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ABSTRACT

The paper addresses the problem of the lower performance
bound evaluation for harmonic retrieval in multiplicative
and additive noise, especially when the SNR is low and/or
when the number of available samples is small. As a nov-
elty, we express an accurate approximation of the Ziv-Zakai
bound in closed-form. This enables us to analyse the in-
fluence of some signal parameters on performance and to
characterise the so-called threshold region.

1. INTRODUCTION

We consider the following signal model

y(n) = a(n)e2iπ(ϕ0+ϕ1n) + b(n), n = 0, · · · , N − 1

where

• y(n) is the observed signal of whichN samples are
available.

• b(n) is an additive noise, which is assumed to be acir-
cular complex-valued white Gaussian stationary pro-
cess with zero-mean and varianceσ2

b = E[|b(n)|2].

• a(n) is a multiplicative noise, which is assumed to be
a zero-mean Gaussian stationary process. This noise
could be either complex or real-valued,circular or
non-circular.

The parameters of interestϕ0 andϕ1 are the phase and the
frequency respectively.

Such a signal model can be encountered in several ap-
plication fields such as DOA estimation, radar detection and
digital communications [1, 2, 3].

To characterise the lower performance bound on param-
eter estimation, the so-called Cramér-Rao bound (CRB) is
often used, partly because of the simplicity of its derivation.
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Unfortunately, it is now well-known that the CRB is not ac-
curate at low SNR and/or when the number of samplesN is
small. Therefore a few other bounds, which are more com-
plicated but tighter than the CRB, have been proposed in the
literature. The widely spread ones are the Barankin bound
(BB) and the Ziv-Zakai bound (ZZB) [4, 5].

The Barankin bound for harmonic retrieval in multiplica-
tive and additive noise has been already derived in [6, 7, 8].
Therefore, this paper focuses on the derivation and the anal-
ysis of the Ziv-Zakai bound. Our work is motivated by the
fact that the Ziv-Zakai Bound appears to be tighter that the
Barankin bound (of order1), as was reported in [9, 10] in
the context of additive noise models.

In the literature, different Ziv-Zakai-type bounds have
been introduced and derived for the problem of bearing [11]
and time-delay [12] estimation. A special case of bearing
estimation involves the problem of harmonic retrieval in ad-
ditive noise (without multiplicative noise). To the best of
our knowledge, the derivation of the Ziv-Zakai bound when
a harmonic signal is disturbed by additive andmultiplicative
noise sources has not been addressed in the literature. The
main purpose of this paper is to fill this gap.

2. REVIEW OF ZIV-ZAKAI BOUND

In this section, we recall the definition of the ZZB in the
context of a multi-variate parameter of interest.

Let ϕ̂0 andϕ̂1 be estimates ofϕ0 andϕ1 respectively.
The error vector is defined as followsε = [ϕ̂0 − ϕ0, ϕ̂1 −
ϕ1]

T where the superscriptT stands for the transposition
operator. Letϕ = (ϕ0, ϕ1). We denote the error correlation
matrix by

Eϕ = E[εεT].

In [5, 10], it was proved that the following inequality
holds for any vectorz of size(2 × 1),

zTEϕz ≥

∫ ∞

0

∆

(

max
h|zTh=∆

f(h)

)

d∆ (1)



whereh = [h0, h1]
T, and

f(h) =

∫

min(p(ϕ), p(ϕ + h))Pe(ϕ, ϕ + h)dϕ. (2)

The functionp(.) is thea priori density function of the
bi-variate parameterϕ, andPe(ϕ, ϕ + h) is the error prob-
ability when the optimal detector (namely, the ML detector)
is used to decide between the following two hypotheses
{

H0 : y(n) = a(n)e2iπ(ϕ0+ϕ1n) + b(n)

H1 : y(n) = a(n)e2iπ((ϕ0+h0)+(ϕ1+h1)n) + b(n)

where hypothesesH0 andH1 are equally likely.
The RHS of Equation (1) is called the Ziv-Zakai Bound

(ZZB). Actually, it is only a (simplified) lower bound of the
Ziv Zakai bound since the Valley-filling function defined in
[10] is set here to be equal to the identity, and the above
binary detection task is carried out under the assumption
thatH0 andH1 are equally-likely.

