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Abstract: The Zinc-doped cerium oxide nanocomposite (ZnO/CeO2 NC) was synthesized using a
metal-organic framework as a precursor through the combustion method. It was characterized by
powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), field emission elec-
tron microscopy (FESEM), energy dispersive analysis (EDX), transmission electron microscopy (TEM),
dynamic light scattering (DLS), and ξ-potential. The PXRD demonstrated the successful synthesis
of ZnO/CeO2 NC with a crystallite size of 31.9 nm. FESEM and TEM images displayed hexagonal
and spherical morphologies, and the solid-phase size was 65.03 ± 30.86 nm for ZnO/CeO2 NCs.
DLS, TEM, and FESEM showed that the NCs have a high tendency for agglomeration/aggregation in
both aqueous media and solid phase. The anticancer attributes of ZnO/CeO2 NC were investigated
against Liver cancer cells (HepG2), which showed inhibition of cancer cell growth on a concentration-
dependent gradient. The cell toxicity effects of ZnO/CeO2 nanocomposites were also studied toward
NIH-3T3, in which the data displayed the lower toxicity of NC compared to the HepG2 cell line.

Keywords: zinc oxide; cerium oxide; metal-organic framework; nanoceria; anticancer; doping

1. Introduction

Nanocomposites (NCs) are an advanced kind of recognized composite material that
have been reinforced with nano-sized particles. Such materials could be improved to
be appropriate for biomedical uses, of which notable developed material properties are
needed, meaning that the material properties of NCs are greater because of the superior
features of materials in the nanoscale. NCs are being increasingly used by researchers in
medical and pharmacological applications. Hence, it is of excessive importance to be aware
of the studies conducted in this area by scientists to be able to predict the behaviors of
structures consisting of NCs in in vitro and in vivo conditions.

Nanotechnology can lead to new attributes of matter that can be used in new cutting-
edge systems or industries with more efficiency, especially in biological, medical, and
pharmacological applications [1–3]. Among inorganic nanoparticles, cerium oxide nanopar-
ticles (CeO2 NPs) demonstrated a higher catalytic performance due to their higher surface
area or exposed surface. The interesting redox characteristics of Ce3+/Ce4+ are the main
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cause of its catalytic properties. The bandgap energy reported for CeO2 NPs is 3.19 eV [4],
which has a moderate exciton binding energy and could well absorb UV radiation. As the
catalytic performance of CeO2 NPs increase, it can be expected that the anticancer efficacy
of CeO2 NPs can be increased using other metals or metal oxides as dopants [5]. To achieve
the highest catalytic performance, the bandgap energy should be optimized to increase
therapeutic efficiency. In some cases, ZnO doping increased the catalytic activity of CeO2 in
CO oxidation [6], gas sensor performance [7], catalytic operating life [8], and photocatalytic
performance [9]. It appears that the better performance of the nanocomposites may be due
to changes in the concentration of reactive oxygen species (ROS), for instance hydroxyl
radical and superoxide anions [10,11]. It appears that ZnO/CeO2 NCs are interesting
materials that should be investigated for biological applications, such as anticancer and
antibacterial ones. Presently, just a few reports investigate the anticancer or biological
effects of ZnO-doped CeO2 NPs [12]. Zinc is a common dopant that is used to modify
and enhance the properties of other oxides, such as CeO2, which could lead to structural
changes and better optical, catalytic, or electrical attributes [13,14]. Other factors that Zn
dopant could increase are the oxygen storage and thermal stability of the cerium oxide
nanocomposites [15]. Therefore, the use of zinc as a dopant could increase the efficiency
and add some new characteristics, structures, morphologies, and applications.

The toxicity of nanostructures should be evaluated as a requirement for their safe and
effective use in any industry. An in vitro cell toxicity test is one of the tests that can express
the toxicity and safety of produced nanoparticles [16]. The aim of nano-toxicity, which also
mentions the nano-safety of biomaterials, is to establish a dose–effect association [17]. Also,
nano-toxicology contains the study of the interactions of nanomaterials with cells and the
study of the potential causes of toxicity from nanomaterials. Indeed, the toxicity of NPs has
already been widely considered in environmental pollution [18].

