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ABSTRACT 

 

This paper studies concentration (i.e. inequality) aspects of the functions of Zipf and of 

Lotka. Since both functions are power laws (i.e. they are – mathematically the same) it 

suffices to develop one concentration theory for power laws and apply it twice for the 

different interpretations of the laws of Zipf and Lotka. 

 

After a brief repetition of the functional relationships between Zipf’s law and Lotka’s law, we 

prove that Price’s law of concentration is equivalent with Zipf’s law. The major part of the 

paper is devoted to the development of continuous concentration theory, based on Lorenz 

curves. We calculate the Lorenz curve for power functions and, based on this, calculate some 

important concentration measures such as the ones of Gini, Theil and the variation 

coefficient. 

 

We also show, using Lorenz curves, that the concentration of a power law increases with its 

exponent and we interpret this result in terms of the functions of Zipf and Lotka. 
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I.  Introduction 

 

The historical law of Lotka (Lotka (1926)) is the basis of modern informetrics and is 

expressed as follows: the number of authors with n (n=1,2,3,...) publications is proportional 

to 
1

n
, where 0  . In other words, there is a constant C>0 such that 

 

 
C

f (n)
n

=  (1) 

 

where f(n) denotes the number of authors with n publications. More generally, f(n) can 

denote the number of sources (authors, journals, word types,...) with n items (publications, 

articles, word occurrences, ... respectively) and we will, henceforth, use this dual source/item 

terminology – see also Egghe (1989, 1990), Egghe and Rousseau (1990a). 

 

A totally different informetric formulation, originating from linguistics (in terms of word 

types and word occurrences) is given by the law of Zipf: if we rank the sources according to 

their number of items (starting with the source with the highest number of items, hence 

giving to this source the rank r=1) then the number of items in the source on rank r 

(r=1,2,3,...) is proportional to 
1

r
, where 0  . In other words, denoting by g(r) this number 

of items in the source on rank r, there exists a constant D>0 such that 

 

 
D

g(r)
r

=  . (2) 

 

Although their informetric definitions are different (they are dual in the sense that, in f and g, 

the roles of sources and items are interchanged), the functions (1) and (2) are mathematically 

the same, namely decreasing power laws. A power law is the most occurring regularity in 

informetrics and far beyond (e.g. also found in economics, sociology incl. the description of 

social networks, see e.g. Egghe and Rousseau (2003) and references therein) and has the 

characterising property (see Roberts (1979)) that, if the argument (say x) is multiplied by a 
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constant, say k, we obtain the same power law with the same exponent: for 
C

f (x)
x

=  we 

have 
1 1 1

f (kx) f (x)
(kx) k x x   

=: : :  ( denotes “is proportional to”). This self-similar 

property explains its widespread occurrence in real life examples and also its use in the 

description of power type informetrics in terms of self-similar fractals (see Feder (1988)), but 

this aspect will not be further discussed here. 

 

In the sequel we will use both functions f and g in the continuous setting, since we will then 

be able to execute concrete calculations of the relation between f and g and of the continuous 

concentration theory: we will be able to evaluate integrals which is not possible with discrete 

sums. Therefore we reformulate the functions of Lotka and Zipf as follows (see also Egghe 

and Rousseau (1990a), Egghe (1989, 1990)), respectively: 

 

 
C

f ( j)
j

=  (3) 

 

j[1,m] and 

 

 
D

g(r)
(1 r)

=
+

 (4) 

 

r[0,T]. 

 

Intuition: f(j) denotes the density of the sources with item per source density j[1,m] (m 

denotes the maximal item per source density) and g(r) denotes the density of the items per 

source in the source density r[0,T] (T denotes the total number of sources). 

 

In the above mentioned references one finds the following general (i.e. independent of the 

specific form of f and g e.g. as in (3) and (4)) relations between f and g: 

 

 
m1

j
r g ( j) f ( j')dj'


-= = ò  (5) 
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hence 

 

 
1

1
f ( j)

g '(g ( j))
   (6) 

 

j[1,m]. Relations (5) or (6) can also be used as the defining relation for g, respectively f, 

when the other function is given, hereby presenting a mathematically formal approach to the 

classical informetric functions. Formulae (5) and (6) are the basis of the following well-

known theorem (see again Egghe (1985, 1989, 1990), Egghe and Rousseau (1990a), 

Rousseau (1990)). 

 

Theorem I.1: The following assertions are equivalent for 0, 1    : 

 

(i) 

 
C

f ( j)
j

=  (7) 

 

 j[1,m], C>0, i.e. Lotka’s law with exponent  

 

(ii) 

 
D

g(r)
(1 Er)

=
+

 (8) 

 

 r[0,T], where 

 

 mD    (9) 

 

 
1

m

1
E

C 



 -

-
=  (10) 

 

 
1

1



=

-
 (11) 
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Function (8) is called the law of Mandelbrot with general exponent  (cf. 

