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Abstract Nowadays, key-value stores play an impor-
tant role in cloud storage services and large-scale high-
performance applications. This paper proposes a new
approach in design key-value store and presents Zing Data-
base (ZDB) which is a high-performance persistent key-value
store designed for optimizing reading and writing operations.
This key-value store supports sequential write, single disk
seek random write and single disk seek for read operations.
Key contributions of this paper are the principles in archi-
tecture, design and implementation of a high-performance
persistent key-value store. This is achieved using a data file
structure organized as commit log storage where every new
data are appended to the end of the data file. An in-memory
index is used for supporting random reading in the commit
log. ZDB architecture optimizes the index of key-value store
for auto-incremental integer keys which can be applied in
storing many real-life data efficiently with minimize mem-
ory overhead and reduce the complexity for partitioning data.
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1 Introduction

Key-value store is a type of nosql databases. It has simple
interface with only one two-column table. Each record has
two fields: key and value. The type of value is string/binary,
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the type of key can be integer or string/binary. There are many
implementation and design of key-value store including in-
memory based and disk persistent. In-memory based key-
value store is often used for caching data, disk persistent
key-value store is used for storing data permanently in file
system.

High-performance key-value stores have been given large
attention in several domains, equally in industry and acad-
emics. E-commerce related platforms [15], data de-
duplication [13,14,23], photo merchants [10], web object
caching [7,9,16] etc. Attention paid to key-value stores
proves the importance of the key-value store that has already
been used. Before this research, we had used some popu-
lar key/value storage libraries using B-tree and on-disk hash
table for building persistent cache storage system for appli-
cations. When the number of items in database increases
and the data of the application grow to millions of items,
the libraries we used worked more slowly for both reading
and writing operations. It is therefore important to imple-
ment a simple and high-performance persistent key-value
store which can perform better than the existing key-value
stores both in memory consumption and in speed.

Some popular key-value storages such as Berkeley DB
[5] (BDB) used B-tree structure or hash table often store
the index in a file on the disk. For each database writing
operation, it needs at least two disk seeking [22,32], the first
seeking for updating B-tree or hash table, and the second
for updating data. In case of re-structured B-tree, it needs
more disk seek in reading/writing operations. Consequently,
data growth means writing rate increases thus making B-tree
storage slower.

With popular commodity hard disk and SSD nowadays,
sequential disk writing has the best performance [7,22] so
the strategy for the new key-value store is to support sequen-
tial data writing, and minimize number of disk seeks in every
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operation. To use all capacity of limited IO resources, achieve
high-performance and low-latency, key-value storage must
minimize number of disk seeking in every operation and all
writing operations should be sequential or append only on
disk. This research presents algorithms that implement effi-
cient storage of key-value data on drive. They will minimize
the required number of disk seeking. This research is done to
optimize disk reading/writing operation in data services of
applications.

Understanding the characteristics of data types especially
the type of key in key-value pair is important to design the
scalable store system for that data. There are several popu-
lar key types: variable-length string, fixed-size binary, ran-
dom integers, auto-incremental integer... In popular applica-
tions, incremental integer keys are used widely in database
design. For example: the identification of Users, Feeds, Doc-
uments, Commercial Transactions... So optimizing the key-
value store for auto-incremental integer keys is very mean-
ingful.

This research firstly optimizes memory consumption of
index of key-value store for auto-incremental integer keys.
It also reduces the complexity of partitioning data. This
research also extends the work for supporting variable length
string keys in a simple way.

These are main contributions of this paper:

— The design and implementation of flat index and random
readable log storage that make high-performance, low-
latency key-value store

— Minimize memory usage of the index and optimize for
auto-incremental integer keys and make the zero false pos-
itive rate of flash/disk reads key-value store.

— Find and remove some disadvantages in previous research
indesign and implementation key-value store such as SILT
[20] and FAWN-DS [8]. disadvantages from FAWN-DS
and SILT: hash keys using SHA and use hash values as
string keys in key-value store. It is difficult to iterate the
store.

