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Abstract 

The Ziv-Lempel complexity is a well-known complexity measure. In our paper 
we consider the Ziv-Lempel complexity for p'eriodic sequences as well as for 
pseudorandom number sequences. Further on, we will look at i ts  crypto- 
graphic significance and compare it with other complexity measures such as 
the linear complexity. 

1 Introduction 

In the last couple of years several different complexity measures were used to 
examine pseudorandom number sequences in cryptography. Examples for 
such complexity measures are the linear complexity which is defined in 
Rueppel [Ruep 861 or the maximal-order complexity which was introduced by 
Jansen [Jans 89). Both complexity measures can be used to  test pseudorandom 
number sequences against the qualities of random number sequences has and 
therefore to  distinguish between pseudorandom number sequences with 
good qualities and those with bad qualities. 

Another co nplexity measure for sequences was defined by Ziv and Lernpel in 
1976 [Lemp 761. This complexity measure is  a measure of the rate at which new 
patterns emerge as we move along the sequence. Until now the Ziv-Lempel 
complexity was mainly used in connection with the Ziv-Lempel algorithm for 
data compression. In cryptography it was applied by Leung and Tavares [Leun 
851 for testing block ciphers. In his PhD. thesis [Wan 881 M. Wang mentions 
some of the properties of the Ziv-Lempel complexity which are also part of the 
work in this paper but he does not prove this properties. 

D.W. Davies (Ed.): Advances in Cryptology - EUROCRYPT '91, LNCS 547, pp. 114-126, 1991 
0 Spnnger-Verlag Berlin Heidelberg 1991 
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In our paper we will consider minimai and maximal values of the Ziv-Lempel 
complexity. After that we will have a closer look a t  the Ziv-Lempel complexity 
for periodic pseudorandom number sequences. Particularly, we will see that 
the Ziv-Lempel complexity of these sequences depends on the start position Si 
where the computation of the complexity has started and that the Ziv-Lempel 
complexity for such a sequence has a constant value after maximal 2p - 1 
positions of the sequence have been c3nsidered (p denotes the period of the 
sequence). After that we will consiaer the Ziv-Lempel complexity for arbitrary 
pseudorandom number sequences. 1-inally, the Ziv-Lempel complexity will be 
compared with other well-known cryprographic complexity measures such as 
the linear complexity or the maximal-oraer complexity. Here, we will mainly 
consider the question whether i t  i s  necessary to  examine pseudorandom num- 
ber sequences using the Ziv-!-empel cornpiexity or whether i t  i s  enough t o  use 
only the linear complexity. 

2 Definition and Computation of the Ziv-Lempel complexity 

As we mentioned above Ziv and Lempei introduced a complexity measure for 
finite sequences in 1976. Intuitively, this complexity is a measure of the rate at 
which new patterns emerge as we move along the sequence. We refer the rea- 
der to [Lem 761 for the formal description. In this paper we will only provide a 
short description as it is  given in [Ziv 781. 

Let 5 = s1..s, be a sequence of length n then the following rules can be used 
to obtain the Ziv-Lempel complexity of  the sequence S: 

1) A slash is inserted following s1  

2) Assume that the i-th slash comes after the letter ski, 1s ki 5 n - 1. The 
next slash will be inserted after the letter ski +,  where ki + 1 = ki + Li + 1 
5 n and Li is the maximal length of a substring ski + l...ski + L, such that 
there exists an integer pi (where 1 5 pi 5 ki) for which spi ...spi + L~ -1 = 

If sn is followed by a slash the Ziv-Lempel complexity is equal to  the number of 
slashes, otherwise the Ziv-Lempel complexity is equal t o  the number of slashes 
plus one. 

To illustrate the mechanism for the computation of the Ziv-Lempel complexity 
we will use the following example: le t  X = 1001101110000111 be a binary 
sequence then we can insert slashes into the sequence X using the two rules 
and we will obtain the sequence X with the following partition X = 
1~0~01~101~1100~00111~. X is now devided into six patterns and therefore the 
Ziv-Lempel complexity C for the sequence X is equal to  6. 

