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Abstract

Background: Reconstructing transcript models from RNA-sequencing (RNA-seq) data and establishing these as
independent transcriptional units can be a challenging task. Current state-of-the-art tools for long non-coding RNA
(lncRNA) annotation are mainly based on evolutionary constraints, which may result in false negatives due to the
overall limited conservation of lncRNAs.

Results: To tackle this problem we have developed the Zipper plot, a novel visualization and analysis method that
enables users to simultaneously interrogate thousands of human putative transcription start sites (TSSs) in relation
to various features that are indicative for transcriptional activity. These include publicly available CAGE-sequencing,
ChIP-sequencing and DNase-sequencing datasets. Our method only requires three tab-separated fields (chromosome,
genomic coordinate of the TSS and strand) as input and generates a report that includes a detailed summary table, a
Zipper plot and several statistics derived from this plot.

Conclusion: Using the Zipper plot, we found evidence of transcription for a set of well-characterized lncRNAs and
observed that fewer mono-exonic lncRNAs have CAGE peaks overlapping with their TSSs compared to multi-exonic
lncRNAs. Using publicly available RNA-seq data, we found more than one hundred cases where junction reads
connected protein-coding gene exons with a downstream mono-exonic lncRNA, revealing the need for a careful
evaluation of lncRNA 5′-boundaries. Our method is implemented using the statistical programming language R and is
freely available as a webtool.

Background
The introduction of RNA-sequencing (RNA-seq) has

revolutionized the field of molecular biology, revealing

that up to 75% of the human genome is actively tran-

scribed [1]. The majority of this transcriptome consists

of so-called long non-coding RNAs (lncRNAs). Recon-

structing accurate transcript models for these lncRNAs

is a major challenge when processing RNA-seq data. In

general, lncRNA transcripts are less abundant compared

to protein coding genes [2], often resulting in a lack of

junction reads from which transcript models are

inferred. In addition, lncRNAs are frequently located in

the vicinity of protein coding genes and could therefore

represent unannotated extensions of untranslated regions

(UTRs) rather than independent transcriptional units.

Finally, transcript reconstruction from RNA-seq data

often gives rise to large numbers of single-exon tran-

scripts. Distinguishing single-exon fragments that repre-

sent independent transcriptional units from those that

result from genomic DNA contamination or incomplete

transcript assembly is not straightforward.

State-of-the-art tools for lncRNA annotation based on

evolutionary constraints such as PLAR (pipeline for

lncRNA annotation from RNA-seq data) [3] and slncky

[4], might filter out some putative lncRNA transcripts

depending on stringent conservation criteria. PLAR

removes transcripts that are short (< 2 kb) and lowly

expressed (FPKM < 5) and focuses on the annotation of

syntenic lncRNAs. Given the limited conservation of

lncRNAs [5] and given that both tools exclude any

transcript that partially or totally overlaps protein-

coding genes, such approaches may result in a large

number of false negatives.
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LncRNA transcript models can be refined and filtered

by integrating complementary datasets on chromatin

state (i.e. ChIP sequencing (ChIP-seq) for histone marks

or DNase sequencing (DNase-seq)) and transcript

boundaries (i.e. CAGE sequencing (CAGE-seq) to mark

the transcription start site (TSS) or 3P-seq to mark the

3′ end of poly-adenylated transcripts) [6]. Transcripts

for which the transcription start site coincides with a

CAGE-peak and is in close proximity to a H3K4me3 or

H3K27ac mark are more likely to be independent

transcriptional units compared to transcripts that lack

these features.

GRIT [7] is a command line-based tool that uses

CAGE in conjunction with RNA-seq data but does not

take advantage of other important layers of genomic

information such as open chromatin (DNase-seq) and

histone marks (ChIP-seq data) typically associated with

active transcription.