Mandelbrot (1977)) 

 

Proof: 

(i)(ii) Formula (5) yields 

 

 
m1

j

C
r g ( j) dj'

j'





-= = ò  

 

                            ( )1 1

m

C
j

1

 


- -= -
-

 

 

 hence, since j=g(r): 

 

 m

1

1

1

m

g(r)

1
1 r

C











-

-

=

æ ö- ÷ç ÷+ç ÷ç ÷çè ø

 

 

 from which (8)-(11) follow. 

 

(ii)(i) Formula (8) yields 

 

 
1

DE
g'(r)

(1 Er)


+

-
=

+
 

 

 and also (j=g(r), hence r=g
-1

(j)) 

 

 
1

D
j

(1 Eg ( j))-
=

+
 

 

 hence 
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1

1

D
1

j

g ( j)
E



-

æ ö
÷çæ ö ÷ç ÷ç ÷ç -÷ ÷çç ÷ ÷÷çççè ø ÷÷÷ççè ø

=  

 

 from which it follows that, by (6) 

 

 
1

1
f ( j)

g '(g ( j))-
= -  

 

 

1
1

1
1

D 1
.

DE
j






+

+
=  

 

 proving (7).                          

 

The following easy corollary on the characterisation of Zipf’s law has been formulated 

explicitely in Rousseau (1990): 

 

Corollary I.2 (Rousseau): The following assertions are equivalent for 1  : 

 

(i) 

 
C

f ( j)
j

=  

 

 j[1,m] with 

 

 

1

1

m

C

1






-æ ö
÷ç= ÷ç ÷÷çè ø-

 (12) 

 

 , i.e. the general Lotka law but with parameters restricted to (12) 
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(ii) 

 
D

g(r)
(1 r)

=
+

 (13) 

 

r[0,T], i.e. Mandelbrot’s law with E=1 (and further (9) and (11) remain valid). 

Formula (13) is the same as (4), hence the law of Zipf. 

 

Proof: We have (13) (i.e. Zipf’s law) if and only if E=1 from which it follows from (10) that 

(12) and 1   are valid. For the equivalency, the previous theorem applies.             

 

Note I.3: Corollary I.2 shows that Zipfian informetrics is part of Lotkaian informetrics (the 

complete Lotkaian informetrics being covered by the law of Mandelbrot as proved in 

Theorem I.1). Which part? There is the restriction (12). From this it follows that 

 

 1

m1 C 1  -= + >  (14) 

 

The limitation to 1   (which is not needed in Theorem I.1) is not a restriction since it is 

equivalent with 0  , which is obvious (since g(r) must decrease). So Zipfian informetrics 

covers the complete Lotkaian informetrics for 1   but limited to the constants as expressed 

by (12). The latter limitation does not play any role in concentration theory since there one 

works with normalized values (distributions – see further). Also, (12) always produces a 

m>1 which is required. Indeed: (5) implies 

 

 
m

1
T f ( j')dj'



= ò  

 

 ( )1

m

C
T 1

1




-= -
-

 

 

hence, by (10) 

 

 
1

m

1 1
E 1

CC T
1









-

-
= = =

-
-
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So 

 

 
C

T 1 1
1
  


 

 

since T 0 . Now (12) implies m>1. 

 

We can also prove the following important result: If Zipf’s law applies then we have: 

 

                                                T  if and only if m   . 

 

Proof: Formulae (3) and (5) (for r=T, hence j=1) yield 

 

  1

m

C
T 1

1

 


 

 

applying (12) on this yields 

 

 1

m 1

m

1
T 1



 
   

 
 

 

and by the above: 1  . Hence T  iff m  . So also in this sense, functions (3) and 

(4) are the same type of power law (not the same exponent – see (11)): they both have a 

bounded domain or both have an unbounded domain: [1,m] respectively [1,T+1] (both 

starting in 1): indeed, remark that (13) (or (4)) can be reformulated as 

 

 
D

g(r)
r

  (15) 

 

r[1,T+1], resembling more the "classical" Zipf function (2). It is this form that we will use 

henceforth since it is the same (up to notation) as (3). This will enable us to develop 
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concentration theory for functions of the form (3) and (15) at the same time (although their 

informetric meaning is different). 

 

In the next section we will show that Zipf’s law is equivalent with the validity of Price’s law 

of concentration (see section II for a formulation). 

 

In the third section we will develop Lorenz concentration theory for power functions which 

we will then apply to the functions f and g as in (3) and (15): the continuous Lorenz curve in 

this setting is defined and calculated for power functions. We show that, the higher the 

exponent in such a power function, the higher the Lorenz curve, hence the more concentrated 

(unequal) the situation. We prove explicite formulae for the concentration measures of Gini, 

Theil and the variation coefficient, in the case of power functions. We also describe the 

informetric relation between concentration theory of Lotka’s law and the one of Zipf’s law 

(being mathematically the same but having different informetric interpretations). As a 

consequence, some (known) results on the general 80/20 rule (also defined in section III) for 

power laws will be refound. 

