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Abstract. We show that the R-matrix which intertwines two n-by-N"~! state cyclic
L-operators related with a generalization of U (sl(n)) algebra can be considered as
a Boltzmann weight of four-spin box for a lattice model with two-spin interaction
just as the R-matrix of the checkerboard chiral Potts model. The rapidity variables
lic on the algebraic curve of the genus g=N*""Y(n—1)N —n)+1 defined by
2n—3 independent moduli. This curve is a natural generalization of the curve
which appeared in the chiral Potts model. Factorization properties of the L-opera-
tor and its connection to the SOS models are also discussed.

0. Introduction

As it is observed in [ 1] the chiral Potts model [2-4] can be considered as a part of
some new algebraic structure related to the six vertex R-matrix. In particular, the
high genus algebraic relations among the Boltzmann weights of the chiral Potts
model arise as a condition of the existence of an intertwining operator for two
different representations of some quadratic Hopf algebra [5-7] which generalizes
the U (si(2)) algebra.

It 1s natural to make an attempt to find new solvable lattice models whose
Boltzmann weights obey high genus algebraic relations generalizing the results of
[1] for the case of other R-matrices.

This program for the case of the three state R-matrix of [8] which is related to
the U (sl(3)) algebra at gV =1 has been partially realized in [9, 10].

In the present paper we extend the result of [9, 10]. We construct an
n-by-N~Ustate cyclic L-operator related with an n-state R-matrix of [8] and find
explicitly the corresponding N®~ D-state R-matrix. This result is described below.

Consider an oriented square lattice ¥ and its medial lattice %’ (shown in Fig. 1
by solid and dashed lines, respectively). The oriented vertical (horizontal) lines of
&£’ carry rapidity variables p,p’ (q,4’) in alternating order (note that the
orientations of rapidity lines shown by open arrows alternate, too). The edges of
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Fig. 1

the lattice & are oriented in such a way that all the NW— SE edges have the same
(NW—SE) direction while the NE—SW edges are oriented in a checkerboard

order.
Each rapidity variable p is represented by n 2-vectors (k] (p), b, (p)), =1, ...,n,
n=2 which specify a point of the algebraic curve defined by the relations

h;— N hi(p\V
R

where K,; are 2x2 complex matrices of moduli with the unit determinant
satisfying the relations
K, ,=KKz,K,,=1. 0.2)

There are 2n— 3 independent moduli, since the variables hZ(p) entering (0.1) are
defined up to a gauge transformation

hy (p) hy (p) _
<h;(p)> =L <h;(p)> ¢ Kam UKy U

where U,=diag(u, u, ') which does not affect the Boltzmann weights [see
Eq. (0.5), below]. This curve is a natural generalization of the curve which
appeared in the chiral Potts model [4]. Using the Riemann-Hurwitz formula one
can calculate the genus g of the curve (0.1) in a generic case:

g=N2""U(n—-1)N—n)+1.

On each site of the lattice & place (n—1) Zy-spins which are described by a
local variable

m=(my,....,m,), m,=0,1,..,N—1, a=1,..,n, N=2 (0.3a)
with the identification:
k~m < k,—m,=kg—my; (modN). Va,f=1,.. n. (0.3b)

Then there are only two kinds of neighbouring local state pairs depending on the
relative orientation of the dashed and solid lines as indicated in Fig. 2, with states [
and m, and Boltzmann weights W, (I, m) and (W,,(I,m))"* on the edges of . The
arrow from / to m indicates that the argument 1s (I, m) rather than (m, ).