To tackle the challenge of establishing lncRNAs as

independent transcriptional units we have created the

Zipper plot, a novel visualization and analysis method

available as a quick and user-friendly webtool [8] that

employs publicly available CAGE-seq, ChIP-seq and

DNase-seq data across a large collection of tissue and

cell types. The user only needs to provide a list of

genomic features (one per line), each consisting of three

tab-separated fields: chromosome, human genomic

coordinate (hg19) of the TSS and strand. Our webtool

will retrieve the closest CAGE-seq/DNase-seq/ChIP-seq

peak to each TSS for thousands of genomic features at

the same time. The closer these peaks are, the higher

the evidence of independent transcriptional activity for

the set of genomic features.

Results and discussion

Implementing the Zipper plot as a webtool

The Zipper plot is freely available as a webtool (front-

end) at [8] and has been implemented using the

JavaScript library jQuery, PHP and HTML5. The back-

end (server) contains a peak-based database (see

Methods) and the necessary code to retrieve and sort

the closest CAGE-seq/ChIP-seq/DNase-seq peak to each

TSS, to create the plot (see “Zipper plot construction”)

and to compute several statistics to assess the TSS-peak

associations (see “Summary statistics and generation of

html summary reports”). This code was written using the R

statistical programming language [9] along with the data.-

table [10], ggplot2 [11], knitr [12], R.utils [13], grid [9] and

gridExtra [14] packages. The communication between the

web interface and our server is established using PHP.

Due to memory constraints on our server, we limited the

number of genomic features per input file to 20,000. How-

ever, to allow users to integrate our tool as part of bigger

pipelines, we have made our scripts available at Github [15].

Database querying

To start using the webtool, the user only needs to

upload a list of genomic features (one per line), each

consisting of three tab-separated fields: chromosome,

human genomic coordinate (hg19) of the TSS and

strand. Optionally, users can provide an additional

fourth column containing labels for the genomic features

being studied.

If the user has a file from another genomic build (e.g.

hg38), we propose two alternatives to convert it to hg19:

1) hgLiftOver [16]: a webtool where users can upload a

file with “chrN:start-end” or BED format and select the

new genomic build of interest; 2) CrossMap [17]: a tool

that supports more file types as input, including BAM,

SAM and BigWig among others. Detailed information

about its usage and download can be found at [18].

Importantly, hgLiftOver can also be installed locally on

unix-based systems by downloading the executable [19]

and appropriate chain files [20].

In a second step, the user has to select the data type of

interest among the ones available in our database

(CAGE-seq, ChIP-seq or DNase-seq peaks; see Methods)

and has the option to run the analysis in one sample

type of interest or across all available sample types. In

the first option, the user knows in advance in which

tissue the set of genomic features are more likely to be

expressed; with the second option, each individual

genomic feature is analyzed across all samples and the

sample in which the peak is most closely associated to

the genomic feature is retained for further analysis.

Importantly, all CAGE-peaks are used by default but the

user can set a more stringent threshold if desired (tags

per million mapped reads (tpm) > 0). A detailed user

guide can be found at [21].

Zipper plot construction

Once the user’s input is uploaded to our website and the

data type of interest has been selected, the data.table

package [10] is used to sort TSSs from the user’s input

in a chromosome-wise manner and to perform a fast

binary search (O(log n) time) in compiled C to retrieve

the closest ChIP-seq/DNase-seq/CAGE-seq peak to each

TSS. It retrieves the “start” and “end” genomic coordinates

of the closest peak, always considering the “start” as the

part of the peak closest to the TSS. The Additional file 1:

Methods (“Definition of the distance between a TSS and

the closest peak” section) contain three different examples

on how these coordinates are determined.

The peaks are then ranked based on the distance from

the TSS to the “start” of the closest peak and a Zipper

plot is generated with the aid of the ggplot2 package

[11]: peaks overlapping with the TSS are placed at the

top of the plot and the zipper starts to open as the peaks

are located further away from the TSSs. By default, the
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Zipper plot is visualized in a +/− 5 kilobase (kb) window

around the TSS but the window size can be adjusted by the

user. Figure 1 shows in detail how the Zipper plot is built.