 

II. A Characterisation of Price’s law of concentration 

 

Price’law (Price (1976)) can be formulated as follows: let there be T sources. Starting with 

the most productive sources and for any ]0,1[ we have that the T

 top sources produce a 

fraction  of all the items. A special value is 
1

2
  , hence the T  top sources produce 50% 

of all the items: if T=100, then the top 10 sources yield this 50% of all items. It is clear that 

Price’s law expresses the skewness of the production process (in other words the degree of 

production inequality between the sources). Skewness is also expressed by the laws of Zipf 

and Lotka. We can now wonder whether or not these inequalities are related. This section 

will show that, although their formulations are different, Price’s law is equivalent with the 

law of Zipf. The following proposition is a continuous extension of a result in Egghe and 

Rousseau (1986). For reasons explained in Note I.3 we will take T+1 as the highest rank 

(because of the continuous setting). 
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Proposition II.1: Denote by G(r) the cumulative number of items produced by the sources in 

the interval [0,r]. Then the following assertions are equivalent: 

 

(i) 

 G(r) Blog r  

 

 r[1,T+1], where B is a constant 

 

(ii) The law of Price is valid: for every ]0,1[, the top (T+1)

 sources produce a 

fraction  of the items. 

 

Proof: 

(i)(ii) Since we have the top (T+1)

 (]0,1[) sources, their cumulative production is 

given by (definition of G and since (T+1)

[1,T+1]): 

 

 ( )( ) ( )( )G T 1 Blog T 1
 

+ = +  

 

 ( )( ) ( )G T 1 G T 1


+ = +  

 

But G(T+1) denotes the total number of items, hence the top (T+1)

 sources 

produce a fraction  of the items. 

 

(ii)(i) Let r[1,T+1] be arbitrary. Hence there exists [0,1] such that r=(T+1)

. By (ii) 

and the definition of G we have that 

 

     G T 1 G T 1


     

 

for ]0,1[. This is also true for =1 and for =0 (since we work with source 

densities). But r=(T+1)

 implies logr=log(T+1). Hence 
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log r

G(r) G(T 1)
log(T 1)

 


 

 

 G(r) Blog r  

 

 where 
G(T 1)

B
log(T 1)





 , a constant.                             

 

Corollary II.2: Price’s law is equivalent with Zipf’s law for =1: 

 

 
D

g(r)
1 r




 

 

r[0,T]. 

 

Proof: This follows from the fact that g and G relate as 

 

 
r

0
G(r) g(r ')dr '= ò  

 

(hence G

=g). From this it follows that G(r)=Blogr, r[1,T+1] is equivalent to 

 

 
B

g(r)
r

  

 

r[1,T+1], hence to 

 

 
B

g(r)
1 r




 

 

r[0,T], which is Zipf’s law. The result then follows from Proposition II.1.                

 

Note II.3: Combining corollaries I.2 and II.2 we see that Price’s law is valid if Lotka’s law is 

valid but restricted to (12) and =2. For =2 this yields m=C, a result that was found in 
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Allison, Price, Griffith, Moravcsik and Stewart (1976) after a long approximative calculation 

(and limited to Price’s law for 
1

2
  ). This paper apparently (see editors’ note) grew out of 

lengthy and frequently heated correspondence between these authors on the validity of 

Price’s square root law (i.e. Price’s law for 
1

2
  ). We hereby show that a long debate on 

this issue is not necessary and that Lotka’s law (any ) together with (12) (i.e. restricted to 

the validity of Zipf’s law) shows Price’s law in general, for any , containing the approximate 

result in Allison, Price, Griffith, Moravcsik and Stewart (1976). 

 

We refer the reader to Glänzel and Schubert (1985) for a discrete characterization of Price’s 

(square root, i.e. 
1

2
  ) law. Further discrete calculations on Lotka’s law in the connection 

of Price’s law can be found in Egghe (1987). Practical investigations on the validity of 

Price’s law can be found in Berg and Wagner-Döbler (1996), Nicholls (1988) and Gupta, 

Sharma and Kumar (1998). 

 

Note II.4: Price’s law of concentration can be considered as a geometric way of expressing 

concentration (see also Egghe and Rousseau (1990a)). An arithmetic way of expressing 

concentration goes as follows: A fraction x]0,1[ of the top sources produce a fraction  of 

the items. This is a generalisation of the well-known 80/20-rule i.e. where 20% of the top 

sources produce 80% of the items (hence x=0.2 and =0.8). We will determine the 

relationship between  and x in case of the law of Lotka and of Zipf. This will – however – 

be a straightforward consequence of the more general study of Lorenz concentration theory 

which we will develop now. 