2 Zing Database architecture

Zing Database (ZDB) is designed for optimizing both read-
ing and writing operations. It needs at most one disk seek
for the operations. In ZDB, all writings must be sequential.
The data file structure is organized as commit log storage,
every new data are appended to the end of the data file. For
random reading, an in-memory index is used to locate value
position of a key in commit log storage. Commit log and the
in-memory index is managed by ZDB flat table, while the
ZDB flat table is managed by ZDB store. Hash function is
used in calculating the appropriate file to store the key-value
pair. Figure 1 shows the basic structure of ZDB architecture.
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2.1 Data index

The data index is used to locate position of key-value pair
in data file. Dictionary data structure [29] such as tree, hash
table can be used for storing index. But for auto-incremental
integer keys, dictionary data structure is not optimal in mem-
ory consumption and performance.

For storing auto-incremental integer keys, there are advan-
tages for using linear arrays over the use of trees or hash
tables. The difference between a hash table and an array is
that accessing an element in a plain array only requires find-
ing an index of a particular element, while hash tables using
a hash function to generate an index for a particular key, then
use the index to access the bucket that contains key and value
in the hash table. In the structure of hash table, both key and
value are stored in memory. For integer keys, we can use key
as the index of item in linear array and we can get item from
key very simple without storing keys.

For an individual element, a hash table has an insertion
time of O(1) and a lookup time of O(1) [29]. This is assum-
ing that the hashing algorithm can work perfectly and col-
lisions are managed properly. On the other hand, the access
time of an array is O(1) for a given element. Arrays are very
simple to use. In addition, there is no overhead in generating
an index. Moreover, there is no need for collision detecting.
ZDB uses append-only mode, the data are written to the end
of a file and the index is already predetermined, the array is
used for storing position of key-value entry in the data file for
random reading. To keep the array index persistent and low-
access latency, fast recovery, File mapping is used. File map-
ping [28] is a shared memory technique supported by most
modern operating systems or runtime environments. POSIX-
compliant systems use mmap() function to create a mapping
of a file given a file descriptor. Microsoft Windows uses Cre-
ateFileMapping() function for this purpose. File mapping is
a segment of virtual memory assigned a direct byte-to-byte
correlation with some portion of a file. The primary bene-
fit of File mapping is increasing performance of I/O oper-
ations. Accessing file mapping is similar accessing to pro-
gram’s local memory and it is faster than using direct read
and write operations because It reduces number of system
calls.

ZDB optimizes the index for auto-incremental integer
keys, and uses array to store this index for minimize memory
usage which has zero overhead for keys. ZDB flat index is an
array of entry positions. File mapping is used to access ZDB
flat index.

2.1.1 Zing Database index parameters
For each partition in ZDB, the index parameters describe

characteristics such as the size of the array, the range of the
array and the memory consumption ranges.
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Fig. 1 ZDB architecture

— Key range

Key range in a partition is called [kmin, kmax) Where kmin
is the start of the index, while kpax — 1 is the last index in
the array. The range is inclusive of the boundary value.

— Index array size

The size of the array is obtained from the range as this
equation:

ArraySiZe = kmax - kmin (1)

Basing on the values of the range, the ith item in the array
refers to the position of the key (i + kpiy) in the data file. Itis
also important to note that the size of each item in the array
depends on the maximum file size we want to support. In
ZDB, this may be 4, 5, 6, 7 or 8 bytes for easy configuration
and for tuning the memory usage and maximum data file
size of the key-value persistent store. Comparing ZDB and
FAWN [8], the size of an item can only be 4 making it to
be rigid not to provide options to tune the performance of
the key-value store. In ZDB, data in a partition are stored in
multiple files using a simple hash function to decide which
file to store the key. The hash function must be efficient for
better performance of the key-value store. The choice of the
key and the basics of the key-value store are described in the
sections below.