Summary statistics and generation of html summary

reports

In parallel with the construction of every Zipper plot,

two statistics named Zipper Height (ZH) and Area

Under the Zipper (AUZ) are calculated. ZH corresponds

to the quotient between the number of genomic features

with a peak overlapping with the TSS and the total num-

ber of genomic features being studied (ZH ∈ [0,1]). The

AUZ_global is computed as the sum of all the areas

between the closest peak and the TSS of each genomic

feature (for a detailed explanation see “Definition of the

sum of all areas between the closest peak and the TSS”

and “Small AUZ values, areas in the plot and how

AUZ_window is calculated (Fig. 3d)” in the Additional

file 1: Methods).

However, since the distribution of peaks upstream or

downstream of the TSSs can be asymmetric, AUZleft

(sum of all the areas for cases where the closest peak

was found upstream the TSS) and AUZright (sum of all

the areas for cases where the closest peak was found

downstream the TSS) are considered independently

(see “Rationale for calculating both positive and

negative distances between closest peaks and TSSs” in

Additional file 1: Methods for more details).

The closer the peaks are distributed around the TSSs,

the smaller the AUZ and the higher the evidence of

independent transcriptional activity for the set of

genomic features. A “closed zipper” (AUZ = 0) indicates

an overlap between the closest peak and TSS for all the

genomic features being studied. We have also incorpo-

rated the AUZ_window, which depends on the window

size choice (by default +/− 5 kb) and is computed using

only those peaks that lie within the window. The method

virtually sets to 5 kb (or other value if the user changes

the default window size) all those distances that are

located more than 5 kb away from the TSS. This allows

a quick visual comparison between two Zipper plots

built using the same window size. Following the same

reasoning as the paragraph above, we have incorporated

both AUZ_window_right and AUZ_window_left separ-

ately. Of note, ZH and AUZ are negatively correlated.

A one-sided p-value (AUZ_pval) is calculated by com-

paring the AUZ of the Zipper plot built with the user’s

input to 100 (by default) or 1000 random Zipper plots

created by selecting as many random locations as the

number of genomic features supplied by the user while

maintaining the same distribution of TSSs per chromo-

some. Since truly random locations picked uniformly

Fig. 1 The closest CAGE-seq/ChIP-seq/DNase-seq peak to each TSS is rapidly retrieved using a binary search. a The process of finding the closest
CAGE peak takes into account the strand information supplied by the user (ChIP-seq and DNase-seq data are unstranded). If a TSS is located on
the positive DNA strand (TSSs on chromosomes 1, 3, 6 and 8), peaks with a genomic coordinate greater than the TSS are considered downstream

(=positive distance) of the genomic feature. If a TSS is located on the negative DNA strand (third TSS on chromosome 5), peaks with a genomic
coordinate greater than the TSS are considered upstream (=negative distance) of the genomic feature. Peak widths and overall peak enrichment
for each region (signalValue for ChIP-seq and DNase-seq data; tpm expression values for CAGE-seq) are simultaneously retrieved. b Once the distances

to the closest peaks have been retrieved they are ordered and placed on top of a vertical axis representing the TSS. Since the Zipper plot is visualized
(by default) in a 5 kb window, peaks that are wider than 5 kb or are further away from the TSS will not appear (i.e. TSS on chromosome 8; darker region

will appear whereas the faded region exists but it is not displayed)
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along the length of each chromosome are not represen-

tative of possible lncRNA TSSs, we have excluded from

the selection those genomic regions containing gaps,

centromeres, telomeres, heterochromatin and repetitive

regions from [22, 23] using the BEDTools suite [24].

The p-value is computed dividing the number of random

cases with AUZ values smaller than or equal to the AUZ

for the user case by the total number of repetitions. The

p-value represents the chance of finding a random Zipper

plot with an AUZ_global smaller than or equal to the

AUZ_global of the actual use case or, in other words,

whether it is likely that the set of TSSs chosen by the user

was randomly selected or not. Therefore, the smaller the

p-value, the higher the likelihood your set of genomic

features are truly independent transcriptional units.