 

III.  Lorenz concentration theory 

 

III.1  Discrete case 

In order to better understand the continuous case, which is the main topic of this paper, we 

will briefly repeat the well-known discrete case (see e.g. Egghe and Rousseau (1990b)). 
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Discrete Lorenz concentration theory is a model to describe the inequality (concentration) of 

a vector X=(x1, x2, ..., xN). Here we assume all ix 0  and that the vector is decreasing. 

Examples are given by the law of Zipf or Lotka but where the arguments (n in (1), r in (2)) 

are the natural numbers 1,2,3,... . The Lorenz curve of X, denoted by L(X) is constructed by 

linearly connecting the points (0,0) and 

 

 
i

j

j 1

i
, a

N 

 
 
 

  (16) 

 

i=1,…,N, where 

 

 
j

j N

i

i 1

x
a

x





 (17) 

 

Note that the last point (for i=N) is (1,1). Since X decreases we have that L(X) is a concave 

polygonal curve. Its form is depicted in Fig. 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1  General form of a discrete Lorenz curve. 
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The power of the Lorenz curve L(X) lies in the fact that the higher this curve, the more 

concentrated (unequal) the vector X is (see Egghe and Rousseau (1990b, 1991)). It is then 

clear that any function C on such vectors X=(x1, x2, ..., xN) and X=(x1, x2, ..., xN) such 

that L(X)<L(X) implies C(X)<C(X) can be considered as a good concentration measure. 

Examples are: the Gini index (Gini (1909)) 

 

  XG(X) 2 area under L 1   (18) 

 

Theil’s measure (Theil (1967)) 

 

  
N

i i

i 1

Th X ln N a log a


   (19) 

 

(log=ln) and the coefficient of variation V, where 

 

  
2

2

2
V X





 (20) 

 

  
N

2 2

i

i 1

V X N a 1


   (21) 

 

and where 
2
 and  are the variance and the average of X. 

 

It is clear that, taking for X the discrete values of the Lotka or Zipf function, we can never 

evaluate these formulae since it is not possible to evaluate (in terms of simple functions) 

discrete sums. Therefore a continuous theory is needed and exists in econometrics (see e.g. 

Gastwirth (1971, 1972) and Atkinson (1970)). Continuous Lorenz curves for power functions 

(such as the ones of Lotka and Zipf) will be constructed here and concentration measures are 

(analytically) calculated, also showing here the crucial role of the exponents  and . 

 

III.2  Continuous case 
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We do not suppose yet the power type function as in (3) or (4) for which we want to establish 

Lorenz concentration theory but we note that both (3) and (4) are positive decreasing 

continuous functions h=h(x), where x belongs to an interval of the form [1,xm], where xm>1. 

For the moment we will use this general setting. The continuous extension of the Lorenz 

curve for h(x), x[1,xm] is the curve 

 

 
m

x

1
x

m

1

h(x ')dx 'x 1
,

x 1 h(x ')dx '

æ ö
÷ç ÷ç - ÷ç ÷ç ÷ç ÷- ÷ç ÷ç ÷çè ø

ò

ò
 (22) 

 

In other words, putting  
m

x 1
y 0,1

x 1


 


, hence x=y(xm-1)+1, the Lorenz curve of the 

function h is the function L(h), where 

 

 

m

m

y(x 1) 1

1
x

1

h(x ')dx '
L(h)(y)

h(x ')dx '

- +

=
ò

ò
 (23) 

 

This approach for defining the continuous Lorenz curve is – although equivalent to the 

definitions in Gastwirth (1971, 1972) and Atkinson (1970) – more direct (more explicite – 

see (23)) and allows for finite xm. It also resembles more the discrete case. 

 

It follows that 

 

 
m

m
mx

1

x 1
L(h) '(y) h(y(x 1) 1)

h(x ')dx '

-
= - +

ò
 (24) 

 

and that 

 

 
m

2

m
mx

1

(x 1)
L(h) ''(y) h '(y(x 1) 1)

h(x ')dx '

-
= - +

ò
 (25) 
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hence L(h) is a concavely increasing function from (0,0) to (1,1) (since h>0, h<0). Its 

general form is depicted in Fig. 2. Since L(h) is continuous we have that L(h) is a C
1
 (i.e. a 

smooth) function (see e.g. Apostol (1957)). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2  General form of a continuous Lorenz curve 

 

 

As in the discrete case such a Lorenz curve can be used to measure the inequality in the 

(continuous) set of values h(x), x[1,xm]. As in the discrete case, we have that a function C on 

such functions h and h such that L(h)<L(h) implies that C(h)<C(h) is a good measure of 

concentration. In Egghe (2002a) we proved that the following measures are good 

concentration measures being the continuous extensions of the measures V
2
, Th and G 

introduced in the discrete case (h is any function as described above): 

