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Abstract: Zinc (Zn) is plant micronutrient, which is involved in many physiological functions, and
an inadequate supply will reduce crop yields. Its deficiency is the widest spread micronutrient
deficiency problem; almost all crops and calcareous, sandy soils, as well as peat soils and soils with
high phosphorus and silicon content are expected to be deficient. In addition, Zn is essential for
growth in animals, human beings, and plants; it is vital to crop nutrition as it is required in various
enzymatic reactions, metabolic processes, and oxidation reduction reactions. Finally, there is a lot of
attention on the Zn nanoparticles (NPs) due to our understanding of different forms of Zn, as well as
its uptake and integration in the plants, which could be the primary step toward the larger use of NPs
of Zn in agriculture. Nanotechnology application in agriculture has been increasing over recent years
and constitutes a valuable tool in reaching the goal of sustainable food production worldwide. A
wide array of nanomaterials has been used to develop strategies of delivery of bioactive compounds
aimed at boosting the production and protection of crops. ZnO-NPs, a multifunctional material with
distinct properties and their doped counterparts, were widely being studied in different fields of
science. However, its application in environmental waste treatment and many other managements,
such as remediation, is starting to gain attention due to its low cost and high productivity. Nano-
agrochemicals are a combination of nanotechnology with agrochemicals that have resulted in nano-
fertilizers, nano-herbicides, nano-fungicides, nano-pesticides, and nano-insecticides being developed.
They have anti-bacterial, anti-fungal, anti-inflammatory, antioxidant, and optical capabilities. Green
approaches using plants, fungi, bacteria, and algae have been implemented due to the high rate
of harmful chemicals and severe situations used in the manufacturing of the NPs. This review
summarizes the data on Zn interaction with plants and contributes towards the knowledge of Zn
NPs and its impact on plants.

Keywords: nanoparticles; plant growth; elements; artificial chemicals; agricultural system

1. Introduction
1.1. Zinc

Zinc (Zn) is one of the primary micronutrients involved in plant growth and produc-
tion. It also has a constituent that is required in small amounts for several enzymes and
protein activities [1–3]. Most enzymes, including carbonic anhydrase, carboxypeptidase,
and superoxide dismutase, require Zn as a cofactor [4,5]. Zn deficiencies can affect a plant
by stunting its growth, decreasing the number of tillers, causing chlorosis and smaller
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leaves, increasing crop maturity period, and causing spikelet sterility and inferior quality
of harvested products [6,7]. Plant enzymes activated by Zn are involved in carbohydrate
metabolism, maintenance of the integrity of cellular membranes, protein synthesis, reg-
ulation of auxin synthesis, and pollen formation [8,9]. The regulation and maintenance
of the gene expression required for the tolerance of environmental stresses in plants are
Zn dependent [10]. Zinc seems to affect the capacity for water uptake and transport in
plants and also reduce the adverse effects of short periods of heat and salt stress [5,11]. As
Zn is required for the synthesis of tryptophan, which is a precursor of IAA, it also has an
active role in the production of an essential growth hormone auxin [12]. Zn accumulation
in soils is of great concern in agricultural production due to its adverse effects on food
safety and marketability, crop growth due to phytotoxicity, and the environmental health
of soil organisms [13]. In addition, Zn contamination in the soil may pose risks and hazards
to humans and the ecosystem through direct ingestion or contact with contaminated soil,
the food chain (soil-plant-human or soil-plant-animal human), drinking of contaminated
groundwater, reduction in food quality (safety and marketability) via phytotoxicity, re-
duction in land usability for agricultural production causing food insecurity, and land
tenure problems [4,14].

Zn contamination issues are becoming increasingly prevalent, with many documented
cases of metal toxicity in mining industries, foundries, smelters, coal-burning power plants,
and agriculture [15]. The average range of Zn required by the plant is 15–55 ppm and
in the growing medium between 0.10 to 2.0 ppm. Zinc toxicity and deficiency have an
adverse effect on the yield and crop damage [16,17]. Organic matter plays a significant role
in maintaining the availability of Zn in soil. It promotes Zn uptake by roots by releasing
Zn over time and changing the physicochemical features of the soil, which increases Zn
availability in the soil [18]. Extractable Zn increases with the increases in the organic carbon
content in the soil [19], and Zn solubility in soils is improved by adding organic matter [20].

1.2. Plant Absorption of Zn

Zn is essential for the growth in animals, human beings, and plants, and is vital to the
crop nutrition as it is required in various enzymatic reactions, metabolic processes, and
oxidation reduction reactions [21,22]. In addition, Zn is also essential for many enzymes
which are required for nitrogen metabolism, energy transfer, and protein synthesis [23].
Depending on the nature of experiments and plant species, the most significant mechanisms
may be Zn utilization in tissues and Zn uptake [9,24]. Under Zn deficient conditions, Zn-
efficient genotypes have a high activity of Cu/Zn anhydrase and carbonic anhydrase. Zn
efficiency and Zn uptake are very important for plant growth and its total content in soil is
influenced by several soil properties like pH, CaCO3, organic matter content, and type of
crop, as well as cultivars and nutrient interactions in soil environment [19,25].

Zn is mostly absorbed by roots from the different homogenous content in the soil, in
the form of Zn2+ ions or in the form of organic acid chelates [4], and translocated into the
above-ground section of the plant via the xylem [26]. It was also reported that the Zn can
also be absorbed by plants through their leaves through various applications such as foliar
spray [27]. However, the mechanism behind it is yet unknown. The surface characteristics
of the leaves influence the transport of nutrients; this has been reported for many other
nutrients, such as Cu [28,29] and Fe [30,31]. The thickness of the waxy covering on the leaf
and the chemical composition of the cuticle, as well as its density, trichomes, and stomata,
are all factors to be considered for the absorption of Zn through the leaf area [12,32]. The
absorption of Zn through the various sources of the environment under different conditions
are presented in Figure 1.
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Figure 1. Sources of Zn (nutritional form for plants) from different environment sources.

1.3. Effect of Zn on Plant Growth

Zn is required for the activation of many enzymes in plant cells, such as alcohol
dehydrogenase, carbonic anhydrase, and RNA polymerase [3,5]. Zn is also involved
in biomembranes’ stabilization by interacting with the phospholipids and sulfhydryl
groups of membrane proteins [33,34]. It can contribute to proteosynthesis, metabolism
of carbohydrates, and lipid and nucleic acid synthesis. Furthermore, Zn plays a crucial
role in oxygen radical production, as well as their detoxification [24]. Zn participates
in Cu-Zn-SOD enzyme synthesis, a key enzyme involved in the removal of toxic O−

2
radicals, which can be harmful to membrane lipids and proteins [21,35]. Cu-Zn-SOD is
essentially localized in chloroplasts; in some plants, it is found in the thylakoid lumen
whereas in others it is bound to the thylakoid [36,37]. Deficiency of the Zn is the common
micronutrient deficiency concern, affecting practically in all crops [34]. Zn deficiency can
be found in every part of the world and almost all crops respond positively to application
of Zn [38] and can cause a plant’s growth to be stunted, resulting in fewer tillers, lower
rate of chlorosis, and smaller leaves, as well as a longer crop maturation period, and lower
quality harvested crop [39]. Normal soils inherit their trace elements, which include Zn
primarily from the rocks through geochemical and pedochemical weathering processes [23].
Besides mineralogical composition of the parent material, the total amount of Zn present in
the soil is dependent on the type of soil, intensity of weathering, climate, and numerous
other predominating factors during the process of formation of Zn in the soil in the form of
sulphate or oxide, enhance overall shoot growth. Shoot growth was 21.6 percent higher
in Zn-treated plants than in control plants, when chickpea was foliar sprayed by Zn-O
nanoparticles; however, there was evidence of a negative influence on root growth, the
shoot to root ratio was somewhat altered as a result [40]. This is in contrast with the
findings of Prasad et al. [41] in peanut, using 400–2000 ppm nano Zn-O, which showed an
improved response in terms of the shoot and root growth. Zn application has also been
shown to change the root: shoot ratio in various genotypes of rice [42], spinach [43], and
wheat genotypes [6].

1.4. Protective Role of Zn in Plants

Zn is a fundamental nutrient for plants as it plays a vital role as metal component
and co-factor of many enzymes [10]. The cell membrane is the first target of abiotic
stresses [44,45], and the maintenance of its stability under harsh environment is the core
part of plant tolerance [43,46]. Adequate Zn supply in a stressed environment maintains
membrane permeability, the activity of antioxidant substances, photosynthetic efficiency,
and water use efficiency [37,47]. Moreover, Zn application results in an appreciable increase
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in leaf area, the content of chlorophyll, and other photosynthetic pigments and stomatal
conductance, thus resulting in improved growth and yield [10,18]. In addition, Zn is
a catalytic and structural protein cofactor found in many of enzymes, and it plays an
important structural part in protein domains [48]. The “Zn finger” proteins are involved in
transcription factor DNA binding as well as protein–protein interactions [49]. Bioinformatic
techniques can now predict Zn-binding sites using sequenced metal-binding motifs [7].

