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Abstract. It has been recently demonstrated experimentally that graphene, or single-layer carbon, is a 
gapless semiconductor with massless Dirac energy spectrum. A finite conductivity per channel of order of 
e2/h  in the limit of zero temperature and zero charge carrier density is one of the striking features of this 
system. Here we analyze this peculiarity based on the Kubo and Landauer formulas. The appearance of a 
finite conductivity without scattering is shown to be a characteristic property of Dirac chiral fermions in 
two dimensions.

PACS. 73.43.Cd Theory and modeling -  81.05.Uw Carbon, diamond, graphite -  03.65.Pm Relativistic 
wave equations

G raphene, or single layer carbon [1], dem onstrates unique 
electronic properties. I t has been shown recently [2,3] th a t 
the  charge carriers in graphene are massless D irac fermions 
w ith effective “velocity of light” of order of 106 m s- 1 . 
G raphene provides unexpected connections between con­
densed m atte r physics and quantum  field theory; in par­
ticular, a new kind of quantum  Hall effect observed in 
graphene, th a t is, half-integer quantum  Hall effect [2,3, 
4 ,5] can be considered as a consequence of the  famous 
A tiyah-Singer index theorem  [2]. The la tte r guarantees the 
existence of m acroscopically large num ber of chiral sta tes 
w ith zero energy in external m agnetic field.

A nother am azing property  of graphene is the finite 
m inim al conductivity  which is of the order of the conduc­
tance quan tum  e2/ h  per valley per spin; it is im portan t 
to  stress th a t th is is a “quantization” of the  conductiv­
ity  ra th e r th an  of the conductance [2]. This is not only 
very interesting conceptually bu t also im portan t in light of 
po ten tia l applications of graphene for ballistic field-effect 
transisto rs [1]. Therefore the physical origin of the  m ini­
m al conductivity  is w orth the special consideration which 
is a subject of this Note.

Num erous considerations of the  conductivity  of a two­
dim ensional massless Dirac fermion gas do give th is value 
of the  m inim al conductivity  w ith the accuracy of some 
factor of order of un ity  [6,7 ,8 ,9 ,10,11 ,12,13]. I t is really 
surprising th a t in th is case there is a final conductivity  for 
an ideal crystal, th a t is, w ithout any scattering  processes 
[8]. This fact is im portan t since w ithout com plete under­
standing  of the ideal crystal case one can hard ly  hope to  
have a reliable answer for the  realistic case w ith disorder 
and electron-electron interactions. Here we use the Lan­
dauer formula [14] to  clarify the physical m eaning of this 
anomaly.

We s ta r t w ith the H am iltonian of a two-dimensional 
gapless sem iconductor

H  =  v &P a P^P (1)

and the corresponding expression for the current operator
[15]

j  =  p =  ^  jp  (2)
p

where v is the  electron velocity, a  =  (ax, a y) are Pauli m a­

trices, p  is the  m om entum , and ^p  =  ^ p  1,^ p 2j  are
pseudospinor electron operators. Here we om it spin and 
valley indices (so, keeping in m ind applications to  graphene, 
the results for the  conductivity  should be m ultiplied by 4 
due to  two spin projections and two conical points per 
Brillouine zone). S traightforw ard calculations give for the 
tim e evolution of the electron operators

%  (*) =  ö
-iCpt 1 +  P M + e ' W l - 1̂ ^ p (3)

and for the current operator 

j  (t) =  jo ( t ) +  j i  ( t ) +  j1 (t)

P (P^) +  - a  x p  
p

&p e2ieptpt (4)

where ep =  v p /h  is the  particle frequency. The last term  
in E q .(4) corresponds to  the “Zitterbew egung” , a phe­
nom enon connected w ith the uncertain ty  of the  position

e

2p
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of relativistic quantum  particles due to  the  inevitable cre­
ation of particle-antiparticle pairs a t the position m ea­
surem ent [16,17]. Classical models for th is phenom enon 
are discussed, e.g., in R ef.[18] and references therein.

In term s of condensed m atte r physics, the  Z itterbe­
wegung is nothing bu t a special kind of in ter-band tra n ­
sitions w ith creation of v irtual electron-hole pairs. The 
u n ita ry  transform ation  generated by the operator Up =  
l /> /2 ( l  +  im pa ), where m p =  (cos t p , — s i n t p ) and t p 
is the polar angle of the vector p , diagonalizes the Ham il­
tonian  H p =  diag (—vp,vp)  and thus introduces electron 
and hole states; after th is transform ation  the oscillating 
term  in E q .(4) corresponds to  the in ter-band  transitions, 
e.g.