 

 [ ]
1 22

0
V (h) L(h) ' (y)dy 1= -ò  (26) 

 

 
1

0
Th(h) L(h) '(y) log(L(h) '(y))dy= ò  (27) 

 

and, of course, 

 

 
1

0
G(h) 2 L(h)(y)dy 1= -ò  (28) 
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being twice the area under the Lorenz curve of h, minus 1. In fact (26) and (27) follow from a 

result proved in Egghe (2002a), (based on a general result of Hardy, Littlewood and Pólya 

(1928)) which says that any measure of the type 

 

 
1

0
C(h) (L(h) '(y))dy= ò , (29) 

 

where  is a continuous convex function, satisfies the implication L(h)<L(h)C(h)<C(h) 

and hence is a good measure of concentration in the continuous setting. 

 

We will now examine L(h) for h=f and h=g (formulae (3) and (4)) and prove a basic theorem. 

 

III.3  Lorenz curves for power functions 

We will now use the function 

 

 
F

h(x)
x

  (30) 

 

x[1,xm], >0, F>0, representing both the functions f (xm=m, =, F=C) and g (xm=T+1, =, 

F=D) – see (3) and (4). From (23) we have now 

 

 
1

m

1

m

(y(x 1) 1) 1
L(h)(y)

x 1





  



 (31) 

 

( 1)   and 

 

 
[ ]m

m

log y(x 1) 1
L(h)(y)

log x

- +
=  (32) 

 

(=1), for y[0,1]. 

 

For xm= we can only define the Lorenz curve of h for <1: by (31): 
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m m

1

m

1

1m m m

x x

1

m

x 1 1 1
y

x x x
lim L(h)(y) lim y

1
1

x









-

-

-

® ¥ ® ¥

-

é ù-
ê ú+ -
ê ú
ë û= =

-

 . 

 

Hence we put 

 

 1L(h)(y) y   (33) 

 

for h as in (30) with xm=, if <1. 

 

Note that (33), interpreted for f is not applicable since (33) implies <1 while the only 

admissible -values if m= are the values >2 (see the Lotka existence theorem in case 

m= in Egghe (2002b)) but (33), interpreted for g is important since this requires <1 (for 

Zipf’s law with T=). By (11) this requires Lotka’s >2 which are the only possible values 

since T= is equivalent with m= (Note I.3) and the latter implies >2 (see Egghe (2002b)). 

Hence, by (11), also <1 is implied by the condition T= so that (33) represents the most 

general case. 

 

In the latter interpretation (<1 hence >2), formula (33) is the key for reproving a result (on 

the generalized 80/20-rule) which is implicite in Burrell (1992) (p.22) and Gastwirth (1972) 

(p.307, Table 1). 

 

Proposition III.3.1: Let <1, hence >2. Let  denote the average number of items per 

source. Then 

 

 

1

L(g)(y) y  . (34) 

 

In words: A fraction y[0,1] of the top sources produce a fraction 

1

y  of the items, i.e. the 

generalized 80/20-rule for power laws. 
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Proof: Using (33) we only have to show that 

 

 
1

1 


 

 

This, because of the fact that (see (11)) 
1

1
 


, reduces to showing that 

 

 
1

2


 


 (35) 

 

This is known – see Egghe (2002b) in case m= and this is so because (see Note I.3) T= 

which in turn is so since <1 (see Egghe (2002b)).                          

 

We can now state and prove the following basic result. 

 

Theorem III.3.1: L(h) is a strictly increasing function of . 

 

Proof: Since we keep xm fixed here it suffices to show (by (22)) that 1<2 implies that 

 

 
m m

1 2 2 1

x x x x

1 1 1 1

dx ' dx ' dx ' dx '

x ' x ' x ' x '   
<ò ò ò ò  

 

for all x[1,xm]. This is equivalent with 

 

m m

1 2 2 1

x x x x

1 x 1 x

dx ' dx ' dx ' dx '

x ' x ' x ' x '   
<ò ò ò ò  

 

For this it suffices to show that, for all x[1,x] and all y[x,xm] 

 

 
1 2 2 1

1 1 1 1

x ' y ' x ' y '
   

  

 

or 
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21y ' x '
1

x ' y '


  

  
   

 (36) 

 

Since 2>1 we can denote 2=1+ where >0. In this notation, inequality (36) reads 

 

 
x '

1
y '



 
 

 
 

 

which is trivial since x<y always.                     

 

The same proof applies for the analogous result for discrete functions as in (1), (2), by 

replacing integrals by discrete sums. 