Zn plays a pivotal function in the plant response to pests and diseases. Nonetheless, Zn
defense-related mechanisms in plants greatly vary. The outcomes of plant–pest/pathogen
interactions differ, depending on the effectivity of the Zn-related responses in limiting
the invader’s attack as well as on the enemy’s ability to circumvent the plant defenses, in
addition to other environmental conditions that can favor either host or invader [50,51].
Several studies have shown that, in most cases, Zn fertilization decreased plant symp-
toms [52]. However, a protective Zn concentration against certain pathogens can also
induce a higher susceptibility to another pathogen on the same plant [53]. Several studies
have demonstrated that the Zn application decreases plant diseases/symptoms in the
majority of cases [3,21,49]. Therefore, Zn application counteracts environmental stress by
improving membrane stability, hormone synthesis, the photo-synthetic process, and the
scavenging of reactive oxygen species (ROS) (Figure 2).
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Figure 2. Mechanism of abiotic stress tolerance induced by the application of Zn. Zn application
improves the antioxidant activities, increases osmolyte accumulation, hormonal cross talk and cell
signaling, which, in turn, improve membrane stability and physiological processes, including water
uptake and ROS scavenging.

1.5. Proteins with Zn Fingers

In addition to their role in plant growth and development, Zn finger proteins regulate
plant responses to biotic stress conditions [54]. Zn finger protein possesses one or more
‘Zn finger’ that bond one or more Zn ions by its residues Histidine and Cysteine. The
Zn finger protein also belongs to a large family of transcription factors. It plays many
important regulatory roles in plants [55]. The Zn finger domain enables different proteins
to interact with or bind DNA, RNA, or other proteins, and is present in the proteomes of
many different organisms. Proteins containing Zn finger domain(s) were found to play
important roles in eukaryotic cells regulating different signal transduction pathways and
controlling processes, such as development and programmed cell death [56]. There are
many types of zinc finger proteins, classified according to the number and order of the
Cys and His residues that bind the Zinc ion [57]. With a broad spectrum of structures
and functions, these proteins are defined as those with a small, freely folded functional
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domain that requires one or more Zn ions to stabilize its structure. Zn finger binding
domains are present in the well-known plant resistance proteins NBS-LRRs (nucleotide
binding sites-leucine rich) that are involved in the effector-triggered immune response [58].
The authors analyzed seventy plant disease resistance proteins from various crops. Zn
finger domains are found in 37% of these proteins, implying that this protein family plays
a significant part in the host’s resistance to infections [32,58]. RAR1 (Zn-binding protein in
wheat) also provides resistance to rust pathogen via an oxidative burst and hypersensitive
response mediated by salicylic acid [55]. The up-regulation of the 2 zinc-finger transcription
factors in potatoes has been linked to insect invasion [54].

2. Role of Zn in Plant Nutrition

Zn is a key plant nutrient, ranked the third most dominant metal after Fe and Mn. Zn
mediates a number of plant metabolic/biochemical/physiological reactions [1,13]. Bioforti-
fication refers to improvement in food nutritional quality via different techniques such as
agronomic activities, recombinant DNA technology or conventional plant breeding. Zn
influences plant metabolism by regulating the activities of hydrogenase and the carbonic
anhydrase, and the stabilization of ribosomal fractions and cytochrome synthesis. Enzymes
that are triggered by the Zn are involved in the metabolism of glucose, cellular membrane
integrity, synthesis of protein, auxin production control, and pollen development [59]. Zn
deficiency in plants may provoke several symptoms, such as chlorosis, necrosis, spikelet
sterility, enhanced membrane permeability, stunted growth, leaf bronzing, small leaves,
thin stem, and even shoot dieback [10,60,61]. Zn deficiency symptoms generally appear
2–3 weeks after exposure to Zn deficient conditions. Zn-deficiency-mediated visual symp-
toms only appear under severe conditions. While the marginal Zn deficiency only affects
plant yield without the visual symptoms [26]. The induction of oxidative stress under
Zn deficiency is another well-known mechanism at the cellular level [62]. Several reports
revealed that low levels of Zn in plants mediate enhanced levels of ROS that may be due to
the lower concentration of Cu-Zn-SOD enzyme [63]. Although Zn storage in cell vacuoles is
a tolerance strategy against Zn toxicity, its remobilization is also important during deficient
conditions [59,64]. Moreover, Zn reserves in the vacuoles are remobilized when required in
other parts of the plant. Members of the NRAMP family might help the efflux of metals
from vacuoles [32].

2.1. Interactions of Zn with Other Nutrients

Zn is now an integral part of fertilizer recommendation for most crops in several
countries. It is generally applied along with NPK as basal fertilizer at seeding (transplanting
in case of rice) although its foliar application is also recommended [20]. Soil application
has the advantage of leaving residual effects on succeeding crop and, thus, permitting a
better utilization of applied Zn in a cropping system [65,66]. The interaction of Zn with
other plant nutrients in soils and plants has aroused considerable interest in the researchers,
students, planners, and academics. An interaction between two nutrients is considered
statistically significant when the level of application of one nutrient affects the response of
plants to the other nutrient and vice versa. When the response of plants to one nutrient
increases with an increase in the level of the other nutrient, the interaction is said to be
positive, and the nutrients are said to be synergistic. On the other hand, when the response
to one nutrient decreases with an increase in the level of the other nutrient, the interaction is
said to be negative, and the two nutrients are said to be antagonistic. In plants, Zn interacts
positively with N and K and negatively with P, Ca, Fe, and Cu [36,55]. The negative
interaction is due to interference of P, Ca, Fe, and Cu in the absorption of Zn on root
surfaces or/and its translocation from root to shoot in plants [40]. Zn interacts negatively
with Ca mainly because it competes for the same adsorption sites on soil particles as well
as on root surfaces [67]. Regarding S, both positive and negative interaction effects are
reported in crop plants, suggesting different mechanisms in different plant species [68]. Zn
interferes with the absorption of Fe and B by plants [69,70]. Application of Zn is suggested
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as a measure to alleviate B toxicity in crops grown on boron-rich soils [52]. On the other
hand, Zn fertilization augments the absorption of Cu and manganese by plants [71].

2.2. Interactions between P and Zn

Increased sorption of Zn in soils, due to increased negative surface charges associ-
ated with applied P reducing its availability, has been reported [72,73]. Zn can also be
precipitated as Zn phosphate with the addition of phosphate fertilizers. The study of the
interaction of P and Zn began in 1936; this was the fundamental plant growth problem
which is still being discussed today. P-induced Zn deficiency is the common name for this
interaction. This type of plant growth issue is linked to high quantities of accessible P or
the administration of P to the soil. The mechanism and processes are still unknown. It was
observed that prior heavy P application in five Hawaiian soils had no influence on DTPA
extractable Zn and concluded that Zn deficiency could not be due to precipitation of Zn
as insoluble ZnP compounds [74]. The production of the insoluble Zn3 (PO4)2 in soil was
thought to have lowered Zn content in the soil to inadequate levels [75].

2.3. N-Zn Interactions

With the administration of N fertilizers, Zn deficiency in plants can be alleviated.
The application of N increases plant development and to a smaller extent, changes the
pH of root surroundings, therefore, beneficial interactions between rising levels of the Zn
and N fertilizers have been found [76]. Shivay et al. [77] showed that N concentration in
chickpea (Cicer arietinum) increased from 36.1 mg kg−1 in check (no-Zn) to 47.2 mg kg−1

with an application of 7.5 kg Zn ha−1. They also reported that increase in N concentration
in chickpea grain was significantly greater with foliar application of Zn than with soil
application, and for foliar application, Zn-EDTA was a better source than Zn sulphate.
In the absence of NH4NO3 fertilizer, wheat grown on N-deficient soil with appropriate
levels of all the nutrients except N and Zn did not respond to Zn treatment [78]. Moreover,
Kutman et al. [78] suggested that N increased Zn uptake by roots as well as its translocation
to the shoot. However, high levels of N leading to excessive vegetative growth rate may
induce Zn deficiency in plants on Zn-deficient soils N fertilizers, on the other hand, have
improved (or aggravated) Zn deficiency in soils that are less in Zn but high infertility by
influencing Zn absorption through pH changes [79].

2.4. Interaction between Macronutrients

Antagonistic effects of Calcium (Ca), magnesium (Mg), potassium (K), and Zn have
been known since long. In addition, Ca, Mg, and K, among other macronutrient cations,
prevent plants from absorbing Zn from the medium. They must be taken into account
when interpreting the findings of Zn nutrition solution culture tests; nevertheless, in the
soil, it appeared less efficient in inhibiting the absorption of Zn than the effects on pH of
soil. The highest concentrations of Zn are found in the legumes [80]. It was also observed
that the increasing Ca (NO3)2 concentrations from the range 0 to 40 mM decreased Zn
absorption rate by the wheat seedlings, but that high concentrations of Ca (100 mM) had
no effect on the absorption of Zn [81]. Ca was considered for the inhibition since changing
the anions had minimal influence on the absorption of Zn, although replacing other cations
for the Ca have a similar negative effect. In addition, Ca plays an important role in cell
permeability and stabilization of plasma membrane by Ca under Zn toxicity conditions has
been reported [50]. Application of 47.4 kg K ha−1 combined with foliar application of 57.6 g
Zn ha−1 and 1728 g P ha−1 improved yield of Egyptian cotton (Gossypium barbadense L.) [82].
Marschner et al. [83] reported that in Zn-deficient soils application of Mg increased Zn
concentration in beans (Phaseolus vulgaris) and application of Zn increased Mg concentration.
Thus, a positive interaction exists between Zn and Mg. The interactions between Zn and
other nutrients in the agricultural soil is presented in Figure 3.
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3. Role of Zn in Metal-Contaminated Soil

Metal contamination issues are becoming increasingly common in all over the world,
with many documented cases of metal toxicity in mining industries, foundries, smelters,
coal-burning power plants, and agriculture [84–86]. Heavy metal accumulation in soils
is of great concern in agricultural production due to its adverse effects on food safety
and marketability, crop growth due to phytotoxicity, and the environmental health of soil
organisms [87–90]. In addition, heavy metal contamination of soil may pose risks and
hazards to humans and the ecosystem through direct ingestion or contact with contam-
inated soil, the food chain (soil–plant–human or soil–plant–animal human), drinking of
contaminated groundwater, reduction in food quality (safety and marketability) via phyto-
toxicity, reduction in land usability for agricultural production causing food insecurity, and
land tenure problems [91–95]. Zn plays a vital role in proteins, nucleic acids, and auxin
synthesis, as well as antioxidation and detoxification, and are considered essential mineral
elements for the plants under metal-stressed conditions [96]. Zn is a nutrient element
in plant growth and antagonizes the absorption of many heavy metals, due to similar
chemical properties of the many trace metals [36]. Previous studies have shown that foliar
application with Zn could effectively reduce the metal concentrations in the plants. For
instance, Sarwar et al. [97] found that foliar application of ZnSO4 at a concentration of 0.3%
could effectively prevent the adverse impacts of Cd exposure and reduce the wheat grain
Cd concentrations by more than 18% for plants grown in Cd-contaminated soils.