By inspecting Equation (1), one can remark that the like-
lihood of ϕ is scanned over the entire search interval ofϕ,
as is also the case for the Barankin bound [7]. This con-
trasts with the CRB where the likelihood function is only
evaluated around the true point. Therefore the CRB is less
accurate than the BB and the ZZB, especially at low SNR.
Indeed at low SNR, several estimate’s realizations, called
”outliers”, may be far away from the true point. The CRB
is incapable of predicting or quantifying such phenomenon.

Since the outliers effect is particularly associated with
frequency estimation, this paper focuses mainly on the es-
timation of ϕ1. The ZZB for ϕ1 is obtained by setting
z = [0, 1]T. The mean square error forϕ1, denoted MSE1,
is then bounded by

MSE1 ≥

∫ ∞

0

h1

(

max
h0

f(h0, h1)

)

dh1.

Notice that the termsf(h0, h1) andf(h) refer to the same
function.

3. DERIVATION OF ZIV-ZAKAI BOUND

The key task now is to express the functionh 7→ f(h) in
closed-form. According to (2), we need to explicitly express
min(p(ϕ), p(ϕ + h)) andPe(ϕ, ϕ + h). We first focus on
the derivation of the error probabilityPe(ϕ, ϕ + h) which
can be split into two terms as follows

Pe(ϕ, ϕ + h) =
1

2
Pe(ϕ → ϕ + h) +

1

2
Pe(ϕ + h → ϕ)

wherePe(ϕ → ϕ+h) is the probability that, given the true
parameterϕ (i.e.,H0), the test decision isϕ + h (i.e.,H1),
andPe(ϕ + h → ϕ) is defined similarly.

Before developing any further, we infer the following
lemma. The proof is provided hereafter.

Lemma 1 The error probabilitiesPe(ϕ → ϕ + h) and
Pe(ϕ + h → ϕ) are identical. Furthermore,Pe(ϕ, ϕ + h)
is independent ofϕ.

Proof – Let y(n) = a(n)e2iπ(φ(0)+φ(1)n) + b(n) andφ =
[φ(0), φ(1)]T. The vectory = [y(0), · · · , y(N−1)]T is then
a zero-mean complex-valued Gaussian vector with correla-
tion matrixRφ = E[yyH] where the superscriptH stands
for the conjugate transposition, and with pseudo-correlation
matrixUφ = E[yyT]. The matrixUφ is also referred to as
the conjugate correlation matrix. IfUφ 6= 0, the Gaussian
process is said to be non-circular or unproper.

Let ỹ = [yTyH]T. We have that

ỹ = Γ̃φã + b̃

where

Γ̃φ =

[

Γφ 0N,N

0N,N Γφ

]

with Γφ = diag(e2iπ(φ(0)+φ(1)n), n = 0, · · · , N − 1) and
whereã andb̃ are defined in the same way asỹ. As in [13],
one can remark that

ỹ = Γ̃φx̃ (3)

with x̃ = ã + Γ̃
−1

φ b̃.
The vectorx̃ is Gaussian with zero-mean and correla-

tion matrixR̃x independent ofφ since we have that

R̃x = R̃a + σ2
b I2N

whereR̃a the correlation matrix of̃a andI2N is the(2N ×
2N) identity matrix.

By definition,Pe(ϕ → ϕ + h), which corresponds to
the error probability of the ML detector, can be written as
follows

Pe(ϕ → ϕ + h) = Prob

(

p(y|ϕ + h)

p(y|ϕ)
> 1
∣

∣ỹ = Γ̃ϕx̃

)

.

Sincey is Gaussian, the likelihood function is given by

p(y|φ) ∝
1

√

| det(R̃φ)|
e−

1
2 ỹHR̃

−1
φ

ỹ

where

R̃φ := E[ỹỹH]

=

[

Rφ Uφ

Uφ Rφ

]

and where the overline stands for the complex conjugate
operator. According to Eq. (3), we have that

R̃φ = Γ̃φR̃xΓ̃
H

φ (4)



which implies thatdet(R̃φ) is independent ofφ.
Consequently

Pe(ϕ → ϕ + h) = Prob
(

e−
1
2 ỹHW̃ϕ,hỹ > 1

∣

∣ỹ = Γ̃ϕx̃
)

with
W̃ϕ,h = R̃−1

ϕ+h − R̃−1
ϕ .