When evaluating genomic features in one sample type,

the closest peaks in that sample type are retrieved for

both the random TSSs and the user input. Optionally,

the closest peak in each sample type can be retrieved for

each TSS and, for each TSS, a TSS p-value is calculated

comparing how many tissues have a peak as close (or

closer) to the TSS than the one found in the tissue

chosen by the user.

On the other hand, if the user selects all sample types,

the closest peaks among all possible sample types are

retrieved for both the random TSS and the user input.

AUZs are calculated and a p-value is calculated similarly

to the case where the user selects one sample type.

Eventually, the knitr package [12] is used to generate an

html report containing 1) the Zipper plot; 2) all the afore-

mentioned parameters/statistics; 3) a summary table listing

closest peaks, peak widths and overall peak enrichment

information.

Validation and applications of the Zipper plot

To assess the usefulness of our webtool, we first investi-

gated a set of 36 well-characterized lncRNAs proposed by

[4]. The Zipper plot created using only the FANTOM5

(CAGE-seq) data showed that 26 out of 36 lncRNAs have

a CAGE peak within +/− 5 kb from their TSSs in at least

one of the sample types present in our database (Fig. 2a;

detailed output available in Additional file 2: Table S1).

Moreover, when also including H3K4me3 and DNaseI

(marks for active transcription and open chromatin)

together with H3K4me1 and H3K27ac (marks for active

enhancer RNAs), 32 out of 36 lncRNAs have peaks

within +/- 5 kb from their TSSs (Fig. 2b). These results

demonstrate that, while most of the well-characterized

lncRNAs have evidence for transcription initiation at or

near their presumed TSS, some may be incompletely

Fig. 2 There is evidence of transcriptional activity for 32 out of 36 well-characterized lncRNAs using the Zipper plot. a Zipper plot and associated
statistics for the set of 36 well-characterized lncRNAs proposed by [4] using CAGE-seq data. Even though the visualization contains a +/− 5 kb
window, it is clear that the closest CAGE peaks for 26 lncRNAs are within +/− 2.5 kb from the TSS. Both AUZ_right_pval and AUZ_left_pval are

smaller than 0.01, suggesting that the set of TSSs are more closely associated with CAGE peaks compared to random regions in the genome.
b Heatmap showing the distance between TSSs and CAGE-seq, DNase-seq, H3K4me1, H3K4me3 and H3K27ac peaks. Darker colours represent

peaks that are closer to the TSSs. LncRNAs marked with an asterisk do not have enough evidence of transcriptional activity. (nt = nucleotides)
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annotated with respect to their TSS. This is especially

apparent from the CAGE-seq Zipper plot (Fig. 2a).

As a second example application of the Zipper plot, we

evaluated the transcriptional independence of all human

lncRNAs listed in Lncipedia 3.1 [25]. We studied the

distribution of the closest CAGE-seq peaks (FANTOM5

data) around the TSSs of all mono-exonic and all multi-

exonic human lncRNA transcripts (21,102 and 90,508

respectively) (Fig. 3a–c) and found that 589 mono-exonic

lncRNAs (2.8%) presented a CAGE-peak overlapping with

the TSS and 6256 (29.7%) had a peak within a +/− 5 kb

window. On the other hand, 14,419 multi-exonic lncRNAs

(15.9%) presented a CAGE-peak overlapping with the TSS

and 45,878 (50.7%) had a peak within a +/− 5 kb window

(Fig. 3d). These differences, also reflected in greater

AUZ_global values in the former case, suggest that

Fig. 3 Fewer mono-exonic lncRNAs have CAGE-seq peaks overlapping with their TSSs compared to multi-exonic lncRNAs. This is reflected in
smaller Zipper Height (ZH) and higher Area Under the Zipper (AUZ) values. a) As described in the “Database querying” section, users may provide an
additional fourth column in the input file with labels for each TSS (optional). b) FANTOM5 data (CAGE-seq) and “All sample types” workflow was