Ski + 1 ... Ski + Li ’  
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In the next step we will present an algorithm for the computation of the Ziv- 
Lempel complexity. To compute the Ziv-Lempel complexity we have to  define 
an algorithm for the execution of rule 2. Rule 2 can be executed using the fol- 
lowing two steps: 

a) Initialization: Let n + 1 be the sequence position where the computation 
of a new pattern starts, let J contain all positions j for which Si = Sn + 1  
(1 I j 5 n) and let I = 2. 

b) Repeat the following step until J is  empty: delete all j E J for which Sj +I  -1 
f Sn + I  and increase I by 1 if J is not empty. Otherwise I is the length of 
the new pattern which is defined by s, + 1...Sn +I. 

These two steps enable us to  compute the patterns of a sequence 5 and there- 
fore also the Ziv-Lempel complexity of the sequence. 

To improve the computational complexity of the computation of the Ziv- 
Lempel complexity pattern recognition algorithms such as the algorithm of 
Blumer, Blumer, Ehrenfeucht, Haussler and McConnel [Blu 831 can be used. 

3 Minimal and Maximal value of the Ziv-Lempel complexity 

In this section we consider a binary sequence 5 = S1..Sn of length n which con- 
sists of k ones and n - k zeros (0 5 k 5 n). Our aim is to  examine the minimal 
resp. maximal value of the Ziv-Lempel complexity of this sequence. 

For the minimal value of the Ziv-Lempel complexity we obtain the following 
Theorem. 

Theorem 1: The minimal value of the Ziv-Lempel complexity Cmin of a 
sequence 5 = s1 ... sn is 

[ 2 i f k = O o r k = l o r k = n o r k =  n-1 

Cmin = 

c 3 in all the other cases 

Proof: Computing the Ziv-Lempel complexity for a sequence 5 we have to  use 
s1 as the first pattern. To get now a minima! Ziv-Lempel complexity Cmin = 2 
we have to  use s2 ... s, as a second pattern. This is only possible if the positions 
s', 1 2 d j 5 n-1, have the same value as position 51. If the value of position of Sn 

i s  different t o  the value of position s1 we get an unique pattern sz ... ~ n ,  other- 
wise the pattern will not be unique. Depending on the way how s1 was chosen 
there will be k = 0, k = 1, k = n -1 or k = n ones in the sequence. 
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For any other choice o f  k at least three patterns have t o  be used t o  get the Ziv- 
Lempel complexity of the sequence and therefore the possible minimal value 
of the Ziv-Lempel complexity Cmin is 3. To obtain now a sequence with mini- 
mal Ziv-Lempel complexity the sequence can be constructed in the following 
way: Under the assumption that s1 is equal t o  1 the first pattern p1 is again 
equal to sl, the second pattern p2 is equal t o  a (k-1)-times repetition of p1 
followed by the inverse value of p1 and the third pattern p3 consists only of a 
(n - k)-times repetition of  the inverse value of  p1. If s1 is equal t o  0 the same 
procedure can be done but p2 contains then (n - k - 1) repetitions of p1 and p3 
(k -1). This is only one principle to  construct such sequences. It is  also possible 
to  have one 1 as value of the final position of pattern p3 and therefore t o  re- 
duce the numbers of ones in pattern p~ by 1. The same principle can also be 
applied t o  the zeroes, if the sequence starts with a zero.1 

For a further construction principle of sequences with Cmin = 3 let I1 = 1 be 
the length of pattern p1, 12 the length of pattern p2 and 13 = n - I1 - 12 the 
length of pattern p3 and k < n/2. Furthermore let p1 = 0, p2 = 0...01 and p3 
be a repetition o f  the final I positions of p2 for (m -1)-times followed by zeros 
or for (m - 2)-times where the last position has the value 1, then we obtain 
additional sequences with Cmin = 3 if for 11, 12 and 13 the following equation 
holds: 

The following sequences are examples which are constructed using these 
three principles: 

5 = 11 ..... 10 which has Ziv-Lempel complexity C = 2. 
5 = 11 ... 100 ... 0 which has Ziv-Lempel complexity C = 3. 
5 = 00 ... 011..10 which has the Ziv-Lempel complexity C = 3. 
5 = 000 ... 001001 .... 00100 which has the Ziv-Lempel complexity C = 3. 