Zn was found to not only reduce the harmful levels of various metals, but also improve
the plant development characteristics by blocking heavy metal uptake by plant sections [12].
However, the concentration of metal in the plant exceeds a critical value; toxicity symptoms
appear, including reduced yield, poor seed germination, stunted leaf, and root growth; and
ultrastructural and anatomical alterations occur, leading to the formation of reactive oxygen
species (ROS) [93,98–101]. A direct effect of excess metal in the soil is the lipid peroxidation
of cellular organelles that promotes ROS accumulation and impairs the functioning of
the cell membrane system [30,102–104]. Zn reduces heavy metal toxicity in plants by
developing antioxidant defenses against oxidative damage and improve plant growth and
development by reducing metal toxicity and metal concentration in the body parts of the
plants [96]. The effect of Zn application in various forms under the different plant species,
when grown in the metal-contaminated soil, is presented in Table 1.
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Table 1. Effect of Zn application on growth and eco-physiology of the various plant species under
the treatment of various heavy metals in the soil.

Plant Species Metal Type Culture Metal Duration (Days) Comments References

Yellow Lupine Cd Soil Full maturity Zn application enhanced plant yield
under metal stress [105]

Brassica napus Cd Hydroponic 14 Depending upon the different cultivars,
the shoots Cd was decreased [106]

Triticum
aestivum Cd Soil 125 Application of Zn enhanced

eco-physiology of the plant [6]

Oryza sativa Cr Soil 70 Application of Zn enhanced growth
and decreased Cr contents [42]

Triticum
aestivum Cr Soil 120

Zn application decreased oxidative
damaged in the membrane
bounded organelles

[107]

Oryza sativa As Soil 50
ZnO regulated various transcriptional
pathways participated in oxidative
stress tolerance

[108]

Glycine max As Soil Maturity
As stress inhibited growth and
photosynthesis, but regulated by the
application of ZnO

[109]

Glycine max As Soil 60
ZnO application decreased As
concentration in the roots and shoots of
the plants

[110]

Morus alba Pb Soil 90
Zn improved gas exchange capacity,
increasing growth and biomass, and
improved redox imbalance in the plants

[37]

4. Nanoparticles

The term “Nano” is derived from the Greek word ‘Nanus’, which means “dwarf.”
When a meter is divided into 100 billion parts (10−9), we have reached at a new scale
known as nanoscale [111,112]. Nanotechnology is a technique that uses the nanoscale in at
least one dimension and has applications in a variety of fields, which include medicine,
agriculture, food, and pharmaceuticals [36,113]. Nanoparticles (NPs) are essential due to
their physical, chemical, and magnetic properties, and the fact that they are inexpensive,
safe, and environmentally friendly [21,62,114]. Although “dimension” is one of the fun-
damental features of NPs, some NPs, such as quantum dots and carbon dots, have no
dimensions (metal NPS) [107]. Nanotechnology is a rapidly developing technology that has
the potential to revolutionize every aspect of research [115]. This technology is employed in
optics, electronics, medicinal, and materials sciences, among other fields [116]. Nanotech-
nology is concerned with nanoparticles, which are aggregates; their size is approximately
100 nanometers. These nanoparticles are altered forms of the basic elements that are created
by changing their atomic characteristics [36,117]. Due to their strange and interesting fea-
tures, nanoparticles have received a lot of attention. Nanotechnology is a popular topic in
modern scientific study. This technology has a wide range of novel applications, including
food processing and agricultural production, as well as advanced medicinal approaches
(Sahoo 2010). The production, characterization, and study of materials in the nanoscale
range (1–100 nm) is referred to as nanotechnology. The features of the living and manmade
systems are studied at this level [118].The structure of these particles, due to their size,
significantly increased chemical and biological properties. Nanoparticles (NPs) have larger
surface areas than macro-sized particles due to their nanoscale size [51,62,119].

At the atomic level of (1–100 nm), NPs are known as modified particles. They have
size-related characteristics that differ greatly from bulk materials [110,120]. Metal NPs’
intrinsic features, such as Zn oxide, titanium dioxide, and silver, are primarily defined by
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their size and shape. The chemical, mechanical, electrical, structural, and optical properties
of materials can be altered by shrinking them to the nanoscale. These changed properties
permit NPs to interact with cell biomolecules in a unique way, making the physical transport
of NPS into inner cellular structures easier [51,114].

4.1. Methods for Synthesis of Nanoparticles

For the synthesis of the NPs, two methods are proposed: a bottom-up and a top-down
approach are employed. In the top-down technique, the grinding of big macroscopic
particles is conducted. It entails first creating large particles, then shrinking them down to
the nanoscale via plastic deformation [121]. It is an expensive and time-consuming process;
this approach cannot be used for large-scale nanoparticle production. The most popular
technique for nanomaterial creation that uses a top-down approach is interferometry
lithography [122]. The nanoparticles show enhanced properties, such as high reactivity,
strength, surface area, sensitivity, stability, etc., due to their small size. The nanoparticles
are synthesized by various methods for research and commercial uses that are classified
into three main types, namely physical, chemical, and mechanical processes that have seen
vast improvements over time.

4.2. Zn-NPs

There are several types of Zn nanoparticles, such as ZnS and ZnSe, or quantum dots
CdSe/ZnS. Many of them can be modified to have more or better fluorescent properties,
which is why they are under consideration for future use in protein determination, im-
munofluorescence analysis, immunohistochemical detection, and 3D confocal study of
membrane proteins [34,119]. Probably the most widespread type of zinc nanoparticles (in
practice as well as research) is Zn oxide (nano-ZnO). The normal ZnO and its nanoparticles
are commonly added to plastic, glass, ceramics, cement, and rubber materials, as well as
pigments, paints, food supplements, batteries, and non-flammable materials. The reason
for this is their wide range of suitable properties, which is also linked with the easy avail-
ability and low price of the chemical. These properties include relatively high electrical
and thermal conductivity and stability in high temperatures with a neutral pH and mild
antimicrobial effects [34]. ZnO nanoparticles are, thanks to their photostability and ability
to absorb UV radiation, also used in cosmetic products and sunscreens. An estimated 10,000
tons of UV filters are produced annually for the world market, and there are approximately
550 tonnes of ZnO nanoparticles alone being produced worldwide [109,119].

4.3. NPs of ZnO

ZnO is the chemical formula of ZnO and is an inorganic substance. It is in the form
of a white-colored powder of that is insoluble in water [110]. Paints, adhesives, plastics,
sealants, pigments, food, ointments, batteries, ferrites, and fire retardants are just a few of
the materials and products that use ZnO powder as an addition. It is found in Earth crust
in the form of zincite mineral, although most ZnO utilized for commercial applications is
synthesized [49]. Zn and oxygen correspond to the second and sixth groups in the periodic
table. ZnO is commonly referred to as an II-VI semi-conductor in materials science. ZnO
is a flexible, useful, and a strategic inorganic substance with a wide range of uses. It is
called an II-VI semiconductor [123] because Zn and O belong to the periodic table’s groups
two and six, respectively. The optical characteristics of ZnO are all unique [124]. It has
a large bandgap of (3.3 eV) in the ultraviolet spectrum, at room temperature has high
binding energy, and high electrical conductivity that is of n-type [26,36]. Different sources
of ZnO-NPs are presented in Figure 4.
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Plastic and rubber products typically contain ZnO and its nanoparticles. This is due
to its extensive range of acceptable qualities, which is linked to the chemicals that are
easily available at low prices [62]. The ZnO nanoparticle’s benefits were demonstrated
multiple times; nevertheless, the high concentration cannot be used. The spraying of ZnO
nanoparticles size of 25 nm at a dosage of 1000 mg/L on peanuts (Arachis hypogaea) resulted
in a considerable increase in germination. The plant bloomed earlier, and the chlorophyll
content increased [41].

4.4. Plants and Modified ZnO-NPs

In the plant world, ZnO is not the only sort of nanoparticle being studied. Experiments
with coat changes on Zn-NPs have also been conducted. Yuvaraj et al. [125] developed
manganese-coated ZnSO4 nanoparticles. Mukherjee et al. [126] investigated the toxic effects
of ZnO-NPs on pea plants (Pisum sativum L.). He explained that when the ZnO nanoparti-
cles were covered with iron, it reduced the toxic effect; the modified ones had no deleterious
impact on germination and did not significantly reduce chlorophyll concentration [127].

