 0.03–3 (a) 0.86 ± 0.09 (a) 5.5 DW No No No No No Wheat seedlings of (a,b) Zn- 

(b) 0.76 ± 0.06 (b) 3.5 DW efficient [Excalibur] and (c,d) 
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(c) 0.92 ± 0.14 (c) 3.7 DW Zn-inefficient [Gatcher]
(d) 0.88 ± 0.07 (d) 2.3 DW varieties, grown in (a,c) 

Zn-deficient or (b,d) 
Zn-replete solutions, [B], [E]

Rengel & Wheal (1997) 0.03–3 (a) 0.95 ± 0.10
(b) 0.93 ± 0.09

(a) 2.8 DW
(b) 2.5 DW

No No No No No Triticum turgidum seedlings 
grown in (a) Zn-deficient and 
(b) Zn-replete solutions, [B], [E]

Wheal & Rengel (1997) 0.0008–0.0123 0.0025 39 FW No No No No No Wheat plants, [B], [D], [E].
Hart et al. (1998) 0–80 2.3 ± 0.4 162 FW No No No No [H] Wheat seedlings, [A], [C], [F].
Hart et al. (1998) 0–80 3.9 ± 0.5 175 FW No No No No [H] Triticum turgidum, [A], [C], [F].
Santa-Maria & Cogliatti (1998) 0.2–10 22.3 ± 4.1 11 200 DW No No No No No Wheat plants, [B], [C], [F].
Hacisalihoglu et al. (2001) 0.0001–80 (a) 0.0006 (a) 10.9 FW (a) 1.9  0.3 (a) 446 FW No No [H] Wheat seedlings of (a,b) Zn- 

(b) 0.0012 (b) 9.0 FW (b) 4.9 ± 1.7 (b) 143 FW efficient [Dagdas] and (c,d) Zn-
(c) 0.0023 (c) 30.9 FW (c) 4.1 ± 1.5 (c) 521 FW inefficient [BDME-10] varieties,
(d) 0.0007 (d) 9.7 FW (d) 3.4 ± 1.1 (d) 294 FW grown in (a,c) Zn-deficient or 

(b,d) Zn-replete solutions, 
[A], [C], [F]

Hart et al. (2002) 0.050–50 2.3 ± 0.3 171 FW No No No No [H] Wheat seedlings [A], [C], [F], 
competitive inhibition by 10 µM Cd

Hart et al. (2002) 0.050–50 3.3 ± 0.4 166 FW No No No No [H] Triticum turgidum, [A], [C], [F], 
competitive inhibition by 10 µM Cd

aVmax data expressed on a root fresh weight (FW) or root dry weight (DW) basis.
bNotes key: [A], uptake from ‘single salt’ solution containing both Zn2+ and Ca2+ [B], uptake from a complete nutrient solution; [C] influx measurement (≤ 30 min); [D], uptake measurement 
(60–120 min); [E], calculated from Zn2+ depletion in uptake solution; [F], desorbed in cationic solution following uptake; [G], abrupt transitions between ‘phases’ described by single Michaelis–
Menten functions; [H], a linear component was assumed to be cell wall binding.
cVmax data recalculated assuming a root area/FW quotient of 20 cm2 g−1.

Reference
[Zn]ext 
(µM)

Function 1 Function 2 Function 3

k Notesb
Km 
(µM)

Vmax
a 

(nmol g−1 h−1) Km (µM)
Vmax

a 
(nmol g−1 h−1)

Km 
(µM)

Vmax
a 

(nmol g−1 h−1)

Table 2 continued
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role in Zn efficiency in wheat (Hart et al., 1998, 2002;
Hacisalihoglu et al., 2001; Hacisalihoglu & Kochian, 2003),
differences in these parameters between Zn-efficient and Zn-
inefficient genotypes of sugarcane, rice and tomato have been
reported (Bowen, 1973, 1986, 1987). In general, Zn-deficient
plants have higher Vmax and comparable Km values to Zn-
replete plants (Rengel & Wheal, 1997; Hacisalihoglu et al.,
2001). Several authors have attributed a linear term, which is
not removed by washing the roots in solutions containing
excess cations, to the accumulation of Zn bound strongly
to cell walls (Lasat et al., 1996; Hart et al., 1998, 2002;
Hacisalihoglu et al., 2001). There has been some discourse
about the consequences of Zn binding to cell walls in
experiments to determine kinetic parameters for Zn influx to
roots (Reid et al., 1996). In the giant alga, Chara, cell walls
can be removed and apoplastic effects on Zn influx can be
determined directly (Reid et al., 1996). Using this technique,
Zn influx to the cytoplasm was described by the sum of a
Michaelis–Menten function with a low Km (< 0.1 µM) plus a
linear term for [Zn]ext up to 50 µM. These data suggest that
most experiments to determine the kinetic parameters of Zn
influx to roots may have overestimated Km values and distorted
the linear term.

Transport from epidermal and cortical cells to the root
xylem can occur via the cytoplasmic continuum of cells, linked
by plasmodesmata, from which Zn is pumped into the stelar
apoplast (Lasat & Kochian, 2000). This ‘symplastic’ pathway
is catalysed by plasma membrane and tonoplast transport
activity. Zinc can also be delivered extracellularly to the stelar
apoplast in regions where the Casparian band is not fully
formed (White, 2001; White et al., 2002b). Apoplastic min-
eral fluxes are dominated by the cell wall cation exchange
capacity (CEC), Casparian band formation and water flows
(Sattelmacher, 2001). Both symplastic and apoplastic fluxes
may contribute to net Zn fluxes to the shoot. If symplastic
fluxes dominate, Zn accumulation in the shoot approximates
the sum of unidirectional influx (φoc) of Zn to root cells, minus
efflux (φco) and net vacuolar Zn sequesteration (i.e. unidirec-
tional vacuolar influx, φcv, minus unidirectional vacuolar
efflux, φvc) (Lasat & Kochian, 2000; White et al., 2002b).
Thus, the maximal [Zn]shoot supported by symplastic root Zn
fluxes can be simulated for different shoot : root FW ratios,
relative growth rates (RGRs) and φoc values if one assumes steady-
state conditions (White et al., 2002b). In Thlaspi caerulescens
J. & C. Presl., which can accumulate > 30 000 µg Zn g−1 DW
(see Section VI.3), the delivery of Zn to the root xylem exclu-
sively via the symplast is kinetically challenging at high
[Zn]ext (White et al., 2002b). Substantial symplastic Zn fluxes
may occur at high [Zn]ext (White et al., 2002b). However, it
is noteworthy that the Ca2+-transporting ATPase activity
required to catalyze the export of Ca2+ alone from the symplast
into the root stelar apoplast may exceed total membrane
protein quotas in a typical dicot (White, 1998; White et al.,
2002b). Thlaspi caerulescens has substantial shoot Ca, Mg and

Zn concentrations (> 60,000 µg g−1 DW; Meerts et al., 2003;
Dechamps et al., 2005). Thlaspi caerulescens also has altered
Casparian band formation (Section VI.iii), and Cd2+ fluxes
are substantially greater at the root tips in wheat, T. caerules-
cens and T. arvense L. (i.e. in regions where the Casparian band
is not fully formed; Piñeros et al., 1998). Integrating Zn flux
analyses with models to predict [Zn]ext may ultimately enable
quantification of the relative symplastic and apoplastic root
fluxes, provided fluxes and intracellular Zn distibutions of
intact root cells can be determined accurately.

V. Zinc in plants

1. Zinc is an essential plant nutrient

The essentiality of Zn in plants was first shown in maize
(Mazé, 1915), and subsequently in barley and dwarf sunflower
(Sommer & Lipman, 1926). Early reports of severe Zn
deficiency symptoms included impaired stem elongation in
tomato (Skoog, 1940). Incipient Zn deficiency symptoms in
tomato, remedied by resupply of Zn, included reduced protein
and starch synthesis whilst sugar content was unaffected
(Hoagland, 1948). Severe Zn deficiency symptoms have since
been catalogued for many crops (Scaife & Turner, 1983;
Marschner, 1995; Sharma, 2006; Fig. 1). Severe Zn deficiency
is characterized by root apex necrosis (‘dieback’), whilst
sublethal Zn deficiency induces spatially heterogeneous or
interveinal chlorosis (‘mottle leaf ’), the development of
reddish-brown or bronze tints (‘bronzing’), and a range of
auxin deficiency-like responses such as internode shortening
(‘rosetting’), epinasty, inward curling of leaf lamina (‘goblet’
leaves) and reductions in leaf size (‘little leaf ’). In most crops,
the typical leaf Zn concentration ([Zn]leaf) required for adequate
growth approximates 15–20 mg Zn kg−1 DW (Marschner,
1995).