After having considered the minimal value o f  the Ziv-Lempel complexity for a 
sequence 5,  in a next step we will now examine i t s  maximal value. 

Whereas it is possible t o  make some assumptions about the minimal value of 
the Ziv-Lempel complexity for any k, 1 5 k 5 n, this is  not  possible in the case 
of the maximal value of  the Ziv-Lempel complexity. Here we can only give the 
maximal value o f  the Ziv-Lempel complexity for some certain values of k. 

(m-2) ’1+1 5 n-11-121 m - I ,  I S  12 

Lemma 1 

with lo = 
lk + 2 + I k  

Let n be the sequence length and 
k 

n = t  l i + I i + l + r  (1) 
1-0 
I even 

1 = 1, Ii = li-2 + li-1 and Ii + 1 = l i -2 + l i-1 + 1 for 2 5 i 5 k and 0 5 r < 
3 then the maximal value of the Ziv-Lempel complexity Cmax is 
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P for r=O 

if the number of ones or zeros in the sequence is equal to k/2. 

Proof: Using formula (1) we get a construction criterion for a sequence of 
length n which contains k/2 ones and has Ziv-Lempel complexity Cmax. If the 
patterns pi (i even) of length Ii only consist of zeros and the patterns pi + 1 of 
length Ii + 1 have the form 00..001, then each of these patterns defines a 
unique pattern as it is necessary to get the Ziv-Lempel complexity and the Ziv- 
Lempel complexity of the sequence is equal to  Cmax. 

It is not possible to obtain a Ziv-Lempel complexity C which is greater than 
Cmax under the assumption that the sequence length is equal to n and that 
the number of ones which the sequence contains is equal to k/2; because the 
number of patterns used to compute the Ziv-Lempel complexity will be 
maximal if each one appears in a different pattern and if each of the patterns 
containing a single one is followed by a pattern containing no one. After the 
rules for the construction of the patterns a pattern containing no one has to  
be followed by a pattern containing a single one and therefore it is not 
possible to have more than k patterns without a single one. I 

If the number of ones in the sequence is less than k/2 the maximal Ziv-Lempel 
complexity can be obtained using the same construction method. 

4 Ziv-Lempel complexity for periodic sequences 

In this section we consider the Ziv-Lempel complexity for periodic sequences 
s1 ... sp - lspsp + 1 ... where p is the period of the sequence and sp + i = Si  for 0 < i 
5 p. This type of sequence is  often generated by pseudorandom number 
generators but can also be obtained if we consider message files which consist 
of a repetition of one message for a certain number of times. In our theorems 
we will obtain the maximal length I of a periodic sequence which is needed to  
compute the Ziv-Lempel complexity for the sequence of any length greater 
than I. 

In the following we will start with the consideration of a special case of 
sequences and then continue our examination with the general case of 
periodic sequences. We assume for our first theorem that the sequence s1 .... sp 
has Ziv-Lempel complexity C and the sequence s1 .... sp + 1 has Ziv-Lempel 
complexity C + 1. Using this condition we see that one period of the sequence 
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1 finishes with a complete pattern as it is defined by the Ziv-Lempel complexity. 
Then we obtain the following theorem. 

lemma 2: If 5 is a periodic sequence where s1 ... sp has the Ziv-Lempel 
complexity C and sl ... sp + 1 has the Ziv-Lempel complexity C + 1 then for I 2 q 
= p + 1, the sequence s1 ... sl will have the Ziv-Lempel complexity C + 1. 

Proof: Because of the period of the sequence sp + ,  has the same value as Si for 
I 2- 1 and because of the start of a new pattern at position p + 1 the pattern 
given by sp+ 1 ... s 9 + ,  can allways be found as sl ... Sj for j L 1 in the sequence. 
Therefore for any j 2 1 the increase of j by one does not define a new pattern 
and therfore the Ziv-Lempel complexity can never be greater than C + 1 for 
j 2  1.1 

Now we will consider the more general case where it is only known that the 
sequence S has a period p. 