4.5. ZnO Nanostructures Synthesis

Due to its multifunctional qualities in a variety of applications, ZnO nanostructures
have been the subject of extensive research. Nanostructures of ZnO have arisen as a
promising candidate for energy harvesting, and a wide range of electrical devices. Several
notable uses are now being investigated in the field of biomedical and in the anti-viral field.
This is due to their possible biocompatibility in comparison to other metal oxides, alkaline
solubility, and Zn-O terminated polar surfaces [26].

5. ZnO-NPs Synthesis by Chemical Methods

Some of the common processes that are used to create nanomaterials or nanostructures
are explained in the table (Table 2).

5.1. Benefits of Chemical Methods

It is a significant process, and it may be conducted with a variety of precursors and
under a variety of variables like temperature, time, the concentration of reactant, and so on.
The size and geometries of the resultant nanoparticles are morphologically different when
these parameters are changed. The various chemical processes for producing ZnO-NPs are
given below.
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Table 2. Methods for the synthesis of ZnO-NPs.

Methods Process Advantages Disadvantages References

Chemical synthesis

Spray pyrolysis,
thermal breakdown,
molecular beam
epitaxy, chemical
vapor deposition.

It is the most significant proces,
and it is performed with a variety
of precursors and under a variety
of variables. The size and
geometries of NPs are
morphologically changed

Hazardous compounds
adsorbed on the surface,
which could have negative
consequences.

[128]

Vapor transport
synthesis

Zinc and oxygen
vapors react with
each other

It is the most prevalent method
and growth temperature is
relatively moderate.

Imbalance vapor pressure
ratio may affect the ZnO
nanostructure.

[129]

Hydrothermal
synthesis

Low temperature
process

The use of simple equipment,
catalyst-free growth, low cost,
homogeneous production, Eco
friendliness, and being less toxic.

May require high
temperature to initiate. [130]

Green synthesis
plant components such
as the leaf, and
other parts

This is a very environment
friendly, low-cost method that
does not require the use of
intermediate base groups.

[131]

Bacterial based
synthesis Green synthesis

Increased photocatalytic activity
when compared to other
substances, which destroys
organic waste and can, thus, be
utilized as a
bioremediation method.

Time-consuming microbe
screening, careful
monitoring to
avoid contamination.

[132]

5.2. Reaction of Zn and Alcohol

Alcohol is used for the synthesis of ZnO by chemical methods. Some amount of
ethanol is mixed with zinc powder. This mixture is heated at a high temperature for
some minutes, then the solution is kept at room temperature for two days. The product is
extracted from the resultant suspension, centrifuged, washed, and vacuum dried. Oxide
particle development is sluggish and controlled in alcoholic medium [133].

5.3. Vapor Transport Synthesis

The vapor transport approach is the most prevalent method. ZnO nanostructures are
formed when Zn and oxygen react. ZnO vapor can be produced by a variety of methods.
Another direct way is to heat zinc powder in the presence of oxygen, although the growth
temperature is relatively moderate. The ratio of Zn vapor pressure and oxygen pressure
must be carefully managed to acquire appropriate ZnO nanoparticles [129].

5.4. Hydrothermal Methodology

Due to low process temperatures, this technique is an effective method for controlling
particle size. This approach offers various advantages over the growth procedures, includ-
ing the use of simple apparatus, catalyst-free growth, less expensive, and homogeneous
production, as well as being eco-friendly and less toxic. Due to the low reaction tempera-
tures, this approach is appealing to microelectronics. This method has been used to make
ZnO NPs and other luminous materials with great success [130].

5.5. ZnO-NPs Green Synthesis

Owing to the growing popularity of green methods, several methods have been imple-
mented to produce ZnO-NPs using different sources, such as bacteria, fungus, algae, plants,
and others. A list of tables was prepared to summarize the research carried out in this
field [109]. The synthesis of biological nanoparticles represents an alternative for the physi-
cal and chemical methods of nanoparticle formation. The majority of researchers focused
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on the green synthesis of nanoparticles for the formation of metal and oxide nanoparticles.
The use of plants for the synthesis of nanoparticles is a rapid, low-cost, eco-friendly option
and is safe for human use [34]. Vitex negundo plant extract was used to produce ZnO
NPs with zinc nitrate hexahydrate as a precursor. The biosynthesized ZnO NPs showed
antimicrobial activities against E. coli and S. aureus bacteria [134]. Several biological systems
are utilized safely in biogenic NPs synthesis. However, employing microorganisms to
make nanoparticles is difficult due to the lengthy process of maintaining the cell cultures,
intracellular production, and many purifying stages. Due to the unique phytochemicals
that they produce, plant components are employed to make ZnO NPs. Extracts of plant
parts are an eco-friendly, less expensive method that does not require the use of middle
base groups (Figure 5). It takes a fraction of the time, requires no expensive equipment or
precursors, and produces highly quantity products devoid of contaminants [21].
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The most popular source of NP synthesis is plants because they allow for large
production as well as the generation of stable NPs with a variety of sizes and shapes [135].
Phytochemicals released by the plant are used to reduce metal ions 0 valences [30]. The
most popular approach for preparing ZnO-NPs from plant parts is to thoroughly wash the
plant component in running water and sanitize it with distilled water. The plant component
is then allowed to dry at room temperature before being weighed and crushed. Milli-Q
water is then added to the plant portion, and the mixture is cooked with constant stirring.
The solution is filtered using filter paper and the remaining solution is used as the plant
extract. To accomplish efficient mixing, a portion of this extract is mixed with an amount of
Zn nitrate, ZnO, and the combination is heated at the proper temperature. At this point,



Life 2022, 12, 594 13 of 28

some people experiment with temperature, pH, extract concentration, and duration to see
what works best. The mixture turns yellow after the incubation period, which is visible
evidence of the produced NPs [121].

ZnO-NPs can be synthesized through many physiochemical routes, such as sol-gel
processes, co-precipitation, laser vaporization, microemulsion, and ball milling [30]. Com-
monly, these preparation methods face several limitations, such as the high cost of equip-
ment, the large area required for equipment set up, and additional use of capping agents,
stabilizers and toxic chemicals [134]. Most of these chemical methods are not environ-
mentally friendly due to the use of harsh chemicals for stabilizing processes, which will
bind to the ZnO-NPs and limit their biological applications [109]. To overcome these
limitations, green chemistry procedures have attracted significant scientific attention and
have provided a new path for material researchers because they are safe and environ-
mentally friendly methods, which do not produce toxic by-products [130]. Developing
simple and green methods for synthesizing ZnO-NPs is, thus, important, and remains a
challenge for researchers [133]. Biosynthesis of NPs refers to the synthesis of NPs using
plants or microorganisms. NPs from such “green synthesis” have been used in the field of
drug, gene delivery, and various medical treatments including antimicrobial, anticancer,
anti-inflammatory, antiaging, antioxidant, and anti-biofilm inhibition [132]. Oxide NPs
synthesized using eukaryotic organisms such as fungi are beneficial due to their ability to
produce a large amount of enzymes [132]. In addition, there are three procedures which
have been frequently chosen for the preparation of ZnO-NPs. These procedures are cate-
gorized as {ZnAc (zinc acetate dihydrate), 2-Methoxyethanol, MEA}, {ZnAc, 2-Propanol,
DEA}, and {ZnAc, Ethylene Glycol, glycerol, 1-Propanol,}. In some studies, a simple,
green, cost-effective ultrasound assisted coating of ZnO-NPs on the paper surface, without
the aid of binders, have been reported. The paper surfaces coated with ZnO-NPs are
characterized using scanning electron microscope (SEM), X-ray diffraction (XRD), and
attenuated total reflectance-Fourier transform infrared (ATR-FTIR). Loading of ZnO-NPs
on the paper surface is estimated from the thermogravimetric analysis (TGA). Furthermore,
time-of-flight secondary ion mass spectrometry (TOF-SIMS) has been used to characterize
the surface composition of the coated surface, binding sites of the NPs, and distribution of
the coated ZnO-NPs [131].

5.6. Bacterial-Based Green Synthesis of ZnO-NPs

Although this technique is green-based, it shows some drawbacks, including time-
consuming microbe screening; it is also time-consuming and expensive. B. licheniformis
generated ZnO nanoflowers using a green synthesis method that showed photocatalytic
activity. The nanoflowers displayed increased photocatalytic activity and it is thought that
the bigger oxygen vacancy in the produced NPs is what gives them this ability. Photo-
catalysis produces active species by absorption of light [132].

5.7. Microalgae and Macroalgae Are Used in the Green Method of ZnO-NPs

Algae are photosynthetic organisms that can be unicellular (like Chlorella) or multi-
cellular. Algae are devoid of basic plant structures such as roots and leaves. Rhodophyta,
Phaeophyta, and chlorophytes are the three types of marine algae. Algae have been exten-
sively used in the production of nanoparticles of Au and Ag, but their use in the synthesis
of ZnO-NPs is narrow and documented in a few works [136].

5.8. Benefits of Green Synthesis of NPs

The idea emphasizes the use of environmentally friendly reagents. Although physical
and chemical approaches for nanoparticle manufacturing are faster and easier, the biogenic
process is more effective and environmentally friendly. It also decreases pollution [137].
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5.9. Nano Agrochemicals

Nano-agrochemicals are a combination of nanotechnology with agrochemicals that
have resulted in nano-fertilizers, nano-herbicides, nano-fungicides, nano-pesticides, and
nano-insecticides being developed. These nano-agrochemicals are now popular because
they are more effective than conventional agrochemicals, making them both economically
and environmentally viable [138].