Zinc is the most common crop micronutrient deficiency,
particularly in high-pH soils with low [Zn]bss (Graham et al., 1992;
White & Zasoski, 1999; Cakmak, 2002, 2004; Alloway,
2004). Notably, 50% of cultivated soils in India and Turkey,
a third of cultivated soils in China, and most soils in Western
Australia are classed as Zn-deficient. Zinc deficiency in crop
production can be ameliorated through agronomy or genetic
improvement. Early agronomic successes included the treat-
ment of little leaf in peach orchards, using soil-applied FeSO4
fertilizers containing Zn impurities, and subsequently the
treatment of mottle leaf in citrus orchards, rosetting in pecan
and stunted pineapple growth using foliar sprays containing
Zn (Hoagland, 1948). More recently, substantial arable crop
responses to Zn fertilization have been reported in Australia,
India, and Central Anatolia in Turkey, where wheat grain
yields have increased by over 600% since the mid-1990s, with
a concomitant annual economic benefit of US$100 million
(Cakmak, 2004). It may also be possible to improve crop
yields on Zn-deficient soils by exploiting genotypic differences
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in Zn uptake and tissue-use efficiency that exist within crop
species (Rengel, 2001; Cakmak, 2002; Hacisalihoglu &
Kochian, 2003; Alloway, 2004). For example, in rice, Zn uptake
efficiency correlates with exudation rates of low-molecular-
weight organic anions and a substantial proportion of the
phenotypic variation in Zn uptake efficiency is under genetic
control (Hoffland et al., 2006; Wissuwa et al., 2006).

2. Evolutionary aspects of shoot Zn concentration 
among angiosperms

Previously, a meta-analysis of 70 species from 35 studies in the
literature implied that ancient evolutionary processes might
impact on [Zn]shoot in angiosperms (Broadley et al., 2001). A
much larger survey was undertaken here. Primary [Zn]shoot
data, that is, Zn concentrations reported in leaf or nonwoody
shoot tissues, were obtained from 1108 studies, contained
in 204 published papers and three unpublished datasets
(Tables S6–S9). These primary data define the largest set of
interlinked studies, in which [Zn]shoot values are reported for
more than two species in controlled experiments where each
study contains more than one species common to another
study. Thus, 365 species from 48 families and 12 key clades
were sampled. Primary [Zn]shoot data were ln-transformed
and a variance-components model was fitted to the data using
residual maximum likelihood (REML) procedures (Broadley
et al., 2001, 2003). Species, family and key clade variance
components were estimated using a random model factor of
(study + (key clade/family/species)) with no fixed model factor.
Mean data for phylogenetic groups and significance tests

(Wald tests) were conducted using (key clade/family/species)
as a fixed factor, retaining (study + (key clade/family/species))
as a random factor. All analyses were performed using GenStat
(Release 9.1.0.147; VSN International, Oxford, UK).

Study effects dominated the variance components because
of the vast range of [Zn]ext across all studies and because of dif-
ferences in the relationship between [Zn]ext and [Zn]shoot
between species (Table S9). After removing study effects, key
clade (Wald statistic = 592.15, d.f. = 10, P < 0.001) and
family within key clade (Wald statistic = 298.71, d.f. = 36,
P < 0.001), variance components accounted for 22.1% of the
variation in [Zn]shoot among angiosperm species (Table S9).
The analysis was repeated with Thlaspi and Arabidopsis genera
excluded to remove the influence of Zn ‘hyperaccumulation’
(defined in Section VI.3) from the analysis. Adjusted key
clade and family variance components accounted for 26.5%
of the variation in [Zn]shoot (Table S9). After removing the
effect of study, and with Thlaspi and Arabidopsis genera
excluded, mean relative [Zn]shoot among key clades ranged
from < 40 (Ericales) to > 100 (Caryophyllales and noncom-
melinoid monocotyledons; NB: units approximate µg Zn g−1

DW) (Table S9). Among well-replicated families, lower [Zn]shoot
occurred in Linaceae (52, n = 29), Poaceae (59, n = 1527) and
Solanaceae (66, n = 181), and higher [Zn]shoot occurred in
Amaranthaceae (108, n = 214) and Salicaceae (195, n = 45)
(Table S9). Compared with other essential elements, variation
in [Zn]shoot manifesting above the family level is less than for Ca,
K, Mg and Si (Broadley et al., 2004; Hodson et al., 2005), but
greater than for N and P (Broadley et al., 2004). Furthermore,
variation in [Zn]shoot manifesting above the family level is

Fig. 1 Zinc deficiency induced by prolonged 
flooding in rice. Typical symptoms include 
high plant mortality, stuntedness, leaf 
bronzing and a delay in flowering. 
(Photograph courtesy of Dr Matthias 
Wissuwa, Japan International Research 
Center for Agricultural Sciences, Tsukuba, 
Japan.)
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less than previously reported for [Zn]shoot among a limited
dataset of 70 species (Broadley et al., 2001). However, despite
the large study effects within this dataset, evidence of ancient
evolutionary processes influencing [Zn]shoot can still be observed
using this approach. A considerable additional sampling effort
is required to explore this phenomenon further.

After removing study effects, > 70% of the remaining
variation in [Zn]shoot occurs within-family. Thus, substantial
differences in [Zn]shoot exist between and within genera and
species. Several billion people worldwide have Zn-deficient
diets, and this within-species genetic variation is providing a
valuable genetic resource to select or breed crops with increased
Zn concentrations in their edible portions, notably in several
cereal, legume, root and leafy vegetable crops (Graham et al.,
2001; Welch & Graham, 2004; Grusak & Cakmak, 2005;
Vreugdenhil et al., 2005; White & Broadley, 2005; Ghandilyan
et al., 2006). Accelerated breeding to increase the delivery of
dietary Zn in crops may be possible following identification of
intraspecific genetic variation in Zn composition. In common
bean (Phaseolus vulgaris L.), seed Zn concentration ([Zn]seed)
is a quantitative trait which can be mapped to genetic loci
using quantitative trait loci (QTL) analyses (Ghandilyan
et al., 2006). QTLs for [Zn]seed have also been mapped in A.
thaliana (Vreugdenhil et al., 2004). Following the identifica-
tion of QTL, candidate genes or loci can be resolved through
fine mapping and map-based cloning, and this information
could be used for gene-based selection or marker-assisted
breeding strategies. An advantage of this strategy is that
knowledge of the genes and/or chromosomal loci controlling
[Zn]seed or [Zn]shoot in one plant species could be used in a
different target crop species by exploiting gene homology
and/or genome collinearity (Ghandilyan et al., 2006).

VI. Plant responses to elevated soil Zn

The response of plants to elevated [Zn]soil has generated a
substantial literature, driven by the primary questions, ‘Can
crops be grown safely and productively at elevated [Zn]soil?’,
and, ‘How and why do certain taxa thrive at elevated [Zn]soil?

