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Abstract— This paper newly considers the ZMP(Zero
Moment Point) of a humanoid robot under arm/leg coor-
dination. By considering the infinitesimal displacement and
the moment acting on the convex hull of the supporting
points, we show that our method for determining the region
of ZMP can be applicable to several cases of the arm/leg
coordination tasks. We first express two kinds of ZMPs
for such coordination tasks, i.e., the conventional ZMP, and
the “Generalized Zero Moment Point (GZMP)” which is a
generalization of the ZMP to the arm/leg coordination tasks.
By projecting the edges of the convex hull of the supporting
points onto the floor, we show that the position and the region
of the GZMP for keeping the dynamical balance can be
uniquely obtained. The effectiveness of the proposed method
is shown by simulation results(see video).

I. INTRODUCTION

Since the kinematical structure of a humanoid robot is
similar to that of a human, a humanoid robot is expected
to work instead of a human in the same environment. To
accomplish the required tasks under such an environment,
it should be considered that a humanoid robot touches an
environment coordinating two arms and two legs.

The ZMP (Zero Moment Point) is defined to be a point
on the ground at which the tangential component of the
moment generated by the ground reaction force/moment
becomes zero. For a humanoid robot whose hands do not
touch an environment, a humanoid robot can walk on a flat
ground with keeping the dynamical balance if the ZMP is
included in the convex hull of the foot supporting area.
On the other hand in this research, we analyze the ZMP
for a humanoid robot whose hands touch an environment.

Now, let us consider what makes the ZMP analysis of
the arm/leg coordination tasks difficult. Fig.1 shows two
examples of the arm/leg coordination tasks where one
of the two hands is touching an object. In Fig.1(a), a
humanoid robot is walking on the ground with touching
an object. Since the contact state changes frequently, it
becomes difficult to plan the smooth trajectory of the
desired ZMP between two different contact states. On the
other hand, In Fig.(b), a humanoid robot pulls an object. In
such a case, defining the region of the ZMP for keeping
the dynamical balance is out of our intuition since the
robot can keep the dynamical balance even if the ZMP is
behind the foot supporting area.

Fig.1(c) shows the basic idea of the proposed method

(a) Walking with touching an object (b) Pulling an object

GZMP

(c) Explanation of the proposed method

Area of GZMP

Fig. 1. Arm/Leg Coordination by a Humanoid Robot

for defining the ZMP for arm/leg coordination tasks.
Since a humanoid robot whose hands do not touch an
environment can keep the dynamical balance if the ZMP
is included in the convex hull of the foot supporting
area, we define the convex hull of the supporting points
including the contact points between the hands and the
environment for the arm/leg coordinated tasks. For such
arm/leg coordination, we use the same definition of ZMP
as for a humanoid robot whose hands do not touch an
environment, and name it as the “Generalized Zero Mo-
ment Point (GZMP)”. Corresponding to the given motion
of the robot, the GZMP is defined on the floor. If the
GZMP is on the edge of an area defined in this paper,
the robot will fall down by the moment around the edge
of the convex hull. By using this approach, we show that
the GZMP can be applied to several cases of the arm/leg
coordination tasks. We also show that, by approximating
the motion of a robot by the inverted pendulum, we can
obtain the smooth trajectory of the GZMP even if there
exists the change of contact states.

In this paper, after showing the relevant works, we state
that there are two kinds of ZMPs for arm/leg coordination
in Section 3. We then obtain the stable region of the GZMP
in Section 4. To verify the effectiveness of our proposed
method, simulation results are shown in Section 5.
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II. RELEVANT WORKS

As for the arm/leg coordination of a humanoid robot,
Inoue et al. [2] determined the posture of a humanoid robot
taking the manipulability of the arms into consideration.
Takenaka [10] proposed a method for modifying the
posture of a humanoid robot according to the force applied
by the hands.

