Zippered Polygon Meshes From Range Images

> Greg Turk and Mark Levoy Stanford University SIGGRAPH 94

> Presented by John Novatnack

How Do We Construct 3D Meshes?

Range Images

Acquiring Range Images

Image courtesy of http://www.chromecow.com/MadScience/3DScanner/Sketch_2.jpg

Range Scanner

Image coursey of http://www1.cs.columbia.edu/~atanas/research/scara/setup.jpg

Paper Approach

- 1. Registration: Align range images
- 2. Integration: Zipper adjacent range images
- 3. Smoothing: Compute local weight averages

Registration: ICP

ICP - iterative closet point

- 1. User crudely aligns range images
- 2. Algorithm "snaps" range images together
 - Minimizes weighted least squares metric

Extremely effective!

Integration: Zippering

- 1. Remove overlap between meshes
- 2. Clip the meshes
- 3. Remove small triangles

Results

Results

Overview

- A method of constructing meshes from range images
- Keys:
 - Incremental
 - Suspect data ignored