It is convenient to denote by Z, (Z) the set of integer residues modulo n (N).
Besides, the set of local variables with identification (0.3 b) will be denoted as AZ%.
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To write down W, (l,m) introduce the function g,(l,m), I,me AZ}, which
satisfies the relations

8palks m)=gp (k. Dgp(l,m),  Vk,I,meAZY, (0.4a)
gmm=1, VmeAZy. (0.4b)
Then it is unambiguously defined by the following relations:
+_ -—_ _ -—_ h +_ My — 1,
gpq(m, m + 6a) — ha l(p)ha l(q) ha l(p) a l(q)w (0-5)

B (Db (@) — by (D) @t e

the symbol 6, means a unit vector in the o' direction, i.e., all its components vanish
except the value 1 in the cx‘h_place; w=exp(2ni/N); m, p=m,—m,.
The Boltzmann weight W, (I, m) has the form

70,0 w?tmg (0,1—m), (0.6)
where
Q(l9 m) = aEZZ m,_ l,a(la - ma) . (07)
One can show that
T Wogl, WL, my= 0y m® g 0.8)
1
where
« _ 1, k=m (modN);
Fm= {0, otherwise, ©9)
- - )" —tq" X(P)— x.(q)
=N""'W_(0,0)W, (0,0 , 0.10
Pre w0 00705 o AL %o —wi @10
x(p)=h, (p)/h (),  Hp)= ] xAp)- 0.11)

acZn

The above-mentioned R-matrix which intertwines two L-operators is just the
Boltzmann weight of an elementary box of the lattice ¥ shown in Fig. 3:

7. 7 — VT/;p(ka S)V—T/I,v’q(sa m)VT/q’p'(ma l)
<k, 1S(q,q'; p,p')Im, s> = .00 . (0.12)
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= Sii'(g,qp,7)

Fig. 3

It is (Zy x )"~ l-invariant in the sense that
Ck+ 04, 1+6,/8(q, 4" P p)Im =46, 5+ 6,
=<k, UIS(¢,q'; p,P)Im,s), aeZ,, (0.13)

which makes our lattice model (Z, x )"~ !-symmetric. This R-matrix satisfies the
following inversion relation:

$12(0:4'59,94)521(0, 4 . D)= PPyl 12, (0.14)

where I, is the identity matrix. Besides, R-matrix (0.12) should satisfy the Yang-
Baxter equation
S12(p’ p’, q, q,)Sl 3(pa P,, r, r/)S23(q7 ql, r, r/)
=834, 4';1,7)S13(p, P's 1,7)S12(P, D5 4, 9) - (0.15)
We verified this equation numerically at n=3, N =2. Up to the moment we have
not yet proved this equation analytically and claim it as a conjecture.

We notice that a particular form of the R-matrix just described has been
obtained in [10] for the case n=3. We also remark that in the trigonometric limit
K,5—1 (identity matrix) the R-matrix (0.12) at n=3 and N =2 is equivalent to that
found in [11]. In the same limit we expect the 9-state R-matrix found in [12] to be
equivalent to the R-matrix (0.12) at n=N=3.

1. The L-Operator

In this section we construct the particular cyclic (i.e. with no highest weight vector)
L-operator related with the n-state R-matrix of [8&].

Let L(x) be an operator in C"®CM, satisfying the following Yang-Baxter
equation (YBE) represented in Figs. 4 and 5:

" Zﬂ:,, . R‘m"' ﬂﬁ"(x/y)La”zz’, kl(x)Lﬂ"ﬁ', lm(y)
=2 Lyge 10 Lar, im(¥)Rr, g (X/) 5 (.1)
a > ’

where L,p 1(x), o, =1, ...,n,k,I=1, ..., M, denote the matrix elements of L{x) and
R.;,,5(x) is defined explicitly as [8]:
R 5,y8(x)=R,p,,5(%, 4, 0)
=08,350,50ay(d— DX +X71q7 1)+ 0050,500y (X — X ™)+ 8,605,005 » (1.2)
where 6, is the Kroneker symbol, g,; are nonzero complex parameters such that

Cea=0up0p.=1, Vo, f=1,..,n (1.3)
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and
0, a=p;
Op=1 (@—q x,  a<p; (1.4)

(q—q Hx7', a>B.