— Index memory consumption

In ZDB, the memory consumption is equal to the size of
the array multiplied by the size of the array item. As afore-

mentioned, memory is only used to store the position of the
entry and not the key.

2.1.2 Index example

In social networks such as Facebook [1] and Flickr [2], and
in email hosting websites such as GMail [17], the key may
refer to the User ID, while the value is the profile which
is serialized to binary or string. The story is not different
with Zing Me [31] because login information requires a
User name and password before the user profile is displayed.
By knowing the User ID which is the key, the profile of
the user can be retrieved from ZDB. It should be under-
stood that ZDB uses a predefined range of keys for exam-
ple [0, 1,000,000) in a partition. The size of the array is
1,000,000. If the number of data files is 16, the data with
key k would be stored in k modulus 16. Using 4 bytes
for each index item in the index array, the maximum file
size would be 4 GB and the total size would be 64 GB for
all the files. Since the index size is 1,000,000, the mem-
ory size for the index is 4*1,000,000 bytes (about 4 MB).
In one partition, the size of the index table can be hundred
millions.

2.2 ZDB log storage

Key-value pairs are stored in ZDB data file sequentially
in every writing operation. For each writing, the following
data are appended to data file: entry information (EI), value,
key.
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Fig. 2 Data file layout with 2 data files

Entry information consists of: value size: 4 bytes, reserved
size: 4 bytes, time stamp: 8 bytes, value check sum: 1 byte.
The layout of ZDB log storage files is described in Fig. 2.

2.3 ZDB flat table

The ZDB flat table consists of a ZDB flat index and multiple
ZDB log storage data files. The ZDB flat index is used for
looking up the position of key-value pair in ZDB log storage
data file. ZDB flat table has some interfacing commands to
interact with the data store that include get, put, and remove.
ZDB flat table also has two iterating commands: key-order
iterating and insertion order iterating. Using iterating com-

Append only Put Operation

Get Operation

‘ Begin )

mands, it is able to scan through the table to get all key-value
pairs (Fig. 3).

— Put key-value pair to store

Put is used for add or update key-value pair to the table.
This means that the value which is the data and the reference
which is the key should be stored in the data files and the
index array, respectively. Consequently, the input for the put
command is the key and the value both provided. The data file
to store the entry is determined by hash function. The current
size of the data file is obtained and set to the (key — kmin)th
item in the index array. The entry is then appended to the end
of the data file.

— Get operation

To get a value referenced in the ZDB flat table by the index,
the input to the get command is the key, while the output is
the value. The file that stores the value is determined by
hash function. The position of the entry is looked up in the
index array (key — kmin)th item. The existence of the entry
is determined by whether the position is greater than 0. If the
position is greater than 0, the position of the file is sought in
the array and the entry is read to produce the output which is
the value. Get operation of ZDB has zero false positive disk
read.
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Fig. 3 Put, get, remove algorithms of ZDB flat table
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— Remove

The remove command is meant to eliminate the entry from
both the array index and the data file. The input required to
remove an entry is only the key. With the key, the hash func-
tion is used to calculate the data file holding the entry. The
item is set to —1 in the index array. An entry info that indi-
cates the pair with the key was removed is created and append
to the data file. Entry information for indicate removed key:

Value size: 0, reserved size: 0, time stamp:0, value check
sum: 0.

— Iterate

Other important actions in the key-value store include
sequence iterating which is done by scanning each ZDB flat
table to iterate all the key-value pairs. A hash order or inser-
tion order can be used to iterate through all the key-value
pairs.

For key-order iterating, ZDB flat index array is scanned,
if the item in array is greater than or equal to O, the key
associated with that item has the value in the ZDB log storage,
and the value is read for returning to the iterating operation.

For insertion order, each ZDB log storage data file are scan
and read each entry information and key-value pair sequen-
tially. For each read key-value pair, if its position in ZDB log

=

E’/ IZookeeper E—I

Nodes in a partition
are equivalent replicas

storage data file equal to the position value associated with
the key in ZDB flat index then it is a valid key-value pair, so
return it to the iterating operation.