As a result, it is safe to assume that this technology will be at the forefront of major
markets, with more investment and innovation. Nano-agrochemicals, on the other hand,
are still in their infancy and face obstacles in reaching farmers, with plausible causes being
higher production costs, a lack of awareness among farmers, environmental and human
effects, and so on. Novel agro-formulations with better benefits, such as organic-based
nano-materials, are expected to revolutionize and improve agriculture to a greater extent
around the world in the near future [137].

Farming contamination has been triggered by modern agricultural techniques. Due
to modern-day agricultural by-products, this process has the potential to degrade ecosys-
tems, land, and the environment. Agriculture is further harmed by the widespread use
of chemical fertilizers, pesticides, and contaminated water for irrigation. As a result, the
farm and food sector’s current situation are unsustainable. Nanotechnology has expanded
the agricultural sector’s innovative and resourceful horizons by bringing practical appli-
cations to traditional agricultural methods and practices [139]. Traditional agricultural
techniques have been revolutionized by the potential use of nanoscale agrochemicals, such
as nano-fertilizers, nano-pesticides, nano-sensors, and nano-formulations in agriculture.
The use of these nano-products in real-world scenarios, however, raises concerns regarding
nanomaterial safety, exposure levels, and toxicological consequences for the environment
and human health [140].

5.10. Nano Fertilizers

One of the potentially successful methods for significantly increasing worldwide
agricultural productions, needed to fulfil the future demands of the growing population, is
the development and use of new types of fertilizers employing creative nanotechnology.
Indeed, a study of the current literature suggests that some manufactured nanomaterials
can boost plant growth in specific concentration ranges and could be utilized as nano-
fertilizers in agriculture to boost agricultural yields and/or reduce pollution. This article
divides macronutrient nano-fertilizers, micronutrient nano-fertilizers, nutrient-loaded
nano-fertilizers, and plant-growth-enhancing nanomaterials into four groups.

Macronutrient nano-fertilizers are made up of one or more macronutrient components
(e.g., N, P, K, Mg, and Ca) and can, thus, provide these critical nutrients to plants. Large
amounts of macronutrient fertilizers (mostly N and P fertilizers) are used to boost food,
fiber, and other critical commodity production [141].

5.11. Micronutrient Nano-Fertilizers

These composite fertilizers usually include enough micronutrients to offer enough
nutrition while posing little environmental hazards. However, in some soils with an
alkaline pH, coarse texture, or low soil organic matter, plant availability of applied micro-
nutrients may be poor, resulting in micro-nutrient insufficiency [134]. Even under these
worst-case conditions, micronutrient nano-fertilizers may increase the bioavailability of
these nutrients to plants. Nano-fertilizer production and implementation are still in their
early phases, therefore, there are few, if any, particular studies or systematic studies on the
effects and benefits of using micronutrient nano-fertilizers in the field [114].

5.12. Nano Pesticides

Nano pesticide formulations (such as emulsifiable concentrates, oil in water emulsions,
microemulsions, nano-emulsions, and nano-dispersions) can be used in a variety of ways
to boost the solubility of water-insoluble substances [142]. The emulsifiable nano-pesticide
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concentrate is made up of a pesticide, an organic solvent, an emulsifier, and a few other
additions. Oil in water emulsion, a substitute for emulsifiable concentrate, is made by
dissolving insecticide in nonionic and polymeric surfactants, as well as block polymers.
Microemulsions are nano pesticide formulations with particle diameters 250 times smaller
than regular pesticide particles [143].

Microemulsions provide a number of advantages, including improved solubility, re-
duced phytotoxicity, and improved thermodynamic stability [144]. Nano-emulsions are
pesticide formulations based on nanotechnology that use a smaller amount of surfac-
tants [145]. The particle size ranges from 20 to 200 µm. Although nano-emulsions are
not thermodynamically stable, they are an excellent substitute for microemulsions [146].
Nano dispersion is a mixture of nano-crystals and liquid media that creates a larger sur-
face area, allowing the poorly water-soluble nano-crystals to completely dissolve in water.
Nanocrystals with a size of less than 50 nm dissolve more easily in water [147].

5.13. Nano Biosensors

Nano-biosensors are nano-sized sensors that have changed agriculture. These sensors
are significant because they help to increase agricultural outputs and administer nano-based
agrochemicals such as nano fertilizers and nano insecticides. Nano biosensors can detect
physical and environmental elements in the plant’s environment, such as temperature,
pH, humidity, soil parameters, moisture content, and the organic environment in the
plant’s environment, such as plant-microbe interaction analysis, aflatoxins presence, and
seed viability [148,149]. Work on biosensors began in 1962, and the fourth generation of
biosensors has already been introduced as a result of different nano-based improvements.
Nano-based formulations entail particle size reductions of up to a billionth of a meter, or
10-9. The first generation of biosensors created electrical signals as their output, while the
present fourth generation of biosensors is rich in nano-based alteration and produces the
best electrochemical response [150].

Nanotechnology-based biosensors can be divided into several categories. The elec-
trochemical biosensors provide an electrochemical signal as a response. The creation of
electrochemical signals is connected with the consumption of ions and electrons by the
target element [150].

6. Applications of ZnO

Zinc oxide is harmless, and used to degrade the contaminated material of the environ-
ment [151]. Food and Drug Administration classified ZnO as a “generally regarded as safe
(GRAS)” material that is also utilized as a food stabilizer. Zinc oxide (ZnO) nanoparticles are
preferred over other metal oxide nanoparticles due to their wide range of uses, including
gas sensors, biosensors, cosmetics, storage, solar cells, and medication administration [152].

6.1. Cancer Treatment Using ZnO-NPs

As a biomarker in similar ex vivo experiments, ZnO-NPs were demonstrated to have a
great degree of cancer cell selectivity, surpassing therapeutic directories of certain regularly
used chemotherapeutic drugs [126,153].

This indiscriminate activity frequently results in toxicity and devastating side effects
in normal human tissues, all of which limit the chemotherapeutic drug’s maximum al-
lowed dose [154]. The increased permeation and retention effect is a phenomenon in
which the size of the NPs facilitates their entrance into the tumor cells. The utilization
of the EPR effect in therapeutic techniques is now considered the “gold standard” in the
development of novel anticancer drugs. The phenomenon of EPR explained as a changes
in angiogenic regulators [133].

This localized imbalance permits nanoparticles of specific sizes to penetrate the tumor
interstitial space with ease, but remain passively held, enhancing therapeutic potential.
Biomarkers made of ZnO and the other metal oxide nanoparticles for cancer diagnosis,
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screening, and imaging. ZnO-NPs encapsulated with polymethyl methacrylate have been
proven to be beneficial in the detection of low abundant biomarkers in recent research [107].

6.2. Applications in Biomedicine

Solids and powders of ZnO nano powders are available. Antifungal, anti-corrosive,
antibacterial, and anti-corrosive capabilities are all present in these nanoparticles.

6.3. Antimicrobial Properties (Anti-Fungal and Anti-Bacterial)

Metal oxide (ZnO-NPs) powders were tested in culture conditions for the activity of
antimicrobial against the bacteria and fungi. The larger surface area to volume ratio of
these tiny particles accounts for their increased bioactivity. Against harmful microbes, ZnO
nanoparticles are an excellent antimicrobial agent [36]. Basically, the antibacterial activity
of these metal oxide particles could be attributed to the active oxygen species produced
by them. Increased pathogenic strain outbreaks and infections, antibiotic resistance, the
introduction of new mutations, the lack of an appropriate vaccination in developing coun-
tries, and hospital-associated illnesses are all global health threats to humans, especially in
children [134]. The infections caused by Shigella flexneri, for example, result in 1.5 million
fatalities each year as a result of contaminated food and drinks [155]. The vast range of ap-
plications of ZnO-NPs as an antibacterial agent resulted from research including, biologists,
chemists, and medicine. One of the most important applications is in the food business,
where it is used as an antibacterial agent against food-borne pathogens. Nanomaterials
are attracting a lot of attention in the food industry due to their great reactivity, increased
bio-availability and bio-activity, and unique surface properties [156]. The incorporation
of NPs on the food surface to limit bacterial development is one of the key benefits of
employing NPs in food nanotechnology [157]. The ZnO-NPs antibacterial activity contains
the interaction between the zinc oxide and the surface of the cell that can change the perme-
ability of the cell membrane; then, these nanoparticles inter in the bacterial cell. In bacterial
cells, these nanoparticles cause oxidative stress, which can inhibit the growth of cells and
can also cause the death of that cell [158]. This activity of nanoparticles shows that these
ZnO-NPs are also used in the food industry to clean the equipment and to protect food
from bacterial disease [159].

6.4. The Function of ZnO-NPs in the Agriculture

Agriculture is the backbone of third-world economies. It is facing a number of chal-
lenges, such as climate change, urbanization, sustainable resource use, and environmental
issues, such as runoff, pesticide accumulation, fertilizer, and the population of the world
that is increasing gradually and is expected to increase at a large scale in the future. As a
result, in order to make agriculture more sustainable, we must implement efficient prac-
tices [109]. Nanotechnology techniques are altering agriculture and food production in
many ways. These techniques have the potential to change the forming techniques. It is
effective in controlling the damage from pesticides and fertilizers. That is why it increases
food production and improves the growth of all crops. This is the less expensive technique
to reduce the damage [34,108,160].