Different synthetic methods, such as hydrothermal, co-precipitation, sol-gel, and
combustion, are available [19,20]. In the hydrothermal method, the autoclave vessel is
expensive, monitoring is impossible, and safety issues usually exist at higher tempera-
tures [21]. The sol-gel method also may not be affordable, and the large shrinkage of the
volume and cracking during the drying process is an issue that may affect the final prod-
uct [22]. Using metal-organic precursors elevates the purity of final nanoparticles, which
is similar to the co-precipitation method. The particle sizes that use metal-organic frame-
works as precursors were evenly distributed and can be controlled using different linkers
and MOFs structures. The combustion method, which uses a facile synthesized precursor,
could be of great use; for instance, metal-organic precursors may include coordination poly-
mers or MOFs [23,24]. Metal oxide nodes in MOFs could form cores to prepare nanoscale
metal-oxides by pyrolysis [25,26]. UiO-66 is one of the known MOFs that is applied in
different applications of science, but it can also be used as a precursor to synthesize metal
oxides [27,28]. The linker, 1,4-benzene dicarboxylic acid, is an available and affordable
organic precursor. Different metal precursors, such as Ce, Cu, Co, Mn, Fe, Zr, and Hf, can
be used to prepare the crystalline framework [29–31]. One of the most important factors
that affects the purity of the final nanoparticle is the crystallinity of the MOFs [31]. The
other one could be the formation of uniform particle sizes with a specified morphology
and hierarchical superstructures with high surface areas [25]. In addition, catalytic studies
also indicate that CeO2 NCs and NPs that are prepared using UiO-66 Ce showed more
catalytic activity, stability, and selectivity compared to commercial CeO2 [32,33]. Therefore,
the synthesis of CeO2 NCs by applying MOFs may enhance anticancer activities because
biological effects can directly relate to the catalytic properties of the prepared metal oxide
and nanocomposites.

In this study, the anticancer properties of the newly-synthesized ZnO/CeO2 NCs were
investigated, in which a coordination polymer (UiO-66 Ce-Zn) was used as a precursor.
Herein, zinc was doped into the MOF before synthesis, along with other precursors. As
it was mentioned, MOFs were applied in the synthesis of metal oxide nanoparticles, but
the application of dopants (trace of other metals) without changing the structure could
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widen their use in the synthesis of different and more active nanoscale mixed metal ox-
ides. Therefore, the synthesis of the MOF was the same as the previous report in the
literature [34], and only zinc salt was used as a dopant to be used as a precursor for the
synthesis of ZnO/CeO2 NCs. Due to the importance of the physicochemical characteristics
of ZnO/CeO2 NCs, the phase purity, crystallite size, functional groups, morphology, solid-
phase size, hydrodynamic size, and surface charge were fully determined and discussed
using conventional methods such as PXRD, FTIR, FESEM, TEM, DLS, and ξ-potential.
Most importantly, our study investigated the biological functions of the prepared NCs. To
the best of our knowledge, the cytotoxicity of ZnO/CeO2 NCs was performed for the first
time on NCs obtained from the pyrolysis of UiO-66 Ce and zinc as a dopant. A liver cancer
cell line (HepG2) was used to measure the anticancer potential of ZnO/CeO2 NCs.

2. Materials and Methods
2.1. Materials

All the materials were procured from Merck and Sigma chemical group unless other-
wise stated. The cancer cell lines were obtained from the Pasteur Institute of Iran.

2.2. The Synthesis of the ZnO@CeO2 NCs

The precursor (UiO-66 Ce-Zn) was prepared as it was explained in the literature for the
synthesis of UiO-66 Ce and used with no further purification (35). In detail, 2000 mg of ben-
zene dicarboxylic acid was dissolved in 368 mL of DMF. Then, 6604 mg of Ce(NH4)2(NO3)6
and 360 mg of Zn(NO3)2·6H2O were dissolved in DMF and mixed with the first solution.
Then, it was stirred at 100 ◦C for 20 min and the precipitate was separated. It was washed
with DMF three times and dried at 80 ◦C overnight. After that, the precursor (4 g) was
calcined at 600 ◦C for 5 h (Figure 1).
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Figure 1. Pictorial diagram for synthetic procedure.

2.3. Characterization

ZnO/CeO2 NCs were studied by PXRD (Advance-Bruker, Germany), in which the
sample in powder form was analyzed from 2theta values in the range of 10–70◦ using
Cu-radiation. The nanocomposites were scrutinized using FTIR spectroscopy by a Shi-
madzu8400 device, where KBr pellets of the samples were made and FTIR was set from the
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400 to 4000 cm−1 region. TEM was performed using a ZEISS LEO 912 AB. The sample was
dispersed in water using ultrasound waves, then one drop of the suspension was poured
onto a copper plate and dried and used for TEM analysis. For FESEM, a TESCAN device
(MIRA 3) was used, and the sample was in powder form. DLS was performed using a
Particle Size Analyzer, along with Vasco3 and Zeta potential. For DLS and Zeta potential
analyses, 2 mg of the sample were dispersed using ultrasound waves in 10 mL of distilled
water at a pH of 7.