U t j x U =  ev (  — cos t p  ' —i sin ^ e - i^ + 2iep*
pjp  p y i  sin t p ei^p 2iCpi cos t p

p p (5)
To calculate the conductivity  a  (w) we will try  first to  

use the K ubo formula [19] which reads for two-dimensional 
isotropic case:

a{uj) =  iL [ dteiut
dX (j (t -  iX) j) (6)

where 3  =  T - 1  is the inverse tem perature, A  is the  sam ­
ple area. In the sta tic  lim it w = 0  taking into account On- 
sager relations and  analyticity  of the correlators (j (z) j) 
for —3  < Im z <  0 one has [19]

(7)

(8)

CO

^ - J d e e ö 2 (e) (9)

of the  Fermi d istribu tion  function appearing a t the cal­
culation of the average over product of Ferm i-operators. 
O f course, the square of the delta  function is not a well- 
defined object and thus E q .(9) is meaningless before spec­
ification of the way how one should regularize the delta- 
functions. After regularization the integral in E q .(9) is fi­
nite, bu t its value depends on the regularization proce­
dure. I t is not surprising therefore th a t two different ways 
of calculations in R ef.[8] led to  two different answers. O ur 
derivation, a t least, clarifies the origin of these difficulties: 
it is the  Zitterbewegung, or, physically, the im possibility 
to  localize u ltrarela tiv istic  particles and to  m easure their 
coordinates.

At finite frequency and finite chemical poten tia l the 
Zitterbew egung contribution  to  the expression (6) coin­
cides w ith the result for in ter-band  conductivity  found in 
Ref.[13].

Despite th is derivation cannot give us a correct num er­
ical factor, it opens new way to  qualitative understanding 
of more com plicated situations. For example, the  m inimal 
conductivity  of order of e2 / h  per channel has been ob­
served experim entally also for the  bilayer graphene [20] 
w ith the energy spectrum  drastically  different from th a t 
for the single-layer case. The bilayer graphene is a zero-gap 
sem iconductor w ith parabolic touching of the electron and 
hole bands described by the single-particle H am iltonian 
[20,21]

h  I 0 (px -  ip y ) /2 m
p .(px +  ipy)2 / 2 m 0

(10)

Usually, for ideal crystals, the  current operator com m utes 
w ith the H am iltonian and thus j  (t) does no t depend on 
time. In th a t case, due to  E q .(6) the frequency-dependent 
conductivity  contains only the Drude peak

E ither the spectral weight of the  Drude peak is finite and, 
thus, the  sta tic  conductivity  is infinite, or it is equal to  
zero. I t is easy to  check th a t for the  system  under consider­
ation the spectral weight of the Drude peak is proportional 
to  the  m odulus of the  chemical poten tia l |^ | (cf. Eq.(44) 
of R ef.[13]) and thus vanishes a t zero doping (^  =  0). I t is 
the  Zitterbewegung, i.e. the  oscillating term  j i  (t) which 
is responsible for nontrivial behavior of the conductivity  
for zero tem pera tu re  and zero chemical po ten tia l ( th a t is, 
the  gapless sem iconductor case). A straightforw ard calcu­
lation  gives a formal result

(here we ignore some com plications due to  large-scale hop­
ping processes which are im portan t for a very narrow  
range of the Fermi energies [21]). The H am iltonian (10) 
can be diagonalized by the un ita ry  transform ation  Up w ith 
the replacem ent t p ^  2 t p . Thus, the current operator 
after the  transform ation  takes the form (5) w ith the re­
placem ent v ^  p / m , e - i ^p ^  e -2 i^p . In contrast w ith 
the single-layer case, the density  of electron sta tes for the 
H am iltonian (10) is finite a t zero energy bu t the  square 
of the  current is, vice versa, linear in energy. As a result, 
we have the  same estim ation (9), w ith the accuracy of 
additional factor 2.

To circum vent the  problem  of am biguity in the expres­
sion for a  in E q .(9) we now follow the alternative Landauer 
approach. Let us assume th a t our sample is a ring of length 
L y in y  direction; we will use Landauer formula to  calcu­
la te  the  conductance in x  direction (see Fig. 1). There 
is still an uncertain ty  in the sense th a t the  conductivity  
tu rn s  out to  be dependent on the shape of the sample. 
To have a final transparency  we should keep L x finite. On 
the o ther hand, periodic boundary  conditions in y  direc­
tion  are nonphysical and we have to  choose Ly  as large as 
possible to  weaken the ir effects. Thus, for two-dimensional 
situa tion  one should choose L x ^  L y .