Lemma 3: If 5 is a sequence with period p, Ziv-Lempel complexity C for s1 ... Sp-k 
and Ziv-Lempel complexity C + 1 for s1 ..sp + 1 then there exists a q such that 
the sequence sl ... Sj has the Ziv-Lempel complexity C + 1 for p - k < j 5 q and 
theZiv-Lempel complexity C + 2 for j > q. (k > 0) 

Proof: Because of  the period of the sequence the pattern starting at position 
p - k + 1 cannot be of infinite length. Therefore a position q = p + I must 
exist in such a way that sp-k+ 1...sP+l defines a unique pattern. All sequences 
$1 ..s, have the same Ziv-Lempel complexity C + 1 for p - k + 1 s j S p + I = q. 

Because o f  the period of  the sequence the pattern starting at position p +I + 1 
can also be found with starting position I + 1. Because of the periodicity of the 
sequences this is true for every pattern length j 2 1. Therefore all these 
sequences have the same Ziv-Lempel complexity C + 2.1 

In our next two lemmas we will determine a maximum for the pattern length 
of the pattern sp-k + l...sp + 1 and using this maximum we can provide an upper 
bound of the sequence length which has to  be examined in the case of  
periodic sequences to  obtain the Ziv-Lempel complexity of the sequence. 

Lemma 4: Using the assumptions of lemma 2 the maximum length m for the 
pattern sp-k + 1 ... sp 1 is p - k. 

Proof: The following equitation has to  be true to  obtain a pattern 

and 

where j is called the starting point of the existing pattern sl...sl 
assume I > p - k then we obtain the following additional equation 

Sp-k t I f SJ + I  

sp-k+,,, = Sj+m for0 < m < I  

Now let u s  

SJ + I = Sj + I-p + k 
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which itself provides us a new equation 

sj + I-p + k = sp + j  + I-p + k = s j  + I  + k 

because of the period p of the sequence. Starting with Sj + I  + k we obtain 

Sj+l+k = Sj+I -p+k+k = Sp+j+I -p+Zk = SZj+Zk+l 

Continuing this chain we obtain 

S j + k + l  = SZj+2k+I = ... = Sxj+xk+I forx > o  
Now we have to consider 

sp-k+l * sxj + x k + i  

In a first step we will show that for fixed I > p - k and certain choices of j and k 
the two values are equal and therefore it is not possible to have a pattern 
length I > p - k. For simplification let us only write i when we actually mean Si. 

p - k + l  = x j+xk+I  
If forsomey > 0 , ~  > 0: 

y p - k + l  =xj+ xk+I  

because we have a periodic function. We obtain now 

yp = xj + (5 + 1)k-Z = (YP-k)/(j * k )  (1.1) 

So if there exists y for p and k such that the value of the fraction (1.1) is an 
integer, p - k + I can never be chosen different from j + I, and therefore it is not 
possible to have a pattern length greater than p - k. 
Let us now consider the case in which (1.1) has no integer solution. Because of 
the definition of the Ziv-Lempel complexity and the period of the sequence we 
get the following additional equitations: 

51 = s p + l  = sj + k + 1  = S p + j + k + 1  = SZj+Zk+1 = = sxj+xk+1 

s2 = sp+2 = s j + k + 2  = --. = s x j + x k + 2  
Continuation leads to 

sk+j = S p + k + j  = S j + j + k + k  = ... = Sxj+xk 

s k + j + 1  = S p + k + j + 1  = S j + j + k + k + l  =... = Sxj+xk+1 

therefore we would only obtain a sequence with period j + k instead of 
period p. It is not possible to  have a patternlength I > p - k and period p.1 

Lemma 5: q i 2p - 2 under the assumption made in lemma 3. 

Proof: Follows from lemma 3 using k = 1 which is the maximum pattern 
length 1.1 
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Now we examine a t  which position J the pattern Sp-k + I.+, + I  starts in the part 
s1...sP+k of the sequence. We see, the number of j ' s  will be limited and will 
depend on the value of k and the length of the pattern I. 