The creation of nano-sensors aid in estimating the amount of the farm inputs like
fertilizers and pesticides that are necessary. The moisture content of the soil and the nu-
trients that are present in the soil can also be detected by these nanosensors [161,162].
Nano fertilizers are quickly absorbed by plants. Slow-release nano encapsulated fertilizers
can reduce fertilizer use while also reducing pollution. ZnO-NPs have the potential to
enhance food crop productivity and growth. Different quantities of zinc oxide nanopar-
ticles were applied to peanut seeds. Seed germination, seedling vigor, and plant growth
were all improved with a ZnO nanoscale treatment at 1000 ppm concentration, and these
zinc oxide nanoparticles were also beneficial in enhancing stem and root growth in the
peanuts plants [41].
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Nano fertilizers are used to provide nutrients to the plants and can also restore the
soil. These are more effective than common fertilizers that are used in plants. Without
any adverse effects of chemical fertilizers, they can restore the soil’s organic conditions.
Nano fertilizers have the advantage of being able to be applied in extremely small doses.
Ordinary fertilizers would require 150 kg for an adult tree; however, organic fertilizers
only require 40–50 kg. Nano powders have also been utilized successfully as fertilizers
and herbicides. The yield of wheat plants developed from metal nanoparticle-treated seeds
rose by 20–25% on average [163]. Nano fertilizers have the advantage of being able to be
applied in extremely small doses. Ordinary fertilizers would require 150 kg for an adult
tree; however, organic fertilizers only require 40–50 kg. Nano powders can be utilized
as fertilizers and pesticides with success [164]. ZnO nanoparticles are employed in nano
fertilizers, and colloidal solutions of ZnO NPs are used in agriculture. Crops that are treated
with these nanoparticles grow faster and produce more. The output of staple food crops is
substantially lower as food demand rises day by day. Metal NPs for sustainable agriculture
are therefore urgently needed [164].

6.5. Use in Water Treatment

Nanoparticles are projected to play a critical part in water filtration. The environmental
destiny and the toxicity of the substance are important thoughts in water purification
material selection and design [165,166]. Although nanotechnology is undoubtedly high to
existing water treatment techniques, our understanding of the environmental destiny and
toxicity of nanoparticles is still in its start [167].

Most of the present issues with water quality are remedied or considerably reduced
by using non-absorbent nano-catalysts, bio-active nanoparticles, nanostructured catalytic
membranes, and other nanoscale science and engineering advances. Metal nutrients,
cyanide organics, algae, bacteria, parasites, viruses, anti-biotics, and biological agents are
utilized for terrorism. The development of innovative desalination methods is one of the
common intriguing and promising areas of the research [168]. Due to its simplicity, low
cost, ease of parameter control, and great effectiveness in degrading organic and inorganic
compounds in aqueous systems, photocatalytic methods have been investigated [166].

6.6. Effects of ZnO-NPs on the Plant Growth

The increasing production and applications of engineered NPs have generated an
emerging area of research that focuses on their environmental and ecological impacts [21].
Numerous studies have shown metal-based NPs may result in accumulation of themselves
and/or the component metal in edible plants [51], either reduce or improve crops’ yield
and productivity [169], and sometimes negatively impact soil microbial communities and
activity [108]. Due to their high specific surface area and complexing capability, NPs may
adsorb pollutants, subsequently changing the transport, bioavailability and toxicity of
both the NPs and the pollutants. NPs are compounds with diameters ranging from 1
to 100 nm that have become extensively used in recent years. Organisms consider ZnO-
NPs to be a “bio safe substance.” At various developmental stages, ZnO-NPs show the
ability to germinate the seed and to stimulate plant growth (Figure 6), and it also decreases
disease infection, due to their antibacterial action. ZnO-NPs show positive and negative
effects on the growth of plants and many metabolic activities at various developmental
stages. The characteristics of ZnO-NPs, influence their uptake, transport, and accumulation
by plants [119,122].

NPs of various metal oxides can help plants grow and produce more, but research
into the toxicological effects of NPs is increasing all the time. Studies are undertaken to
determine the effects of ZnO-NPs on the plants [170]. In the presence of ZnO-NPs, ryegrass
biomass dramatically decreased, root tips shrank, and root epidermal cortical cells became
extensively vacuolated, according to toxicological tests. Individual ZnO-NPs found in
the apoplast and protoplast of root endodermis and stele in wheat treated with ZnO-NPs
were translocated [26,171].
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6.7. ZnO-NPs Have Negative or Toxic Effects

Due to the increasing use of NPs and their release in the environment, it is necessary
to determine the toxicity of nanoparticles. Vicario-Pares et al. [172] conducted a toxicity
study of three metal oxide NPs, namely, CuO NPs (copper oxide nanoparticles), ZnO NPs,
and TiO2 NPs against zebra fish embryo. ZnO-NPs were found to be less toxic than the
ionic form of Zn, which exerts the highest toxicity. Further, ZnO-NPs were found to exhibit
a higher antibacterial activity against Staphylococcus epidermidis and Enterobacter aerogenes.
Results of the toxicity study show that ZnO-NPs at a concentration of 10 mg/mL did not
show any significant effect on survival and malformation in the zebra fish embryo [173].
In spite of the fact that ZnO-NPs are important commercially and are found in a variety
of products, there is an increasing public interest in learning more about their toxic and
environmental impacts. Research on ZnO nano-particles showed that it may pose health
and eco concerns [174].

7. Application of ZnO Reduce the Heavy Metal Stress

Most heavy metals are produced by pollution and their presence causes many eco-
logical, evolutionary, and nutritional problems [175–178]. Many risks are created due to
heavy metal contamination, like soil pollution, as well as security of food and its qual-
ity [86,179–182]. Heavy metals cause many harmful effects for living things, including
plants [92,183,184]. They decrease the growth and development of plants even at low con-
centrations of heavy metals with respect to other metals [185–187]. Excess amounts of other
metals or elements do not damage the tissues/cells of the plant, and their accumulation
can even increase the growth of the plant [188–191]. Metals which are lethal or harmful
for plants include Pb, Cd, Co, Fe, Hg, Pt, Ni, Cr, Cu, and Zn [44,192]. Agricultural soil
is befouled by many heavy metals, which is a major issue. Many anthropogenic activi-
ties, such as urbanization, smelting, sludge, military operations, mining, dumping, and
excess amounts of pesticide and insecticide applications, affect soil and the effectiveness of
the plant [68,193].

Recently, there has been a flow of interest in studying the effect of nanoparticles on
the reduction of heavy metal toxicity. Heavy metals (Cd, Pb, Ag, CU, and Zn), nutrients,
cyanide, and the other organics are detected and removed using a variety of nanomateri-
als like that nano-particles, nanomembranes, and nano powder [164]. Phytoremediation
researchers are testing whether metal nanoparticle amendment can promote hyperaccumu-
lation without damaging plant biomass, thanks to the use of nano-technology in water the
purification and supply systems of water [194]. The current study examines the impact of
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Phyto molecule-loaded ZnO-NPs in Cd and Pb hyperaccumulation in Leucaena leucocephala.
ZnO-NPs have unique optical and electrical properties that can be employed in a range of
applications, including coatings to remove harmful chemical and biological contaminants,
such as heavy metals [108]. After 3 days of remediation, Mohsenzadeh and Rad [195]
measured the efficiency of plant-derived Zn nanoparticles and found a lower level of
Pb and Cd heavy metals in the polluted water. Ma et al. [196] summarized the effect of
metallic nano-particles. It also showed that some adverse effects on plant growth affect the
metabolic activities of some higher plants. It has a negative effect on some physiological
functions. It inhibits the root growth, decreases the chlorophyll content, and the delays the
development of plant. The effect of ZnO-NPs with different sources on the growth and
eco-physiology of the plants are presented in Table 3.

Table 3. Effect of ZnO-NPs on plant species.

Plant Species Application of Nanoparticles Effects References

Zea mays Foliar spray Grain yield increased and zinc content of grain
also increased [197]

Oryza sativa Plant agar Growth increased [198]

Glycin max Paper (petri dishes) Seedling growth inhibited [199]

Phaseolous vulgaris Foliar spray All the growth parameters prompted and
increased the content of guar gun [132]

Solanum lycopersicum substrate It reduced the chlorophyll and the activity of
antioxidants increased [115]

Pisum sativum substrate sucrose, carotenoids and chlorophyll
content increased [126]

Arabidopsis thaliana Plant agar Germination and growth of seedling inhibited [130]

Vigna radiate Plant agar Seedling growth promoted at
<20 mg/L concentration [200]

Arachis hypogea Foliar spray
Promote early flowering, increase the
chlorophyll content, better sapling viability,
germination also promoted

[41]