Here x is a variable, while g, ¢,, are considered as constants.
Note, that the R-matrix has the following explicit dependence on the
variable x:
R(x)=xR*+x7'R™, (1.5)

where R™ and R~ are independent of x. If one searches for an L-operator of a
similar form
L(x)=xL*+x"'L", (1.6)

where L* (L™)is independent of x, then using (1.2)}(1.6) one can reduce Eq. (1.1) to
the following relations:

RLLYLy =L;LiR;,, RpLTL; =LjLiRy,, )

where we use the standard matrix notations. Hereafter, we assume that L* (L™) has
an upper (lower) triangular form as a matrix in C". Relations (1.7) can be written
explicitly as

(Li. Lyl=[L;.Ls;]1=0, (1.8a)

L;_;Lﬂy =qF ot 6”QﬂaQayLﬁyL£ ) (1.8b)

LapLpaQup— LpaLip@pa=(q—4" 1)(LLLE,9 - L;ﬂLa:z) ) (1.8¢)
LygLyy=q " *"0g,LyLog, n>2, (1.8d)
L,,Lg,=q **#0p,Lp,L,,, n>2, (1.8¢)
LogL3,0up— Ly, Lop0p, = —ap(a—q DLgf7L,,, n>2, (1.8f)
LogLy500y—LysLog0ss =@ — q***")L gLy5, 1n>3, (1.8g)

where «, 8,7,6 in (1.8d){1.8g) do not coincide and ¢,4, is the antisymmetric in
a, B,y symbol such that

gy =1, if a<f<y, 1.9)
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and
+ .
Laﬁz{ wr OB (1.10)
Ly, o>f.
These relations can be considered as a definition of some quadratic Hopf algebra
[5-7] with co-multiplication ALY, =Y L ®LZ;, which generalizes the U (si(n))
Y

algebra [7].

In this paper we restrict ourselves to a special irreducible cyclic representation
of this algebra which gives a factorizable (in the sense that will be explained in the
next section) L-operator. Such a representation exists provided that

7> =w=exp(2ni/N), (1.11a)
Cup =4 0™, (1.11b)
with N=2, s, being some arbitrary integers and
1, a>f;
£=10, a=p; (1.12)
-1, a<§.

To write down the corresponding formulae for our L-operator, let us define the
operators X,, Z,, o, f=1,...,n by the following relations:

[Xo Xp1=[Z04 Z,5]=0, (1.13a)
X, Zg, =t %7, X,, (1.13b)
Zy=2,52s7,=XX,..X,=1, (1.13¢)
XY=Z}=1. (1.13d)

Then we have
Lo=8""Y,, Lg=Cv; Y, (1.14a)
Lyg=&%0t, "1, Z 0 Yy +v5-1 Y1), a=%p, (1.14b)

where the indices a, f run over 1, ..., n modulo n in the sense that zero is identified
with n (so that, e.g., &, ; =6, ,=+1),

Y,=Y, 1 X;, a=t,..,n-1, Y,=T]X? (1.15)
B=a+1 g=1

and &,v%, ¢, are non-zero complex parameters.
The operators X, Z,,; satisfying (1.13) can be realized in C¥ with M = N®~ Y as
follows:
NXJm>=6, _s,, a=1,..,n, (1.16a)

NZglmd =o™me5, . o, f=1,...,n. (1.16b)

Here we use Dirac’s notations for bra- and ket-vectors with n component indices
(m=(my,...,m,),m,=0,..., N—1(mod N)) identifying their values by the following
rule:

k~m < k,—m,=k;—my, (modN) Va,f=1,...n" 1.17)
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The symbol §, means the unit vector in the o' direction, i.e., all its components
vanish except the value 1 in the ™ place and

_ 1, I=m (modN);
Sm= {0, otherwise . (1.18)
We will find it convenient to use the following notation:

my g=m,—my, o f=1,..,n. (1.19)

2. Factorization of L-Operator and Cyclic SOS Model

In this section we consider factorization properties of the L-operator (1.14) and
discuss its connection with a particular case of the cyclic si(n) SOS model of [13].