2.4 ZDB store

ZDB store uses ZDB flat table’s functionality and handles all
data store requests from applications. ZDB store uses thrift
protocol [27] to serve request from clients. ZDB store also
provides compact operation for release disk space used by
multiple writing to a key. In normal mode, ZDB Store has
one ZDB flat table for read and write key-value data.

2.5 Compacting

In append-only mode, after writing the value of a key, the
old value will be unused, so the disk space for old values is
wasteful. Compacting operation is used to cleanup the old
values and get more free disk space.

Compacting operation works as follows:

— Create new ZDB flat table.
— Sequential iterate on HDD or old table and put data to

created table.

When compacting, the ZDB store is still working as fol-
lows:
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— Every put operation, write data to the new table.

— Every get, firstly, try to read from new table, if not found
key-value entry in the new table, try to get the value from
the old table.

— Every remove, remove the entry from both tables.

2.6 Data partitioning

For big amount of data items, large range of key space, it is
necessary to distribute data to multiple ZDB instances and
scale the system as data growing. ZDB distributes key-value
pairs in clusters using consistent hash. Every key is hashed to
get a hash value, we assume that all hash values are in range
[0, Hpound), partition manager uses this hash value to decide
which ZDB instances store the associate key-value pair.

2.6.1 Consistent hash

Logically, ZDB instances are placed in a ring, each instance
has a mark value in [0, Hpoung) that indicate its position in
the ring. A partition consists of instances with the same mark
value. Instances in a partition will store data of the same key
range or they are replications of each other. Assume distinct
mark values are No < Ny < --- < N, . Instance with mark
value, N; will store key-value pairs which have hash value of
the key in range [Ni,l , Ni), the keys with hash value greater
or equal to N, and the keys with hash value in range [0, No)
are stored in the instances with hash value Ng. With auto-
incremental integer keys, we can ignore hash function and
get hash value equal to the key, each partition stores a range
of continuous keys (Fig. 4).

2.6.2 Data range configuration

EachZDB instance is configured to store datain arange. ZDB
uses zookeeper [18] for co-ordination of the configuration of
ZDB instances. Each instance registers a path in zookeper and
the mark value of each instance with the following format:

/servicepath/protocol mv:ip:port

where mv is the mark value of the instance. This path in
zookeeper associates with the string value:

“protocol mv:ip:port”

Partition manager monitors and watches paths in zoo-
keeper and tells client the host and port of ZDB Services
to access the data. For example with two instances:

/data/zdb/thriftbinary_10000000:20.192.5.18:9901
/data/zdb/thriftbinary 20000000:20.192.5.19:9901

In this case, the path /data/zdb is watched by partition
manager. Every change in that path’s children will be cap-
tured and update the configuration to the clients.
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2.7 Data consistency

ZDB uses chain replication [30] for replicating data in cluster.
Every writing operation works on all nodes in the cluster
asynchronously. ZDB applies Eventually consistent model
from [15].

2.8 Variable length string keys

Currently, ZDB flat index works as an in-memory for storing
position of key-value entry in data files. It has been tested
to work more efficiently with auto-incremental integer keys.
However, it is not difficult to implement variable length string
keys into the key-store. For instance, the key can be indicated
as a string key (skey) to differentiate it from integer keys
(iKey). A list of the string keys can be stored in a bucket. It
is important to note that string keys in a bucket must have
the same hash value. For storage, an iKey and bucket pair is
stored in ZDB as integer key and value pair. All changes to
the record of skeys are effected to the bucket for updating
the ZDB store. Each flat table is setup with a size of about
227 for the string keys and Jenkins hash function used to
hash skey. The best ZDB performance is obtained when the
number of keys is estimated to the size of ZDB flat index. The
implementation basics can be summarized as shown below:

— skey : string,iKey = hash(skey),

— value : string,

— pair consists of skey and value: {skey, value},

bucket: list of pair, all string keys in this list have the
same hash value.