Lemma 6: Using the assumption made in lemma 3 for fixed k and I I p - k, j has 
to be chosen in such a way that j + I 5 p - k .  

proof: The same proof construction as in lemma 3 can be used if the 
assumption I > p - k is replaced by :!-te assumption j i I > p - k.1 
Using lemma 5 we get the number of seauences with period p and q = 2p - 2. 
For I = p - k = p - 1, j has to be equal 1.3 '3 :?c! therefore we can obtain exactly 
2 sequencesfor this condition: 

S 1  = 01 O... 01100 ... 01 10 

52 = 111 ... ;Olll ... 1\01 

sanere rne 1 is a t  position p - 1 

wherethe0 isat position p -  1 
S2 is the complement sequence to  S i .  i o r  both sequences C is equal to  3. 

Theorem 2: In a sequence with period p the Ziv-Lempel complexity C has a con- 
stant value after maximal 2p - 1 positions of the sequence have been con- 
sidered. 

Proof: Follows immediatelyfrom lemma 1 - 5.1 

Theorem 2 shows that it is sufficient t o  use 2p -1 positions of a periodic 
sequence for the computation of the Ziv-Lempel complexity. 

We will now undertake a closer examination of the starting points for the 
computation of the Ziv-Lempel complexity. We will see that the Ziv-Lempel 
complexity for a periodic sequence depends on the starting point and that 
therefore we can obtain different values for the Ziv-Lempel complexity for 
different starting points. 

Lemma 7: Let 5 be a periodic sequence with period p, let C1 be the Ziv-Lempel 
complexity of the sequence computed with star t  position s, and C2 be the Ziv- 
Lempel complexity of the sequence computed with start position Si + 1 then C1 
and C2 can be different. 

Proof: In our proof we show only one possible situation where C1 and C2 will 
be different. Let 51 be the periodic sequence used to compute C1 with 51 F s2 
and s2 = s3, then we obtain a pa?tern p1 = s 1 ,  a pattern p2 = s2 and further 
patterns pi for which we assume that pi = Si ... Si + k  and Si ...Si + k - l  is equal 
Sj ... Sj + k-1 for j > 1 (i > 2, k > 0) or in words no pattern should be built using a 
already existing pattern starting at position 1 of the sequence '51. C2 will now 
be computed using starting position s2.Therefore we loose the pattern p1 = 51. 
Under the assumption that for the last limited pattern of S1 p,-,-1 = sp-k. ... Sp + j 
a similar pattern can be found in S2 which has the form Sp-k-1. ... spsp + + j 
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(k, j, i > 0). We actually reduce the number of patterns in S2 by one because 
we lost the inital pattern p1. Therefore the Ziv-Lempel complexity C2 is equal 
to  C1 - 1 and therefore C2 is  not equal to  C1.1 

This result shows us a great difference between the behaviour of the Ziv- 
Lempel complexity and of other complexity measures such as the linear com- 
plexity for sequences or the maximum order complexity. 

Now we will look at  the Ziv-Lempel complexity values C, computed for a 
periodic sequence where Ci is computed using start position Si (1 5 i < p). We 
see that the values Ci are distributed around the average value C = l /n  (C, + 
... + CP-& Examing the value Ci we get with the highest probability the value 
- C and with exponentially decreasing probabilities the complexity values 5 - j 
and g +  j (j > 0). We also see that C - j i s  bounded by a value Cmin called 
minimal Ziv-Lempel complexity of the periodic sequence and C + j by a value 
Cmax called maximal Ziv-Lempel complexity of the periodic sequence. Having 
- C fixed Cmin and Cmax will also be fixed because of the structure of the 
sequence defined by C. 

5 Ziv-Lempel complexity for binary pseudorandom number sequences 

The Ziv-Lempel complexity can be used to  examine pseudorandom number 
sequences. In the following let us assume p(Si = 1) = p(sj = 0) = 0.5. 

In a first step we will examine the average length of a pattern which starts at 
position s, + 1. 