selected. c) The data.table package was used to retrieve the closest CAGE-seq peak to each TSS. d) Peaks are ranked based on the distance from the
TSS to the closest peak and a Zipper plot is generated. Since both plots are visualized in a +/− 5 kb window, AUZ_window values can be directly
compared: smaller values (multi-exonic lncRNAs) represent higher evidence of independent transcriptional activity for the set of genomic features

being studied. This conclusion can also be made looking at the ZH values: a bigger ZH value means a higher proportion of lncRNAs with a CAGE peak
overlapping with the TSS. Finally, both AUZ_right_pval and AUZ_left_pval are smaller than 0.01, so it is unlikely that the set of TSSs from mono and

multi-exonic lncRNAs were randomly selected
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numerous mono-exonic lncRNAs might not be truly

independent transcriptional units.

We hypothesized that at least a fraction of mono-

exonic lncRNAs were actually extensions of UTRs from

upstream protein coding genes or genomic DNA

contamination. To further investigate this hypothesis,

we first retrieved the intron lengths for all RefSeq

protein coding genes (hg19; using the UCSC Table

Browser data retrieval tool) [26, 27] and found that 80%

of them are smaller than or equal to 5827 nucleotides.

In a second step, we artificially “stitched” mono-exonic

lncRNAs that do not have a CAGE peak within 500

nucleotides from their TSSs to the 3′ end of any pro-

tein coding gene located within 5827 nucleotides on

the same strand. This process led to 536 mono-exonic

lncRNAs stitched to upstream protein coding genes.

If these lncRNAs were truly unannotated portions of

upstream coding genes, we should find junction reads span-

ning one exon from a protein coding gene and another

exon from a lncRNA. To evaluate this, we used RNA-seq

data from The Cancer Genome Atlas (TCGA) [28, 29] and

Universal Human Reference RNA (UHRR) samples [30, 31]

(see Methods). Since junction reads that are shared

between exons of overlapping lncRNAs and protein coding

genes cannot be assigned unambiguously, they were

excluded from the analyses. Next, we established a mini-

mum of at least one junction read linking a lncRNA to an

upstream protein coding gene and a minimum overlap of

two nucleotides between the junction read and the protein

coding gene exon and a minimum overlap of two nucleo-

tides between the junction read and the lncRNA exon.

Strikingly, we found spanning reads for 135 out of

the 536 cases (25.19%) based on the TCGA RNA-seq

data and for 35 (6.53%) based on UHRR RNA-seq

data (Additional file 3: Table S2).

We also tried to stitch multi-exonic lncRNAs that do

not have a CAGE peak within 500 nucleotides from their

TSSs in the same manner as we did for mono-exonic

lncRNAs, resulting in 675 multi-exonic lncRNAs

stitched to upstream protein coding genes. We found

spanning reads for 127 out of the 675 cases (18.81%)

based on the TCGA RNA-seq data and for 33 (4.89%)

based on UHRR RNA-seq data (Additional file 3: Table

S2). Of all the junction reads from the TCGA RNA-seq

data found to span a protein coding gene and a lncRNA,

92.59% of them entirely overlap with protein coding

gene exons and 88.15% of them entirely overlap with

lncRNA exons. On the other hand, 89.31% of the junc-

tion reads from UHRR RNA-seq data entirely overlap

with a protein coding gene exons and 91.91% of the

junction reads entirely overlap with lncRNA exons.

Both TCGA and UHRR samples shared junction reads

for 34 mono-exonic and 31 multi-exonic lncRNAs

stitched to an upstream protein coding gene. Table 1

shows the distribution of junction reads spanning a

protein coding gene and downstream lncRNA based on

the TCGA RNA-seq data.