We cache and store {i K ey, bucket} in ZDB.
2.9 ZDB service

ZDB instance is developed as a server program called ZDB
service. It uses Thrift [27] to define interface and uses thrift
binary protocol to implement rpc service. The interface of
ZDB instance as Listing 1 follows:

Listing 1 ZDB Thrift Interface

typedef string KType
typedef string VType
typedef list<KType> KeyList
struct DataType{
1: required KType key,
2: required VType value,

}
typedef list<DataType> Datalist

service ZDBService{
ValueType get(1:KType key),
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DataList multiGet(1: KeyList keys ),
132 remove(1:KType key),

132 put(1:KType key, 2:VType value),
void multiPut(1:Datalist data),
bool has(1:KType key),

ZDB service is written in C++, using thrift binary protocol
with nonblocking IO. It has a small configurable Cache for
caching the data. It has two writing modes: safe writing mode
and asynchronous writing mode. In safe writing mode, all
key-value pairs are written to Cache then flush to ZDB on
disk immediately. In asynchronous writing mode, all key-
value pairs are written to Cache, and the keys are marked as
dirty, then flushing threads collect the dirty keys and flush the
data to ZDB data file on disk asynchronously in background.
The writing mode can be changed at runtime for the ease
of tunning the performance. The cache of ZDB service is
implemented using popular cache replacement algorithms
such as least recent used (LRU), ARC [21].

3 Related works

Small index large table (SILT) [20] is a memory efficient,
high-performance key-value store based on flash storage. It
scales to serve billions of key-value items on a single node.
Like most other key-value stores, SILT implements simple
exact-match hash table interface including PUT, GET, and
DELETE. SILT’s multi-store design uses a series of basic
key-value stores optimized for different purposes. However,
the basic design of SILT’s LogStore works like ZDB in some
respects. This is because the LogStore uses a new hash table
to map keys to candidates. The main difference is that the
LogStore uses two hash functions [25] to map the keys to
the buckets and still have false positive disk access while the
ZDB has no false positive disk access. It is also important to
compare how the stores filled LogStore in the case of SILT
and a ZDB in the case of ZDB. When a LogStore is full, it
is converted into a HashStore to handle the data and a new
LogStore is created to handle the new operations. In the case
of aZDB, the ZDB Flat Table just care about the range of its
key, for keys out of range, just simply creates new partition
associate to the new key range. ZDB can support large data
file, and the maximum size of data file is configurable, with
SILT LogStore the maximum size of data file is always 4G
(because it used 4 bytes offset pointer in the index). The value
size and key-size of SILT are fixed; the value size of ZDB
data file is variable.

In addition, there are situations where SILT has been used
in high writing rate applications. Challenges facing SILT
include difficulty in controlling the number of HashStores
because Each LogStore contains only 128K items. Basing

on the SILT paper, complexity on LogStore to HashStore
conversion is unclear. The paper does not mention the com-
plexity of memory consumption in the event of converting
or merging. The complexity of the effect of converting to
running SILT node is also not clear. As depicted in the SILT
paper, it is good at fixed-size key value with large and vari-
able length values. This is also the case with ZDB which
has high performance with large value sizes. The difference
comes in the complexity of SILT and ZDB. SILT is difficult
to organize and is more complex, whereas ZDB is simple and
easy to organize.

FAWN data store (FAWN-DS) [8] is a log-structured key-
value store. In FAWN-DS, each store contains values for the
key range associated with one virtual ID. It also supports
interfacing such as Store, Lookup, and Delete. This is based
on flash storage and operates within a constrained DRAM
available on wimpy nodes. This means that all writes to the
data store are sequential and all reads require a single random
access. Unlike ZDB which uses an array index to store keys,
the FAWN data store uses a hash index to map 160 bit keys to
the actual key stored in memory to find a location in the log.
It then reads the full key from the log and verifies the cor-
rectness of the key. ZDB is designed to minimize reads from
the memory to improve performance. In that case, ZDB only
uses one-seek write and append-only mode for compacting.