1. Zn toxicity in crops

Zinc toxicity in crops is far less widespread than Zn deficiency.
However, Zn toxicity occurs in soils contaminated by mining
and smelting activities, in agricultural soils treated with
sewage sludge, and in urban and peri-urban soils enriched
by anthropogenic inputs of Zn, especially in low-pH soils
(Chaney, 1993). Toxicity symptoms usually become visible at
[Zn]leaf > 300 mg Zn kg−1 leaf DW, although some crops
show toxicity symptoms at [Zn]leaf < 100 mg Zn kg−1 DW
(Chaney, 1993; Marschner, 1995), and toxicity thresholds can
be highly variable even within the same species. For example,
[Zn]leaf associated with a 50% yield reduction in radish
ranged from 36 to 1013 mg kg−1 DW (Davies, 1993). Zn

toxicity symptoms include reduced yields and stunted
growth, Fe-deficiency-induced chlorosis through reductions
in chlorophyll synthesis and chloroplast degradation, and
interference with P (and Mg and Mn) uptake (Carroll &
Loneragan, 1968; Boawn & Rasmussen, 1971; Foy et al., 1978;
Chaney, 1993). Crops differ markedly in their susceptibility
to Zn toxicity. In acid soils, graminaceous species are generally
less sensitive to Zn toxicity than most dicots, although this is
reversed in alkaline soils (Chaney, 1993). Among dicots, leafy
vegetable crops are sensitive to Zn toxicity, especially spinach
and beet, because of their inherent high Zn uptake capacity
(Boawn & Rasmussen, 1971; Chaney, 1993). There is also
genetic variation in sensitivity to Zn toxicity within species,
including soybean (Glycine max L.; Earley, 1943; White
et al., 1979a,b,c) and rice (Oryza sativa L.), in which QTLs
impacting on sensitivity to Zn toxicity have recently been
mapped (Dong et al., 2006).

2. Plant tolerance to elevated soil Zn (hypertolerance)

Numerous species of metallophyte thrive at a [Zn]soil that is
toxic to most crop plants. Early studies on Zn hypertolerance
focused on elevated [Zn]soil at mine sites and/or near corroded
galvanized materials, such as electricity pylons (reviewed by
Antonovics et al., 1971; Baker, 1987; Ernst et al., 1990, 1992;
Macnair, 1993). Initially, Zn hypertolerance was thought to
occur most frequently in species of Poaceae, Caryophyllaceae
and Lamiaceae, although subsequent studies have shown no
phylogenetic predisposition to the evolution of Zn hypertolerance
(Baker, 1987). However, this hypothesis is difficult to test
directly. At a species level, elegant theoretical and experimental
frameworks have been developed to characterize the genetics
of Zn hypertolerance (Macnair, 1990, 1993). Briefly, Zn
hypertolerance tends to manifest as a dominant phenotype
and spread rapidly in a population. However, dominance is
not a fixed property of a gene but a measure of the phenotypic
deviation of the heterozygote from the mean of the two
homozygotes. Thus, G × E interactions will affect whether a
gene confers a dominant or recessive phenotype under any
particular condition, rendering the study of Zn tolerance
nontrivial (Macnair, 1990, 1993). Nevertheless, Zn hyper-
tolerance is likely to be under the control of a small number of
major genes, as in Silene vulgaris (Moench) Garcke (Schat et al.,
1996) and Arabidopsis halleri (L.) O’Kane & Al-Shehbaz (Macnair
et al., 1999). In addition to dominance (i.e. interallelic/intragenic)
effects, epistatic (i.e. intergenic) interactions have an impact
on Zn hypertolerance, although these effects are more difficult
to quantify (Macnair, 1993). Zinc-hypertolerant plants show
fitness costs at low [Zn]soil, for example, suboptimal carbonic
anyhdrase and nitrate reductase activity occurs in S. vulgaris
(Ernst et al., 1992). In Silene dioica (L.) Clairv., pollen selec-
tion may accelerate reproductive isolation between adjacent
populations which differ in Zn tolerance (Searcy & Mulcahy,
1985a,b,c).
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At a whole-plant scale, natural Zn hypertolerance is
thought to be conferred by Zn exclusion or by compartmen-
talization, for example, through mycorrhizal symbioses, altered
root-to-shoot translocation or accumulation in older leaves
(Baker, 1981; Ernst et al., 1992; Hall, 2002). Key subcellular
processes enabling Zn hypertolerance are likely to be increased
organic acid production and vacuolar compartmentalization,
including increased Zn efflux across the plasma membrane
(Ernst et al., 1992; Verkleij et al., 1998; Chardonnens et al.,
1999; Clemens, 2001; Hall, 2002). Early hypotheses that cell-
wall Zn binding, reduced membrane leakage or increased
phytochelatin production increased Zn tolerance have not
been supported by subsequent studies (Ernst et al., 1992;
Harmens et al., 1993; Clemens, 2001; Schat et al., 2002).

In general, Zn hypertolerance does not segregate with other
metal tolerance phenotypes, although Cd, Co, Cu, Cd, Ni
and/or Pb cotolerance can occur (Gregory & Bradshaw, 1965;
Wu & Antonovics, 1975; Cox & Hutchinson, 1980; Symeonidis
et al., 1985; Macnair, 1990, 1993; Brown & Brinkmann, 1992;
Schat & Vooijs, 1997). Cotolerance can be either pleiotropic
(i.e. strict cotolerance) or the result of multiple hypertolerance
mechanisms. Multiple hypertolerances arise through non-
random association of favourable alleles at two or more loci
(i.e. linkage disequilibrium), potentially in response to the co-
occurrence of several metals in soils, gene flow from adjacent sites
or seed transport between different metalliferous sites (Macnair,
1993; Schat & Vooijs, 1997). For example, Zn/Co/Ni co-
tolerance phenotypes cosegregated in Silene vulgaris, implying
a pleiotropic effect, whilst Zn/Cd/Cu cotolerance phenotypes
segregated independently, implying multiple mechanisms
(Schat & Vooijs, 1997). Zinc/Cu cotolerance phenotypes also
segregated independently in populations of Agrostis stolonifera
L. (Wu & Antonovics, 1975) and Mimulus guttatus DC.
(Macnair, 1990). Zinc-hypertolerant cultivars of grass species
have been successfully bred and used to revegetate soils
contaminated with Zn, Pb and other heavy metals, following
mining activities, including Festuca rubra L. cv. Merlin and
Agrostis capillaris L. cv. Groginan for calcareous and acid wastes,
respectively (Smith & Bradshaw, 1979; Whiting et al., 2005).

3. Zinc hyperaccumulation

The ability of some Zn-hypertolerant metallophytes to
accumulate exceptional concentrations of Zn in their aerial
parts was probably first reported among ‘galmei’ (calamine)
flora of the Aachen region on the border of Belgium and
Germany, where the presence of > 1% Zn in the plant ash of
Viola calaminaria (Ging.) Lej. was recorded in 1855 (Reeves
& Baker, 2000). A [Zn]shoot > 1% DW in Thlaspi alpestre L.
(= T. caerulescens) was reported shortly thereafter in 1865
(Reeves & Baker, 2000). Zinc hyperaccumulation has since
been defined as the occurance of > 10 000 µg Zn g−1 DW in
the aerial parts of a plant species when growing in its natural
environment (Baker & Brooks, 1989). These species (Table 3)

have come to dominate the literature, in part because of the
desire to transfer the character into crop species for use in
phytoremediation, phytomining and biofortification (Chaney,
1983; Baker & Brooks, 1989; Brooks, 1998; Salt et al., 1998;
Guerinot & Salt, 2001; Macnair, 2003; Krämer, 2005a).
Typically, 10–20 species are reported to be Zn hyperaccumulators,
with a smaller number of these able to accumulate Cd to very
high concentrations as well. This raises the intriguing
question: how often has the Zn hyperaccumulation character
evolved? The answer is uncertain because: (i) 3000 µg Zn g−1

DW might be a more suitable evolutionary definition of
extreme [Zn]shoot based on the frequency distribution of
values observed within the genus Thlaspi s.l., which contains
most Zn hyperaccumulators (Reeves & Brooks, 1983; Reeves
& Baker, 2000); (ii) records for several nonbrassicaceous Zn
hyperaccumulators are uncertain (Macnair, 2003; R. D. Reeves,
pers. comm.) (NB: plant samples collected from metal-rich
substrates can easily become contaminated by soil particles);
and (iii) taxonomic uncertainties and the use of synonyms can
affect the identification of field and herbarium samples.