As for the indices of a humanoid robot to keep the
dynamical balance, Vukobratovic et al.[5] proposed the
ZMP(Zero Moment Point). Goswami[6] proposed the
FRI(Foot Rotation Indicator) where the robot will fall
down if the FRI is out of the foot supporting area. For
a quadruped robot to walk stably on a sloped surface,
Yoneda et al.[7] and P.B. Wieber[8] studied the stability
of the walking systems. Kitagawa et al. [9] proposed the
“Enhanced ZMP” for the arm/leg coordination tasks for a
humanoid robot.

However, there has been no research on the ZMP
analysis of a humanoid robot which can take into account
several cases of arm/leg coordination tasks as shown in
Fig.1.

III. TWO ZMPS

Fig. 2 shows the model of a humanoid robot used in
this paper. We assume that the sole and the hand contact
with the ground and the environment, respectively. ΣR
and Σi denote the reference coordinate and the coordinate
frame fixed to the i-th (i = 1, · · · ,n) link of the robot,
respectively. pH j(= [xH j yH j zH j]T ), pF j(= [xF j yF j zF j]T )
( j = 1,2), and pi(= [xi yi zi]T ) denote the position vector
of the contact point between the j-th hand and the object,
a point included in the contact surface between the j-th
foot and the ground, and the origin of Σi, respectively.
mi, Ii, and ω i denote the mass, the inertia tensor and the
angular velocity vector, respectively, of the link i. pG(=
[xG yG zG]T ) denotes the vector of the center of gravity
of the robot defined by pG = ∑n

i=1 mi pi/∑n
i=1 mi. pP(=

[xP yP zP]T ) and pE(= [xE yE zE ]T ) denote the position
vectors of the zero moment point and the generalized zero
moment point (GZMP), respectively. f P and τP denote
the ground reaction force/torque at the ZMP , and f E
and τE denote the reaction force/torque at the GZMP. For
simplicity, we neglect the effect of internal force in this
paper.

We first explain that there are two kinds of ZMPs in the
arm/leg coordination tasks. Since the (conventional) ZMP
is the center of pressure of the foot supporting area [6],
we need to consider all the sources of the force/moment
acting in the foot supporting area. When the hands of a
humanoid robot contact with an environment, the sources
of the force/moment acting in the foot supporting area
are the inertial force of the robot, gravity force, and the
hand reaction force. Therefore, the ZMP for the arm/leg
coordination is redefined as follows:
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Fig. 2. Model of the System

Definition 1 (Zero Moment Point)
The zero moment point (ZMP) is the point on the ground
at which the moment τP = [τPx τPy τPz]T generated by
the reaction force and the reaction moment satisfies τPx =
τPy = 0, where the reaction force and moment is generated
by the inertial force, the gravity force, and the hand
reaction force.

This is the redefinition of the conventional ZMP[5], and
Takenaka[11] also considered the same definition of the
ZMP for the arm/leg coordination tasks. The reaction
force/moment at the ZMP can be formulated as

f P = M(p̈G −g)−
2

∑
j=1

f H j, (1)

=
2

∑
j=1

f F j, (2)

τP = L̇G + M(pG − pP)× (p̈G −g)

−
2

∑
j=1

(pH j − pP)× f H j, (3)

=
2

∑
j=1

{(pF j − pP)× f F j + τF j}, (4)

where M = ∑n
i=1 mi, g = [0 0 − g]T , and LG(=

[LGx LGy LGz]T ) denote the mass of the object, gravity
vector, and the angular momentum about the center of
mass defined by

LG =
n

∑
i=1

{mi(pi − pG)× ṗi + Iiω i}, (5)

respectively. Substituting τPx = τPy = 0 into eq.(3) and
solving with respect to pP, the position of the ZMP can
be obtained by
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xP =
−L̇Gy + MxG(z̈G + g)−M(zG − zP)ẍG