While FAWN has a fixed memory index, ZDB’s index is
variable and can be tuned to improve the performance of the
key-value store. In FAWN, the maximum size of data file is
always 4 GB. Another difference between ZDB and FAWN
lies in the hashing of original key in FAWN by SHA. It can not
be iterated to determine the original key. On the other hand,
the original key in ZDB is not hashed and it can therefore
be iterated to find the original key. With ZDB, there is no
incorrect flash/hdd retrieval.

Cassandra [19] is a distributed column-based nosq] store.
Cassandra uses Thrift [27] to define its data structure and
the RPC interface. There are some important concepts in
Cassandra’s data model: Keyspace, ColumnFamily, Column,
SuperColumn. Keyspace is a container for application data.
Itis similar to a data schema in relational database. Keyspace
contains one or more Column Family. The Column Family in
Cassandra is a container for rows and columns. It is similar
to a table in relational database. However, Column Family in
Cassandra is more flexible than a table in relational database
that each row in Cassandra can have different set of columns.
Column is basic unit of data in Cassandra’s Column Family,
it consists of a name, a value and an optional timestamp.
SuperColumn is a collection of Columns.

Each Column Family in Cassandra maintains an in-
memory table and one or more on-disk structures called
SSTable to store data. Every write operation to Cassandra
firstly is recorded to a commit log, then apply the write to
the in-memory table. The in-memory table is dumped to disk
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and becomes a SSTable when it reaches its threshold which
is calculated by number of items and data size. Every read
operation in Cassandra, firstly lookup in the in-memory table.
If the data associated with the key are not found in the in-
memory table, Cassandra will try to read it from SSTable
on disk. Although Bloom filter is used to reduce number of
unnecessary disk reads when reading data from Cassandra,
the latency when reading data from multiple SSTable is still
relative high when data grow and the bloom filter has false
positive. ZDB ensures that it needs maximum one disk seek in
every read operation on disk. So, it can minimize the latency
for mis-cache read operations.

Redis [26] is an in-memory structured key-value store.
All data in Redis are placed in the main memory, redis also
support persistent snapshot using disk data structure called
RDB. Redis can dump data in the memory to RDB after spe-
cific time intervals. For recovery, Redis has a commit log
called append-only file (AOF) which records all write oper-
ations and be played at server startup to reconstruct original
data set. Both AOF and RDB are used to recover Redis’s
in-memory data when it crashs or restarts or moving data to
another server. Although Redis has persistent ability using
RDB and AOF, its maximum capacity is limited by the size
of main memory. When the size of total data is bigger than
Redis’s maximum memory size, some data are evicted by
eviction policies described as below [26].

— Noeviction: return errors when the memory limit was
reached and the client is trying to execute commands that
could result in more memory to be used.

— Allkeys-Iru: evict keys trying to remove the least recently
used (LRU) keys first, to make space for the new data
added.

— Volatile-Iru: evict keys trying to remove the least recently
used (LRU) keys first, but only among keys that have an
expire set, to make space for the new data added.

— Allkeys-random: evict random keys to make space for the
new data added.

— Volatile-random: evict random keys to make space for the
new data added, but only evict keys with an expired set.

— Volatile-ttl: to make space for the new data, Redis evicts
only keys with an expired set, and tries to evict keys with
a shorter time to live first.

LevelDB [4] is an open source key-value store developed
by Google, originated from BigTable [11]. It is an imple-
mentation of LSM-tree [24]. It consists of two MemTable
and set of SSTables on disk in multiple levels. Level-0 is
the youngest level. When a key value is written into Lev-
elDB, it is saved into commit log file firstly, then it is inserted
into a sorted structure called MemTable. Memtable holds the
newest key value. When MemTable ’s size reaches its limit
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Table 1 Workload parameters

Workload name Parameters

Put proportion Get proportion

Write only 1 0
High read/low write 0.9 0.1
Low read/high write 0.1 0.9

capacity, it will be a read-only Immutable MemTable. And
a new MemTable is created to handle new updates. A back-
ground thread converts Immutable MemTable to a level-0
SSTable on disk. Each level has its own limit size, when the
size of a level reaches the limit size, its SSTables will merge
to create a higher level SSTable.