8. Conclusions

Zn is a micronutrient, and standard zinc fertilizers (among others) have a low bioavail-
ability problem due to the element’s fixation to compounds in the soil that are insoluble.
Enlightening our understanding of different forms of Zn, as well as uptake and the assimila-
tion of Zn by higher plants, could be the first step toward more widespread use of ZnO-NPs
in agriculture for plant nutrition and protection. When discussing nano fertilizers and other
goods, we must not overlook their toxicity, which is one of the most significant barriers
to their adoption. Plant systems capable of limiting and reducing the harmful effects of
Zn-NPs should be the focus of study in this area. Furthermore, during toxicity tests, we
should avoid using excessively high doses of Zn-NPs. Plants require modest levels of Zn
(and other minerals) to grow and develop properly. In the recent decade, synthesis of the
NPs using an environmentally benign manner has been a focus of study. For the production
of shape and size-regulated nanoparticles, green sources operate as both a stabilizing and
a reducing agent. Extension of laboratory-based studies to industrial scale, clarification
of phytochemicals involved in NPs synthesis using the bioinformatics techniques, and
derivation of the exact mechanism involved in pathogenic bacteria inhibition are all future
prospects for plant-mediated NPs synthesis. Plant-based nanoparticles offer a wide range of
applications in food and pharmaceuticals and have, thus, become a prominent study topic.
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106. Benáková, M.; Ahmadi, H.; Dučaiová, Z.; Tylová, E.; Clemens, S.; Tůma, J. Effects of Cd and Zn on physiological and anatomical
properties of hydroponically grown Brassica napus plants. Environ. Sci. Pollut. Res. 2017, 24, 20705–20716. [CrossRef]

107. Ahmad, S.; Mfarrej, M.F.B.; El-Esawi, M.A.; Waseem, M.; Alatawi, A.; Nafees, M.; Saleem, M.H.; Rizwan, M.; Yasmeen, T.; Anayat,
A.; et al. Chromium-resistant Staphylococcus aureus alleviates chromium toxicity by developing synergistic relationships with
zinc oxide nanoparticles in wheat. Ecotoxicol. Environ. Saf. 2022, 230, 113142. [CrossRef]

108. Faizan, M.; Sehar, S.; Rajput, V.D.; Faraz, A.; Afzal, S.; Minkina, T.; Sushkova, S.; Adil, M.F.; Yu, F.; Alatar, A.A.; et al. Modulation
of Cellular Redox Status and Antioxidant Defense System after Synergistic Application of Zinc Oxide Nanoparticles and Salicylic
Acid in Rice (Oryza sativa) Plant under Arsenic Stress. Plants 2021, 10, 2254. [CrossRef]

109. Bhat, J.A.; Faizan, M.; Bhat, M.A.; Huang, F.; Yu, D.; Ahmad, A.; Bajguz, A.; Ahmad, P. Defense interplay of the zinc-oxide
nanoparticles and melatonin in alleviating the arsenic stress in soybean (Glycine max L.). Chemosphere 2022, 288, 132471. [CrossRef]

110. Ahmad, P.; Alyemeni, M.N.; Al-Huqail, A.A.; Alqahtani, M.A.; Wijaya, L.; Ashraf, M.; Kaya, C.; Bajguz, A. Zinc oxide nanoparticles
application alleviates arsenic (As) toxicity in soybean plants by restricting the uptake of as and modulating key biochemical
attributes, antioxidant enzymes, ascorbate-glutathione cycle and glyoxalase system. Plants 2020, 9, 825. [CrossRef]

111. Siddiqui, H.; Ahmed, K.B.M.; Sami, F.; Hayat, S. Silicon nanoparticles and plants: Current knowledge and future perspectives.
Sustain. Agric. Rev. 2020, 41, 129–142.

112. Welch, C.M.; Compton, R.G. The use of nanoparticles in electroanalysis: A review. Anal. Bioanal. Chem. 2006, 384, 601–619.
[CrossRef]

113. Muszynska, E.; Hanus-Fajerska, E. Why are heavy metal hyperaccumulating plants so amazing? BioTechnologia J. Biotechnol.
Comput. Biol. Bionanotechnol. 2015, 96, 265–271. [CrossRef]

114. Faizan, M.; Bhat, J.A.; Hessini, K.; Yu, F.; Ahmad, P. Zinc oxide nanoparticles alleviates the adverse effects of cadmium stress on
Oryza sativa via modulation of the photosynthesis and antioxidant defense system. Ecotoxicol. Environ. Saf. 2021, 220, 112401.
[CrossRef] [PubMed]

115. Zarschler, K.; Rocks, L.; Licciardello, N.; Boselli, L.; Polo, E.; Garcia, K.P.; De Cola, L.; Stephan, H.; Dawson, K.A. Ultrasmall
inorganic nanoparticles: State-of-the-art and perspectives for biomedical applications. Nanomed. Nanotechnol. Biol. Med. 2016, 12,
1663–1701. [CrossRef] [PubMed]

http://doi.org/10.1016/j.jenvman.2019.109994
http://www.ncbi.nlm.nih.gov/pubmed/31868646
http://doi.org/10.1007/s11356-019-07264-7
http://www.ncbi.nlm.nih.gov/pubmed/31848948
http://doi.org/10.1007/s12298-020-00912-0
http://www.ncbi.nlm.nih.gov/pubmed/33424157
http://doi.org/10.1016/j.ecoenv.2019.109915
http://doi.org/10.7717/peerj.9267
http://doi.org/10.3390/agronomy11071411
http://doi.org/10.3390/su13158513
http://doi.org/10.3390/su132112329
http://doi.org/10.1111/ppl.13497
http://www.ncbi.nlm.nih.gov/pubmed/34245030
https://link.springer.com/article/10.1007/s00344-021-10401-7
https://link.springer.com/article/10.1007/s00344-021-10401-7
http://doi.org/10.1007/s00344-021-10401-7
http://doi.org/10.1080/01904167.2013.859700
http://doi.org/10.1007/s11356-017-9697-7
http://doi.org/10.1016/j.ecoenv.2021.113142
http://doi.org/10.3390/plants10112254
http://doi.org/10.1016/j.chemosphere.2021.132471
http://doi.org/10.3390/plants9070825
http://doi.org/10.1007/s00216-005-0230-3
http://doi.org/10.5114/bta.2015.57730
http://doi.org/10.1016/j.ecoenv.2021.112401
http://www.ncbi.nlm.nih.gov/pubmed/34118747
http://doi.org/10.1016/j.nano.2016.02.019
http://www.ncbi.nlm.nih.gov/pubmed/27013135


Life 2022, 12, 594 25 of 28

116. Hannah, W.; Thompson, P.B. Nanotechnology, risk and the environment: A review. J. Environ. Monit. 2008, 10, 291–300. [CrossRef]
117. McNeil, S.E. Nanotechnology for the biologist. J. Leukoc. Biol. 2005, 78, 585–594. [CrossRef]
118. Manjunatha, S.; Biradar, D.; Aladakatti, Y.R. Nanotechnology and its applications in agriculture: A review. J. Farm. Sci. 2016, 29,

1–13.
119. Ali, M.; Wang, X.; Haroon, U.; Chaudhary, H.J.; Kamal, A.; Ali, Q.; Saleem, M.H.; Usman, K.; Alatawi, A.; Ali, S.; et al. Antifungal

activity of Zinc nitrate derived nano Zno fungicide synthesized from Trachyspermum ammi to control fruit rot disease of
grapefruit. Ecotoxicol. Environ. Saf. 2022, 233, 113311. [CrossRef]

120. Suriyaprabha, R.; Karunakaran, G.; Yuvakkumar, R.; Prabu, P.; Rajendran, V.; Kannan, N. Growth and physiological responses of
maize (Zea mays L.) to porous silica nanoparticles in soil. J. Nanoparticle Res. 2012, 14, 1294. [CrossRef]

121. Fu, X.; Cai, J.; Zhang, X.; Li, W.-D.; Ge, H.; Hu, Y. Top-down fabrication of shape-controlled, monodisperse nanoparticles for
biomedical applications. Adv. Drug Deliv. Rev. 2018, 132, 169–187. [CrossRef]

122. Cao, Z.; Rossi, L.; Stowers, C.; Zhang, W.; Lombardini, L.; Ma, X. The impact of cerium oxide nanoparticles on the physiology of
soybean (Glycine max (L.) Merr.) under different soil moisture conditions. Environ. Sci. Pollut. Res. 2018, 25, 930–939. [CrossRef]

123. Rossi, L.; Fedenia, L.N.; Sharifan, H.; Ma, X.; Lombardini, L. Effects of foliar application of zinc sulfate and zinc nanoparticles in
coffee (Coffea arabica L.) plants. Plant Physiol. Biochem. 2019, 135, 160–166. [CrossRef] [PubMed]

124. Faizan, M.; Faraz, A.; Mir, A.R.; Hayat, S. Role of zinc oxide nanoparticles in countering negative effects generated by cadmium
in Lycopersicon esculentum. J. Plant Growth Regul. 2021, 40, 101–115. [CrossRef]

125. Yuvaraj, M.; Subramanian, K. Controlled-release fertilizer of zinc encapsulated by a manganese hollow core shell. Soil Sci. Plant
Nutr. 2015, 61, 319–326. [CrossRef]

126. Mukherjee, A.; Pokhrel, S.; Bandyopadhyay, S.; Mädler, L.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. A soil mediated phyto-
toxicological study of iron doped zinc oxide nanoparticles (Fe@ ZnO) in green peas (Pisum sativum L.). Chem. Eng. J. 2014, 258,
394–401. [CrossRef]

127. Moghaddasi, S.; Fotovat, A.; Khoshgoftarmanesh, A.H.; Karimzadeh, F.; Khazaei, H.R.; Khorassani, R. Bioavailability of coated
and uncoated ZnO nanoparticles to cucumber in soil with or without organic matter. Ecotoxicol. Environ. Saf. 2017, 144, 543–551.
[CrossRef] [PubMed]