Lemma 8: Under the assumption that each position of the sequence can be 
computed independently of any previous position the average length of a pat- 
tern starting at position s, + 1 is Pa = LlOgznJ + k where LxJ denotes the in- 
teger part of x and k is  equal to  k = ((1- c0.1 + c0.2-l.2 + c 0 - 2 - ~  . 3 + ...) / (1- co +CO 

,2-' t c0.2-~ + ..) and co can be computed using the following formula: co = n; 
f o r j  = 1 t o  LlOg2nJ + 1 doc0 = co/2 . 
Proof: The average length of a pattern i s  equal to the number of steps which 
are needed on average until the set J is empty. Under the assumption that the 
probability p (Sj = 1) = p (Sj = 0) = 0.5 we obtain on average n/2 values j C 1 
in step a) of  the algorithm given ii7 section 2. As long as there are 2 or more 
elementes in J in step b) of this algorithm the number of j 's E J will be halved 
on average if I is increased by 1. This is the case for 1-log2n.1 steps. If J contains 
for the first time less than two positions a new pattern exists in a certain 
number of cases. The number is  1 - co where co i s  computed by the formula 
given above. After that in each round r we will obtain new patterns with 
length ~ l o g 2 n ~  + r + 1 in co . 2-r cases where 0 < r. On average k rounds are 
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needed until a new pattern is obtained. Therefore the pattern length of the 
new pattern starting at position n + l  will have on average the length 
LiogpJ + k.1 

Remark: 2 S k < 3 

For n = 2-m (0 < m) we obtain co = 0.5 and therefore (E 2-k. k) / Z  2-k 

If co -> 0 we obtain lim ((1-co) .1 + co .  2-' ' 2 + co.  2-2. 3 + ...) / (1 - co + CO. 2-' 

+ C O .  2- + ...) = (t 

m m 

k = l  k = l  

OD m 

2 2-k. (k + 1)) /t 2-k = 3 
k = l  k = l  

Having an estimation of the average pattern length for a pattern starting a t  
position j, 1 5 j S n we can now give an estimation of the average Ziv-Lempel 
complexity Ca for a sequence of length n under the assumption that each 
pattern of the sequence is computed independently of the former patterns. 
The estimation can be given using the following induction: 

1) Forj :  = 1: C a :  = landjo: = 1 
2) Forj : = 2...n: if j = jo + Llogzjo 1 + k then Ca : = Ca + land jo : = j 

Both measures the Ziv-Lempel complexity Ca and the pattern length pa can be 
used t o  examine pseudorandom number sequences. We would expect that a 
good pseudorandom number sequence has a Ziv-Lempel complexity which is 
close to the value Ca and that each pattern of the sequence has a length pi 
which is close to  the corresponding pai. If the Ziv-Lempel complexity of the 
sequence is  much smaller than the Ziv-Lempel complexity Ca then the se- 
quence will have a t  least one multiple repetition of a sequence pattern and 
therefore there exists a t  least one pattern length pi such that pi is much 
greater than Pa;. The pattern i will be a repetition of already existing patterns. 
This should be avoided for two reasons: 

1) Often the pattern i might repeat a pattern which does not include the 
same number of ones and zeros for several times and therefore the ones 
and zeros might locally not be randomly distributed with p(Sj = 1) = p(Sj = 0) 
= 0.5 

2) The multiple repetition of a pattern can also be a disadvantage if the 
pseudorandom number sequence is used in a stream cipher. I! not only the 
pseudorandom number sequence has a multiple repetition of patterns but 
also the plaintext, the corresponding ciphertext might also have a multiple 
repetition of patterns. 

Therefore the pattern length pi and the Ziv-Lempel complexity can be used to 
indicate pseudorandom number sequences which are not desirable. 
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6 Ziv-Lempel complexity and other cryptographic complexity measures 

In this paper we only want to  compare the Ziv-Lempel complexity with the 
linear complexity. A comparision of the Ziv-Lempel complexity with the maxi- 
mal-order complexity would have a similar effect. 

Looking only at the linear complexity we see the sequence can have a great 
linear complexity which is suitable but on the other side the same sequence 
can have a small value for the Ziv-Lempel complexity which is  not desirable. An 
example would be the sequence S = 00 ... 001. Therefore the value for the 
linear complexity alone does not say much about the quality of the sequence. 
But considering also the Ziv-Lempel complexity for this kind of sequences the 
value for the Ziv-Lempel complexity will be close to  the minimal Ziv-Lempel 
complexity and therefore the sequence would not be suitable. 