The genus Thlaspi L. s.l. is likely to be polyphyletic and its
taxonomy is controversial. Seed-coat anatomical and sequence
data have thus been used to split the genus into several alter-
native genera, including Thlaspi s.s., Vania and a clade con-
taining Thlaspiceras, Noccaea, Raparia, Microthlaspi and
Neurotropis (Meyer, 1973, 1979; Mummenhoff & Koch, 1994;
Mummenhoff et al., 1997; Koch & Mummenhoff, 2001;
Koch & Al-Shehbaz, 2004). High [Zn]shoot is probably a gen-
eral feature of Noccaea and its sister clade Raparia (Macnair,
2003; Taylor, 2004), but not of Thlaspiceras, which neverthe-
less contains Zn-hypertolerant species (e.g. Thlaspiceras oxyceras
(Boiss.) F. K. Mey; Peer et al., 2003), nor of the more distantly
related nonZn-hypertolerant Microthlaspi and Neurotropis
clades. Thus, the high [Zn]shoot character most likely evolved
at the base of the Noccaea/Raparia clade, or less likely at the
base of the Noccaea/Raparia/Thlaspiceras clade with a sub-
sequent reversion to the low [Zn]shoot character in Thlaspiceras
(Macnair, 2003; Taylor, 2004). Intriguingly, since Ni hyper-
accumulation also evolved at the base of the Noccaea/Raparia/
Thlaspiceras clade, high [Zn]shoot may be a modification of
the Ni hyperaccumulation character (Taylor, 2004). Nickel
hyperaccumulation is more common than Zn hyperaccumu-
lation among angiosperms (> 300 species, in c. 34 families),
although > 80% of temperate Ni hyperaccumulators are
Brassicaceae species (Reeves & Baker, 2000; Borhidi, 2001).
The only other Brassicaceae species with an unequivocally
high [Zn]shoot character is Arabidopsis halleri. Thus, Zn hyper-
accumulation has probably only arisen during two relatively
recent evolutionary events within the Brassicaceae, and possibly
on very few isolated occasions elsewhere in the angiosperms.
The following sections focus primarily on Thlaspi caerulescens.

Genetics of Zn hyperaccumulation Thlaspi caerulescens is a
short-lived, self-compatible biennial/perennial species which
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Table 3 Plant species whose [Zn]shoot has been observed to exceeds 0.3% DW (unless stated) when grown under natural conditions
 

Speciesa Potential synonymsa Family (Order) Locality

Maximum 
[Zn]shoot 
(% DW) 
observed). References and Comments

Acer pseudoplatanus L. – Sapindaceae 
(Sapindales)

UK 0.35 Johnston & Proctor (1977)

Arenaria patula Michx. Minuartia patula (Michx.) Mattf. Caryophyllaceae
(Caryophyllales)

USA 1.31 Brooks (1998). Uncertain record 
(Macnair, 2003; R. D. Reeves, 
pers. comm.)

Arabidopsis arenosa (L.) 
Lawalrée

Cardaminopsis arenosa (L.) Hayek Brassicaceae 
(Brassicales)

France 0.52 Reeves et al. (2001)

Arabidopsis halleri (L.) 
O’Kane & Al-Shehbaz

Arabis gemmifera Makino, Cardaminopsis halleri (L.) Hayek, C. ovirensis 
(Wulf.) O. Schwarz

Brassicaceae France 2.07 R. D. Reeves, pers. comm.

Arabidopsis thaliana (L.) 
Heynh.

Arabis thaliana L., Sisymbrium thalianum (L.) J. Gay & Monnard, 
Stenophragma thalianum (L.) #elak.

Brassicaceae USA 2.67 Reeves (1988)

Biscutella laevigata L. Biscutella alsatica Jord., B. austriaca Jord., B. longifolia Vill., B. lucida Balb. 
ex DC., B. sempervirens L., B. varia Dumort., B. variegata Boiss. & Reut., 
B. vincentina (Samp.) Rothm. ex Guinea

Brassicaceae France 0.41 R. D. Reeves, pers. comm.

Cochlearia pyrenaica DC. Cochlearia officinalis L. subsp. pyrenaica (DC.) Rouy & Foucaud Brassicaceae UK 0.53 Reeves (1988)
Dianthus sp. – Caryophyllaceae France 0.49 R. D. Reeves, pers. comm.
Dichapetalum gelonioides 

(Roxb.) Engl.
Chailletia gelonioides (Roxb.) J. D. Hook., Dichapetalum howii Merrill & 
Chun., Moacurra gelonioides Roxb.

Dichapetalaceae 
(Malpighiales)

Indonesia, 
Malaysia, 
Philippines

3.00 Reeves & Baker (2000)

Galium mollugo L. Galium album Mill., G. cinereum All., G. corrudifolium Vill., G. elatum Thuill., 
G. insubricum Gaudin, G. kerneranum Klokov, G. lucidum All., G. neglectum 
Le Gall ex Gren., G. tyrolense Willd.

Rubiaceae 
(Gentianales)

France 0.30 Reeves et al. (2001)

Gomphrena canescens R. Br. – Amaranthaceae 
(Caryophyllales)

Australia 0.90 Nicolls et al. (1965)

Haumaniastrum katangense 
(S. Moore) Duvign. & 
Plancke.

– Lamiaceae 
(Lamiales)

D. R. of the 
Congo

1.98 Brooks (1998). Uncertain 
record (Paton & Brooks, 1996; 
Macnair, 2003)

Minuartia verna (L.) Hiern Alsine verna (L.) Wahlenb., Arenaria verna L., Minuartia caespitosa (Ehrh.) 
Degen

Caryophyllaceae Yugoslavia 1.14 Various studies cited in Reeves 
& Baker (2000)

Noccaea boeotica F. K. Mey. – Brassicaceae Greece 0.31 R. D. Reeves, pers. comm.
Noccaea eburneosa F. K. Mey. Noccaea salisii (Brugger) F. K. Mey, Thlaspi salisii Brugger Brassicaceae Switzerland 1.05 Reeves & Brooks (1983), 

taxonomic status uncertain 
(R. D. Reeves, pers. comm.)

Polycarpaea synandra F. 
Muell.

– Caryophyllaceae Australia 0.70 Reeves & Baker (2000)

Rumex acetosa L. – Polygonaceae 
(Caryophyllales)

UK 1.10 Johnston & Proctor (1977)

Rumex acetosella L. Acetosella vulgaris Fourr., Rumex acetoselloides Balansa, R. angiocarpus 
Murb., R. fascilobus Klokov, R. multifidus L., R. pyrenaicus Pourr. ex Lapeyr., 
R. salicifolius auct., R. tenuifolius (Wallr.) Á. Löve 

Polygonaceae France 0.31 Reeves et al. (2001)
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Sedum alfredii Hance – Crassulaceae 
(Saxifragales)

China 0.50 Yang et al. (2002)

Silene vulgaris (Moench) 
Garcke

Silene angustifolia Mill., S. campanulata Saut., S. cucubalus Wibel, S. inflata 
Sm., S. latifolia (Mill.) Britten & Rendle, non Poir., S. tenoreana Colla, 
S. venosa Asch., S. vulgaris (Moench) Garck

Caryophyllaceae USA 0.47 Brooks (1998)

Thlaspi apterum Velen. Noccaea aptera (Velen.) F. K. Mey. Brassicaceae Bulgaria 0.31 Reeves & Brooks (1983). 
Uncertain record (R. D. Reeves, 
pers. comm.)

Thlaspi alpinum Crantz Noccaea alpestris (Jacq.) Kerguélen, N. sylvia (Gaudin) F. K. Mey., T. sylvium 
Gaudin

Brassicaceae France 0.54 Reeves et al. (2001)

Thlaspi brachypetalum Jord. Noccaea brachypetala (Jord.) F. K. Mey. Brassicaceae France 1.53 Reeves & Brooks (1983)
Thlaspi brevistylum (DC.) 

Mutel.
Noccaea brevistyla Steud. Brassicaceae Corsica 0.31 Taylor (2004)

Thlaspi bulbosum Spruner ex 
Boiss.

Raparia bulbosa (Boiss.) F. K. Mey. Brassicaceae Greece 1.05 Brooks (1998)

Thlaspi caerulescens J. & 
C. Presl.