 

Important remark III.3.2: 

It is clear that the above theorem applies to Lotka’s law 

 

 
C

f ( j)
j

  

 

j[1,m] and to Zipf's law 

 

 
D

g(r)
r

  

 

r[1,T+1]. So we have that L(f) is strictly increasing in  (i.e. the inequality increases with 

): hereby one examines the inequality in the numbers f(j), j[1,m]. Much more important, 

from an informetric point of view (but mathematically the same) is the study of the inequality 

in the numbers g(r), r[1,T+1] since these numbers express the source-productivity. So, 

theorem III.3.1 gives that L(g) is strictly increasing in , hence the inequality increases with 

. The latter result can be interpreted in function of . Note that (11) gives 
1

1
 


. So we 
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have the result that L(g) decreases in . Since this is a source of confusion (see Wagner-

Döbler and Berg (1995), Rao (1988)) we state these results (in ) explicitely as a corollary. 

 

 

 

 

 

Corollary III.3.3: 

Let f and g be as above. Then 

 

(i) L(f) strictly increases in  

(ii) L(g) strictly increases in  

(iii) L(g) strictly decreases in  

 

It is clear from Rao (1988) that Rao refers to expression (i), so the criticism in Wagner-

Döbler and Berg (1995) is not in order, especially since they discuss the inequality in Lotka’s 

law (hence (i)) and not the one in Zipf’s law (being (ii)). 

 

This dual interpretation of inequality is typical in informetrics: one can consider the size-

frequency function f but also the rank-frequency function g, hereby interchanging the role of 

sources and items. In this sense corollary III.3.3 is not surprising and similar differences will 

be found in the next subsection where we will give explicite formulae for the concentration 

measures G, V
2
 and Th for the dual power functions f (Lotka) and g (Zipf). Note that, by 

using the general function h as in (30), we are able to develop the Lotka- as well as the Zipf-

type concentration theory. 

 

III.4  Concentration measures for power functions 

 

III.4.1  Calculation of the Gini index 

The easiest measure to calculate is the Gini index G (formula (28)) being twice the area under 

the Lorenz curve, minus 1. Let 1   and mx   . Then (31) implies for the Gini index of h, 

denoted G(h), 
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1

0
G(h) 2 L(h)(y)dy 1= -ò  

 

 ( )( )( )
1 1

m1
0

m

2
G(h) y x 1 1 1 dy 1

x 1





-

-
= - + - -

- ò  

 

 2

m m1

m m

2 1
G(h) (x 1) (x 1) 1

(x 1)(x 1) 2



 

-

-

é ù
ê ú= - - - -
ê ú- - -ë û

 (37) 

 

The limiting value for 
mx   is 

 

 
mx

2
lim G(h) 1

2 2


  

   
 (38) 

 

but here  is restricted to <1. This is in accordance with the calculation of G(h) using (33) 

which is also restricted to <1 and which also yields (38). 

 

So, for Lotka’s function f we have 

 

 ( ) ( )2

m m1

m m

2 1
G(f ) 1 1 1

( 1)( 1) 2




 

  

-

-

é ù
ê ú= - - - -
ê ú- - -ë û

 (39) 

 

and for Zipf’s function g we have 

 

 
( )( )

( )( )2

1

2 1
G(g) T 1 1 T 1

2T T 1 1



 

-

-

æ ö
÷ç= + - - -÷ç ÷ç ÷ç -è ø+ -

 (40) 

 

G(g) in function of  yields (using 
1

1
 


) 

 

 

 
 

2 3

1
2

1

2 1
G(g) T 1 1 T 1

2 3
T T 1 1








    
      

       
 

 (41) 
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For the limiting values we have, based on (38), (applicable only on g as explained above but 

this is the most important case) 

 

 
T
lim G(g)

2





 (42) 

 

                                                                              
1

2 3


 
 (43) 

 

(<1, equivalently, >2). Result (43) was already proved in Burrell (1992), where only this 

limiting case (and >2) is considered. Note that (42) and (43) trivially confirm corollary 

III.3.3 as it should. This is also the case for formulae (39), (40), (41); the proof is left to the 

reader. 

 

We leave it also to the reader to calculate G(h) for =1, using formula (32). 

 

III.4.2  Calculation of the variation coefficient 

We present two methods: one based on (26) for general h and one based on the formula 

V





, which only yields V for Zipf’s function g. 

