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ABSTRACT Unfortunately, it is now well-known that the CRB is not ac-
gurate at low SNR and/or when the number of sampléas
small. Therefore a few other bounds, which are more com-
plicated but tighter than the CRB, have been proposed in the
literature. The widely spread ones are the Barankin bound

The paper addresses the problem of the lower performanc
bound evaluation for harmonic retrieval in multiplicative

and additive noise, especially when the SNR is low and/or
when the number of available samples is small. As a nov-

elty, we express an accurate approximation of the Ziv-Zakai (BB) and the Z',V'Za"a' bound (ZZB.) [4 5.]' . .
bound in closed-form. This enables us to analyse the in- The Barankin bound for harmonic retrieval in multiplica-

fluence of some signal parameters on performance and t(;ive and additive noise has been already derived in [6, 7, 8].
characterise the so-called threshold region Therefore, this paper focuses on the derivation and the anal

ysis of the Ziv-Zakai bound. Our work is motivated by the
fact that the Ziv-Zakai Bound appears to be tighter that the

1. INTRODUCTION Barankin bound (of ordet), as was reported in [9, 10] in
the context of additive noise models.

We consider the following signal model In the literature, different Ziv-Zakai-type bounds have

y(n) = a(n)e2i™@otern) 4 pp) p=0,--- ,N -1 been_lntroduced and de.rlveq for the proplem of bearing [.11]
and time-delay [12] estimation. A special case of bearing
where estimation involves the problem of harmonic retrieval in ad

ditive noise (without multiplicative noise). To the best of
e y(n) is the observed signal of whicN samples are  our knowledge, the derivation of the Ziv-Zakai bound when
available. a harmonic signal is disturbed by additive andltiplicative
noise sources has not been addressed in the literature. The

e b(n)isan additive noise, which is assumed to loéra main purpose of this paper is to fill this gap.

cular complex-valued white Gaussian stationary pro-
cess with zero-mean and variange= E[|b(n)|?].

. S . L 2. REVIEW OF ZIV-ZAKAI BOUND
e a(n) is a multiplicative noise, which is assumed to be

a zero-mean Gaussian stationary process. This nois§n, this section, we recall the definition of the ZZB in the
could be either complex or real-valuedrcular or context of a multi-variate parameter of interest.

non-circular. Let ¢y and; be estimates opy andy; respectively.
The parameters of interegt ande; are the phase and the TheTerrr(])r vec;or is defined as fO"émfk [Sﬁo 0,91
frequency respectively. ©1]T where the superscript stands for the transposition

Such a signal model can be encountered in several ap_opergtor. Leto = (0, ¢1). We denote the error correlation
plication fields such as DOA estimation, radar detection and matrix by
digital communications [1, 2, 3]. E, = Elec’].

To characterise the lower performance bound on param-
eter estimation, the so-called Cramér-Rao bound (CRB) is
often used, partly because of the simplicity of its derivati
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In [5, 10], it was proved that the following inequality
holds for any vectog of size(2 x 1),




whereh = [ho, h1]T, and Lemmal The error probabilitiesP.(¢ — ¢ + h) and
P.(¢ +h — ¢) are identical. FurthermoreP. (o, ¢ + h)

/mm p(e+h))P.(p,+h)dp. (2) is independent op.

Proof —Let y(n) = a(n)e? @ +¢"n) 4 b(n) andg =

[0, ¢W]T. The vectoly = [y(0),--- ,y(N —1)]" isthen

a zero-mean complex-valued Gaussian vector with correla-

tion matrix R, = E[yy'] where the superscript stands

for the conjugate transposition, and with pseudo-corimiat
Hy: y(n) = a(n)e?™@otein) 4 p(p) matrix U, = E[yyT]. The matrixUy is also referred to as

{ Hy: y(n) = a(n)eim(votho)tlerthin) 4 p(p) the conjugate correlation matrix. Wy # 0, the Gaussian