The L-operator (1.14) factorizes in the following sense. Let E 4,0, f=1, ...,nbe
a basis of n-by-n matrices with the elements

(Eaﬁ)}‘é:éa}’éﬁa’ O(,ﬁ,y,5=1, . (2.1)
With the aid of E,;’s the L-operator can be written in a matrix form:
a, =1
Substituting (1.14) in (2.2) and collecting the coefficients of Y, we rewrite (2.2) as

n

Ly= ¥ L9XY,, 23)
a=1
where
L(“)(x)z Z (i/x)qmtﬁ_ltav;zﬂaEﬂa
p=1
+ Bgl (x/&y=+ 1815 1ta+lvd—Zﬁ,a+1EB,a+1 , (2.4)
where
1, oa>f;
= 2.5
bat {—1, a<B. 23)
Note that the matrices E,; can be written in a product form:
E.=E,Ep, (2.6)
with E, being an n-component vector with elements
(Ea)ﬂ=5aﬁ> ﬁ:l, L (27)

which is thought to be a column n x 1 matrix and E, is the corresponding row 1 x n
matrix.
Now by using of (2.6) formula (2.4) takes the following factorized form:

L®(x)= { Y (&/x)yPety 1ZﬂaEﬂ}
=1
X {tav:E;"‘(é/X)Z&""tw 10y Zy e 1Eqi1}- (2.8)
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Formula (2.8) means that
rank Lx)=1, a=1,...,n, 2.9

where L@(x) is considered as an n x n matrix.

Motivated by this observation we will define below new objects having a
natural graphical representation.

By Z, (Z,) we will denote the set of integer residues modulo n (N). For Z, we
also fix the order of the elements: 1 <2< ... <(n—1)<n=0. Besides, the set of
integer n-component vectors with identification (1.17), introduced in Sect. 1, will
be denoted as AZY.

Define the vectors e, e AZ%, aeZ, by

Yjm)=|m—e,>, (2.10)

where the operators Y, are defined by (1.15). Consider the following “three spin
interaction” weights (,me AZ%, o, e Z,):

m(x, ) {w@p'bﬂﬂ’“(’c""”hﬁ Opa=X"hy Op0mr), I m=lteps o,
x,h)= . .
Vi, 0, otherwise,
where o is defined in (1.11a); h={hl}, aeZ,, and x are non-zero complex
parameters; v,, o € Z, are some linear forms on index vectors which will be defined
in Sect. 3.
Now, introduce “inverse” weights ",(x, h) defined by any of two relations

Z " V—’;’,la(X, h)w;?ﬂ(xa h) = 50;,3 s (2123)
me AZy
D) Wi, o(X: WP 6, ) =0 1, (2.12b)

each of them is a consequence of the other (see Figs. 6 and 7 for graphical
representation of these relations). Such inverse weights exist provided

Alx,hy=x T[] h —x~' [[ h; #0. (2.13)
aeZ, aceZn
o h,
I :-OT :¢1a(x,h) m‘>‘1_—’: X :":b;’tx(xvh)
a { l Lo«
Fig. 6 hi \}7
//_m\\
33_0[.7/ ..... ; \_\__7 — « 8
p N e
/ AN
AN /
l@ h—————{>
.ib.\..\_.a_/../.ﬁ. = _ Om
Fig.7 \\ // ------ % -----
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Explicitly, we have

o ety a-1

-1
Wv=ﬁ+1(X6Mhy+)yl;[a(x_anyhy_)’ m=I+ep;
Pl B)= 0, otherwise,

(2.14)

where the products are taken in Z,.
Consider the following expression (Fig. 8):

gaﬂ, lm(x: E: h) = q_)z’a(xa E)w;',lﬁ(xa h) ’ (21 5)

where h denotes another independent set of the parameters k.
Now we will show that the #’s and #’s can be chosen in such a way that