These results support our hypothesis and reveal the need

for a careful evaluation of lncRNA 5′-boundaries using

CAGE-seq data and histone marks as demonstrated here

or alternative procedures such as 5′-RACE(-seq) [32].

To further expand the applicability of our tool, we

plan to integrate publicly available data from methods

that detect nascent RNAs (GRO-seq and PRO-seq), to

extend the number of samples when new data becomes

available and to allow users to work with their own data.

Conclusion
We have created the Zipper plot, a novel visualization

and analysis method available as a webtool [8] that

allows researchers to quickly evaluate the reliability of

the annotation of thousands of novel transcripts and

lncRNAs at the same time. Using the Zipper plot we found

evidence of transcription for a set of well-characterized

lncRNAs and observed that fewer mono-exonic lncRNAs

have CAGE peaks overlapping with their TSSs compared

to multi-exonic lncRNAs. Using publicly available RNA-seq

data, we discovered more than one hundred cases where

junction reads connected protein-coding gene exons with a

downstream mono-exonic lncRNA, revealing the need for

a careful evaluation of lncRNA boundaries.

We also recognize a limitation in our webtool: the

presence of a CAGE-peak and activating histone marks

at the TSS is indicative of independent transcription, but

the absence of such features does not imply the opposite.

Low abundant transcripts may not show up in the

CAGE-seq data because of too low sequencing depth or

the expression of the lncRNA may be restricted to a tissue

of cell type not (yet) included in the CAGE-seq, ChIP-seq

and DNase-seq database. Importantly, TSSs of RNA tran-

scripts reconstructed from RNA-seq data might appear

several nucleotides downstream of a CAGE-seq peak.

Table 1 Distribution of junction reads (JR) from 1460 TCGA samples connecting protein-coding gene exons with a downstream
mono and multi-exonic lncRNA

1 < = JR < = 10 11 < = JR < = 100 JR > 100 Total

Protein coding gene +mono-exonic lncRNA 86 37 12 135

Protein coding gene +multi-exonic lncRNA 81 31 15 127

These junction reads suggest that the latter are actually extensions of untranslated regions from upstream protein coding genes. Detailed information for each

individual case can be found on Additional file 3: Table S2
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Particularly for low abundant RNA transcripts, this incon-

sistency may be the result of an incomplete transcript as-

sembly due to non-uniformity of read coverage towards 5′

ends and should be carefully examined.

Methods

Establishing a peak-based database using publicly

available datasets

ChIP-seq & DNase-seq from 127 consolidated human

epigenomes already processed in the context of the

Roadmap Epigenomics Project (111 from NIH Roadmap

Epigenomics Mapping Consortium (Release 9 of the

Human Epigenome Atlas) [33] and 16 cell line epigen-

omes from the ENCODE Project Consortium [34, 35])

were retrieved from the “Peak Calling” section at [36].

DNase-seq and ChIP-seq data consists of ENCODE

narrowPeak, broadPeak and gappedPeak files. Detailed

information about these formats can be found at [37].

These files contain lists of peaks that were obtained

by a peak caller algorithm in the context of the Road-

map Epigenomics Project. The peak calling process

identified regions in the genome that were enriched

with aligned reads (“peaks”) as a consequence of the

ChIP or DNase-seq experiment.

We focused our filtering approach on the qValue,

being a measurement of statistical significance for the

signal enrichment of each peak using the false discovery

rate (FDR). We set a FDR < = 0.05, implying that only

those peaks with qValue < = 0.05 were retained in our

database for downstream applications.

The following activating marks [38] were used to con-

struct the database: marks for open chromatin (DNaseI);

acetylation marks commonly found in actively transcribed

promoters (H3K27ac, H3K9ac, and H3K14ac), methylation

marks found in actively transcribed promoters (H3K4me1,

H3K4me2, H3K4me3 and H4K20me1) and modifications

added as consequence of transcription (H3K36me3,

H3K79me2 at 5′ end of gene bodies) adding up to more

than 134 million peaks. (Additional file 4: Table S3).