M(z̈G + g)−∑2
j=1 fH jz

−∑2
j=1{xH j fH jz − (zH j − zZ) fH jx}

M(z̈G + g)−∑2
j=1 fH jz

, (6)

yP =
L̇Gx + MyG(z̈G + g)−M(zG − zP)ÿG

M(z̈G + g)−∑2
j=1 fH jz

−∑2
j=1{yH j fH jz − (zH j − zP) fH jy}

M(z̈G + g)−∑2
j=1 fH jz

. (7)

Here, in this definition of the ZMP, since the force/moment
acting on the ZMP ( f P,mP) might balance with the hand
reaction force( f H j), we can see that the robot does not
always fall down even if the ZMP is on the edge of the
foot supporting area. To generalize the ZMP to the arm/leg
coordination tasks, we define the following ZMP

Definition 2 (Generalized Zero Moment Point)
The generalized zero moment point (GZMP) is the point
on the floor at which the moment τE = [τEx τEy τEz]T

generated by the reaction force and the reaction moment
satisfies τEx = τEy = 0, where the reaction force and
moment is generated by the inertial force and the gravity
force.

The definition of the GZMP is same as the definition of
the ZMP for a humanoid robot whose hands do not touch
an environment. The force ( f E ) and the moment (τE ) at
the GZMP are expressed as follows:

f E = M(p̈G −g) (8)

=
2

∑
j=1

( f H j + f F j), (9)

τE = L̇G + M(pG − pE)× (p̈G −g) (10)

=
2

∑
j=1

{(pH j − pE)× f H j

+(pF j − pE)× f F j + τF j}. (11)

The position of the GZMP can be obtained by substituting
τEx = τEy = 0 into eq.(10) and solving with respect to pE :

xE =
−L̇Gy + MxG(z̈G + g)−M(zG − zE)ẍG

M(z̈G + g)
, (12)

yE =
L̇Gx + MyG(z̈G + g)−M(zG − zE)ÿG

M(z̈G + g)
. (13)

Eqs.(12) and (13) are same as those for a humanoid robot
whose hands do not touch an environment. Since the
position of the GZMP is defined only by the inertial and
the gravity force, the robot will fall down if the position
of the GZMP is on the edge of the region defined in the
next section.
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Fig. 3. Explanation of the proposed method

IV. REGION OF GZMP

A. Convex Hull

For a humanoid robot whose hands do not touch an
environment, the robot can keep the dynamical balance
if the ZMP is included in the convex hull of the foot
supporting area. By extending this idea, we define the
convex hull of the supporting points including the contact
points between the hands and the environment(Fig.3(a)).
While there are many edges included in the convex hull,
we extract the edges of the convex hull where a robot
might fall down by the moment around the edge.

As shown in Fig.3(a), we focus on three vertices j, X ,
and Y included in the convex hull. Since the vertex j can
leave from the environment while it cannot go inside of
the environment, the following inequality can be satisfied:

d(XY )
j ∆qrot ≥ 0, ( j = 1, · · · ,L), (14)

where

d(XY )
j =

[
nj

(p j − prot)×nj

]T

,

∆qrot =
[
∆pT

rot ∆θ T
rot

]T
,

prot, ∆θ rot, and nj denote the position vector of a point
included in the edge formed by the vertices X and Y , the
infinitesimal rotational displacement of the convex hull
around prot, and the unit normal vector of the environment
where the vertex j contacts, respectively. We consider
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rotating the convex hull around the edge formed by the
vertices X and Y as

∆prot = 0, (15)

∆θ rot =
pX − pY

‖ pX − pY ‖∆θ , (16)

where ∆θ denotes the rotation angle of the convex hull.
Substituting eqs.(15) and (16) into ineq.(14) and aggre-
gating for all the vertices contacting with the environment
except for X and Y , we obtain the following inequality:

d(XY )∆θ > 0, (17)

where

d(XY ) =




{(p1 − prot)×n1}T

...
{(pL − prot)×nL}T


 pX − pY

‖ pX − pY ‖ .