Loy(x)=A(x, 1)L, 4(x, b, h). (2.16)

Taking matrix elements of (2.3) and using (2.8) and (2.15) we rewrite (2.16) as
re(x, D' ={t g0 O,p +(E/X)20r0t5 105 Op oy} =1} 552(x, B), (2.17a)

rp(x, )™ o' A(E/x) ot = A(x, Bypr o (x, B, (2.17b)

where ry(x,l), e Z,, le AZ} are some nonzero parameters which cancel in the
L-operator. Comparing (2.17) with (2.11) and (2.14) and picking out terms with d,,
and g ,_; in (2.17a) we obtain

rg(x, )= ry(x), (2.18a)
ra(x)tgvy =x>ehs (2.18b)
re(x)(E/x)?%r8ty . o5 = —x T8k (2.18¢)
X = 1 (™R, (2.184)

étara(x) BFa

(x/E)f=s 2t L
torp(x) _v=l;l+1(X6 hy)y];[a(x "hy), ek, (2.18¢)

where ry(x), e Z, do not depend on le AZ}.
Excluding ¢, from (2.18¢) and (2.18d) we have

@ B sy | T ek, kg @9

ra(X) =«
Now multiplying (2.19) by itself with (« < ) we have
&= 11 (b /h). (2.20)
aeZy,

Solution of (2.19) with respect to r,(x) has the form

rdx)=chxo [1 (i k), (2.21)

r=a
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where ¢ is some constant parameter which is not fixed by Eq.(2.18). For
convenience let us choose

e l=¢ ] RY. (2.22)

aeZn

Then from (2.18d) we calculate

t,= ﬁl;[ (hg /hg), 2.23)
and from (2.18b) and (2.18¢)
vE=+E5hE [T B (2.24)
B*a

Thus we have proved equality (2.16). Since the L-operator (2.2) satisfies the YBE
(1.1) then due to (2.16) we can conclude that & (x, h, h) satisfies the same YBE,

Ry (x/y)L1(x, b 1)Ly, b, h) = Loy, R, h)Z(x, b, R, (x/y). (2.25)

Multiplying this equation from the left by a vector (p(x, H)Qyi(y, h)) e C*"® C",
k,l,me AZY, we obtain (see Fig. 9 for graphical representation)

(wi'(x, @iy, W) R, (x/y)
= E‘A;Z" Wsostk, L m, p| x/y)(wi(x, hQ@vy(y, h)) (2.26)

p
where

Wsostk, L, m,p|x/y)
= (WI'Ce, N Wiy, B R 1 2(x/y)PR(x, T (v, h).- 2.27)
[Since the left-hand side of (2.26) is independent of h, Wyos(l, m, 1,k | x) does not
depend on h.]. Similarly, one can prove that (Fig. 10)
Ry (x/y)di(x, h_)®1/3{"(y, h)
= pe§zg Wsos(k, p,m, 1| x/y)y(x, Ly, h). (2.28)
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Thus we have proved the first part of the following general statement:

Lemma. If the L-operator, satisfying the YBE (2.25), can be decomposed in the form
(2.15) with the three-spin weights v, P satisfying (2.12), then there exist the weights
Wsos satisfying (2.26), (2.28). Conversely, if there exist an R-matrix, Wyos weights
and vectors p satisfying Egs. (2.26), (2.13) then the L-operator of the form (2.15)
satisfies the YBE (2.25).

The proof of the converse statement is similar. Explicit calculation gives the
following formulae for the nonzero elements of Wyug:

Waostk, k +e, k+2e,k+e, | x)=xq—x"1q7 ", (2.29a)

Wsos(k, k+e,, k+e,+ep k+eg| x)
—(xmx g @O kB (229b)

Weostk, k+e, k+e,+egk+e, | x)=(q—q~ "xts om0 qp. (2.29c)

Note that Wyog weights (2.29) correspond to a particular trigonometric case of the
cyclic SOS model of [13] related with elliptic n-state R-matrix [14]. We can handle
the elliptic case as well. In fact, applying our lemma to Eqgs. (3.4) and (3.6) of [13] we
obtain a cyclic L-operator related with the above elliptic R-matrix. These subjects
will be discussed in a separate paper.