4 Performance evaluation

The performance comparison of a key-value store is impor-
tant especially if users have to choose among various avail-
able options. In this research, we use a standard benchmark
system and a self-develop simple load tests to evaluate ZDB.

4.1 Standard benchmark

Yahoo! cloud system benchmark (YCSB) [12] is used to
define workloads and evaluate and compare performance of
ZDB and some popular key-value stores: LevelDB, HashDB
of Kyoto Cabinet and Cassandra.

To minimize the difference of environment of ZDB and
other key-value engines in this benchmark, popular open
source persistent key-value stores engine is also wrapped
into ZDBService: LevelDB [4] and Kyoto Cabinet’s hash db
[3]. The wrapping of LevelDB and KyotoCabinet is similar
to MapKeeper [6]. We can change ZDBService’s configura-
tion to switch between ZDB, Kyoto Cabinet, LevelDB. We
also compare them with Cassandra.

The comparison using two servers with configuration
below

Operating System CentOS 64 bit
CPU Intel Xeon Quad core
Memory 32G DDR

HDD 600G ext4 filesystem
Network Wired 1 Gbps

We defined some workloads in YCSB for evaluation in
Table 1.

We ran above workloads with different record sizes: 1
KB, 4 KB and tracked the performance when the number



Vietnam J Comput Sci (2015) 2:13-23

21

25000
+\.,_ ..———l\._._._-—#

20000

15000
- 7DB

—4— LevelDB
10000 4 KC Hash
F“\\ == Cassandra
) A
o 7\’\*54\%
I

0 T T T T T T T
M 2M am 8M 16M 32M 64M  100M

Operations per second

number of items

Fig. 5 Write only 1 KB records using YCSB

12000
< 10000
c
3
@ 8000
2]
@ —&— ZDB
o 6000 —o— LevelDB
5 KC Hash
© 4000 —#— Cassandra
(]
joR
O 2000 L & —— |
< re &

0 T T T
M 2M am 8l 16M 32M 64M  100M

Number of items

—1®

Et 4

Fig. 6 Write only 4 KB records using YCSB

40000
35000

2
8 30000
3
@ 25000
g_ —&— 7ZDB
¢ 20000~ —4— LevelDB
c
S 15000 KC Hash
© == Cassandra
& 100003
(@]
5000

0 T T T
M 2M am M 16M 32M 64M 100M

Number of items

Fig. 7 High read/low write 1 KB records using YCSB

of records growing. We used two servers connected in high-
speed LAN, the first server is used to run data services and
another is used to run YCSB client with eight threads for the
benchmark.

The benchmark results are shown in figures below. The
horizontal axis shows number of items stored in data service.
The vertical axis shows the number of operations per second
we measured from running YCSB workload.

The benchmark results for Write-only workload are shown
in Fig. 5 for record size of 1 KB and Fig. 6 for record size of
4 KB. ZDB writing performance is more stable than others.
Figures 7, 8, 9 and 10 show that the result for transaction
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workloads consists of both read and write operations with
portion parameter in Table 1 and with different record sizes.