By using ineq.(17), we can obtain the following proposi-
tion:

Proposition 1 (Feasible Edge of the Convex Hull)
If all the elements of d(XY ) in ineq.(17) is positive or
negative, the convex hull can rotate around the edge
formed by the vertices X and Y in the direction of ∆θ > 0
or ∆θ < 0, respectively.

If the convex hull can rotate around the edge, there is a
possibility where the robot might fall down.

B. Moment around the Edge

Next, we focus on the moment around the edge of the
convex hull. By using the duality between the force and
the infinitesimal displacement, the moment around the
edge including the vertices X and Y should satisfy the
following equation:

m(XY ) = d(XY )T k, k ≥ 0. (18)

If Proposition 2 is satisfied, eq.(18) can shows us that
the direction of moment around the edge is same as the
direction of ∆θ .

Then we consider the virtual floor above the real floor
as shown in Fig.3(b). By using the force f E and moment
mE at the GZMP on the virtual floor, we can formulate
the moment around the edge including the vertices X and
Y as

m(XY ) =
pT

X − pT
Y

‖ pX − pY ‖((pE − prot)× f E + eZeT
Z τE), (19)

where eZ denotes the unit normal vector of the virtual
floor. From eq.(19), we can see that τE affects the moment
around the edge when (pX − pY )T eZ �= 0. In this case,
we cannot judge the moment around the edge by simply

considering the relationship of position between the edge
and the GZMP. Thus we redefine the GZMP as follows
(Fig.3(c)):

Definition 3 (GZMP(Modified))
The (modified) generalized zero moment point p(XY )

E =
[x(XY )

E y(XY )
E z(XY )

E ]T is the point on the (virtual) floor at
which the moment τE generated by the reaction force and
the reaction moment becomes normal to the edge of the
convex hull satisfying the Proposition 2.

By using this definition, we can consider the direction of
moment around the edge by considering the position of
the GZMP. Let the unit vector of the direction of τE be
e(XY )

z , and two unit vectors normal to e(XY )
z be e(XY )

x and
e(XY )

y . The position of the GZMP modified in Definition
3 can be expressed as[

x(XY )
E

y(XY )
E

]
= −{ME[(p̈G −g)×]D}−1

{ME(pG − ez(XY )
E )× (p̈G −g)+ EL̇G},

(20)

where E = [e(XY )
x e(XY )

y ]T , D =
[

1 0 0
0 1 0

]T

, e =

[0 0 1]T .
Since the direction of moment around the edge satisfy-

ing Proposition 1 is limited by eq.(18), the region of the
GZMP is also limited. To see the region of the GZMP, we
consider the combination of two edges sharing a common
vertex as shown in Fig.3(d). We consider the GZMP on
the plane including two edges sharing a common vertex.
By using two edges, we can divide the plane into four
regions. These regions can be identified by the direction
of moment around the edge defined by eq.(19). The region
of the GZMP is limited to one of the four regions by using
eq.(18) if both of the edges satisfy Proposition 2. Fig.3(d)
shows the region of the GZMP corresponding to m(XY ) > 0
and m(XZ) < 0. Also, Fig.3(e) shows four regions on the
plane defined by the vertices X , Y , and Z.

We further consider the change of moment when the
robot begins to roll around the edge. Since the moment
around the edge generated by the inertial force does not
change even if the convex hull rotates around the edge, we
only consider the moment generated by the gravity force.
The change of moment is expressed as:

∆m(XY )

= −M
pT

X − pT
Y

‖ pX − pY ‖(pG − prot)×{(R−∆θ − I3)g}

= M
pT

X − pT
Y

‖ pX − pY ‖2 (pG − prot)×{(pX − pY )×g}∆θ

�
= L(XY )∆θ (21)

78



where R−∆θ denotes the rotation matrix around the edge
including the vertices X and Y whose amount of rotation
is −∆θ , and I3 denotes the 3×3 identity matrix. Since
the sign of ∆θ is same as that of m(XY ) for the edges
satisfying Proposition 1, the robot will be accelerated
when the convex hull begins to roll if the sign of ∆m(XY )

is different from that of ∆θ . Therefore, we can introduce
the following Proposition:

Proposition 2 (Change of Moment around the Edge)
For an edge of the convex hull satisfying Proposition 1,
the angular velocity will increase when the convex hull
begins to roll, if L(XY ) < 0 is satisfied.