The functionp(.) is thea priori density function of the
bi-variate parametep, andP. (¢, ¢ + h) is the error prob-
ability when the optimal detector (namely, the ML detector)
is used to decide between the following two hypotheses

process is said to be non-circular or unproper.

where hypotheseHd, and H; are equally likely. Lety = [y"y"]T. We have that

The RHS of Equation (1) is called the Ziv-Zakai Bound
(Z2ZB). Actually, it is only a (simplified) lower bound of the y=Tsa+b
Ziv Zakai bound since the Valley-filling function defined in
[10] is set here to be equal to the identity, and the abovewhere

binary detection task is carried out under the assumption P 'y Onn
that Hy, and H, are equally-likely. ¢ = Onny Ty
By inspecting Equation (1), one can remark that the like- o
lihood of ¢ is scanned over the entire search intervapof ~ with T'y, = diag(e?™(®+¢"m) n = 0,.-- ,N — 1) and

as is also the case for the Barankin bound [7]. This con- wherea andb are defined in the same way @sAs in [13],
trasts with the CRB where the likelihood function is only one can remark that
evaluated around the true point. Therefore the CRB is less y = Tyx 3)
accurate than the BB and the ZZB, especially at low SNR.
Indeed at low SNR, several estimate’s realizations, calledWith x = a + I‘ 'b.
"outliers”, may be far away from the true point. The CRB The vectorx is Gaussian with zero-mean and correla-
is incapable of predicting or quantifying such phenomenon. tion matrixR.. independent o since we have that

Since the outliers effect is particularly associated with
frequency estimation, this paper focuses mainly on the es-
timation of ;. The ZZB for ¢, is obtained by setting
z = [0,1]*. The mean square error for, denoted MSE,
is then bounded by

R, =R, + o2y

whereR,, the correlation matrix ok andI,y is the(2N x
2N) identity matrix.
By definition, P.(¢ — ¢ + h), which corresponds to

o the error probability of the ML detector, can be written as
MSE1 Z ) h1 II}LE;X f(ho, hl) dh1 follows
: h .
leﬂ?;(t;i?);hat the termg (ho, h1) and f (h) refer to the same (., . 1) _ proh <p()’|90 +h) 1)y = I‘wi) .
: p(yle)

3. DERIVATION OF ZIV-ZAK Al BOUND Sincey is Gaussian, the likelihood function is given by

1 1oHRp -1
The key task now is to express the function— f(h) in plylgp) ox ——=e"2V o ¥
closed-form. According to (2), we need to explicitly exres | det(Rg)|
min(p(e), p(¢ + h)) andP. (¢, ¢ + h). We first focus on
the derivation of the error probabilit). (¢, ¢ + h) which where
can be split into two terms as follows - H

. . Ry = E[yy’]
Pe(p,p+h) =S P(p = @ +h)+ o P(p+h— @) _ {& E}
Us Ry
whereP. (¢ — ¢+ h) is the probability that, given the true
parametetp (i.e., Hy), the test decision i@ + h (i.e., Hy), and where the overline stands for the complex conjugate
andP.(¢ + h — ¢) is defined similarly. operator. According to Eq. (3), we have that

Before developing any further, we infer the following } "
lemma. The proof is provided hereafter. Ry =TyR.T, (4)



which implies thatlet(R ) is independent ob.
Consequently

P.(¢ — @ +h) = Prob (eféi'Hth? > 1y = f@z)

with

Won =R}, — R,

Usingy = I',x and Eq. (4), we obtain
P.(¢ — ¢ +h) = Prob (e*%*HWh* > 1) 5)
with
= Won
~ R'-Rg
— TWRI'T, - R

Thus,P.(¢ — ¢ + h) is independent op since the statis-

Firstly, we change the complex-valued veckointo its
associated real-valued vector= [R(x"), 3(xT)]T where
R(.) and¥(.) are the real and imaginary part of a complex-
valued number respectively. Consequently, Eq. (6) becomes

P.(h) = Prob(x"Wpx < 0) 7
with y y y
Win=R;' - Rg'
and y
Ry =E[yy').