2.4. In Vitro Cell Toxicity

A human liver carcinoma cell line (HepG2) was selected as an appropriate in vitro
model. HepG2 cells were attained from Pasteur Institute, Iran. The cytotoxicity effects
of NPs against HepG2 cells were evaluated by the MTT assay. The cells were seeded in
96-well plates (5000 cells per well) and incubated overnight at 37 ◦C Then, the cells were
treated with different concentrations of NPs for 24, 48, and 72 h. After these times, the
treatment medium was drained and 100 µL of MTT solution (0.45 mg/mL) was added
to each well and incubated for 4 h to form a formazan crystal. The insoluble formazan
crystals were then dissolved in DMSO and shaken for 20 min. Finally, the absorption of the
samples was recorded using a plate reader (Stat fax 2100, USA) at 570 nm with the reference
wavelength of 630 nm. The cell viability was calculated using the following formula:

Cell viability (%) = (OD treated cells /OD un-treated cells) × 100

2.5. Statistical Analysis

With the purpose of estimating the toxicological activity of the nanocomposite and
comparing it with that of the normal cell line sample, the resultant values were moved to
SPSS software. One-way ANOVA was employed to compare the means by LSD. Error-bar
values and a 5% confidence level were used for calculations.

3. Result and Discussion
3.1. Fourier Transform Infrared Spectroscopy (FTIR)

The FTIR spectrum of the ZnO/CeO2 NCs from 400 to 4000 cm−1 demonstrated the pres-
ence of the functional groups (Figure 2). The band at 3441 cm−1 and 1509 cm−1 corresponded
to stretching and bending vibrations of O-H groups or the absorbed H2O [35,36]. The bands,
including 1355 cm−1, and 1062 cm−1, could be related to residual organic compounds [37],
and the band observed at 420 cm−1 could be recognized as a Ce-O vibration [38,39].
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3.2. Powder X-ray Diffraction (PXRD)

The PXRD has shown structural changes after the addition of zinc dopant (Figure 3).
The multi-phase compound of CeO2 and ZnO were consistent with the JCPDS numbers
of 01-081-0792 and 01-079-0208, respectively. The crystal system, space group, and space
group number of nanoceria were cubic, Fm-3 m, and 225, respectively. The calculated
2theta values and intensities were 28.5◦ (100%), 33.1◦ (28.5%), 47.5◦ (45.8%), 56.3◦ (36.1%),
and 59.1◦ (7.1%), which corresponded to the HKL of (1 1 1), (2 0 0), (2 2 0), (3 1 1), and (2 2 2),
respectively. The experimental values and calculated ones were consistent with each other,
which showed the purity of the samples. The 2theta values and HKLs of 36.45◦ (1 0 1) and
63.44◦ (1 0 3) in ZnO/CeO2 NCs were associated with the ZnO, and it appears no other
impurities were found in the sample. The crystallite sizes were obtained by the Scherrer
equation, which was 26.6 nm and 31.9 nm for nanoceria and ZnO/CeO2 NCs, respectively.

J. Funct. Biomater. 2022, 13, x FOR PEER REVIEW 6 of 15 
 

 

 
Figure 3. PXRD analyses of the CeO2 NPs and ZnO/CeO2 NCs. 

3.3. Field Emission Scanning Electron Microscopy (FESEM) 
The FESEM images demonstrated hexagonal, spherical, and shapeless morphologies 

for ZnO/CeO2 NCs (Figure 4). The images indicated high aggregation/agglomeration com-
pared to the crystallite sizes. The EDX analysis also confirmed the elemental composition 
of ZnO/CeO2 NCs. The Ce Lα and Zn Kα were associated with cerium and zinc, respec-
tively, which were at 4.8 keV and 1.0 keV accordingly. 

Figure 3. PXRD analyses of the CeO2 NPs and ZnO/CeO2 NCs.

3.3. Field Emission Scanning Electron Microscopy (FESEM)

The FESEM images demonstrated hexagonal, spherical, and shapeless morphologies
for ZnO/CeO2 NCs (Figure 4). The images indicated high aggregation/agglomeration
compared to the crystallite sizes. The EDX analysis also confirmed the elemental compo-
sition of ZnO/CeO2 NCs. The Ce Lα and Zn Kα were associated with cerium and zinc,
respectively, which were at 4.8 keV and 1.0 keV accordingly.
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3.4. Transmission Electron Microscopy (TEM)

The TEM images (Figure 5) showed that the ZnO/CeO2 NCs were spherical or semi-
spherical particles with a diameter of 65.03 ± 30.86 nm. Compared to the crystallite size
(31.9 nm), the TEM images demonstrated high agglomeration in the sample. The results
were similar to the results from the FESEM images.
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3.5. Dynamic Light Scattering (DLS) and ξ-Potential