Later, we will show an example where the robot will not
fall down even if the GZMP is on the edge of the area by
using this Proposition.

C. Projection

To obtain the region of the GZMP on the floor, we
consider the method for projecting the edges of the convex
hull onto the floor. We first introduce a vector p̃G(=
[x̃G ỹG z̃G]T ) and consider the change of coordinates
between pG and p̃G defined by

−L̇Gy/M + xG(z̈G + g)− (zG − zE)ẍG

= x̃G( ¨̃zG + g)− (z̃G − zE) ¨̃xG, (22)
L̇Gx/M + yG(z̈G + g)− (zG − zE)ÿG

= ỹG( ¨̃zG + g)− (z̃G − zE) ¨̃yG, (23)
z̃G = zG. (24)

Applying the change of coordinates to eqs.(12) and (13),
the position of the GZMP can be defined as follows:

xE =
x̃G( ¨̃zG + g)− (z̃G − zE) ¨̃xG

¨̃zG + g
, (25)

yE =
ỹG( ¨̃zG + g)− ( ˜̃zG − zE) ¨̃yG

¨̃zG + g
. (26)

We note that eqs.(25) and (26) are same as those of an
inverted pendulum. Assume that the real floor is the xE −
yE plane when zE = 0. As shown in Fig.4, the following
proposition can be hold for the projection of the GZMP
included in a virtual floor above the real one:

Proposition 3 (Projection of GZMP)
Draw a line including both of p̃G(zE = zG) and the GZMP
on the virtual floor. The intersection of the line and the
ground corresponds to the GZMP on the real ground.

Proof In eqs.(25) and (26), the GZMP is concentrated on
a sigle point:

p̃G(zE = zG) =


 xG − L̇Gy/(M(z̈G + g))

yG + L̇Gx/(M(z̈G + g))
zG


 (27)

��
~

� = 0

�= ��

GZMP on the Real Floor

GZMP on the Virtual Floor

Fig. 4. Projection of the Generalized Zero Moment Point

when zE = z̃G. Moreover, eqs.(25) and (26) are linear
equations with respect to pE. Therefore, since all points
on the line including both p̃G(zE = zG) and the GZMP on
the virtual floor can be the GZMP, we confirm the theorem
is correct.

By using this Proposition, we project the edges of the
convex hull onto the floor.

Now, we summarize the method for obtaining the the
region of the GZMP for keeping the dynamical balance
of a humanoid robot is summarized by the following
theorem:

Theorem 1 (Region of GZMP)
Project the edges of the convex hull satisfying Proposition
1 onto the ground by using Proposition 3 as shown
in Fig.3(f). The region of the GZMP is defined by
considering the direction of moment using eq.(18). If
Proposition 2 is satisfied, the robot might fall down by
the moment around the edge.

D. Approximation by the Inverted Pendulum

For biped robots including humanoid robots, the motion
of the robot is often approximated the linear inverted
pendulum mode[3], [4]. By using the approximation by
the inverted pendulum, there are a couple of merits shown
in the following:

1) Since the ground reaction torque around the ful-
crum of a inverted pendulum is 0, τE ∼= 0 is sat-
isfied if the motion of a humanoid robot is well
approximated by the inverted pendulum. Since
the definition of the GZMP does not depend on
the direction of moment τE , the position of the
GZMP does not change even if the definition
of the GZMP is modified by Definition 3 and
p(XY )

E
∼= pE is satisfied. In this case, we can

obtain the smooth trajectory of the GZMP even
if the contact states change frequently.