Secondly, in order to obtain a simple expressiorfgth),
we proceed by whitening the processThis is achieved by
diagonalisingR,, := E[xx"']. According to Eq. (4), we
prove thatRo = R, whereRq = Rq%:o. This matrix can
be decomposed as follows

Ro = DI AgDy

tics of x are independent ap. Using the same reasoning  \yhereD,, is an orthogonal real-valued matrix of SigaV x
as aboveP.(¢ +h — ) can be shown to be given by the - 5 \) anda, is a positive real-valued diagonal matrix. There-

same expression as in the RHS of eq. (5). This conclude

the proof.m
Thanks to Lemma 1, we are now able to simplfgh)
as follows [10]

where
A = [ min(ole). (e + W)dp

andP, (h) stands forP. (¢, ¢ + h). Next, we derived(h)
andP,(h).

Since we have na priori information ong, we con-
sider thatpy andy are uniformly distributed ovef), 1/2],

i.e. thea priori distribution of the parameters of interest
p(ep) is flat. The upper bountl/2 is chosen since the phase

and the frequency can only be estimated mody®when
multiplicative noise occurs [10]. Consequently

A(h) = (1/2 = ho)(1/2 — 1)
This leads to
1/2
MSE1 Z / (1/27h1)h1(H}11aX(1/27h0)Pe(h0,hl))dhl
0 0
whereP, (hg, h1) represents the same function”agh).

The rest of the paper deals with the evaluatiofofh).
According to Eq. (5), we have that

P.(h) = Prob(x"Wy% < 0) (6)

Sore, the multi-variate random variakie= Agl/QDok isa

white Gaussian vector. y
Thirdly, we concentrate on the tertf W, x. Thanks
to the decomposition dRo, we get

"Wy =27 Vz
with 5
Vi = AY*DyWLDIAY?.

One can observe thafy, is a symmetric matrix which can
be decomposed as

Vi = DiALDy (8)

whereDy, is an orthogonal real-valued matrix of si2z8&” x

2N and Ay, is a diagonal real-valued matrix. Notice that
the matrix Ay, is neither positive nor negative. Therefore
the set of its eigenvalues can be split into two parts: the
positive ones and the negatives ones. We consider that the
first m eigenvalues are negative and are denoteekbﬁf)

with A > 0forn = 0,---,m — 1. The positive or

null eigenvalues are denotédl) with )\511) > 0forn =
m,---,2N — 1. Thus, we get

@ @ ,)\S\)[_l)_

m—1>"m >

Ay = diag(—=AY, -,

Recall that these eigenvalues dependon

Letu = [ug, -+ ,uan—1]T = Dnz be a zero-mean
unit-variance Gaussian vector. By constructians white,
S0 its statistics do not depend hnBy replacingz andVy,

Inwords, we wish to calculate the probability that a quadrat ith u and Eq. (8) respectively, we obtain

form, which is neither positive nor negative, of a Gaussian

vector is negative.

xTW,Lx = uTApu.



Finally, we obtain e B(ai,as) = T'(ag + a2)/T(aq) is called either the

Euler’s first integral or the Beta function,

2N—-1 m—1
P.(h) = Prob < Soabul <> Aﬁ?ui) .9 e 5 Fi(a, 3,7; ) is the so-called hyper-geometric func-
n=m n=0 tion.
where{u,,} is a real-valued i.i.d. Gaussian random process ~ The above expression fd.(h) represents the main re-
with zero-mean and unit-variance. sult of this paper. Although this expression is not inter-
We now wish to derive a closed-form expression for the pretable, its numerical computation will provide intenegt
following term results.
P.(h) = Prob (p1 < p2) (20)