Noccaea arenaria (J. E. Duby) F. K. Mey., N. caerulescens (J. & C. Presl) 
F. K. Mey., N. occitanica (Jord.) F. K. Mey., Thlaspi alpestre L., T. arenarium 
Jord., T. caerulescens subsp. caerulescens, T. caerulescens subsp. calaminare 
(Lej.) Lej. & Court, T. caerulescens subsp. occitanicum (Jord.) M. Laínz, 
T. caerulescens subsp. tatrense (Zapal.) Dvoráková, T. gaudinianum Jord., T. 
huteri A. Kern., T. mureti Gremli, T. occitanicum Jord., T. pratulorum Gand., 
T. rhaeticum Jord., T. salisii Brugger, T. suecicum Jord., T. sylvestre Jord., T. 
tatrense Zapal., T. virgatum Gren. & Godr., T. villarsianum Jord., T. 
vogesiacum Jord., T. vulcanorum Lamotte

Brassicaceae W. and 
C. Europe

4.37 Various studies (Reeves & Baker, 
2000). Also a Cd 
hyperaccumulator

Thlaspi cepaeifolium (Wulfen) 
W. D. J. Koch

Noccaea cepaeifolia (Wulfen) Rchb., N. limosellifolia (Burnat) F. K. Mey., 
N. rotundifolia (L.) Moench, Thlaspi cepaeifolium subsp. rotundifolium (L.) 
Greuter & Burdet, T. limosellifolium Reut. ex Rouy & Fouc., T. rotundifolium 
(L.) Gaudin subsp. cepaeifolium (Wulfen) Rouy & Fouc.

Brassicaceae Italy 2.10 Various studies (Reeves & Baker, 
2000)

Thlaspi epirotum Hal. Noccaea epirota (Hal.) F. K. Mey. Brassicaceae Greece <0.30 Reeves & Brooks (1983)
Thlaspi goesingense Hal. Noccaea goesingensis (Hal.) F. K. Mey., Thlaspi tymphaeum Hausskn., 

T. umbrosum Waisb.
Brassicaceae Austria 0.38 Reeves & Baker (1984)

Thlaspi graecum Jord. Noccaea graeca (Jord.) F. K. Mey., Thlaspi taygeteum Boiss. Brassicaceae Greece <0.30 Reeves & Brooks (1983)
Thlaspi kovatsii Heuff. Noccaea kovatsii (Heuffel) F. K. Mey., Thlaspi affine Schott & Kotschy, 

T. avalanum Panç., T. jankae Kern., T. trojagense Zapal.
Brassicaceae Bulgaria 0.49 Reeves & Brooks (1983)

Thlaspi magellanicum Pers. Noccaea magellanica (Pers.) J. Holub Brassicaceae Argentina 0.39 Reeves (1988)
Thlaspi montanum L. Noccaea alpestris (Jacq.) Kerguélen subsp. sylvium (Gaudin), N. montana (L.) 

F. K. Mey., Thlaspi lotharingum Jord.
Brassicaceae USA 0.43 Hobbs & Streit (1986)

Speciesa Potential synonymsa Family (Order) Locality

Maximum 
[Zn]shoot 
(% DW) 
observed). References and Comments

Table 3 continued
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Thlaspi ochroleucum Boiss. & 
Heldr.

Noccaea lutescens (Velen.) F. K. Mey., N. ochroleuca (Boiss. & Heldr.) F. K. 
Mey., N. phrygia (Bornm.) F. K. Mey., N. rhodopensis F. K. Mey., N. versicolor 
(Stoj. & Kitanov) F. K. Mey., Thlaspi balcanicum Janka, T. heterochroum 
Boiss., T. lutescens Velen., T. phrygium Bornm.

Brassicaceae Turkey 0.63 Reeves & Brooks (1983), 
Reeves (1988)

Thlaspi parviflorum A. Nels. Noccaea parviflora (A. Nels.) Holub Brassicaceae USA 0.31 Reeves et al. (1983)
Thlaspi pindicum Hausskn. Noccaea pindica (Hausskn.) J. Holub, N. tymphaea (Hausskn.) F. K. Mey., 

Thlaspi tymphaeum Hausskn.
Brassicaceae Greece <0.10 Taylor & Macnair, 2006. Note, 

plants collected from serpentine 
soils with low [Zn]soil. [Zn]shoot 
>1.00% DW observed under 
laboratory conditions.

Thlaspi praecox Wulf. Noccaea praecox (Wulf.) F. K. Mey, Thlaspi affine Schott & Kotschy ex Bioss. Brassicaceae Bulgaria 2.10 Brooks (1998). Cd 
hyperaccumulator (Vogel-
Mikus et al., 2005)

Thlaspi stenopterum Boiss. & 
Reut.

Noccaea stenoptera (Boiss. & Reut.) F. K. Mey. Brassicaceae Spain 1.60 Brooks (1998)

Thlaspi viridisepalum (Podp.) 
Greuter & Burdet

Noccaea viridisepala (Podp.) F. K. Mey. Brassicaceae Bulgaria 0.63 Reeves & Brooks (1983)

Viola calaminaria (Gingins) 
Lej.

Viola tricolor L. Violaceae 
(Malpighiales)

Germany 1.00 Brooks (1998). Note, uncertain 
record (Macnair, 2003; 
R. D. Reeves, pers. comm.)

aNomenclature and potential synonyms compiled from (i) original data sources, (ii) Flora Euopaea (digital online edition; http://rbg-web2.rbge.org.uk/FE/fe.html), (iii) http://
www.diversityoflife.org/, (iv) USDA, ARS, National Genetic Resources Program.Germplasm Resources Information Network - (GRIN) [Online Database]. National Germplasm Resources 
Laboratory, Beltsville, Maryland, http://www.ars-grin.gov/cgi-bin/npgs/html/taxgenform.pl, (v) Muséum national d’Histoire naturelle [Ed]. 2003-2006 . Inventaire national du Patrimoine 
naturel, http://inpn.mnhn.fr., (vi) CWRIS PGR Forum Crop Wild Relative Information System, http://www.pgrforum.org/cwris/cwris.asp?fact=426656.

Speciesa Potential synonymsa Family (Order) Locality

Maximum 
[Zn]shoot 
(% DW) 
observed). References and Comments

Table 3 continued
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hyperaccumulates Zn/Cd/Ni. It occurs on calamine, serpentine
(derived from ultramafic Mg and Fe-rich rocks, also enriched
with Co, Cr and Ni), and nonmineral soils, with a wide
distribution in central, northern and western Europe (Reeves
& Brooks, 1983; Baker & Brooks, 1989; Reeves et al., 2001).
It is functionally nonmycorrhizal (Regvar et al., 2003). In T.
caerulescens, Zn hyperaccumulation and hypertolerance are
constitutive species-level traits although inter- and intra-
population variations in [Zn]shoot and/or Zn tolerance occur
(Mathys, 1977; Ingrouille & Smirnoff, 1986; Baker et al.,
1994; Lloyd-Thomas, 1995; Pollard & Baker, 1996; Meerts
& Van Isacker, 1997; Escarré et al., 2000; Reeves et al., 2001;
Pollard et al., 2002; Assunção et al., 2003a,b, 2006; Frérot
et al., 2003, 2005; Macnair, 2003; Roosens et al., 2003; Zha
et al., 2004; Molitor et al., 2005). Populations from soils with
high-[Zn]soil are frequently described as ‘metallicolous’ with
an explicit adaptive connotation. Notably, outcrossing rates of
c. 5.25% have been reported (Riley, 1956), although rates are
population-specific and allozyme variation and pollen : ovule
ratios indicate that low-[Zn]soil populations are more self-fertile
than high-[Zn]soil populations (Koch et al., 1998; Dubois
et al., 2003). Conversley, in nonhyperaccumulator species,
metal-hypertolerant populations are more self-fertile than
nontolerant populations (Antonovics, 1968, 1972; Ducousso
et al., 1990).