Usingỹ = Γ̃ϕx̃ and Eq. (4), we obtain

Pe(ϕ → ϕ + h) = Prob
(

e−
1
2 x̃HW̃hx̃ > 1

)

(5)

with

W̃h := W̃0,h

= R̃−1
h − R̃−1

0

= Γ̃hR̃
−1
x Γ̃

H

h − R̃−1
x .

Thus,Pe(ϕ → ϕ + h) is independent ofϕ since the statis-
tics of x̃ are independent ofϕ. Using the same reasoning
as above,Pe(ϕ + h → ϕ) can be shown to be given by the
same expression as in the RHS of eq. (5). This concludes
the proof.

Thanks to Lemma 1, we are now able to simplifyf(h)
as follows [10]

f(h) = A(h)Pe(h)

where

A(h) =

∫

min(p(ϕ), p(ϕ + h))dϕ

andPe(h) stands forPe(ϕ, ϕ + h). Next, we deriveA(h)
andPe(h).

Since we have noa priori information onϕ, we con-
sider thatϕ0 andϕ1 are uniformly distributed over[0, 1/2],
i.e. thea priori distribution of the parameters of interest
p(ϕ) is flat. The upper bound1/2 is chosen since the phase
and the frequency can only be estimated modulo1/2 when
multiplicative noise occurs [10]. Consequently

A(h) = (1/2 − h0)(1/2 − h1)

This leads to

MSE1 ≥

∫ 1/2

0

(1/2−h1)h1(max
h0

(1/2−h0)Pe(h0, h1))dh1

wherePe(h0, h1) represents the same function asPe(h).
The rest of the paper deals with the evaluation ofPe(h).

According to Eq. (5), we have that

Pe(h) = Prob(x̃HW̃hx̃ < 0) (6)

In words, we wish to calculate the probability that a quadratic
form, which is neither positive nor negative, of a Gaussian
vector is negative.

Firstly, we change the complex-valued vectorx̃ into its
associated real-valued vectorx̆ = [<(xT),=(xT)]T where
<(.) and=(.) are the real and imaginary part of a complex-
valued number respectively. Consequently, Eq. (6) becomes

Pe(h) = Prob(x̆TW̆hx̆ < 0) (7)

with
W̆h = R̆−1

h − R̆−1
0

and
R̆φ = E[y̆y̆T].

Secondly, in order to obtain a simple expression forPe(h),
we proceed by whitening the processx̆. This is achieved by
diagonalisingR̆x := E[x̆x̆T]. According to Eq. (4), we
prove thatR̆0 = R̆x whereR̆0 = R̆φ|φ=0

. This matrix can
be decomposed as follows

R̆0 = DT
0 Λ0D0

whereD0 is an orthogonal real-valued matrix of size(2N×
2N) andΛ0 is a positive real-valued diagonal matrix. There-

fore, the multi-variate random variablez̆ = Λ
−1/2
0 D0x̆ is a

white Gaussian vector.
Thirdly, we concentrate on the term̆xTW̆hx̆. Thanks

to the decomposition of̆R0, we get

x̆TW̆hx̆ = z̆TVz̆

with
Vh = Λ

1/2
0 D0W̆hD

T
0 Λ

1/2
0 .

One can observe thatVh is a symmetric matrix which can
be decomposed as

Vh = DT
hΛhDh (8)

whereDh is an orthogonal real-valued matrix of size2N ×
2N andΛh is a diagonal real-valued matrix. Notice that
the matrixΛh is neither positive nor negative. Therefore
the set of its eigenvalues can be split into two parts: the
positive ones and the negatives ones. We consider that the
first m eigenvalues are negative and are denoted by−λ

(2)
n

with λ
(2)
n > 0 for n = 0, · · · , m − 1. The positive or

null eigenvalues are denotedλ(1)
n with λ

(1)
n ≥ 0 for n =

m, · · · , 2N − 1. Thus, we get

Λh = diag(−λ
(2)
0 , · · · ,−λ

(2)
m−1, λ

(1)
m , · · · , λ

(1)
2N−1).

Recall that these eigenvalues depend onh.
Let u = [u0, · · · , u2N−1]

T = Dhz̆ be a zero-mean
unit-variance Gaussian vector. By construction,u is white,
so its statistics do not depend onh. By replacinğz andVh

with u and Eq. (8) respectively, we obtain

x̆TW̆hx̆ = uTΛhu.