 

III.4.2.1  First method 

By (26): 

 

 [ ]
1 22

0
V (h) L(h) ' (y)dy 1= -ò  , 

 

where L(h) is given by (31) ( 1)   and (32) ( 1)  . If 1  , we have 

 

 m

1

m m

(1 )(x 1)
L(h) '(y)

(x 1)(y(x 1) 1) 

  


  
 (44) 

 

If 1  , we have 
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 m

m m

x 1
L(h) '(y)

(log x )(y(x 1) 1)




 
 (45) 

 

Let now 
1

1,
2

    . Then 

 

 

( ) ( )( )

2 21
2 m

2 210
m m

(1 ) (x 1)
V (h) dy

x 1 y x 1 1




-

- -
=

- - +
ò  

 

 
    

   

2 1 2

m m2

2
1

m

1 x 1 x 1
V (h) 1

x 1 1 2

 



   
 

  
 (46) 

 

If 
1

2
  , then we have 

 

 
 

 
m m2

2

m

x 1 log x
V (h) 1

4 x 1


 



 (47) 

 

If 1  , then (45) implies 

 

 
 

 

2

m2

2

m m

x 1
V (h) 1

log x x


   (48) 

 

As always, V
2
(f) (f: Lotka) is then calculated replacing xm by m and  by () in the above 

formulae and V
2
(g) (g: Zipf) is then calculated replacing xm by T+1 and  by 

1

1
 


. So 

we have, by (46) 

 

 
    

   

2 1 2

m m2

2
1

m

1 1 1
V (f ) 1

1 1 2

 



    
 

   
 (49) 
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2 1 2

2

2
1

1 T T 1 1
V (g) 1

T 1 1 1 2

 



  
 

   

 (50) 

 

which takes the following form in 1, 2, 3       

 

 
 

  

 

 

3

12

2

2
2

1

T T 1 1
2

V (g) . 1
1 3

T 1 1









 
      

     
  

 

 . (51) 

 

III.4.2.2  Second method 

This method only applies to the calculation of V
2
(g) since we use the formula 

2
2

2
V (g)





, 

where 
2
 and  are the variance and average of the Zipf function g, which can be calculated 

using the Lotka function 
f

T
 as the weight function: 

 

 
m

1

f ( j)
j dj

T



 = ò  (52) 

 

 
m2 2

1

f ( j)
( j ) dj

T



 = -ò  

 

 
m2 2 2

1

f ( j)
j dj

T



 = -ò  (53) 

 

So 

 

 
m2 2

2
1

T
V (g) j f ( j)dj 1

A



= -ò  (54) 

 

where 
A

T
  , the average number of items per source. We have, if 1, 2, 3      : 
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m

1

C
T dj

j




= ò  

 

  1

m

C
T 1

1

  


 (55) 

 

 
m

1
A jf ( j)dj



= ò  

 

 
m

1
1

C
A dj

j



-
= ò  

 

  2

m

C
A 1

2

  


 (56) 

 

and 

 

 
m 2

1
j f ( j)dj



ò  

 

 
m

2
1

C
dj

j



-
= ò  

 

           3

m

C
1

3

  


 . (57) 

 

(55), (56) and (57) in (54) now gives 

 

 
 

  

  

 

2 1 3

m m2

2
2

m

1 12
V (g) . 1

1 3 1

 



   
 

   
 

 

                                        
 

  

  

 

2 1 3

m m2

2
2

m

1 12
V (g) . 1

1 3 1

 



   
 

   
 . (58) 
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We now have the task of proving that (51) and (58) are the same. We have, by Zipf’s law, 

that E=1, hence by (10) 

 

 1

m

1

C

 
   

 

This and (55) give 

 

 1

m

C
T 1

1

   


 (59) 

 

(59) is the link between (58) and (51). We leave it to the reader to consider the cases =2 and 

=3. 

 

III.4.2.3  Limiting case 

For mx  , (46) gives if 
1

2
   

 

 
 

m

2 2
2

x

1
lim V (h) 1

1 2 1 2

  
  

   
 (60) 

 

As said before, only V
2
(g) can be used here (but this is the most important case) and 

1

2
     implies >3. Only then we have 

 

 
  

2
2

T

1
lim V (g)

1 2 1 3


 

   
 (61) 

 

using that 
1

1
 


. Note again that (61) confirms corollary III.3.3, as it should. 

 

Formula (61) also follows from (33) by direct calculation (again we have to restrict ourselves 

to the case 
1

2
  ). 
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III.4.3  Calculation of Theil’s measure 

 

We have to evaluate (27) with L(h) as in (44)  1   or as in (45)  1  . We will limit 

ourselves to the general case 1  , leaving the other calculation to the reader. The calculation 

is straightforward but tedious. We have 

 

                                 ( )
1

0
Th(h) L(h) '(y) log L(h) '(y) dy= ò  

 

                                            
( )( )

( ) ( )( )

( )( )

( ) ( )( )

1
m m

1 10
m m m m
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log dy
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é ù
- - - -ê ú

= ê ú
ê ú- - + - - +ê úë û
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1 x 1
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-

- -

é ù- -
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ê ú- -ë û= -
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using the substitution z=y(xm-1)+1. 