When T. caerulescens are grown under identical experimen-
tal conditions, Zn tolerance is generally greater, and [Zn]shoot
is lower in high-[Zn]soil populations than in low-[Zn]soil popu-
lations. For example, [Zn]shoot was higher in field-sampled
high-[Zn]soil populations than in low-[Zn]soil populations
from the UK, but half-sib families of high-[Zn]soil popu-
lations had lower [Zn]shoot than low-[Zn]soil populations when
grown subsequently in hydroponics (Pollard & Baker, 1996).
Among a wider sample of European populations, [Zn]shoot,
but not [Zn]xylem (ranges 63–93 and 610–700 µM at 10 and
100 µM [Zn]ext, respectively), varied similarly (Roosens et al.,
2003). In soil-based experimental studies lasting up to 1 yr,
Zn tolerance was lower and [Zn]shoot higher in low-[Zn]soil
populations than in high-[Zn]soil populations (Meerts & Van
Isacker, 1997; Escarré et al., 2000). Variation in [Zn]shoot
between and within half-sib families was significant, but less
than variation between populations, consistent with the self-
fertilizing character of T. caerulescens. Notably, genetic varia-
tion in [Zn]shoot can occur within a few kilometres (Molitor
et al., 2005). In A. halleri, Zn hyperaccumulation and hyper-
tolerance are also constitutive traits at the species level, although
interspecific crosses between A. halleri and A. lyrata ssp. petraea
(L.) O’Kane & Al-Shehbaz reveal that Zn hyperaccumulation
and hypertolerance are genetically independent (Macnair et al.,
1999). Again, low-[Zn]soil populations accumulate more Zn
than high-[Zn]soil populations of A. halleri under identical
experimental conditions (Bert et al., 2000, 2002).

There is a substantial G × E interaction impacting on
[Zn]shoot. For example, Assunção et al. (2003a,b, 2006) studied

low-[Zn]soil populations of T. caerulescens from a nonmetallif-
erous (Lellingen, Luxembourg (LE)) site and a serpentine
(Monte Prinzera, Italy (MP)) site, and high-[Zn]soil popula-
tions from two calamine sites (La Calamine, Belgium (LC)
and Ganges, France (GA)). In field samples, [Zn]shoot decreased
GA ≥ LC > LE > MP. In hydroponics, [Zn]shoot decreased
MP > GA > LE > LC and Zn tolerance decreased GA = LC
> MP > LE. A controlled intraspecifc cross was made from
LE and LC; Zn accumulation segregated in F3s with a contin-
uous phenotypic distribution indicative of a polygenic trait.
However, the genetic independence of Zn tolerance and accu-
mulation in T. caerulescens could not be confirmed because of
the negative correlation between the two traits. A genetic link-
age map was subsequently constructed for this population
and two QTLs were mapped for [Zn]root (on chromosomes 3
and 5), although no QTLs were identified for [Zn]shoot
(Assunção et al., 2006). However, in an F2 population
obtained from an LC × GA cross, three QTLs explained
44.5% of the phenotypic variance in [Zn]shoot, with positive
effects on [Zn]shoot arising as a result of both LC and GA alle-
les (Deniau et al., 2006). Similarly, in controlled crosses from
high- and low-[Zn]soil populations of T. caerulescens (Frérot
et al., 2003, 2005), F1 progeny with at least one parent from
a high-[Zn]soil population were more sensitive to Zn defi-
ciency, but F1 and F2 progenies were more tolerant to high
[Zn]ext and had lower [Zn]shoot than progenies from exclu-
sively low-[Zn]soil population crosses. Zha et al. (2004) also
studied [Zn]shoot in F2 progenies of a controlled cross between
a high (Ganges, southern France) and a low (Prayon, Bel-
gium) Cd accumulator. When plants were grown in a Zn-
supplemented compost, Ganges accumulated c. 50% higher
[Zn]shoot than Prayon and parental frequency distributions
overlapped. In the F2s, [Zn]shoot had a continuous distribu-
tion. There was significant transgression below the distribu-
tion of Prayon parents, but not above Ganges parents.
Conversely, in hydroponics in the presence of higher [Cd]ext,
[Zn]shoot was lower in Ganges than in Prayon, perhaps because
of a toxic effect of Cd on the growth of Prayon. Again, the F2s
showed a continuous distribution for [Zn]shoot and significant
transgression below the lower limit of Ganges parental distri-
butions, but not above Prayon (Zha et al., 2004). Intriguingly,
other studies have also shown that high [Cd]ext inhibits Zn
accumulation in Ganges, but not in Prayon, whilst high
[Zn]ext inhibits Cd accumulation in Prayon, but not in
Ganges populations (Lombi et al., 2001; Zhao et al., 2002;
Roosens et al., 2003). In two species endemic to serpentine soils
(Thlaspi pindicum Hausskn. and T. alpinum Crantz var. sylvium
Gaudin), [Zn]shoot was higher when Ni was also present in the
hydroponic solution (Taylor & Macnair, 2006).

Compartmentalization of Zn in hyperaccumulators Gener-
ally, in Zn hyperaccumulators, [Zn]shoot > [Zn]root by up to
10-fold, although this depends on [Zn]ext (Shen et al., 1997;
Zhao et al., 2000; Roosens et al., 2003). Vázquez et al. (1992,
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1994) used scanning transmission (STEM) electron microscopy/
energy-dispersive X-ray microanalysis (EDXMA) on freeze-
substituted tissues to study cellular Zn distribution in T.
caerulescens. Vacuoles of leaf epidermal and mesophyll cells,
and leaf cell walls contained 296, 80 and c. 110 µg Zn g−1

DW, respectively, in plants grown at low [Zn]ext. At high
[Zn]ext, vacuoles of leaf epidermal cells and their cell walls
contained up to 13 600 and 929 µg Zn g−1 DW, respectively.
Vacuoles of leaf mesophyll cells and their cell walls contained
up to 4610 and 333 µg Zn g−1 DW, respectively. Zinc also
accumulated in leaf subepidermal cells. In root epidermal and
subepidermal cells, the Zn concentration ratio was approx. 1
(56 µg Zn g−1 DW) : 1.7 : 3 : 3.5 (vacuole centre : vacuole
periphery : cell wall : intercellular space) at low [Zn]ext. At high
[Zn]ext, background vacuolar Zn concentration was 175 µg
Zn g−1 DW; scattered, electron-dense deposits of up to
18 300 µg Zn g−1 DW (likely to be artefacts of sample
preparation; Küpper et al., 1999; Frey et al., 2000; Ma et al.,
2005) were also reported. The Zn concentration ratio was c.
1 : 0.5 : 1 (background vacuole : cell wall : intercellular space).
Thus, root cell wall Zn concentrations were, in general, similar
at different values of [Zn]ext but vacuolar Zn concentrations
differed. Küpper et al. (1999) used direct microcapillary
sampling and scanning electron microscopy (SEM)-EDXMA
on freeze-fractured T. caerulescens leaves. Epidermal and
mesophyll cell saps contained 385 and 60 mM, respectively,
but the latter represented c. 60% of the leaf Zn content. Zinc
did not accumulate in subepidermal cells. Vacuolation promoted
Zn accumulation, that is, Zn concentrations were lower in
younger leaves and correlated with epidermal cell length
(Küpper et al., 1999). Arabidopsis halleri has thinner leaves and
smaller epidermal cells (length 8–30 µm) than T. caerulescens
(10–100 µm) and also has trichomes (Küpper et al., 2000;
Zhao et al., 2000). In contrast to T. caerulescens, SEM-EDXMA
on freeze-fractured A. halleri tissues revealed Zn to be more
uniformly distributed across the leaf, although trichome bases
were substantially enriched with Zn (up to 1 M; Küpper et al.,
2000; Zhao et al., 2000). Mesophyll cells had two- to threefold
higher Zn concentrations than smaller-vacuoled epidermal
cells and, at high [Zn]ext, relative Zn enrichment of the
mesophyll cells was greater than in the trichomes. Consistent
with EDXMA studies, not all leaf protoplasts of A. halleri
accumulate Zn, although all leaf protoplasts of A. halleri (and
T. caerulescens) are Zn-hypertolerant (Marquès et al., 2004).
In A. halleri roots, Zn-phosphate precipitation in the rhizodermal
outer wall prevented substantial Zn accumulation in other
root compartments (Küpper et al., 2000).