3. Construction of the Generalized Chiral Potts Model

In this section we calculate Boltzmann weights of the generalized chiral Potts
model with the help of some linear equation (which, in fact, is a variant of the YBE)
and determine the algebraic curve which constrains the rapidity variables.

First, we define one more set of “three spin interaction” weights (I, me AZy,
o,feZ,)

m — wz,te"(x_l’ O'(h)), l=m—eﬁ;
bl )= {0 , otherwise, (3.1a)
where the transformed set o(h) is given by
oW =hi, «eZ,. G.2)

There is a graphical representation for these weights shown in Fig. 11. One can
introduce also corresponding “inverse” weights ¢7",(x, k) by any of two relations
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(see Fig. 12):

just as in Sect. 2. Explicit formula for @7 4(x,h) has the form:

V. V. Bazhanov, R. M. Kashaev, V. V. Mangazeev, and Yu. G. Stroganov

R, A
A :-o- = ¢la(z, ) -T-%--‘“M' z = ¢pq(z, h)
« ! 1 : o

‘ 3
\\i? /

z N\ m /// _ hom
__,_.a ...... 4l>. ----- ’——p——ﬂ — z
~_*t_~ = 3
1
. PN ZCL .....

e e Niipee e z
v a \{m b B
7/ AN

EoA
z J‘...;n. ': = gaﬂlm(o:,h h)
e
v o
AN A l(>\- z 7.8
%é—o AN “ A
l/ N = B /m

/ N\ 3

L TN, z
A AR AN ‘B \h

IEE:Z" d)?,la(xa h)(-ﬁ;':ﬁ(x’ h) = 5aﬂ P
Z (ﬁc, a(xs h)¢£n,az(xa h) = 5-k, m

acZn

ma " o(h),  I=m—ep;

HEOE {K"‘ :

otherwise ,

(3.3a)

(3.3b)

(3.1b)

Using these objects the other factorized L-operator can be constructed (Fig. 13)

a[i lm(x E h) ¢ (X h [)(x’ h)’

(3.4)

which satisfies the YBE (2.25), where the R(x)is defined by (1.2) with g, replaced by
05,- Obviously, there are counterparts of Egs. (2.26)42.28) with the corresponding

Wsos Weights.

_ Now let us consider the following linear equation on the set of unknowns
W, il m), [,me AZY, which was invented by Korepin and Tarasov [15] (see also
[16]) for the case of the chiral Potts model (Fig. 14):

V_Vh,}_n(l’ S) Z $;c a(x5 E)d)fn,a(x’ h)
(k m) Z wk a(x h)lpm ac(x h)

aeZn

(3.52)
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Equation (3.5a) can be written in other forms by using inversion relations (2.12)
and (3.3). Indeed, multiplying (3.5a) from the left by ¢} 4(x, h), from the right by
5, ,(x, h) and summing over k and s we obtain (Fig. 15),

2 " VT/h,}_l(l’ s)¢fn, ﬁ(x5 h)‘an,y(X, E)

seAZN

= 3 Oh sl P, O 0k ). (3.5)

On the other hand, multiplying (3.5a) from the left by ¢, 4(x, k), from the right by
&5, ,(x, h) and summing over | and m we obtain one more form of (3.5a) (Fig. 16):

Z " ‘l_’i, [i(x’ h)¢;llc, y(X, E)W;,ﬁ(l’ S)

leAZN

= me§Z" I/—Vh, ﬁ(ka m)tpfn, B(xa h—)afn, y(xa h) . (350)

It is useful to introduce the graphical representation for (W (I,m))~' (p—h,q —>h)
as in Fig. 2b. Then the same Eq. (3.5a) with h < h can be represented as in Fig. 17.