 

Now we use the following integral results which can readily be checked 

 

 
1dz z

z 1



 

-

=
-ò  
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( )

21

logz 1 logz 1
dz

z z 1 1
   

-

æ ö
÷ç ÷ç= - + ÷ç ÷ç - ÷÷ç -è ø

ò . 

 

We then obtain 

 

 
( )( ) ( )( )

( )( )

1

m mm

1 1

m m

x 1 log x 11 x 1
Th(h) log

x 1 1 1 x



 

 



-

- -

é ù - - -- -
ê ú= +
ê ú- - -ë û

 (62) 

 

The measure Th(h) for mx    (restricted to 1  , see (33))  can be obtained in two ways: 

using (33) and noting that  L(h) '(y) 1 y    and reperforming the above calculation of 

Th(h), or, more simply, take 
mx
lim Th(h)


 in (62). Both ways give the formula (for 1  ) 

 

  Th(h) ln 1
1


   

 
 (63) 

 

Note, as before, that (63) can only be applied to the case of Zipf’s function (15), the most 

important case. Hence  1   

 

  Th(g) log 1
1


  


 . (64) 

 

In terms of Lotka’s exponent  we have  
1

hence 2 :
1

 
    

 
 

 

 
2 1

Th(g) log
1 2

 
  

   
 (65) 

 

Note also that Th(g) increases in  and decreases in  as predicted by Corollary III.3.3. 

 

Note III.4.4: 

Theil’s measure is (as the other measures G and V
2
) calculated on the Lorenz curve, hence on 

normalized data in terms of abscissa and ordinate (see Figs. 1 and 2). It is different from the 



 30 

classical formula for the entropy of a distribution. To see this difference, let us first look at 

the discrete case. Theil’s measure of the vector X=(x1,...,xN) is given by (19), where the ajs 

are given by (17). In the same notation, the entropy of the vector X is defined as 

 

 
N

i i

i 1

H H(X) a log a


    (66) 

 

Hence we have the relation 

 

 Th(X) H(X) log N   (67) 

 

or 

 

 Th(X) H(X) log N    (68) 

 

We notice two differences between Th and H : although they are linearly related, the relation 

is decreasing. In other words, H  increases if and only if Th decreases. Now Th is a good 

measure of concentration (inequality), hence H  is a good measure of dispersion (i.e. of 

equality), used e.g. in biology to measure diversity (see Rousseau and Van Hecke (1999)). 

Further Th H  due to the fact that Th is calculated on the normalized Lorenz curve while 

H  is not. 

 

In the same way Th and H  are different in the continuous case. We calculated already Th 

above. In the same way Lafouge and Michel (2002) calculate H  (in fact, our proof the Th 

formula was based on this proof) via the formula 

 

 
1

H(f ) f ( j) log(f ( j))dj
¥

= - ò  (69) 

 

(i.e. for m   , hence 2   necessarily, by Egghe (2002b)): 
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1

H(f ) log 1 1
1

    


 (70) 

 

(note that H(f )  decreases with , in agreement with Corollary III.3.3 since H(f )  is a good 

concentration measure). The result, apparently was first stated by Yablonsky (1980). For 

Zipf’s function g we have (for T  , hence (Note I.3) m    hence 2  , hence 1  ) we 

find that H(g)   . We leave it to the reader to calculate H(f ), H(g)  for m,T   , in the 

same way as was done for the calculation of Th. 

 

Since it is more important to study the concentration of g than of f, the above shows the 

importance of the “normalized” calculation of Th via the Lorenz curve, i.e. via formula (27): 

this yields a finite value (65) for Th(g) even in the case T  , contrary to H(g) . 

 

III.5  Summary 

 

We have indicated how Zipf’s law relates to the one of Lotka: for 1   they are equivalent 

provided that (12) is valid. This known result is used to prove that mT iff    

which is the basis for the equivalent treatment of both power laws. Then we showed that 

Price’s law of concentration is equivalent with Zipf’s law. As a consequence we could prove, 

if 2  , that Price’s law is only valid if m C  , a result that was proved in an approximate 

way in Allison, Price, Griffith, Moravcsik and Stewart (1976). 

 

The main part of the paper discusses continuous Lorenz theory applied to the laws of Lotka 

and Zipf. The general continuous Lorenz curve is introduced and applied to power laws. Also 

for the limiting case  m T     a Lorenz curve is defined (here the exponent in the power 

law, necessarily, is restricted to values in ]0,1[. For a general power law we prove that the 

Lorenz curve is strictly increasing with the exponent in the power law. 

 

Based on results in Egghe (2002a) we calculate explicite formulae for the Gini index, the 

variation coefficient and Theil’s measure (for the general case m,T    and also for the 

limiting case m T   ). In the latter case we refind a result of Burrell (1992) for the Gini 
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index and of Gastwirth (1972) for the generalized 80/20 rule. The results on Theil’s measure 

are related with entropy. 
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