If the linear complexity profile is considered instead of the linear complexity 
we obtain much better statements about the quality of the sequence and the 
Ziv-Lempel complexity can be seen as an additional measure providing us with 
some more information about repetitions of patterns in the sequence. Parti- 
cularly, the Ziv-Lempel complexity can be used t o  detect repetitions of pat- 
terns. 

Let us now consider the case of R repetitions of a pattern in the sequence 5 = 
S l  ... Sk and let us define the complexity length for the linear complexity. If Si i s  
the first position in the sequence with linear complexity Ci and if Sj is the first 
position with linear complexity Ci + 1 then j - i will be considered as the com- 
plexity length. 

Now we consider a sequence S = sl ... sk which has the following Ziv-Lempel 
complexity S = Sllsz ...I Si ... S k l  where si ... sk consists of R > 1 repetitions of a 
pattern Sj ... Si-1 where 1 5 j 5 i - 1. Let us consider the linear complexity and 
therefore the complexity length of this sequence. If Si ... Sk is equal to 
S1...Si-l S1...Si-l...s1...si-lsk then there exists an !where i C 1 < 2i according to 
the well-known results for the linear complexity in periodic sequences such 
that the linear complexity CI is the same for s1 ... Sj, i 5 j 5 k. The complexity 
length k - will then indicate that there is an unregularity in the sequence be- 
cause k - i will be large in comparision to the other complexity lergths in the 
sq u ence. 

If Si ... Sk is equal to Sj ... Si- lSj  ... Si-1  ... Sj ... Si-1 ... Sk then the theorems about periodic 
sequences and the linear complexity canot be used and the linear complexity 
for the sequence S 1  ...Sk will normally increase in such a form that there is no 
indication that the pattern Sj..-Si-1 is repeated for R times. 
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Considering these two cases w e  see t h e  l inear complexity and the complexity 
length alone are not enough to discover all kinds of repetitions of patterns 
which are possible in a sequence. Therefore we need an additional complexity 
measure which enables us to detect other kind of repetitions of patterns 
which do not influence the linear cornDiexity. The Ziv-Lempel complexity to- 
gether with the pattern length can ke used as such a complexity measure. 

7 Conclusions 

In cryptanalysis it should be possible t o  use a complexity measure for several 
different tasks such as the examinarion of pseudorandom number sequences 
or the identification of a period in a sequence. Therefore i t  i s  necessary t o  
determine requirements which hels t o  identify complexity measures which are 
good for all these different tasks. in the following we will present four points 
which we think a complexity measure should fullfil: 

1) Indication and identification of a period in a sequence: The complexity 
measure should be able to detect a period in a sequence and t o  identify i t s  
starting point and i t s  length. 

2) Independence of the compiexrry value in a periodic sequence from the 
position where the computation had started: If in a periodic sequence the 
complexity value is  computed using different start positions, the result 
should be the same after a certain number of positions had been con- 
sidered. 

3) Examination of pseudorandom number sequences: It should be possible to 
use the complexity measure to examine pseudorandom number sequences 
and to compare the results against results obtained from random se- 
q u en ces. 

4) Computation of the sequence: Knowing the complexity of the sequence it 
should be possible in an easy ana  eiiicient way t o  compute the sequence. 

If we now look a t  the Ziv-Lempel complexity and compare our results with this 
four points we see that the Ziv-Lempel complexity fullfils some of these points 
but that there are s t i l l  some points with great difficulties. For example, the Ziv- 
Lempel complexity does not fullfil points 2) and 4). However, the Ziv-Lempel 
complexity can be used to  indicate a period in a sequence and it can be used t o  
examine pseudorandom number sequences. Here there are st i l l  some 
problems to be solved because it is far from clear how the distribution of Ziv- 
Lempel complexity behaves for a certain sequence length.Therefore, 
additional examinations of the Ziv-Lempel complexity measure in 
cryptography are necessary. 
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Nevertheless, the Ziv-Lempel complexity is usefull in cryptography because as 
i t  is shown in section 6, it can detect weaknesses in a sequence which can not 
be detected by the linear complexity. 
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