2) We defined the change of coordinates in eqs.(22)
and (23) between pG and p̃G. If the motion of a
humanoid robot is approximated by the inverted
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pendulum, L̇G ∼= 0 is satisfied which means pG
∼=

p̃G. By using this approximation, we do not need
the change of coordinates.

V. SIMULATION

We first consider the convex hull shown in Fig. 5. In
both cases shown in Fig.5, the face of the convex hull
formed by the vertices A, B, C, and D can be regarded as
the foot supporting area, and the vertex E can be regarded
as the contact point between the hand and the environment.
The difference between (a) and (b) is the direction of the
unit normal vector of the environment.

By calculating d(XY ), the convex hull shown in Fig.5(a)
might rotate around the edges BC, CD, DE, and EB, and
cannot rotate around the edges AD, AE, AB, and CE. On
the other hand, the convex hull shown in Fig.5(b) might
rotate around the edges AB, BE, BC, and DE, and cannot
rotate around the edges CD, AD, AE, and CE. Setting
pG = [0 0 2]T , p̈G = [1 1 0]T , and L̇G = 0, the result of
calculation of the projection of the edges onto the ground
is shown in Fig.5(c) and (d).

Next, we consider two examples as shown in Fig.6.
Fig.6(a) can be regarded as the case where the hand of
a humanoid robot pulls the object, while Fig.6(b) can be
regarded as the case of pushing an object. The difference
between (a) and (b) is the direction of the normal vector
of the object contacting with the hand. Since the direction
of moment around the edge m(BC) becomes different, the
region of the GZMP can be obtained as shown in the
figure.

We further consider the examples shown in Fig.7. The
position of the center of gravity is different between
these two examples. Especially, in the example shown in
Fig.7(b), since the sign of the change of the moment is
same as the sign of ∆θ , we can see that the robot does
not always fall down even if the GZMP is on the edge of
the region.

Then we performed the simulation of an arm/leg co-
ordination task by a humanoid robot. Consider the case
where both hands of a humanoid robot touch the table. If
one of the two hands is left from the table, the humanoid
robot might lose the dynamical balance and fall down.
Therefore, we have to first control the GZMP to be
included in the region obtained by the convex hull formed
by the other one of the two hands and both of the feet.

As a simulation software, we used the OpenHRP [12],
[13]. The result of simulation is shown in Fig. 8. In the
simulation, the body of the robot moves in the left side,
and the GZMP is finally included into the region of the
GZMP obtained by the convex hull formed by the left hand
and both of the feet. The trajectory of the GZMP and the
region of it are shown in Fig.9. The GZMP is calculated
using the approximation by the inverted pendulum. As
shown in the figure, the continuous trajectory of the
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                   Region of GZMP (Single Arrow)

Fig. 6. Numerical Examples 3 and 4

GZMP is obtained taking the change of contact states into
consideration.

On the other hand, in the simulation result shown
in Fig.10, the right hand is left from the table without
controlling the position of the body. As shown in the
figure, the robot falls down.

VI. CONCLUSION

In this paper, we discussed the ZMP of a humanoid
robot whose hands touch an environment. We generalized
the ZMP to several cases of arm/leg coordination tasks
such as the task of pulling an object, and the task with the
change of contact states. The effectiveness of the proposed
method is confirmed by simulation results. Experimental
validation of the proposed method is considered to be our
future research topic.

Finally, we would like to express our sincere gratitude to
Dr. Kazuhito Yokoi, Dr. Fumio Kanehiro, and Mr. Kiyoshi
Fujiwara who are the members of the humanoid research
group for their helpful discussions.
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(b) Numerical example 6
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(c) Result of example 5
     

(d) Result of example 6
     

Fig. 7. Numerical Examples 5 and 6

(a) t=4.0 [sec] (b) t=5.0 [sec] (c) t=7.0 [sec]

(d) t=11.0 [sec] (e) t=12.0 [sec] (f) t=14.0 [sec]

Fig. 8. Result of simulation 1
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