In the coordinate representation  the Dirac equation at 
zero energy takes the form

where one delta-function originates from the in tegration 
over t  in E q .(7) and the second one - from the derivative

(Kx  +  i K y ) ÿ i  =  0 
(Kx -  i K y ) ^ 2 =  0

(11)

ßDO

0

DO

— O

a
0
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Fig. 1. Geometry of the sample. Thick arrow shows the direc­
tion of current. ÿ t (solid line) and (dashed line) are wave 
functions of the edge states localized near the top and the bot­
tom of the sample, correspondingly.

where iv* =  — General solutions of these equations 
are ju s t a rb itra ry  analytical (or complex conjugated ana­
lytical) functions:

01 =  0 i  (x +  i y ) , (12)

02 =  02 (x -  i y ) .

Due to  periodicity in y  direction bo th  wave functions should 
be proportional to  exp (i kyy)  where k y =  2 n n / L y, n  =
0, ± 1 , ± 2 ,... .  This m eans th a t the  dependence on x  is also 
fixed: the  wave functions are proportional to  exp ( ± 2 n n x / L y 
T hey correspond to  the  sta tes localized near the  bo ttom  
and top  of the  sample (see Fig. 1).

To use the Landauer formula, we should introduce 
boundary  conditions a t the  sam ple edges (x =  0 and 
x  =  L x ). To be specific, let us assume th a t the leads are 
m ade of doped graphene w ith the poten tia l V0 <  0 and 
the  Fermi energy E F =  v k F =  -V o. The wave functions 
in the  leads are supposed to  have the same y-dependence, 
th a t  is, -01,2 (x, y) =  0 1j2 (x) exp (ikyy ) . Thus, one can try  
the  solution of the D irac equation in the  following form:

Assuming th a t the  conductance is equal to o -y 1 one findsLx
the  contribution to  the  conductivity  equal to  e2/(n h ) . Ex­
perim entally  [2], it is close to  e2/h ,  th a t is, roughly, three 
tim es larger th an  our estim ation. The same result has been 
found earlier in R ef.[8] by one of the  ways of derivation 
(the o ther one gives, instead, a factor n / 8). Note also th a t 
for the case of nanotubes ( Lx ^  L y ) one has a conduc­
tance e2 / h  per channel, in accordance w ith known results 
[22,23].

The result a  =  e2 / ( nh )  per valley per spin is found 
here for the case of ideal crystal. If one calculates in the 
sim plest “bubble” approxim ation the conductivity  in the 
presence of weakly scattering  im purities and then  pu t T  =
^  =  0 it leads to  the same value [4,5 ,7 ,11,12]. However, 
one can hope th a t more transparen t physical understand­
ing of the origin of finite conductivity  in ideal crystals 
which is provided by the Landauer formula will be useful 
to  consider more com plicated situations, such as the case 
of bilayer [20].

I am  thankful to  A ndreas Ludwig, Andre Geim, and 
K ostya Novoselov for valuable discussions stim ulating this 
work.

Note added: A fter this work was basically finished (cond-m at/051233' 
revised version) I have become aware of a relevant work 
by J. Tworzydlo, B. Trauzettel, M. Titov, A. Rycerz, and 
C. W . J. Beenakker (cond-m at/0603315) where a sim ilar 
result for the transm ission coefficient (14) has been ob­
tained, w ith a bit different choice of boundary  conditions.

)They have found also a sub-Poissonian shot noise in ideal 
graphene sim ilar to  th a t in disordered m etals which gives 
a beautiful example of the im portance of electron Z itter­
bewegung.

+  re— ikx

01 (x)

02 (x)

te 1'

x  < 0 
0 < x  < L x 

x  > L x
eikxx+i$ _  re —'ikxx—i$

-kyXbe~
te'ikx x+i0

x  < 0
0 < x  < L x (13) 

x  > Lx

where sin</> =  ky / k p , k x = s jk “p  — fc2. From  the condi­
tions of continuity  of the wave functions, one can find the 
transm ission coefficient

i ,, m2 cos2 6
\f  ( M T  = ---- , 2 ,, ^ ------r^TT- (14)cosh (kyL x ) — sin $

Further, one should assume th a t k F L x ^  1 and pu t $  ~  0 
in E q .(14). Thus, the  trace of the transparency  which is 
ju s t the  conductance (in un its of e2/ h )  is

T r T E
1 L y

cosh (kyLx)  n L x
(15)
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