128. Hudlikar, M.; Joglekar, S.; Dhaygude, M.; Kodam, K. Latex-mediated synthesis of ZnS nanoparticles: Green synthesis approach. J.
Nanoparticle Res. 2012, 14, 865. [CrossRef]

129. Kong, X.Y.; Wang, Z.L. Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts.
Nano Lett. 2003, 3, 1625–1631. [CrossRef]

130. Lee, C.Y.; Tseng, T.Y.; Li, S.Y.; Lin, P. Effect of phosphorus dopant on photoluminescence and field-emission characteristics of
Mg0.1 Zn0.9 O nanowires. J. Appl. Phys. 2006, 99, 024303. [CrossRef]

131. Heinlaan, M.; Ivask, A.; Blinova, I.; Dubourguier, H.-C.; Kahru, A. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria
Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 2008, 71, 1308–1316. [CrossRef]

132. Raliya, R.; Tarafdar, J.C. ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum
contents in Clusterbean (Cyamopsis tetragonoloba L.). Agric. Res. 2013, 2, 48–57. [CrossRef]

133. Ruchika, A.K. Performance analysis of Zinc oxide based alcohol sensors. Int. J. Appl. Sci. Eng. Res. 2015, 4, 428–436.
134. Ambika, S.; Sundrarajan, M. Antibacterial behaviour of Vitex negundo extract assisted ZnO nanoparticles against pathogenic

bacteria. J. Photochem. Photobiol. B Biol. 2015, 146, 52–57. [CrossRef] [PubMed]
135. Kittelson, D.B. Engines and nanoparticles: A review. J. Aerosol Sci. 1998, 29, 575–588. [CrossRef]
136. Thema, F.; Manikandan, E.; Dhlamini, M.; Maaza, M. Green synthesis of ZnO nanoparticles via Agathosma betulina natural

extract. Mater. Lett. 2015, 161, 124–127. [CrossRef]
137. Adrees, M.; Khan, Z.S.; Ali, S.; Hafeez, M.; Khalid, S.; ur Rehman, M.Z.; Hussain, A.; Hussain, K.; Chatha, S.A.S.; Rizwan, M.

Simultaneous mitigation of cadmium and drought stress in wheat by soil application of iron nanoparticles. Chemosphere 2020, 238,
124681. [CrossRef]

138. Mohanraj, V.; Chen, Y. Nanoparticles-a review. Trop. J. Pharm. Res. 2006, 5, 561–573. [CrossRef]
139. Mandal, S.M.; Bhattacharyya, R.N. Heavy metal toxicity on seed germination of four pulses. Int. J. Plant Sci. 2007, 2, 124–127.
140. Hussain, A.; Rizwan, M.; Ali, Q.; Ali, S. Seed priming with silicon nanoparticles improved the biomass and yield while reduced

the oxidative stress and cadmium concentration in wheat grains. Environ. Sci. Pollut. Res. 2019, 26, 7579–7588. [CrossRef]
141. Nair, P.M.G.; Chung, I.M. Study on the correlation between copper oxide nanoparticles induced growth suppression and enhanced

lignification in Indian mustard (Brassica juncea L.). Ecotoxicol. Environ. Saf. 2015, 113, 302–313. [CrossRef]
142. Kamal, A.; Saleem, M.H.; Alshaya, H.; Okla, M.K.; Chaudhary, H.J.; Munis, M.F.H. Ball-milled synthesis of maize biochar-ZnO

nanocomposite (MB-ZnO) and estimation of its photocatalyticability against different organic and inorganic pollutants. J. Saudi
Chem. Soc. 2022, 26, 101445. [CrossRef]

143. Raj, S.N.; Anooj, E.; Rajendran, K.; Vallinayagam, S. A comprehensive review on regulatory invention of nano pesticides in
Agricultural nano formulation and food system. J. Mol. Struct. 2021, 1239, 130517.

144. Benelli, G.; Maggi, F.; Pavela, R.; Murugan, K.; Govindarajan, M.; Vaseeharan, B.; Petrelli, R.; Cappellacci, L.; Kumar, S.; Hofer, A.
Mosquito control with green nanopesticides: Towards the One Health approach? A review of non-target effects. Environ. Sci.
Pollut. Res. 2018, 25, 10184–10206. [CrossRef] [PubMed]

145. Chhipa, H. Nanofertilizers and nanopesticides for agriculture. Environ. Chem. Lett. 2017, 15, 15–22. [CrossRef]

http://doi.org/10.1039/b718127m
http://doi.org/10.1189/jlb.0205074
http://doi.org/10.1016/j.ecoenv.2022.113311
http://doi.org/10.1007/s11051-012-1294-6
http://doi.org/10.1016/j.addr.2018.07.006
http://doi.org/10.1007/s11356-017-0501-5
http://doi.org/10.1016/j.plaphy.2018.12.005
http://www.ncbi.nlm.nih.gov/pubmed/30553137
http://doi.org/10.1007/s00344-019-10059-2
http://doi.org/10.1080/00380768.2014.979327
http://doi.org/10.1016/j.cej.2014.06.112
http://doi.org/10.1016/j.ecoenv.2017.06.074
http://www.ncbi.nlm.nih.gov/pubmed/28688355
http://doi.org/10.1007/s11051-012-0865-x
http://doi.org/10.1021/nl034463p
http://doi.org/10.1063/1.2161420
http://doi.org/10.1016/j.chemosphere.2007.11.047
http://doi.org/10.1007/s40003-012-0049-z
http://doi.org/10.1016/j.jphotobiol.2015.02.020
http://www.ncbi.nlm.nih.gov/pubmed/25817218
http://doi.org/10.1016/S0021-8502(97)10037-4
http://doi.org/10.1016/j.matlet.2015.08.052
http://doi.org/10.1016/j.chemosphere.2019.124681
http://doi.org/10.4314/tjpr.v5i1.14634
http://doi.org/10.1007/s11356-019-04210-5
http://doi.org/10.1016/j.ecoenv.2014.12.013
http://doi.org/10.1016/j.jscs.2022.101445
http://doi.org/10.1007/s11356-017-9752-4
http://www.ncbi.nlm.nih.gov/pubmed/28755145
http://doi.org/10.1007/s10311-016-0600-4


Life 2022, 12, 594 26 of 28

146. Hayles, J.; Johnson, L.; Worthley, C.; Losic, D. Nanopesticides: A review of current research and perspectives. New Pestic. Soil
Sens. 2017, 193–225. [CrossRef]

147. Kah, M.; Hofmann, T. Nanopesticide research: Current trends and future priorities. Environ. Int. 2014, 63, 224–235. [CrossRef]
[PubMed]

148. Hammond, J.L.; Formisano, N.; Estrela, P.; Carrara, S.; Tkac, J. Electrochemical biosensors and nanobiosensors. Essays Biochem.
2016, 60, 69–80. [PubMed]

149. Razavi, H.; Janfaza, S. Medical nanobiosensors: A tutorial review. Nanomed. J. 2015, 2, 74–87.
150. Chen, J.; Miao, Y.; He, N.; Wu, X.; Li, S. Nanotechnology and biosensors. Biotechnol. Adv. 2004, 22, 505–518.
151. Seow, Z.; Wong, A.; Thavasi, V.; Jose, R.; Ramakrishna, S.; Ho, G. Controlled synthesis and application of ZnO nanoparticles,

nanorods and nanospheres in dye-sensitized solar cells. Nanotechnology 2008, 20, 045604. [CrossRef]
152. Pandey, A.C.; Sanjay, S.S.; Yadav, R. Application of ZnO nanoparticles in influencing the growth rate of Cicer arietinum. J. Exp.

Nanosci. 2010, 5, 488–497. [CrossRef]
153. Salah, S.M.; Yajing, G.; Dongdong, C.; Jie, L.; Aamir, N.; Qijuan, H.; Weimin, H.; Mingyu, N.; Jin, H. Seed priming with

polyethylene glycol regulating the physiological and molecular mechanism in rice (Oryza sativa L.) under nano-ZnO stress. Sci.
Rep. 2015, 5, 14278. [CrossRef] [PubMed]

154. Sharma, P.; Jang, N.-Y.; Lee, J.-W.; Park, B.C.; Kim, Y.K.; Cho, N.-H. Application of ZnO-based nanocomposites for vaccines and
cancer immunotherapy. Pharmaceutics 2019, 11, 493. [CrossRef] [PubMed]

155. Kotloff, K.L.; Winickoff, J.P.; Ivanoff, B.; Clemens, J.D.; Swerdlow, D.L.; Sansonetti, P.J.; Adak, G.; Levine, M. Global burden of
Shigella infections: Implications for vaccine development and implementation of control strategies. Bull. World Health Organ.
1999, 77, 651. [PubMed]

156. Cheng, B.; Chen, F.; Wang, C.; Liu, X.; Yue, L.; Cao, X.; Wang, Z.; Xing, B. The molecular mechanisms of silica nanomaterials
enhancing the rice (Oryza sativa L.) resistance to planthoppers (Nilaparvata lugens Stal). Sci. Total Environ. 2021, 767, 144967.
[CrossRef] [PubMed]

157. Sarraf, M.; Vishwakarma, K.; Kumar, V.; Arif, N.; Das, S.; Johnson, R.; Janeeshma, E.; Puthur, J.T.; Aliniaeifard, S.; Chauhan,
D.K.; et al. Metal/Metalloid-Based Nanomaterials for Plant Abiotic Stress Tolerance: An Overview of the Mechanisms. Plants
2022, 11, 316. [CrossRef] [PubMed]
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