CAGE-seq expression data (RLE normalized) for

human samples was retrieved from the Functional

Annotation of the Mammalian Genome (FANTOM5)

project [39, 40]. CAGE-seq measures expression by

means of sequencing from the 5′ end (transcription start

site (TSS)) of capped molecules. In case of multiple

replicates per sample type, only one replicate was

retained, bringing the total number of samples to 649 with

a total of 200,737 peaks. (Additional file 5: Table S4).

Obtaining junction reads from publicly available RNA-seq

data

One thousand four hundred sixty RNA-seq samples

from TCGA across different cancer types [28, 29] (See

Additional file 6: Table S5 for detailed information on

cancer type and TCGA barcodes) and 80 UHRR samples

from the Sequencing Quality Control (SEQC) project

publicly available at the Gene Expression Omnibus

(GEO) database with accession number GSE47774

(Sample A: Replicates 1–4; Beijing Genomics Institute)

[30, 31] were mapped to the human genome (GRCh37)

using TopHat2 [41] with default parameters, resulting in

279,507,060 and 12,679,075 junction reads respectively.

Additional files

Additional file 1: Methods. (PDF 1792 kb)

Additional file 2: Table S1. Summary table for the set of 36
well-characterized lncRNAs using CAGE-seq data. (XLS 69 kb)

Additional file 3: Table S2. Junction reads between protein coding
genes and mono/multi-exonic lncRNAs based on RNA-seq data from
TCGA and UHRR; nucleotides of junction read overlapping with lncRNA
and protein coding gene exons. (XLS 65 kb)

Additional file 4: Table S3. Correspondence between Roadmap
Epigenomics names and actual sample types; number of peaks and
number of epigenomes available for each case; peak width and peak
enrichment distributions across chromosomes for narrow, broad and
gapped peaks (for each mark). (XLS 109 kb)

Additional file 5: Table S4. Correspondence between FANTOM5
names and actual sample types; number of CAGE-seq peaks per chromosome;
peak width and tpm distributions across chromosomes. (XLS 101 kb)

Additional file 6: Table S5. Cancer type and barcode for each sample
from TCGA. (XLS 138 kb)

Additional file 7: Table S6. HGNC, Ensembl ID, PMID, chromosome
location, TSS and strand information for the set of 36 well-characterized
lncRNAs. (XLS 26 kb)
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3P-seq: Poly(A)-Position Profiling by Sequencing; AUZ: Area Under the
Zipper; CAGE-seq: Cap Analysis of Gene Expression sequencing;
ChIP-seq: Chromatin Immunoprecipitation sequencing; DNase-seq: DNase
sequencing; FANTOM5: Functional Annotation of Mammalian Genomes 5;
FDR: False Discovery Rate; FPKM: Fragments Per Kilobase Million;
GRO-seq: Global Run-On Sequencing; H3K14ac: Histone H3 lysine 14

acetylation; H3K27ac: Histone H3 lysine 27 acetylation; H3K36me3: Histone H3
lysine 36 trimethylation; H3K4me1: Histone H3 lysine 4 monomethylation;
H3K4me2: Histone H3 lysine 4 dimethylation; H3K4me3: Histone H3 lysine 4

trimethylation; H3K79me2: Histone H3 lysine 79 dimethylation; H3K9ac: Histone
H3 lysine 9 acetylation; H4K20me1: Histone H4 lysine 20 monomethylation;
lncRNA: Long non-coding RNA; PRO-seq: Precision nuclear Run-On sequen-
cing; RACE-seq: Rapid amplification of cDNA ends sequencing; RNA-seq: RNA
sequencing; SEQC: Sequencing Quality Control; TCGA: The Cancer Genome
Atlas; tpm: tags per million mapped reads; TSS: Transcription Start Site;
UHRR: Universal Human Reference RNA; ZH: Zipper Height
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