Frey et al. (2000) quantified subcellular Zn distribution in
ultrathin (100 nm) cryosections of T. caerulescens using
STEM-EDXMA. Zinc localized to upper and lower leaf epi-
dermal cells. Leaf epidermal cells contained 74 305, 11 577
and 3205 µg Zn g−1 DW in their vacuoles, cell walls/apoplast
and cytoplasm, respectively. In contrast, leaf mesophyll (327,
9353, 262), guard (1439, 8438, 589) and subsidiary (3009,

9615, 2420) cells and root cortical cells (262, 589, 262)
contained substantially less Zn (values given in parentheses
represent vacuole, cell wall/apoplast and cytoplasm compart-
ments, respectively, in µg Zn g−1 DW). Thus, a substantial
fraction of total shoot Zn content was localized to the cell
wall/apoplast, for example, 79% of the mesophyll cell Zn quota.
Studies using the Zn-specific dye Newport green diacetate
confirm that extremely low cytoplasmic Zn concentrations are
maintained in Zn hyperaccumulators (Marquès et al., 2004). In
direct analyses of mesophyll and epidermal protoplasts, mes-
ophyll vacuoles and peeled leaf fractions, epidermal : mesophyll
Zn ratios were reportedly approx. 2.5 : 1, with the mesophyll
accounting for 65% of the leaf Zn quota (Ma et al., 2005).
However, only 23% of the leaf mesophyll cell Zn content was
localized to the cell wall/apoplast. Similarly, c. 9–35% of
mesophyll cell Cd quota has been attributed to apoplastic
compartments (Cosio et al., 2005; Ma et al., 2005). Although
different quantification methods will lead to discrepancies,
compartmentalization of Zn in leaf cell vacuoles and cell walls
is clearly an important facet of Zn hyperaccumulation.

In what form is Zn stored in hyperaccumulators? In T. caeru-
lescens and A. halleri, up to 80% of shoot Zn is soluble in water
or weak acids (Tolrà et al., 1996; Zhao et al., 1998, 2000; Ma
et al., 2005). In contrast to many crop species, insoluble
Zn : P complexes such as Zn3(PO4)2 and Zn-phytates are not
present in significant quantities (Zhao et al., 1998, 2000;
Sarret et al., 2002). In roots, insoluble fractions make up a
much larger proportion of the Zn content. For example, 25–
57% of root Zn content is soluble but this declines at high
[Zn]ext, whilst insoluble Zn correlates with insoluble P in the
stoichiometric ratio expected of Zn3(PO4)2, that is, 0.27
P : Zn (Zhao et al., 1998, 2000). In T. caerulescens leaf cells,
millimole equivalents (meq) of the major cations (Ca + K +
Mg + Zn) ranged from 167 to 562 meq except in the vacuoles
of mesophyll (756 meq) and epidermal (1100 meq) cells (Frey
et al., 2000) and soluble vacuolar Zn concentrations did not
associate with P, S or Cl (Küpper et al., 1999; Frey et al.,
2000). Phytochelatins, small cystein-rich peptides, do not
have an important role in binding Zn in hyperaccumulators,
or in conferring Zn hypertolerance in general (Ernst et al.,
1992; Harmens et al., 1993; Küpper et al., 2000, 2004;
Clemens, 2001; Schat et al., 2002; Callahan et al., 2006;
Wójcik et al., 2006). Further, the role of many other organic/
amino acids, peptides and proteins (e.g. metallothioneins and
the phytosiderophore precursor nicotianamine), which can
also bind Zn, in Zn hyperaccumulation is not yet known
(Callahan et al., 2006). However, since inorganic cation and
organic anion equivalents correlate significantly in T. caerulescens
shoots (Tolrà et al., 1996), and since carboxylic acids, primarily
malate, citrate and oxalate, and amino acids are abundant in
plant materials, their role in Zn hyperaccumulation has been
studied widely (Tolrà et al., 1996; Shen et al., 1997; Zhao
et al., 1998, 2000; Salt et al., 1999; Küpper et al., 2000, 2004;
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Sarret et al., 2002; Ma et al., 2005; Callahan et al., 2006;
Wójcik et al., 2006).

In T. caerulescens shoots, concentrations of malate (164–
248 µmol g−1 FW) > citrate (50–87 µmol g−1 FW) > succi-
nate (23–38 µmol g−1 FW) > oxalate (1.9–4.9 µmol g−1 FW)
> fumarate (0.31–1.25 µmol g−1 FW) > cis-aconitate (0.17–
0.24 µmol g−1 FW), trans-aconitate (< 0.06 µmol g−1 FW);
formate and acetate are detectable only at high [Zn]ext (Tolrà
et al., 1996). Soluble Zn, malate and oxalate are correlated in
T. caerulescens shoots, although organic acid concentrations
are constitutively high (Tolrà et al., 1996; Shen et al., 1997;
Wójcik et al., 2006), as they are in A. halleri (Zhao et al.,
2000). The molar ratios of malate : Zn in T. caerulescens (4.8–
72, (Tolrà et al., 1996), 9.7–23.6 (Wójcik et al., 2006)) are
sufficient to support a Zn-malate shuttle hypothesis (reviewed
by Ernst et al., 1992), that is, the transport of Zn-malate
across the tonoplast and dissociation and subsequent Zn2+

binding to stronger chelators such as citrate or oxalate, and
export of malate back across the tonoplast to the cytosol.
However, malate does not have a strong affinity for Zn (Tolrà
et al., 1996). Whilst oxalate : Zn molar ratios are low in T.
caserulescens (0.1–0.68; Tolrà et al., 1996), molar ratios of
citrate : Zn are 2.1–5.9 in T. caerulescens (Wójcik et al., 2006)
and 0.37–49.0 in A. halleri (Zhao et al., 2000). In T. caerulescens
roots, organic acid concentrations are substantially lower than
in shoots; malate (2.1–10 µmol g−1 FW) = citrate (3.2–16.5
µmol g−1 FW) = succinate (1.8–10.6 µmol g−1 FW) > fuma-
rate (0.027–0.18 µmol g−1 FW) > cis-aconitate (< 0.07 µmol
g−1 FW) = trans-aconitate (< 0.07 µmol g−1 FW). Acetate and
oxalate (1.4 µmol g−1 FW) were only detectable at high [Zn]ext
(Tolrà et al., 1996). Whilst some studies report little correla-
tion between Zn accumulation and altered root organic acid
status (Tolrà et al., 1996), Zn might stimulate citrate produc-
tion in T. caerulescens roots (Shen et al., 1997).

Zinc coordination to O, N, S and His ligands can be pre-
dicted using noninvasive X-ray absorption spectroscopy
(XAS) and extended X-ray absorption fine structure (EXAFS)
analysis (Salt et al., 1999; Sarret et al., 2002; Küpper et al.,
2004; Callahan et al., 2006). In T. caerulescens, up to 70% of
root Zn may be associated with His, the remaining 30% with
the cell wall, although it is difficult to discriminate between
Zn(His)2 and Zn2+ bound to O ligands, potentially represent-
ing hydroxyl groups of water, using these techniques (Salt
et al., 1999; Callahan et al., 2006). In xylem saps, 21% of Zn
was found to be associated with Zn citrate, the reminder prob-
ably being free Zn2+. In shoots, 38, 9, 16 and 12% of total Zn
was associated with citrate, oxalate, His and the cell wall,
respectively, with 26% as free Zn2+ (Salt et al., 1999). No evi-
dence of Zn-malate coordination was found. In other studies,
Zn was predominantly coordinated with O ligands, poten-
tially representing hydroxyl groups of water, or potentially
carboxyl groups of malate, citrate or other organic acids
(Küpper et al., 2004). Stronger Zn binding to His occurred in
young leaves, potentially to avoid toxicity, and in senescing

leaf tissues, which could be as a result of the breakdown in cell
compartmentation. No associations between Zn and S ligands
such as phytochelatins, metallothioneins or other Cys-rich
peptides were observed (Küpper et al., 2004). In A. halleri
shoots, Zn was primarily (octahedrally) coordinated with
malate. In the trichomes, a secondary unidentified organic Zn
compound was present, tetrahedrally coordinated and com-
plexed to carboxyl and/or hydroxyl functional groups (Sarret
et al., 2002). In A. lyrata ssp. petraea, shoot Zn was coordi-
nated primarily with phosphate.