The DLS analysis demonstrated (Figure 6) highly-agglomerated particles in ZnO/CeO2
NCs. Compared to the solid-phase diameter (65 nm) and crystallite size (31.9 nm), the
hydrodynamic size dispersion by intensity showed a bimodal pattern with two diameters
(168.9 ± 10.1 nm and 1303.9 ± 115.3 nm) that indicated a broad distribution of particles. The
Z-average and polydispersity were 919.7 nm and 0.6, respectively. Although size dispersion
by number showed a diameter of 165.8 ± 8.7 nm, the intensity-based size dispersion indi-
cated that the flocculation was similar the TEM results. The tendency for the flocculation of
particles may be due to hydrogen bonds or van der Waals forces [40,41]. The ξ-potential
was −24.8 mV, which could confirm the incipient instability and floc formation [42].
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3.6. Cell Toxicity Effect of ZnO/CeO2 NCs towards HepG2

To assess the anticancer activity of the ZnO/CeO2 nanocomposites, diverse concentra-
tions of NC were added to liver cancer cell lines (HepG2), and the cytotoxicity consequences
were tested at 24, 48 and 72 h. The consequences revealed that there is a gradual increase in
cell death when enhancing the concentration of ZnO/CeO2 NCs (Figure 7). A comparative
study of cytotoxicity in ZnO, CeO2, and ZnO/CeO2 NCs showed that the formation of
ZnO/CeO2 NCs could lead to improved cytotoxicity results against cancer cells. As stated
by the WHO, cancer is the second leading cause of death in the world [43]. Conventional
cancer cures depend on surgical procedures and chemotherapy. Oftentimes, mixtures
of these treatments are necessary to wholly wipe out the disease. However, normal tis-
sues are affected by these actions as well, thereby leading to contrary side effects [44].
Nanomedicine can support conventional cures for cancer via several biocompatible nano-
raised areas [45–47]. ZnO is inexpensive and is used in cosmetics and skin-care goods,
such as sunscreens, because it absorbs UV light [48]. Several reports indicate that ZnO
nanoparticles have a key role in biomedical applications [49,50]. Particularly, ZnO NPs
have also been identified because they influence a lot of cancer cells in vitro [51], given
that ZnO NPs activate ROS fabrication and consequently lead to cancer cell death [52,53].
Cerium oxide nanoparticles have an extensive variety of uses in diverse areas such as
biology and therapeutic sciences [54]. There are various reports that nanocrystals have an
inhibitory effect against various cancer cell lines and, at the same time, have low cytotoxic-
ity in normal cells [55]. The DNA destruction of cancer cells by the formation of hydroxyl
groups and inhibition of NF-kB protein, which has a significant role in cancer progres-
sion, are important mechanisms of nanoceria against cancerous cell lines [56]. According
to investigations, during liver regeneration, it is important to preserve the proliferative
state until the original liver mass is restored [57]. However, in several liver disorders, the
accumulation of ROS may inhibit ideal regeneration because of the induction of apoptosis
due to lipid peroxidation, consequently inhibiting the resolution of tissue destruction. ROS
act as mediators in the regulation of diverse growth agents, transcription factors, and cell
cycle proteins‚β-catenin, cyclin D, p53, and NF-E2-related factor 2 (Nrf2), for example.
All of these proteins are necessary for the regenerative process, and improper regulation
results in detrimental properties in liver regeneration. It has been shown that the presence
of ZnO NPs in cancer cells causes an increase in the production of caspase 3 due to the
increase of ROS, which ultimately causes apoptosis and cancer cell death [58]. Cell viability
studies showed that doxorubicin-loaded polymerized magnetic nanocarriers could lead
to high death rates among HepG2 liver cancer cells [59]. Cerium in nanoform causes
increased toxicity in human HuH-7 cells due to damage to their DNA [60]. CeO2NPs
modified the messenger expression of pro-inflammatory and oxidative stress-related genes,
including iNOS, myeloperoxidase (MPO), prostaglandinendoperoxide synthase 1 (PTGS1),
and neutrophil cytosol factor 2 (Ncf2), and these coppers can play a role in improving liver
function [57]. The simultaneous use of ZnO and CeO NPs can help to improve the treatment
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of liver cancer and result in better functioning in the liver. A decrease in cell viability was
detected when the DOX was introduced into the cells (Figure 8). These consequences also
showed that enhancing the drug concentration and exposure time resulted in a reduction
in the cell viability of cancerous cells.
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