4. SIMULATIONS

wherep,,, =3, )\gzm)ui is a weighted sum of squared in-  The multiplicative noiseu(n) is hereafter assumed to be
dependent Gaussian variable. Notice that, by Construction white non-circular Gaussian process with zero-mean, unit-
p1 andp; are independent. variance, and pseudo-variange= E[a(n)?]. For sake of

If A, = A for all n, thenp; (resp.p») obeys ay distri-  simplicity, we also assume that the real partof) is in-
bution with (2N — m) (resp.m) degrees of freedom. How-  dependent of its imaginary part. This implies tpds real-
ever, if the weighting coefficients are different, the's are valued. Ifp = 0, thena(n) is circular; if p = 1, then
not x* distributed anymore. Further, expressing the distri- 4(n) is real-valued. Thusy quantifies the non-circularity
bution Ofpm in closed-form is not tractable. Nevertheless, rate Ofa(n). In each figure, we d|3p|ay four curves: dashed
it can be well approximated by means of the Gamma distri- |ine corresponds to the empirical mean square error (MSE)
bution [14]. We recall that the Gamma distribution, denoted for the well-known NLS estimate [1, 2, 16]. Solid lines

G(a, ), is defined as follows with star point represent the ZZB. Solid lines with trian-

o1 gular point and with circle point plot represent the BB and
Pog(z) = r o—/b the CRB respectively [16, 7].
' I'(a)6~ In Figure 1, we plot all the curves versG&R with
wherel'(.) is the so-called Gamma function. N = 64, p = 1. We observe that the ZZB is significantly

o . , tighter than the BB. The SNR threshold value predicted by
Hence, the distribution of,,, is next approximated by : . . o .
L : the ZZB is quite close to that obtained empirically with the
the Gamma distribution whose first and second moments

. NLS estimate.
are equal to those ¢f,,. We thus obtain
o MSE versus SNR
pl ~ g(ala 91) and p2 ~ g(OLQ, 92) 10 V'S ! ‘ ‘ e CramerJRau Bound
: ~£- Barankin bound
H 07 - - éivz'akall BM%JE']? NLS [
W|th mpirical for
1 2N -1 4 (1)y2 2N—-1 )\(1)2 wibo ST ]
7_M de 72271:771 n \ S
o= 2 2N—1 4 (1)2 andoy = 2N-1 )\(1) ’ 107°L i\ : B
Zn:m )\n Zn:m n \ : \\
\
4| \
and E s x\
2 T~ ‘
_ 10°E e |
Zm 1 )\7(12) \

1 m—1 )\%2) 2 G
Qg = —7(271:0 ; andé, = 277521 @) " |
2y nto M ol s

As p,, is now assumed Gamma distributed, Eq. (10) ¢ « R .
can be simplified. Indeed, by using the fact that the square ~ =

-8

root of a Gamma distributed random variable is Nakagami ™ w0 = SNR(N:Q,;,M:Q : 10 s
distributed, and then by using Eq. (46) in [15], we have that
g Fig. 1. MSE versus SNR
Pe(h) = o B(Oél, O[Q)QFl(O[l =+ g, 1, =+ 1, 79)
where In Figure 2, we plot the curves versds with SNR =
10dB, p = 0.9. Even though the ZZB offers a more real-
[ ] 9 = 91/92,

istic value for theN threshold than the BB, the mismatch



between the ZZB and the NLS performance is still quite

large.

MSE versus N
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Fig. 2. MSE versusVv

In Figure 3, the curves are displayed verpugith N =
64, SNR = 10dB. The figure confirms that accurate fre-
guency estimation is really difficult to achieve when the sig

nal is not non-circular enough.

MSE versus rho
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Fig. 3. MSE versup

5. CONCLUSION

expressions were used in an attempt to shed some light on
the threshold effect problem associated with low SNR, small
number of samples, or weak non-circularity of the multi-
plicative noise.
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