4.2 Engine evaluation

We also use our simple benchmark tool written in C++ with-
out using ZDB service to eliminate overhead from RPC
framework and to avoid cost from Java-based code of YCSB
to compare performance of ZDB with Kyoto Cabinet and
LevelDB. The test cases are described as follows:

— Writing 100 million key-value pairs with variable value
size in one thread.
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Table 2 One writing thread

DBType Cases
Key: 4 bytes Key: 4 bytes Key: 4 bytes
Value: 4 bytes Value: 1 KB Value: 100 KB
LevelDB 347,246 5,360 61
KC 343,348 10,268 1,872
ZDB 294,796 108, 790 4,132
Table 3 Four writing threads
DBType Cases
Key: 4 bytes Key: 4 bytes Key: 4 bytes
Value: 4 bytes Value: 1 KB Value: 100 KB
LevelDB 369,760 15,004 90
KC 241,800 80,420 1,920
ZDB 537,204 128,220 5,248
Table 4 Random reading
DBType Cases
Key: 4 bytes Key: 4 bytes Key: 4 bytes
Value: 4 bytes Value: 1 KB Value: 100 KB
LevelDB 304,448 4,629 62
KC 1,176,300 45,234 5,075
ZDB 1,326,205 60,325 6,232

— Writing 100 million key-value pairs with variable value
size in four threads.
— Random reading key-value from stores.

The benchmark results are shown in tables below, the num-
ber in the table shows the number of operations per second.
ZDB has the highest number of operations per second in most
scenarios. The results without overhead from RPC frame-
work and YCSB workload generator are better than before.

In the first instance, the key-value store engines are setup
with one writing thread with keys of 4 bytes and value of 4
bytes, keys of 4 bytes and values of 1,024 bytes, and keys of
4 bytes and values of 100 KB. The results in Table 2 above
show that ZDB has the highest number of operations per
second and would take a shorter time writing the key-value
pairs in all the parameters except for values of 4 bytes.

The benchmark was repeated with four writing threads and
the results are shown in Table 3. It shows that ZDB works
better in concurrent environment.

The benchmark was also set up for reading operation on
the data and the results show that ZDB had a higher num-
ber of operations per second compared to Kyoto cabinet and
LevelDB. These results are shown in Table 4.
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4.3 Discussion

As result presented above, the performance of both Kyoto
Cabinet HashDB and LevelDB drops when data growing,
while ZDB’s performance is relative stable for both writing
and reading. Kyoto Cabinet HashDB is organized as a hash
table on disk. mmap() is used to map the head portion of data
file for fast access (default mapping size is 64 MB) of the
hash table. It used chaining for collision resolution. When
number of item and total data size are small, HashDB of
Kyoto Cabinet has a very good performance. But when data
are big, the memory mapping is not enough to store all data,
more over, every write operation for writing key-value pair of
Kyoto Cabinet HashDB always needs to lookup the record in
its bucket in the hash table. So, when the key value existed and
being rewritten, it needs more disk IO than ZDB. That is why
HashDB of Kyoto Cabinet is very fast with small data, and
being slower when data growing. LevelDB is an Implement of
LSM-tree. With small key-value items, LevelDB has a good
performance. When the write rate is high and the key-value’s
size is relative big, the MemTable of LevelDB reaches its
limit size rapidly, and it has to be converted to SSTable. And
when many SSTables have to merge to higher level SSTable,
the number of disk I/O operations increases, so the overall
performance of LevelDB with big key-value drops. Redis
is not in this comparison because It stores all data in main
memory, when total size of data is bigger than main memory
size, some data are evicted and lost. ZDB, LevelDB, Kyoto
Cabinet and Cassandra can store data permanently on hard
disk or SSD.

5 Conclusion

ZDB uses efficient techniques to create a high-performance
persistent key-value store. To store a key-value pair in a file,
the evenly distribution hash function is used in selecting data
file. Common interfacing commands such as Put, Get, and
Remove are implemented in ZDB. It has a flexible item sizes
to allow for tuning to enhance better performance. To reduce
the number disk seeks, file appending is used and one-seek
write is implemented. ZDB flat index is designed as a linear
array on File Mapping is used to fast lookup without false
positive the position of key-value pairs stored in data files. In
all operations, ZDB needs at most one disk seek. In addition,
all writing operations are sequential. For applications that
require a high performance with optimized disk reading and
writing operations, especially for big value, ZDB can be a
good choice.
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