Finally, we obtain

Pe(h) = Prob

(

2N−1
∑

n=m

λ(1)
n u2

n <

m−1
∑

n=0

λ(2)
n u2

n

)

. (9)

where{un} is a real-valued i.i.d. Gaussian random process
with zero-mean and unit-variance.

We now wish to derive a closed-form expression for the
following term

Pe(h) = Prob (p1 < p2) (10)

wherepm =
∑

n λ
(m)
n u2

n is a weighted sum of squared in-
dependent Gaussian variable. Notice that, by construction,
p1 andp2 are independent.

If λn = λ for all n, thenp1 (resp.p2) obeys aχ2 distri-
bution with(2N −m) (resp.m) degrees of freedom. How-
ever, if the weighting coefficients are different, thepm’s are
not χ2 distributed anymore. Further, expressing the distri-
bution ofpm in closed-form is not tractable. Nevertheless,
it can be well approximated by means of the Gamma distri-
bution [14]. We recall that the Gamma distribution, denoted
G(α, θ), is defined as follows

Pα,θ(x) =
xα−1

Γ(α)θα
e−x/θ

whereΓ(.) is the so-called Gamma function.
Hence, the distribution ofpm is next approximated by

the Gamma distribution whose first and second moments
are equal to those ofpm. We thus obtain

p1 ∼ G(α1, θ1) and p2 ∼ G(α2, θ2)

with

α1 =
1

2

(
∑2N−1

n=m λ
(1)
n )2

∑2N−1
n=m λ

(1)
n

2 andθ1 = 2

∑2N−1
n=m λ

(1)
n

2

∑2N−1
n=m λ

(1)
n

,

and

α2 =
1

2

(
∑m−1

n=0 λ
(2)
n )2

∑m−1
n=0 λ

(2)
n

2 andθ2 = 2

∑m−1
n=0 λ

(2)
n

2

∑m−1
n=0 λ

(2)
n

.

As pm is now assumed Gamma distributed, Eq. (10)
can be simplified. Indeed, by using the fact that the square
root of a Gamma distributed random variable is Nakagami
distributed, and then by using Eq. (46) in [15], we have that

Pe(h) =
θα1

α1
B(α1, α2)2F1(α1 + α2, α1, α1 + 1;−θ)

where

• θ = θ1/θ2,

• B(α1, α2) = Γ(α1 + α2)/Γ(α1) is called either the
Euler’s first integral or the Beta function,

• 2F1(α, β, γ; x) is the so-called hyper-geometric func-
tion.

The above expression forPe(h) represents the main re-
sult of this paper. Although this expression is not inter-
pretable, its numerical computation will provide interesting
results.

4. SIMULATIONS

The multiplicative noisea(n) is hereafter assumed to be
white non-circular Gaussian process with zero-mean, unit-
variance, and pseudo-varianceρ = E[a(n)2]. For sake of
simplicity, we also assume that the real part ofa(n) is in-
dependent of its imaginary part. This implies thatρ is real-
valued. If ρ = 0, thena(n) is circular; if ρ = 1, then
a(n) is real-valued. Thus,ρ quantifies the non-circularity
rate ofa(n). In each figure, we display four curves: dashed
line corresponds to the empirical mean square error (MSE)
for the well-known NLS estimate [1, 2, 16]. Solid lines
with star point represent the ZZB. Solid lines with trian-
gular point and with circle point plot represent the BB and
the CRB respectively [16, 7].

In Figure 1, we plot all the curves versusSNR with
N = 64, ρ = 1. We observe that the ZZB is significantly
tighter than the BB. The SNR threshold value predicted by
the ZZB is quite close to that obtained empirically with the
NLS estimate.
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Fig. 1. MSE versus SNR

In Figure 2, we plot the curves versusN with SNR =
10dB, ρ = 0.9. Even though the ZZB offers a more real-
istic value for theN threshold than the BB, the mismatch



between the ZZB and the NLS performance is still quite
large.
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In Figure 3, the curves are displayed versusρ with N =
64, SNR = 10dB. The figure confirms that accurate fre-
quency estimation is really difficult to achieve when the sig-
nal is not non-circular enough.
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5. CONCLUSION

This paper developed an approximate closed-form expres-
sions for the Ziv-Zakai bound on frequency estimation in
the context of both additive and multiplicative noise. These

expressions were used in an attempt to shed some light on
the threshold effect problem associated with low SNR, small
number of samples, or weak non-circularity of the multi-
plicative noise.
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