Substitution of (2.11), (2.14), and (3.1) into (3.5a) at [=k+e,, s=m+e, gives
explicitly

VVhﬁ(k_"l‘ewm'f‘ea) =w2(vm,k—m>+(k~m)m,m+1, O(=ﬁ, (36&)
Wlk, m)

VVth(k_'*' ¢ —ep M) — P v 2ktead +(kHmteq)e, g = (ex—ep,vp)
VVhﬁ(k, m)

y i e g S
Wiy —hy byl T

akfB.  (3.6b)

In (3.6b) we have used (3.6a) to move e, from the second argument of Wk, m) to
the first one.
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To obtain the consistency condition between (3.6a) and (3.6b) let us divide
(3.6b) by itself with replacements k—k+e,, m—m+e,:
Wlﬁ(k + €,— eﬂs m) V—Vhl_l(k + ey: m+ ev)
Wlh}_x(k, m) VT/}tﬁ(k te,— €s + e, m + ey)
zw—2<v,—vﬁ,ey>—2(ey)a,ﬁ‘ (37)

In the left-hand side of (3.7) we can use (3.6a) twice and obtain

w 2Omeamepd ~(Camep)y 1 — 3 T 2VaT Vs Ey) ~2ep)a, 5 (38)

Thus we have the following equations on linear forms v,:

ey V= Vg —Ley—ep v,y =%, —ep), y+1—(€)n 5 - (3.9)
Solution of (3.9) is
Vo €5 = o —1(€at g, (3.10)
where {y,,} is an arbitrary set of numbers, symmetric in o, f:
Fap= Hga - (3.11)
We choose
uaﬁ=%(6aﬁ_ 1) (312)

The condition for W, 3(I, m) to be a finite dimensional N"~' x N"~ ! matrix has the
form

W, i1+ Ne,,m)=W, 5, m+ Ne,)= W, 5, m), (3.13)
and imply the following equations
(b B~ B = BV — (s )Y, Vo, BeZ,. (3.14)

If we require that this condition should be satisfied at least for two different sets of
values of h’s while keeping /’s fixed then it is not difficult to see that the manifold
defined by (3.14) contains a direct product of two identical algebraic curves
specified by the following equations:

h+(p)N> <h+(p)">
“ =K, .2 , Vo,peZz,, 3.15)
(hetor) =5 i o) ¢ (
where the argument p of #’s denotes a point of the curve and K 4 are 2 x 2 complex
matrices of moduli with the unit determinant. Equations (3.15) with 4’s replaced by
P’s specify the other point g of this curve. The matrices K, satisfy the consistency
relations (no summation)

K,.=K,Kg,K,,=1, Vo, fB,7eZ,. (3.16)

There are 2n—3 independent moduli, since a gauge transformation of the form
hy (p) hy () N -N

(h;(p) “Velpp) Koo UaKali (17)

with matrices U,=diag(u,,u, ') does not affect the W’s. This curve is a natural
generalization of the curve which appeared in the chiral Potts model [4]. Using
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the Riemann-Hurwitz formula one can calculate the genus g of curve (3.15) in a
generic case:

g=N*""Y(n—1)N—n)+1, (3.18)

which at n=2 yields the genus of the curve which appeared in the chiral Potts
model [4]. Hereafter we will write symbols p,q, ... instead of hh, ... .
Now substituting (3.10) and (3.11) into (3.6) we obtain

Tralym) _

o, m) _
W,0.0) 7 el I=m: 1)
where g,,(I,m) is uniquely defined by:
8oglks K) =8 gk, D pill, M)g po(m, K) =1, (3.20a)
+ - _ h- + Ko, o+ 1
ek by —epy= D@ =k ()b @ 5200)

B h;(p)hp—(CI)—hﬂ_(p)h;(q)wl +kp, g1

and Q(I, m) satisfies the relations:

O(+e,—epm—Q(Lm)=m, g, (3.21a)
Ql,m+e,—ep) —QUm)y=(I—m)gy 4oy +mMpg+1—=0yp. (3.21b)

Explicit solution of (3.21) has the form
ot,m= ;ma— 1,olla—my). (3.22)

Now, applying consequently Eq. (3.5a) (Fig. 14), Eq. (3.5b) (Fig. 15), Eq. (3.5¢)
(Fig. 16), and again Eq. (3.5a) (Fig. 17) one can show that an R-matrix of the form
(see Fig. 3)

IX/qp(ka S)W/E'q(sa m)VT/q'p’(m’ l)
Wy kD
intertwines two L-operators (2.15) with rapidity parameters (g, q") and (p, p') (see

Fig,. 18):

<k, 1S(a,q'; p, P)im, 5 = (3.23)

% Lop(%, 9, 4)® Ly, (x, p, 0)S(q, 45 P, D)
= ; S(qa q’; 12 p’)yﬁy(xs qa qj@gaﬂ(xa pa p,) s (3'24)

where

ZLop(%, 4, 4) = Zoplx, H(q), Mq')) (3.25)
and Z,4(x, h(g), h(q")) is defined in (2.15) with h=h(q) and h=h(q).

Fig. 18 ) L@En ) q P



408 V. V. Bazhanov, R. M, Kashaev, V. V. Mangazeev, and Yu. G. Stroganov

References

. Bazhanov, V.V, Stroganov, Yu.G.: J. Stat. Phys. 59, 799 (1990)

. Au-Yang, H., McCoy, B.M.,, Perk, JH.H.,, Tang, S., Yan, M.: Phys. Lett. A 123, 219 (1987)

McCoy, B.M., Perk, J.H.H,, Tang, S., Sah, C.H.: Phys. Lett. A 125, 9 (1987)

. Baxter, R.J., Perk, JH.H., Au-Yang, H.: Phys. Lett. A 128, 138 (1988)

. Faddeev, L.D., Reshetikhin, N.Yu., Takhtajan, L.A.: Algebra i Analiz. 1 (1), 178 (1989)

. Drinfeld, V.G.: Proc. ICM. Berkeley, 798 (1987)

Jimbo, M.: Lett. Math. Phys. 10, 63 (1985)

. Cherednik, 1.V.: Teor. Mat. Fiz. 43 (1), 117-119 (1980)

Kulish, P.P., Sklyanin, E.K.: Zapiski Nauch. Semin. LOMI 95, 129-160
Perk, J.HH.,, Schultz, C.L.: Phys. Lett. A 84, 407 (1981)

9. Bazhanov, V.V, Kashaev, R.M.: Cyclic L-operator related with a 3-state R-matrix. Commun.
Math. Phys. 136, 607-623 (1991)

10. Bazhanov, V.V., Kashaev, R.M., Mangazeev, V.V.: Z, x Z5 Generalization of the Chiral
Potts Model. Preprint IHEP 90-136, Protvino, 1990

11. Kashaev, R M., Mangazeev, V.V.: The four-state solution of the Yang-Baxter equation.
Preprint IHEP 90-73, Serpukhov, 1990, submitted to Phys. Lett. A N

12. Date, E., Jimbo, M., Miki, K., Miwa, T.: R-matrix for cyclic representations of U (sl(3, C)) at
q*=1. Preprint RIMS-696, Kyoto, 1990

13. Jimbo, M., Miwa, T., Okado, M.: Nucl. Phys. B300 [FS22], 74-108 (1988)

14. Belavin, A.A.: Nucl. Phys. B180 [FS2], 189-200 (1981)

15. Korepin, V.E., Tarasov, V.O.: Remark on Australian National University Workshop on
Yang-Baxter equation, Canberra, 1989 (unpublished)

16. Bernard, D., Pasquier, V.: Exchange algebra and exotic supersymmetry in the chiral Potts

model. Preprint SPhT/89-204

0 NN W=

Communicated by N. Yu. Reshetikhin