Two unusual root properties of Zn hyperaccumulators Two
remarkable features of T. caerulescens roots may be linked to its
ability to hyperaccumulate Zn. First, a zincophilic root
foraging response to heterogeneous [Zn]soil has been shown,
analogous to the exploitation of spatially heterogeneous soil
macronutrients (Schwartz et al., 1999; Whiting et al., 2000;
Haines, 2002). Increases in root biomass (including root
length and root hair production) occur in high-Zn-containing
patches compared with adjacent Zn-deficient patches. These
responses are not thought to be constitutive at the species level
(Whiting et al., 2000; Haines, 2002) and warrant further
genetic and molecular investigations. Second, a ‘peri-endodermal’
layer of cells with irregularly thickened inner tangential walls
extending to < 1 mm from the root tip has been reported
recently in T. caerulescens (Zelko et al., in press;  Figs 2, 3). This
layer is composed of secondary cell walls impregnated by
suberin/lignin, forming a compact cylinder surrounding the
endodermis from the outer side. This layer is not seen in T.
arvense (Zelko et al., in press) or A. thaliana (van de Mortel et al.,
2006) when compared with T. caerulescens. The development
of the endodermis also differs between T. caerulescens and T.
arvense (Zelko et al., in press). In T. caerulescens, Casparian bands
(the first stage of endodermal development) form < 1 mm
from the root tip, and suberin lamellae (the second stage of
endodermal development) are formed in all endodermal cells
c. 5–6 mm from the apex. In T. arvense, Casparian bands develop
c. 2 mm from the root tip and suberin lamellae are formed in all
endodermal cells > 10 mm from the root tip. Although a similar
feature to this peri-endodermal layer was observed by early
anatomists in some Brassicaceae, being described as ‘réseau sus-
endodermique’ in 1887 (van Tieghem, 1887; Zelko et al., in
press), the precise function of this layer of cells and its impact
on apoplastic and symplastic fluxes of Zn into the root stele
(and its effects on Zn efflux from the stele) remain unclear, as
does the distribution of this character among closely related
taxa. Further anatomical studies in the Thlaspiceras/Noccaea/
Raparia/Microthlaspi/Neurotropis clade are likely to be revealing
in this respect. In a closely related Brassicaceae species,
Thellungiella halophila O. E. Schulz, a second layer of endo-
dermis is developed and it is probably related to the salt tolerance
of this halophyte (Inan et al., 2004). Thus, the structural/
functional adaptations of roots associated with metallophily
are highly variable in this interesting group of plants.
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Molecular insights into Zn hyperaccumulation Gene and
protein expression profiling (Assunção et al., 2001; Becher
et al., 2004; Weber et al., 2004; Craciun et al., 2006; Filatov
et al., 2006; Hammond et al., 2006; Rigola et al., 2006; Talke
et al., 2006; Tuomainen et al., 2006; van de Mortel et al.,
2006; Weber et al., 2006), and functional analyses of proteins
in heterologous plant, yeast and Xenopus laevis oocyte
systems are providing remarkable and rapidly advancing
insights into Zn hyperaccumulation – and Zn homeostasis in
general – at the molecular level. Fortunately, T. caerulescens
and A. thaliana share > 87% sequence identity (Peer et al.,
2003; Rigola et al., 2006), enabling A. thaliana sequence data
to be easily exploited. To illustrate, global shoot transcriptome
data published using the full-genome Affymetrix A. thaliana
ATH1-121501 (ATH1) GeneChip array (Affymetrix Inc.
Palo Alto, CA, USA), for T. caerulescens vs T. arvense
(Hammond et al., 2006), and A. halleri vs A. lyrata ssp. petraea
(Filatov et al., 2006) and A. thaliana (Talke et al., 2006)
comparisons, are combined and re-analysed here. Briefly, raw
expression data files (CEL files) of shoot transcriptome data
from either the hyperaccumulator (five T. caerulescens, eight
A. halleri) or nonhyperaccumulator (five T. arvense, six A.
lyrata ssp. petraea, two A. thaliana) condition, were analysed
using a global Robust Multichip Average (RMA) algorithm
(Irizarry et al., 2003), with a custom GeneChip definition file
(CDF) in GeneSpring GX (Agilent Technologies Inc.). This
CDF was designed to exclude ATH1 GeneChip array
oligonucleotide probe pairs that hybridized to both T.
caerulescens and T. arvense genomic DNA (gDNA) below an
intensity threshold of 300 (sensu Hammond et al., 2005,
2006). Thus, 22 131 probe sets (out of 22 746), most likely
to be common to Thlaspi s.l and Arabidopsis, were used for
transcriptome comparisons. Data were normalized to the median
expression value of either the hyperaccumulator or the non-
hyperaccumulator condition. Putative genes with different
amounts of expression between the two conditions were
identified using a Welch’s t-test with a Benjamini-Hochberg
False Discovery Rate (FDR) correction of 0.05 (Table S10).

In total, homologues of 60 A. thaliana genes are signifi-
cantly differentially expressed between hyperaccumulators
and nonhyperaccumulators and may have conserved roles in
brassicaceous Zn hyperaccumulation (Table S10). Six of these
genes encode proteins with putative roles in Zn transport:
three cation diffusion facilitator (CDF) family members
(At2g39450 (TAIR6: AtMTP11), At2g46800 (AtZAT1/
AtMTP1) and At3g58060 (AtMTPc3)); a member of the Zn-
Fe permease (ZIP) family (At1g60960 (AtIRT3/TcZNT2));
and a PIB-type heavy-metal-associated domain-containing
ATPase (At4g30120 (AtHMA3)). CDFs appear to mediate
vacuolar sequestration of Zn through Zn efflux from the cyto-
plasm (van der Zaal et al., 1999; Persans et al., 2001; Blaudez
et al., 2003; Delhaize et al., 2003; Hall & Williams, 2003;
Dräger et al., 2004; Kim et al., 2004; Kobae et al., 2004;
Desbrosses-Fonrouge et al., 2005; Krämer, 2005b; Arrivault

Fig. 2 Development scheme of apoplastic barriers along the root 
axis of Thlaspi caerulescens (hypertolerant Zn-accumulator) and 
T. arvense (nontolerant Zn nonaccumulator). In the first stage of 
endodermal ontogenesis, Casparian bands, and in the second 
stage, suberin lamellae deposition, develop closer to the root tip in 
T. caerulescens than in T. arvense. Note the early formation of a 
peri-endodermal layer close to the apex in T. caerulescens but not in 
T. arvense. Bar, 2 mm in the longitudinal axis. Transverse axes are not 
represented to scale.
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et al., 2006; Colangelo & Guerinot, 2006), ZIPs are likely to
mediate cellular Zn uptake (Pence et al., 2000; Assunção et al.,
2001; López-Millán et al., 2004; Colangelo & Guerinot,
2006), and HMAs have Zn-transport functions throughout
the cell (Williams et al., 2000; Mills et al., 2003; Bernard et al.,
2004; Eren & Argüello, 2004; Gravot et al., 2004; Hussain
et al., 2004; Papoyan & Kochian, 2004; Verret et al., 2004,
2005; Williams & Mills, 2005; Colangelo & Guerinot, 2006).
However, the function of other nutritionally important trans-
porter genes, for example, a phosphate-starvation-inducible
high-affinity phosphate transporter AtPT2/AtPHT4/AtPHT1;4
(Misson et al., 2004), which is highly expressed in Zn hyper-
accumulators (Hammond et al., 2006; Talke et al., 2006),
remains unknown. Other genes expressed highly in Zn hyper-
accumulators include plant defensins (PDFs), which confer
Zn tolerance and accumulation in heterologous systems, and

may act as blockers of Zn-permeable channels (Mirouze et al.,
2006). Whilst it remains extremely challenging to elucidate
how the function of single proteins in heterologous systems
relates to the behaviour at whole-plant and crop scales, the use
of homologous transformation (Peer et al., 2003) and the
increasing availability of species-specific sequence informa-
tion (Rigola et al., 2006) will undoubtedly hasten this process.
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